1
|
Stilpeanu RI, Secara BS, Cretu-Stancu M, Bucur O. Oncolytic Viruses as Reliable Adjuvants in CAR-T Cell Therapy for Solid Tumors. Int J Mol Sci 2024; 25:11127. [PMID: 39456909 PMCID: PMC11508774 DOI: 10.3390/ijms252011127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/28/2024] Open
Abstract
Although impactful scientific advancements have recently been made in cancer therapy, there remains an opportunity for future improvements. Immunotherapy is perhaps one of the most cutting-edge categories of therapies demonstrating potential in the clinical setting. Genetically engineered T cells express chimeric antigen receptors (CARs), which can detect signals expressed by the molecules present on the surface of cancer cells, also called tumor-associated antigens (TAAs). Their effectiveness has been extensively demonstrated in hematological cancers; therefore, these results can establish the groundwork for their applications on a wide range of requirements. However, the application of CAR-T cell technology for solid tumors has several challenges, such as the existence of an immune-suppressing tumor microenvironment and/or inadequate tumor infiltration. Consequently, combining therapies such as CAR-T cell technology with other approaches has been proposed. The effectiveness of combining CAR-T cell with oncolytic virus therapy, with either genetically altered or naturally occurring viruses, to target tumor cells is currently under investigation, with several clinical trials being conducted. This narrative review summarizes the current advancements, opportunities, benefits, and limitations in using each therapy alone and their combination. The use of oncolytic viruses offers an opportunity to address the existing challenges of CAR-T cell therapy, which appear in the process of trying to overcome solid tumors, through the combination of their strengths. Additionally, utilizing oncolytic viruses allows researchers to modify the virus, thus enabling the targeted delivery of specific therapeutic agents within the tumor environment. This, in turn, can potentially enhance the cytotoxic effect and therapeutic potential of CAR-T cell technology on solid malignancies, with impactful results in the clinical setting.
Collapse
MESH Headings
- Humans
- Neoplasms/therapy
- Neoplasms/immunology
- Oncolytic Viruses/genetics
- Oncolytic Viruses/immunology
- Immunotherapy, Adoptive/methods
- Oncolytic Virotherapy/methods
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Animals
- Tumor Microenvironment/immunology
- T-Lymphocytes/immunology
- Combined Modality Therapy/methods
- Adjuvants, Immunologic
- Antigens, Neoplasm/immunology
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
Collapse
Affiliation(s)
- Ruxandra Ilinca Stilpeanu
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania (B.S.S.)
| | - Bianca Stefania Secara
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania (B.S.S.)
| | | | - Octavian Bucur
- Faculty of Medicine, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania (B.S.S.)
- Genomics Research and Development Institute, 020021 Bucharest, Romania
- Viron Molecular Medicine Institute, Boston, MA 02108, USA
| |
Collapse
|
2
|
Gujar S, Pol JG, Kumar V, Lizarralde-Guerrero M, Konda P, Kroemer G, Bell JC. Tutorial: design, production and testing of oncolytic viruses for cancer immunotherapy. Nat Protoc 2024; 19:2540-2570. [PMID: 38769145 DOI: 10.1038/s41596-024-00985-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 02/12/2024] [Indexed: 05/22/2024]
Abstract
Oncolytic viruses (OVs) represent a novel class of cancer immunotherapy agents that preferentially infect and kill cancer cells and promote protective antitumor immunity. Furthermore, OVs can be used in combination with established or upcoming immunotherapeutic agents, especially immune checkpoint inhibitors, to efficiently target a wide range of malignancies. The development of OV-based therapy involves three major steps before clinical evaluation: design, production and preclinical testing. OVs can be designed as natural or engineered strains and subsequently selected for their ability to kill a broad spectrum of cancer cells rather than normal, healthy cells. OV selection is further influenced by multiple factors, such as the availability of a specific viral platform, cancer cell permissivity, the need for genetic engineering to render the virus non-pathogenic and/or more effective and logistical considerations around the use of OVs within the laboratory or clinical setting. Selected OVs are then produced and tested for their anticancer potential by using syngeneic, xenograft or humanized preclinical models wherein immunocompromised and immunocompetent setups are used to elucidate their direct oncolytic ability as well as indirect immunotherapeutic potential in vivo. Finally, OVs demonstrating the desired anticancer potential progress toward translation in patients with cancer. This tutorial provides guidelines for the design, production and preclinical testing of OVs, emphasizing considerations specific to OV technology that determine their clinical utility as cancer immunotherapy agents.
Collapse
Affiliation(s)
- Shashi Gujar
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Jonathan G Pol
- INSERM, U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Cité, Paris, France
- Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, UMS AMICCa, Gustave Roussy, Villejuif, France
| | - Vishnupriyan Kumar
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, Nova Scotia, Canada
| | - Manuela Lizarralde-Guerrero
- INSERM, U1138, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Cité, Paris, France
- Sorbonne Université, Paris, France
- Metabolomics and Cell Biology Platforms, UMS AMICCa, Gustave Roussy, Villejuif, France
- Ecole Normale Supérieure de Lyon, Lyon, France
| | - Prathyusha Konda
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Harvard University, Boston, MA, USA
| | - Guido Kroemer
- INSERM, U1138, Paris, France.
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France.
- Université Paris Cité, Paris, France.
- Sorbonne Université, Paris, France.
- Metabolomics and Cell Biology Platforms, UMS AMICCa, Gustave Roussy, Villejuif, France.
- Institut Universitaire de France, Paris, France.
- Institut du Cancer Paris CARPEM, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.
| | - John C Bell
- Department of Medicine, University of Ottawa, Ottawa, Ontario, Canada.
- Department of Biochemistry, Microbiology & Immunology, University of Ottawa, Ottawa, Ontario, Canada.
- Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.
| |
Collapse
|
3
|
Willis J, Anders RA, Torigoe T, Hirohashi Y, Bifulco C, Zlobec I, Mlecnik B, Demaria S, Choi WT, Dundr P, Tatangelo F, Di Mauro A, Baldin P, Bindea G, Marliot F, Haicheur N, Fredriksen T, Kirilovsky A, Buttard B, Vasaturo A, Lafontaine L, Maby P, El Sissy C, Hijazi A, Majdi A, Lagorce C, Berger A, Van den Eynde M, Pagès F, Lugli A, Galon J. Multi-Institutional Evaluation of Pathologists' Assessment Compared to Immunoscore. Cancers (Basel) 2023; 15:4045. [PMID: 37627073 PMCID: PMC10452341 DOI: 10.3390/cancers15164045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 07/31/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND The Immunoscore (IS) is a quantitative digital pathology assay that evaluates the immune response in cancer patients. This study reports on the reproducibility of pathologists' visual assessment of CD3+- and CD8+-stained colon tumors, compared to IS quantification. METHODS An international group of expert pathologists evaluated 540 images from 270 randomly selected colon cancer (CC) cases. Concordance between pathologists' T-score, corresponding hematoxylin-eosin (H&E) slides, and the digital IS was evaluated for two- and three-category IS. RESULTS Non-concordant T-scores were reported in more than 92% of cases. Disagreement between semi-quantitative visual assessment of T-score and the reference IS was observed in 91% and 96% of cases before and after training, respectively. Statistical analyses showed that the concordance index between pathologists and the digital IS was weak in two- and three-category IS, respectively. After training, 42% of cases had a change in T-score, but no improvement was observed with a Kappa of 0.465 and 0.374. For the 20% of patients around the cut points, no concordance was observed between pathologists and digital pathology analysis in both two- and three-category IS, before or after training (all Kappa < 0.12). CONCLUSIONS The standardized IS assay outperformed expert pathologists' T-score evaluation in the clinical setting. This study demonstrates that digital pathology, in particular digital IS, represents a novel generation of immune pathology tools for reproducible and quantitative assessment of tumor-infiltrated immune cell subtypes.
Collapse
Affiliation(s)
- Joseph Willis
- Department of Pathology, UH Cleveland Medical Center, Cleveland, OH 44106, USA;
| | | | - Toshihiko Torigoe
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (T.T.); (Y.H.)
| | - Yoshihiko Hirohashi
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (T.T.); (Y.H.)
| | - Carlo Bifulco
- Department of Pathology and Molecular Genomics, Providence Portland Medical Center, Portland, OR 97213, USA;
| | - Inti Zlobec
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland; (I.Z.); (A.L.)
| | - Bernhard Mlecnik
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France; (B.M.); (G.B.); (F.M.); (N.H.); (T.F.); (A.K.); (B.B.); (A.V.); (L.L.); (P.M.); (C.E.S.); (A.H.); (A.M.); (C.L.); (A.B.); (F.P.)
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
- Inovarion, 75005 Paris, France
| | - Sandra Demaria
- Department of Pathology, Weill Cornell Medicine, New York, NY 10021, USA;
| | - Won-Tak Choi
- Department of Pathology, University of California, San Francisco, CA 94143, USA;
| | - Pavel Dundr
- Institute of Pathology, First Faculty of Medicine, Charles University, General University Hospital in Prague, 12808 Prague, Czech Republic;
| | - Fabiana Tatangelo
- Department of Pathology, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Napoli, Italy; (F.T.); (A.D.M.)
| | - Annabella Di Mauro
- Department of Pathology, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131 Napoli, Italy; (F.T.); (A.D.M.)
| | - Pamela Baldin
- Department of Pathology, Cliniques Universitaires St-Luc, Institut de Recherche Clinique et Experimentale (Pole GAEN), Université Catholique de Louvain, 1348 Brussels, Belgium;
| | - Gabriela Bindea
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France; (B.M.); (G.B.); (F.M.); (N.H.); (T.F.); (A.K.); (B.B.); (A.V.); (L.L.); (P.M.); (C.E.S.); (A.H.); (A.M.); (C.L.); (A.B.); (F.P.)
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
| | - Florence Marliot
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France; (B.M.); (G.B.); (F.M.); (N.H.); (T.F.); (A.K.); (B.B.); (A.V.); (L.L.); (P.M.); (C.E.S.); (A.H.); (A.M.); (C.L.); (A.B.); (F.P.)
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
- Immunomonitoring Platform, Laboratory of Immunology, AP-HP, Assistance Publique-Hopitaux de Paris, Georges Pompidou European Hospital, 75015 Paris, France
| | - Nacilla Haicheur
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France; (B.M.); (G.B.); (F.M.); (N.H.); (T.F.); (A.K.); (B.B.); (A.V.); (L.L.); (P.M.); (C.E.S.); (A.H.); (A.M.); (C.L.); (A.B.); (F.P.)
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
- Immunomonitoring Platform, Laboratory of Immunology, AP-HP, Assistance Publique-Hopitaux de Paris, Georges Pompidou European Hospital, 75015 Paris, France
| | - Tessa Fredriksen
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France; (B.M.); (G.B.); (F.M.); (N.H.); (T.F.); (A.K.); (B.B.); (A.V.); (L.L.); (P.M.); (C.E.S.); (A.H.); (A.M.); (C.L.); (A.B.); (F.P.)
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
| | - Amos Kirilovsky
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France; (B.M.); (G.B.); (F.M.); (N.H.); (T.F.); (A.K.); (B.B.); (A.V.); (L.L.); (P.M.); (C.E.S.); (A.H.); (A.M.); (C.L.); (A.B.); (F.P.)
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
- Immunomonitoring Platform, Laboratory of Immunology, AP-HP, Assistance Publique-Hopitaux de Paris, Georges Pompidou European Hospital, 75015 Paris, France
| | - Bénédicte Buttard
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France; (B.M.); (G.B.); (F.M.); (N.H.); (T.F.); (A.K.); (B.B.); (A.V.); (L.L.); (P.M.); (C.E.S.); (A.H.); (A.M.); (C.L.); (A.B.); (F.P.)
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
| | - Angela Vasaturo
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France; (B.M.); (G.B.); (F.M.); (N.H.); (T.F.); (A.K.); (B.B.); (A.V.); (L.L.); (P.M.); (C.E.S.); (A.H.); (A.M.); (C.L.); (A.B.); (F.P.)
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
| | - Lucie Lafontaine
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France; (B.M.); (G.B.); (F.M.); (N.H.); (T.F.); (A.K.); (B.B.); (A.V.); (L.L.); (P.M.); (C.E.S.); (A.H.); (A.M.); (C.L.); (A.B.); (F.P.)
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
| | - Pauline Maby
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France; (B.M.); (G.B.); (F.M.); (N.H.); (T.F.); (A.K.); (B.B.); (A.V.); (L.L.); (P.M.); (C.E.S.); (A.H.); (A.M.); (C.L.); (A.B.); (F.P.)
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
| | - Carine El Sissy
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France; (B.M.); (G.B.); (F.M.); (N.H.); (T.F.); (A.K.); (B.B.); (A.V.); (L.L.); (P.M.); (C.E.S.); (A.H.); (A.M.); (C.L.); (A.B.); (F.P.)
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
- Immunomonitoring Platform, Laboratory of Immunology, AP-HP, Assistance Publique-Hopitaux de Paris, Georges Pompidou European Hospital, 75015 Paris, France
| | - Assia Hijazi
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France; (B.M.); (G.B.); (F.M.); (N.H.); (T.F.); (A.K.); (B.B.); (A.V.); (L.L.); (P.M.); (C.E.S.); (A.H.); (A.M.); (C.L.); (A.B.); (F.P.)
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
| | - Amine Majdi
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France; (B.M.); (G.B.); (F.M.); (N.H.); (T.F.); (A.K.); (B.B.); (A.V.); (L.L.); (P.M.); (C.E.S.); (A.H.); (A.M.); (C.L.); (A.B.); (F.P.)
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
| | - Christine Lagorce
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France; (B.M.); (G.B.); (F.M.); (N.H.); (T.F.); (A.K.); (B.B.); (A.V.); (L.L.); (P.M.); (C.E.S.); (A.H.); (A.M.); (C.L.); (A.B.); (F.P.)
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
- Department of Pathology, AP-HP, Assistance Publique-Hopitaux de Paris, Georges Pompidou European Hospital, 75015 Paris, France
| | - Anne Berger
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France; (B.M.); (G.B.); (F.M.); (N.H.); (T.F.); (A.K.); (B.B.); (A.V.); (L.L.); (P.M.); (C.E.S.); (A.H.); (A.M.); (C.L.); (A.B.); (F.P.)
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
- Digestive Surgery Department, AP-HP, Assistance Publique-Hopitaux de Paris, Georges Pompidou European Hospital, 75015 Paris, France
| | - Marc Van den Eynde
- Institut Roi Albert II, Department of Medical Oncology, Cliniques Universitaires St-Luc, Institut de Recherche Clinique et Experimentale (Pole MIRO), Université Catholique de Louvain, 1030 Brussels, Belgium;
| | - Franck Pagès
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France; (B.M.); (G.B.); (F.M.); (N.H.); (T.F.); (A.K.); (B.B.); (A.V.); (L.L.); (P.M.); (C.E.S.); (A.H.); (A.M.); (C.L.); (A.B.); (F.P.)
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
- Immunomonitoring Platform, Laboratory of Immunology, AP-HP, Assistance Publique-Hopitaux de Paris, Georges Pompidou European Hospital, 75015 Paris, France
| | - Alessandro Lugli
- Institute of Pathology, University of Bern, 3008 Bern, Switzerland; (I.Z.); (A.L.)
| | - Jérôme Galon
- INSERM, Laboratory of Integrative Cancer Immunology, 75006 Paris, France; (B.M.); (G.B.); (F.M.); (N.H.); (T.F.); (A.K.); (B.B.); (A.V.); (L.L.); (P.M.); (C.E.S.); (A.H.); (A.M.); (C.L.); (A.B.); (F.P.)
- Centre de Recherche des Cordeliers, Sorbonne Université, Université Paris Cité, 75006 Paris, France
- Equipe Labellisée Ligue Contre le Cancer, 75006 Paris, France
| |
Collapse
|
4
|
Ghasemi Darestani N, Gilmanova AI, Al-Gazally ME, Zekiy AO, Ansari MJ, Zabibah RS, Jawad MA, Al-Shalah SAJ, Rizaev JA, Alnassar YS, Mohammed NM, Mustafa YF, Darvishi M, Akhavan-Sigari R. Mesenchymal stem cell-released oncolytic virus: an innovative strategy for cancer treatment. Cell Commun Signal 2023; 21:43. [PMID: 36829187 PMCID: PMC9960453 DOI: 10.1186/s12964-022-01012-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 12/10/2022] [Indexed: 02/26/2023] Open
Abstract
Oncolytic viruses (OVs) infect, multiply, and finally remove tumor cells selectively, causing no damage to normal cells in the process. Because of their specific features, such as, the ability to induce immunogenic cell death and to contain curative transgenes in their genomes, OVs have attracted attention as candidates to be utilized in cooperation with immunotherapies for cancer treatment. This treatment takes advantage of most tumor cells' inherent tendency to be infected by certain OVs and both innate and adaptive immune responses are elicited by OV infection and oncolysis. OVs can also modulate tumor microenvironment and boost anti-tumor immune responses. Mesenchymal stem cells (MSC) are gathering interest as promising anti-cancer treatments with the ability to address a wide range of cancers. MSCs exhibit tumor-trophic migration characteristics, allowing them to be used as delivery vehicles for successful, targeted treatment of isolated tumors and metastatic malignancies. Preclinical and clinical research were reviewed in this study to discuss using MSC-released OVs as a novel method for the treatment of cancer. Video Abstract.
Collapse
Affiliation(s)
| | - Anna I Gilmanova
- Department of Prosthetic Dentistry of the I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | | | - Angelina O Zekiy
- Department of Prosthetic Dentistry of the I.M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russian Federation
| | - Mohammad Javed Ansari
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Rahman S Zabibah
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | | | - Saif A J Al-Shalah
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Iraq
| | - Jasur Alimdjanovich Rizaev
- Department of Public Health and Healthcare Management, Rector, Samarkand State Medical University, Samarkand, Uzbekistan
| | | | | | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Mohammad Darvishi
- Department of Aerospace and Subaquatic Medicine, Infectious Diseases and Tropical Medicine Research Center (IDTMRC), AJA University of Medical Sciences, Tehran, Iran.
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center, Tuebingen, Germany.,Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University, Warsaw, Poland
| |
Collapse
|
5
|
Huang J, Huang X, Huang J. CAR-T cell therapy for hematological malignancies: Limitations and optimization strategies. Front Immunol 2022; 13:1019115. [PMID: 36248810 PMCID: PMC9557333 DOI: 10.3389/fimmu.2022.1019115] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/13/2022] [Indexed: 02/04/2023] Open
Abstract
In the past decade, the emergence of chimeric antigen receptor (CAR) T-cell therapy has led to a cellular immunotherapy revolution against various cancers. Although CAR-T cell therapies have demonstrated remarkable efficacy for patients with certain B cell driven hematological malignancies, further studies are required to broaden the use of CAR-T cell therapy against other hematological malignancies. Moreover, treatment failure still occurs for a significant proportion of patients. CAR antigen loss on cancer cells is one of the most common reasons for cancer relapse. Additionally, immune evasion can arise due to the hostile immunosuppressive tumor microenvironment and the impaired CAR-T cells in vivo persistence. Other than direct antitumor activity, the adverse effects associated with CAR-T cell therapy are another major concern during treatment. As a newly emerged treatment approach, numerous novel preclinical studies have proposed different strategies to enhance the efficacy and attenuate CAR-T cell associated toxicity in recent years. The major obstacles that impede promising outcomes for patients with hematological malignancies during CAR-T cell therapy have been reviewed herein, along with recent advancements being made to surmount them.
Collapse
|
6
|
Wang Y, Jin J, Li Y, Zhou Q, Yao R, Wu Z, Hu H, Fang Z, Dong S, Cai Q, Hu S, Liu B. NK cell tumor therapy modulated by UV-inactivated oncolytic herpes simplex virus type 2 and checkpoint inhibitors. Transl Res 2022; 240:64-86. [PMID: 34757194 DOI: 10.1016/j.trsl.2021.10.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 11/28/2022]
Abstract
Oncolytic virotherapy is a new and safe therapeutic strategy for cancer treatment. In our previous study, a new type of oncolytic herpes simplex virus type 2 (oHSV2) was constructed. Following the completion of a preclinical study, oHSV2 has now entered into clinical trials for the treatment of melanoma and other solid tumors (NCT03866525). Oncolytic viruses (OVs) are generally able to directly destroy tumor cells and stimulate the immune system to fight tumors. Natural killer (NK) cells are important components of the innate immune system and critical players against tumor cells. But the detailed interactions between oncolytic viruses and NK cells and these interaction effects on the antitumor immune response remain to be elucidated. In particular, the functions of activating surface receptors and checkpoint inhibitors on oHSV2-treated NK cells and tumor cells are still unknown. In this study, we found that UV-oHSV2 potently activates human peripheral blood mononuclear cells, leading to increased antitumor activity in vitro and in vivo. Further investigation indicated that UV-oHSV2-stimulated NK cells release IFN-γ via Toll-like receptor 2 (TLR2)/NF-κB signaling pathway and exert antitumor activity via TLR2. We found for the first time that the expression of a pair of checkpoint molecules, NKG2A (on NK cells) and HLA-E (on tumor cells), is upregulated by UV-oHSV2 stimulation. Anti-NKG2A and anti-HLA-E treatment could further enhance the antitumor effects of UV-oHSV2-stimulated NK92 cells in vitro and in vivo. As our oHSV2 clinical trial is ongoing, we expect that the combination therapy of oncolytic virus oHSV2 and anti-NKG2A/anti-HLA-E antibodies may have synergistic antitumor effects in our future clinical trials.
Collapse
Affiliation(s)
- Yang Wang
- National "111" Centre for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Centre of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Jing Jin
- National "111" Centre for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Centre of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Yuying Li
- National "111" Centre for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Centre of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Qin Zhou
- National "111" Centre for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Centre of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Ruoyi Yao
- National "111" Centre for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Centre of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Zhen Wu
- National "111" Centre for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Centre of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Han Hu
- National "111" Centre for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Centre of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China
| | - Zhizheng Fang
- Wuhan Binhui Biopharmaceutical Co., Ltd., Wuhan, 430000, China
| | - Shuang Dong
- Department of Medical Oncology, Hubei Cancer Hospital, Wuhan, 430079, China
| | - Qian Cai
- Department of Medical Oncology, Hubei Cancer Hospital, Wuhan, 430079, China
| | - Sheng Hu
- Department of Medical Oncology, Hubei Cancer Hospital, Wuhan, 430079, China; Huazhong Agricultural University, Wuhan, 430068, China
| | - Binlei Liu
- National "111" Centre for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Centre of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan 430068, China.
| |
Collapse
|
7
|
Zarezadeh Mehrabadi A, Roozbahani F, Ranjbar R, Farzanehpour M, Shahriary A, Dorostkar R, Esmaeili Gouvarchin Ghaleh H. Overview of the pre-clinical and clinical studies about the use of CAR-T cell therapy of cancer combined with oncolytic viruses. World J Surg Oncol 2022; 20:16. [PMID: 35027068 PMCID: PMC8756705 DOI: 10.1186/s12957-021-02486-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 12/24/2021] [Indexed: 12/14/2022] Open
Abstract
Background Cancer is one of the critical issues of the global health system with a high mortality rate even with the available therapies, so using novel therapeutic approaches to reduce the mortality rate and increase the quality of life is sensed more than ever. Main body CAR-T cell therapy and oncolytic viruses are innovative cancer therapeutic approaches with fewer complications than common treatments such as chemotherapy and radiotherapy and significantly improve the quality of life. Oncolytic viruses can selectively proliferate in the cancer cells and destroy them. The specificity of oncolytic viruses potentially maintains the normal cells and tissues intact. T-cells are genetically manipulated and armed against the specific antigens of the tumor cells in CAR-T cell therapy. Eventually, they are returned to the body and act against the tumor cells. Nowadays, virology and oncology researchers intend to improve the efficacy of immunotherapy by utilizing CAR-T cells in combination with oncolytic viruses. Conclusion Using CAR-T cells along with oncolytic viruses can enhance the efficacy of CAR-T cell therapy in destroying the solid tumors, increasing the permeability of the tumor cells for T-cells, reducing the disturbing effects of the immune system, and increasing the success chance in the treatment of this hazardous disease. In recent years, significant progress has been achieved in using oncolytic viruses alone and in combination with other therapeutic approaches such as CAR-T cell therapy in pre-clinical and clinical investigations. This principle necessitates a deeper consideration of these treatment strategies. This review intends to curtly investigate each of these therapeutic methods, lonely and in combination form. We will also point to the pre-clinical and clinical studies about the use of CAR-T cell therapy combined with oncolytic viruses.
Collapse
Affiliation(s)
- Ali Zarezadeh Mehrabadi
- Immunology Department, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Roozbahani
- Department of Microbiology and Virology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Reza Ranjbar
- Molecular Biology Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mahdieh Farzanehpour
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Shahriary
- Chemical Injuries Research Center, Systems Biology and Poisonings Institute, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Ruhollah Dorostkar
- Applied Virology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
8
|
Humeau J, Le Naour J, Galluzzi L, Kroemer G, Pol JG. Trial watch: intratumoral immunotherapy. Oncoimmunology 2021; 10:1984677. [PMID: 34676147 PMCID: PMC8526014 DOI: 10.1080/2162402x.2021.1984677] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 09/20/2021] [Indexed: 02/06/2023] Open
Abstract
While chemotherapy and radiotherapy remain the first-line approaches for the management of most unresectable tumors, immunotherapy has emerged in the past two decades as a game-changing treatment, notably with the clinical success of immune checkpoint inhibitors. Immunotherapies aim at (re)activating anticancer immune responses which occur in two main steps: (1) the activation and expansion of tumor-specific T cells following cross-presentation of tumor antigens by specialized myeloid cells (priming phase); and (2) the immunological clearance of malignant cells by these antitumor T lymphocytes (effector phase). Therapeutic vaccines, adjuvants, monoclonal antibodies, cytokines, immunogenic cell death-inducing agents including oncolytic viruses, anthracycline-based chemotherapy and radiotherapy, as well as adoptive cell transfer, all act at different levels of this cascade to (re)instate cancer immunosurveillance. Intratumoral delivery of these immunotherapeutics is being tested in clinical trials to promote superior antitumor immune activity in the context of limited systemic toxicity.
Collapse
Affiliation(s)
- Juliette Humeau
- Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Institute for Research in Immunology and Cancer (IRIC), Université de Montréal, Montreal, QC H3C 3J7, Canada
- Department of Medicine, Université de Montréal, Montreal, Quebec H3C 3J7, Canada
| | - Julie Le Naour
- Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Kremlin Bicêtre, France
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Kremlin Bicêtre, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Institut Universitaire de France, Paris, France
- Karolinska Institute, Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
- Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China
| | - Jonathan G. Pol
- Equipe labellisée par la Ligue contre le cancer, INSERM U1138, Centre de Recherche des Cordeliers, Sorbonne Université, Université de Paris, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Faculté de Médecine, Université Paris-Saclay, Kremlin Bicêtre, France
| |
Collapse
|
9
|
Howell LM, Forbes NS. Bacteria-based immune therapies for cancer treatment. Semin Cancer Biol 2021; 86:1163-1178. [PMID: 34547442 DOI: 10.1016/j.semcancer.2021.09.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 09/03/2021] [Accepted: 09/12/2021] [Indexed: 12/23/2022]
Abstract
Engineered bacterial therapies that target the tumor immune landscape offer a new class of cancer immunotherapy. Salmonella enterica and Listeria monocytogenes are two species of bacteria that have been engineered to specifically target tumors and serve as delivery vessels for immunotherapies. Therapeutic bacteria have been engineered to deliver cytokines, gene silencing shRNA, and tumor associated antigens that increase immune activation. Bacterial therapies stimulate both the innate and adaptive immune system, change the immune dynamics of the tumor microenvironment, and offer unique strategies for targeting tumors. Bacteria have innate adjuvant properties, which enable both the delivered molecules and the bacteria themselves to stimulate immune responses. Bacterial immunotherapies that deliver cytokines and tumor-associated antigens have demonstrated clinical efficacy. Harnessing the diverse set of mechanisms that Salmonella and Listeria use to alter the tumor-immune landscape has the potential to generate many new and effective immunotherapies.
Collapse
Affiliation(s)
- Lars M Howell
- Department of Chemical Engineering, University of Massachusetts, Amherst, United States
| | - Neil S Forbes
- Department of Chemical Engineering, University of Massachusetts, Amherst, United States.
| |
Collapse
|
10
|
Galanopoulos M, Doukatas A, Gkeros F, Viazis N, Liatsos C. Room for improvement in the treatment of pancreatic cancer: Novel opportunities from gene targeted therapy. World J Gastroenterol 2021; 27:3568-3580. [PMID: 34239270 PMCID: PMC8240062 DOI: 10.3748/wjg.v27.i24.3568] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/11/2021] [Accepted: 05/22/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer is one of the highest and in fact, unchanged mortality-associated tumor, with an exceptionally low survival rate due to its challenging diagnostic approach. So far, its treatment is based on a combination of approaches (such as surgical resection with or rarely without chemotherapeutic agents), but with finite limits. Thus, looking for additional space to improve pancreatic tumorigenesis therapeutic approach, research has focused on gene therapy with unexpectedly growing horizons not only for the treatment of inoperable pancreatic disease, but also for its early stages. In vivo gene delivery viral vectors, despite few disadvantages (possible immunogenicity, toxicity, mutagenicity, or high cost), could be one of the most efficient cancer gene therapeutic strategies for clinical application due to their superiority compared with other systems (ex vivo delivery strategies). Their dominance consists of simple preparation, easy operation and a wide range of functions. Adenoviruses are one of the most common used vectors, inducing strong immune as well as inflammatory reactions. Oncolytic virotherapy, using the above mentioned in vivo viral vectors, is one of the most promising non-pathogenic, highly-selective cytotoxic anti-cancer therapy using anti-cancer agents with high anti-tumor potency and strong oncolytic effect. There have been a variety of targeted therapeutic and pre-clinical strategies tested for gene therapy in pancreatic cancer such as gene-editing systems (e.g., clustered regularly interspaced palindromic repeats-Cas9), RNA interference technology (e.g., microRNAs, short hairpin RNA or small interfering RNA), adoptive immunotherapy and vaccination (e.g., chimeric antigen receptor T-cell therapy) with encouraging results.
Collapse
Affiliation(s)
- Michail Galanopoulos
- Department of Gastroenterology, Addenbrooke’s Hospital, Cambridge CB2 0QQ, United Kingdom
| | - Aris Doukatas
- Department of Pharmacy, National and Kapodistrian University of Athens, Athens GR 15772, Greece
| | - Filippos Gkeros
- Department of Gastroenterology, Evangelismos, Ophthalmiatreion Athinon and Polyclinic Hospitals, Athens 10676, Greece
| | - Nikos Viazis
- Department of Gastroenterology, Evangelismos, Ophthalmiatreion Athinon and Polyclinic Hospitals, Athens 10676, Greece
| | - Christos Liatsos
- Department of Gastroenterology, 401 General Military Hospital, Athens 11525, Greece
| |
Collapse
|
11
|
Galluzzi L, Garg AD. Immunology of Cell Death in Cancer Immunotherapy. Cells 2021; 10:cells10051208. [PMID: 34063358 PMCID: PMC8156735 DOI: 10.3390/cells10051208] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 05/13/2021] [Indexed: 12/22/2022] Open
Affiliation(s)
- Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY 10065, USA
- Sandra and Edward Meyer Cancer Center, New York, NY 10065, USA
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY 10065, USA
- Department of Dermatology, Yale School of Medicine, New Haven, CT 06520, USA
- Université de Paris, 75006 Paris, France
- Correspondence: (L.G.); (A.D.G.)
| | - Abhishek D. Garg
- Cell Stress & Immunity (CSI) Lab, Department for Cellular & Molecular Medicine (CMM), KU Leuven, 3000 Leuven, Belgium
- Correspondence: (L.G.); (A.D.G.)
| |
Collapse
|
12
|
Kagabu M, Yoshino N, Saito T, Miura Y, Takeshita R, Murakami K, Kawamura H, Baba T, Sugiyama T. The efficacy of a third-generation oncolytic herpes simplex viral therapy for an HPV-related uterine cervical cancer model. Int J Clin Oncol 2020; 26:591-597. [PMID: 33146805 DOI: 10.1007/s10147-020-01823-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/22/2020] [Indexed: 01/07/2023]
Abstract
PURPOSE Cervical cancer is the fourth most common cancer in women and the seventh most common of all human cancers. Development of new treatments is mandatory to improve the outcome of this disease. Replication-selective oncolytic herpes simplex viruses (HSVs) have emerged as a new platform for cancer therapy. The therapeutic potential of a triple-mutated oncolytic HSV (T-01) for human papillomavirus (HPV)-related cervical cancer was evaluated with immunodeficient and immune-complete models. METHODS (1) The in vitro efficacy of T-01 on human cervical cancer cell lines, TC-1, HeLa, CaSki, and SKG IIIa was evaluated. (2) The in vivo efficacy of T-01 was examined in human HeLa xenograft and TC-1 syngeneic models of human cervical cancer. After flank tumors reached 5 mm in diameter, the first intratumoral (i.t.) administration of T-01 was performed. Intratumoral administration of T-01 was performed with a 5 day interval a total of 6 times. RESULTS In the in vitro study, T-01 was highly cytotoxic for all cell lines (48 h after infection with T-01 at 1 × 105 PFU, T-01 killing HeLa: 67.5%, Caski: 62.8%, SKG IIIa: 43.2%). Furthermore, in the human HeLa xenograft and TC-1 syngeneic models, T-01 resulted in a significant reduction of tumor growth. In addition, tumor-bearing mice treated with T-01 showed significantly increased numbers of CD8 + T-cells precursors than the control mice (p = 0.03). CONCLUSIONS These results demonstrate that T-01 has cytotoxic efficacy and inhibited against HPV-related cervical cancer cells. These findings indicate that T-01 has therapeutic potential for HPV-related cervical cancer.
Collapse
Affiliation(s)
- Masahiro Kagabu
- Department of Obstetrics and Gynecology, Iwate Medical University School of Medicine, 2-1-1 Idaidori, Yahaba-chou, Shiwa, Iwate, 028-3695, Japan.
| | - Naoto Yoshino
- Division of Infectious Diseases and Immunology, Department of Microbiology, Iwate Medical University School of Medicine, 1-1-1 Idaidori, Yahaba-cho, Shiwa, Iwate, 028-3694, Japan
| | - Tatsunori Saito
- Department of Obstetrics and Gynecology, Iwate Medical University School of Medicine, 2-1-1 Idaidori, Yahaba-chou, Shiwa, Iwate, 028-3695, Japan
| | - Yuki Miura
- Department of Obstetrics and Gynecology, Iwate Medical University School of Medicine, 2-1-1 Idaidori, Yahaba-chou, Shiwa, Iwate, 028-3695, Japan
| | - Ryosuke Takeshita
- Department of Obstetrics and Gynecology, Iwate Medical University School of Medicine, 2-1-1 Idaidori, Yahaba-chou, Shiwa, Iwate, 028-3695, Japan
| | - Kazuyuki Murakami
- Department of Obstetrics and Gynecology, Iwate Medical University School of Medicine, 2-1-1 Idaidori, Yahaba-chou, Shiwa, Iwate, 028-3695, Japan
| | - Hideki Kawamura
- Department of Obstetrics and Gynecology, Iwate Medical University School of Medicine, 2-1-1 Idaidori, Yahaba-chou, Shiwa, Iwate, 028-3695, Japan
| | - Tsukasa Baba
- Department of Obstetrics and Gynecology, Iwate Medical University School of Medicine, 2-1-1 Idaidori, Yahaba-chou, Shiwa, Iwate, 028-3695, Japan
| | - Toru Sugiyama
- Department of Obstetrics and Gynecology, Iwate Medical University School of Medicine, 2-1-1 Idaidori, Yahaba-chou, Shiwa, Iwate, 028-3695, Japan
| |
Collapse
|
13
|
Abstract
Tumors represent a hostile environment for the effector cells of cancer immunosurveillance. Immunosuppressive receptors and soluble or membrane-bound ligands are abundantly exposed and released by malignant entities and their stromal accomplices. As a consequence, executioners of antitumor immunity inefficiently navigate across cancer tissues and fail to eliminate malignant targets. By inducing immunogenic cancer cell death, oncolytic viruses profoundly reshape the tumor microenvironment. They trigger the local spread of danger signals and tumor-associated (as well as viral) antigens, thus attracting antigen-presenting cells, promoting the activation and expansion of lymphocytic populations, facilitating their infiltration in the tumor bed, and reinvigorating cytotoxic immune activity. The present review recapitulates key chemokines, growth factors and other cytokines that orchestrate this ballet of antitumoral leukocytes upon oncolytic virotherapy.
Collapse
Affiliation(s)
- Jonathan G Pol
- Centre de Recherche des Cordeliers, Equipe 11 labellisée par la Ligue Nationale contre le Cancer, INSERM, Sorbonne Université, Université de Paris, Paris, France; Gustave Roussy Cancer Campus, Metabolomics and Cell Biology Platforms, Villejuif, France.
| | - Samuel T Workenhe
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Prathyusha Konda
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Shashi Gujar
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada; Department of Pathology, Dalhousie University, Halifax, NS, Canada; Department of Biology, Dalhousie University, Halifax, NS, Canada; Beatrice Hunter Cancer Research Institute, Halifax, NS, Canada
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Equipe 11 labellisée par la Ligue Nationale contre le Cancer, INSERM, Sorbonne Université, Université de Paris, Paris, France; Gustave Roussy Cancer Campus, Metabolomics and Cell Biology Platforms, Villejuif, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China; Karolinska Institute, Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
14
|
Roy S, Sethi TK, Taylor D, Kim YJ, Johnson DB. Breakthrough concepts in immune-oncology: Cancer vaccines at the bedside. J Leukoc Biol 2020; 108:1455-1489. [PMID: 32557857 DOI: 10.1002/jlb.5bt0420-585rr] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 04/15/2020] [Accepted: 04/18/2020] [Indexed: 12/11/2022] Open
Abstract
Clinical approval of the immune checkpoint blockade (ICB) agents for multiple cancer types has reinvigorated the long-standing work on cancer vaccines. In the pre-ICB era, clinical efforts focused on the Ag, the adjuvants, the formulation, and the mode of delivery. These translational efforts on therapeutic vaccines range from cell-based (e.g., dendritic cells vaccine Sipuleucel-T) to DNA/RNA-based platforms with various formulations (liposome), vectors (Listeria monocytogenes), or modes of delivery (intratumoral, gene gun, etc.). Despite promising preclinical results, cancer vaccine trials without ICB have historically shown little clinical activity. With the anticipation and expansion of combinatorial immunotherapeutic trials with ICB, the cancer vaccine field has entered the personalized medicine arena with recent advances in immunogenic neoantigen-based vaccines. In this article, we review the literature to organize the different cancer vaccines in the clinical space, and we will discuss their advantages, limits, and recent progress to overcome their challenges. Furthermore, we will also discuss recent preclinical advances and clinical strategies to combine vaccines with checkpoint blockade to improve therapeutic outcome and present a translational perspective on future directions.
Collapse
Affiliation(s)
- Sohini Roy
- Department of Otolaryngology - Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Tarsheen K Sethi
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - David Taylor
- Department of Otolaryngology - Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Young J Kim
- Department of Otolaryngology - Head & Neck Surgery, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Douglas B Johnson
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
15
|
Ashton LV, Graham B, Afzali MF, Gustafson D, MacNeill AL. Treatment of an Alveolar Rhabdomyosarcoma Allograft with Recombinant Myxoma Virus and Oclacitinib. Oncolytic Virother 2020; 9:17-29. [PMID: 32548076 PMCID: PMC7266523 DOI: 10.2147/ov.s252727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Purpose Rhabdomyosarcomas (RMS) are difficult tumors to treat with conventional therapies. Publications indicate that oncolytic virotherapy (OV) could benefit cancer patients with tumors that are refractory to conventional treatments. It is believed that the efficacy of OV can be enhanced when used in combination with other treatments. This study evaluated the response of mice with aggressive alveolar RMS (ARMS) allografts to treatment with an OV [recombinant myxoma virus (MYXVΔserp2)] in combination with a Janus kinase (JAK) inhibitor (oclacitinib). Oclacitinib is known to inhibit JAK1 and JAK2 cell signaling pathways, which should limit the antiviral Type I interferon response. However, oclacitinib does not inhibit immune pathways that promote antigen presentation, which help stimulate an anti-cancer immune response. Materials and Methods To determine if MYXVΔserp2 and oclacitinib could improve outcomes in animals with ARMS, nude mice were inoculated subcutaneously with murine ARMS cells to establish tumors. Immune responses, tumor growth, and clinical signs in mice treated with combination therapy were compared to mice given placebo therapy and mice treated with OV alone. Results Combination therapy was safe; no viral DNA was detected in off-target organs, only within tumors. As predicted, viral DNA was detected in tumors of mice given oclacitinib and MYXVΔserp2 for a longer time period than mice treated with OV alone. Although tumor growth rates and median survival times were not significantly different between groups, clinical signs were less severe in mice treated with OV. Conclusion Our data indicate that MYXVΔserp2 treatment benefits mice with ARMS by reducing clinical signs of disease and improving quality of life.
Collapse
Affiliation(s)
- Laura V Ashton
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Barbara Graham
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Maryam F Afzali
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Daniel Gustafson
- Departiment of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| | - Amy L MacNeill
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
16
|
Huang Y, Lv S, Liu P, Ye Z, Yang H, Li L, Zhu H, Wang Y, Cui L, Jiang D, Hao F, Xu H, Jin H, Qian Q. A SIRPα-Fc fusion protein enhances the antitumor effect of oncolytic adenovirus against ovarian cancer. Mol Oncol 2020; 14:657-668. [PMID: 31899582 PMCID: PMC7053234 DOI: 10.1002/1878-0261.12628] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/31/2019] [Accepted: 01/02/2020] [Indexed: 12/13/2022] Open
Abstract
Oncolytic viruses armed with therapeutic transgenes of interest show great potential in cancer immunotherapy. Here, a novel oncolytic adenovirus carrying a signal regulatory protein-α (SIRPα)-IgG1 Fc fusion gene (termed SG635-SF) was constructed, which could block the CD47 'don't eat me' signal of cancer cells. A strong promoter sequence (CCAU) was chosen to control the expression of the SF fusion protein, and a 5/35 chimeric fiber was utilized to enhance the efficiency of infection. As a result, SG635-SF was found to specifically proliferate in hTERT-positive cancer cells and largely increased the abundance of the SF gene. The SF fusion protein was effectively detected, and CD47 was successfully blocked in SK-OV3 and HO8910 ovarian cancer cells expressing high levels of CD47. Although the ability to induce cell cycle arrest and cell death was comparable to that of the control empty SG635 oncolytic adenovirus in vitro, the antitumor effect of SG635-SF was significantly superior to that of SG635 in vivo. Furthermore, CD47 was largely blocked and macrophage infiltration distinctly increased in xenograft tissues of SK-OV3 cells but not in those of CD47-negative HepG2 cells, indicating that the enhanced antitumor effect of SG635-SF was CD47-dependent. Collectively, these findings highlight a potent antitumor effect of SG635-SF in the treatment of CD47-positive cancers.
Collapse
Affiliation(s)
- Yao Huang
- Department of Biliary TractShanghai Eastern Hepatobiliary Surgery HospitalChina
| | - Sai‐qun Lv
- Laboratory of Viral and Gene TherapyShanghai Eastern Hepatobiliary Surgery HospitalChina
- Shanghai Cell Therapy Engineering Research CenterChina
| | - Pin‐yi Liu
- Xinyuan Institute of Medicine and Biotechnology College of Life ScienceZhejiang Sci‐Tech UniversityHangzhouChina
| | - Zhen‐long Ye
- Laboratory of Viral and Gene TherapyShanghai Eastern Hepatobiliary Surgery HospitalChina
- Shanghai Cell Therapy Engineering Research CenterChina
| | - Huan Yang
- Shanghai Cell Therapy Engineering Research CenterChina
| | - Lin‐fang Li
- Laboratory of Viral and Gene TherapyShanghai Eastern Hepatobiliary Surgery HospitalChina
- Shanghai Cell Therapy Engineering Research CenterChina
| | - Hai‐li Zhu
- Laboratory of Viral and Gene TherapyShanghai Eastern Hepatobiliary Surgery HospitalChina
| | - Ying Wang
- Laboratory of Viral and Gene TherapyShanghai Eastern Hepatobiliary Surgery HospitalChina
| | - Lian‐zhen Cui
- Shanghai Cell Therapy Engineering Research CenterChina
| | - Du‐qing Jiang
- Shanghai Cell Therapy Engineering Research CenterChina
| | - Fang‐yuan Hao
- Shanghai Cell Therapy Engineering Research CenterChina
| | - Hui‐min Xu
- Shanghai Cell Therapy Engineering Research CenterChina
| | - Hua‐jun Jin
- Laboratory of Viral and Gene TherapyShanghai Eastern Hepatobiliary Surgery HospitalChina
- Shanghai Cell Therapy Engineering Research CenterChina
| | - Qi‐jun Qian
- Laboratory of Viral and Gene TherapyShanghai Eastern Hepatobiliary Surgery HospitalChina
- Shanghai Cell Therapy Engineering Research CenterChina
- Xinyuan Institute of Medicine and Biotechnology College of Life ScienceZhejiang Sci‐Tech UniversityHangzhouChina
| |
Collapse
|
17
|
Vanmeerbeek I, Sprooten J, De Ruysscher D, Tejpar S, Vandenberghe P, Fucikova J, Spisek R, Zitvogel L, Kroemer G, Galluzzi L, Garg AD. Trial watch: chemotherapy-induced immunogenic cell death in immuno-oncology. Oncoimmunology 2020; 9:1703449. [PMID: 32002302 PMCID: PMC6959434 DOI: 10.1080/2162402x.2019.1703449] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 11/01/2019] [Indexed: 12/13/2022] Open
Abstract
The term ‘immunogenic cell death’ (ICD) denotes an immunologically unique type of regulated cell death that enables, rather than suppresses, T cell-driven immune responses that are specific for antigens derived from the dying cells. The ability of ICD to elicit adaptive immunity heavily relies on the immunogenicity of dying cells, implying that such cells must encode and present antigens not covered by central tolerance (antigenicity), and deliver immunostimulatory molecules such as damage-associated molecular patterns and cytokines (adjuvanticity). Moreover, the host immune system must be equipped to detect the antigenicity and adjuvanticity of dying cells. As cancer (but not normal) cells express several antigens not covered by central tolerance, they can be driven into ICD by some therapeutic agents, including (but not limited to) chemotherapeutics of the anthracycline family, oxaliplatin and bortezomib, as well as radiation therapy. In this Trial Watch, we describe current trends in the preclinical and clinical development of ICD-eliciting chemotherapy as partner for immunotherapy, with a focus on trials assessing efficacy in the context of immunomonitoring.
Collapse
Affiliation(s)
- Isaure Vanmeerbeek
- Cell Death Research & Therapy (CDRT) unit, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jenny Sprooten
- Cell Death Research & Therapy (CDRT) unit, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Dirk De Ruysscher
- Maastricht University Medical Center, Department of Radiation Oncology (MAASTRO Clinic), GROW-School for Oncology and Developmental Biology, Maastricht, Netherlands
| | - Sabine Tejpar
- Department of Oncology, KU Leuven, Leuven, Belgium.,UZ Leuven, Leuven, Belgium
| | - Peter Vandenberghe
- Department of Haematology, UZ Leuven, and Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Jitka Fucikova
- Sotio, Prague, Czech Republic.,Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Radek Spisek
- Sotio, Prague, Czech Republic.,Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,INSERM, U1015, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France.,Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, Centre de Recherche des Cordeliers, Université de Paris, Sorbonne Université, INSERM U1138, Paris, France.,Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France.,Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France.,Suzhou Institute for Systems Medicine, Chinese Academy of Medical Sciences, Suzhou, China.,Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA.,Sandra and Edward Meyer Cancer Center, New York, NY, USA.,Caryl and Israel Englander Institute for Precision Medicine, New York, NY, USA.,Department of Dermatology, Yale School of Medicine, New Haven, CT, USA.,Université de Paris, Paris, France
| | - Abhishek D Garg
- Cell Death Research & Therapy (CDRT) unit, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
18
|
Igase M, Shibutani S, Kurogouchi Y, Fujiki N, Hwang CC, Coffey M, Noguchi S, Nemoto Y, Mizuno T. Combination Therapy with Reovirus and ATM Inhibitor Enhances Cell Death and Virus Replication in Canine Melanoma. Mol Ther Oncolytics 2019; 15:49-59. [PMID: 31650025 PMCID: PMC6804779 DOI: 10.1016/j.omto.2019.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 08/16/2019] [Indexed: 12/13/2022] Open
Abstract
Oncolytic virotherapy using reovirus is a promising new anti-cancer treatment with potential for use in humans and dogs. Because reovirus monotherapy shows limited efficacy in human and canine cancer patients, the clinical development of a combination therapy is necessary. To identify candidate components of such a combination, we screened a 285-compound drug library for those that enhanced reovirus cytotoxicity in a canine melanoma cell line. Here, we show that exposure to an inhibitor of the ataxia telangiectasia mutated protein (ATM) enhances the oncolytic potential of reovirus in five of six tested canine melanoma cell lines. Specifically, the ATM inhibitor potentiated reovirus replication in cancer cells along with promoting the lysosomal activity, resulting in an increased proportion of caspase-dependent apoptosis and cell cycle arrest at G2/M compared to those observed with reovirus alone. Overall, our study suggests that the combination of reovirus and the ATM inhibitor may be an attractive option in cancer therapy.
Collapse
Affiliation(s)
- Masaya Igase
- Laboratory of Molecular Diagnostics and Therapeutics, The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - Shusaku Shibutani
- Laboratory of Veterinary Hygiene, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Yosuke Kurogouchi
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Noriyuki Fujiki
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Chung Chew Hwang
- Laboratory of Molecular Diagnostics and Therapeutics, The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - Matt Coffey
- Oncolytics Biotech Inc., Calgary, AB, Canada
| | - Shunsuke Noguchi
- Laboratory of Veterinary Radiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Yuki Nemoto
- Laboratory of Molecular Diagnostics and Therapeutics, The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Takuya Mizuno
- Laboratory of Molecular Diagnostics and Therapeutics, The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
19
|
Lee CL, Veeramani S, Molouki A, Lim SHE, Thomas W, Chia SL, Yusoff K. Virotherapy: Current Trends and Future Prospects for Treatment of Colon and Rectal Malignancies. Cancer Invest 2019; 37:393-414. [PMID: 31502477 DOI: 10.1080/07357907.2019.1660887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Colorectal cancer (CRC) is one of the most common malignancies. In recent decades, early diagnosis and conventional therapies have resulted in a significant reduction in mortality. However, late stage metastatic disease still has very limited effective treatment options. There is a growing interest in using viruses to help target therapies to tumour sites. In recent years the evolution of immunotherapy has emphasised the importance of directing the immune system to eliminate tumour cells; we aim to give a state-of-the-art over-view of the diverse viruses that have been investigated as potential oncolytic agents for the treatment of CRC.
Collapse
Affiliation(s)
- Chin Liang Lee
- Perdana University-Royal College of Surgeons in Ireland School of Medicine (PU-RCSI) , Serdang , Malaysia
| | - Sanggeetha Veeramani
- Perdana University-Royal College of Surgeons in Ireland School of Medicine (PU-RCSI) , Serdang , Malaysia
| | - Aidin Molouki
- Department of Avian Disease Research and Diagnostics, Razi Vaccine and Serum Research Institute, Agricultural Research Education and Extension Organization (AREEO) , Karaj , Iran
| | - Swee Hua Erin Lim
- Perdana University-Royal College of Surgeons in Ireland School of Medicine (PU-RCSI) , Serdang , Malaysia.,Health Sciences Division, Abu Dhabi Women's College, Higher Colleges of Technology , Abu Dhabi , United Arab Emirates
| | - Warren Thomas
- Perdana University-Royal College of Surgeons in Ireland School of Medicine (PU-RCSI) , Serdang , Malaysia
| | - Suet Lin Chia
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universit Putra Malaysia , Serdang , Malaysia.,Institute of Bioscience, Universiti Putra Malaysia , Serdang , Malaysia
| | - Khatijah Yusoff
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universit Putra Malaysia , Serdang , Malaysia.,Institute of Bioscience, Universiti Putra Malaysia , Serdang , Malaysia
| |
Collapse
|
20
|
Zendedel E, Atkin SL, Sahebkar A. Use of stem cells as carriers of oncolytic viruses for cancer treatment. J Cell Physiol 2019; 234:14906-14913. [PMID: 30770550 DOI: 10.1002/jcp.28320] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 01/19/2019] [Accepted: 01/24/2019] [Indexed: 01/24/2023]
Abstract
Therapeutic application of stem cells and oncolytic viruses in cancer treatment has rapidly increased in the last decade. Oncolytic viruses are considered as a new class of anticancer agents because of their ability to selectively infect and destroy cancer cells. Furthermore, regarding the specific migratory capacity of stem cells, they can be used as carriers or vectors targeting metastatic cancer. Promising results have been reported regarding the use of stem cells and oncolytic viruses as a therapeutic approach for the treatment of metastatic cancer. The present review aimed to determine the approaches involved in the use of the tumor-homing capacity of stem cells for cancer treatment.
Collapse
Affiliation(s)
- Elham Zendedel
- Department of Biology, Faculty of Sciences, Islamic Azad University-Mashhad Branch, Mashhad, Iran
| | | | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
21
|
Cao Z, Cheng S, Wang X, Pang Y, Liu J. Camouflaging bacteria by wrapping with cell membranes. Nat Commun 2019; 10:3452. [PMID: 31388002 PMCID: PMC6684626 DOI: 10.1038/s41467-019-11390-8] [Citation(s) in RCA: 143] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 07/08/2019] [Indexed: 12/20/2022] Open
Abstract
Bacteria have been extensively utilized for bioimaging, diagnosis and therapy given their unique characteristics including genetic manipulation, rapid proliferation and disease site targeting specificity. However, clinical translation of bacteria for these applications has been largely restricted by their unavoidable side effects and low treatment efficacies. Engineered bacteria for biomedical applications ideally need to generate only a low inflammatory response, show slow elimination by macrophages, low accumulation in normal organs, and almost unchanged inherent bioactivities. Here we describe a set of stealth bacteria, cell membrane coated bacteria (CMCB), meeting these requirement. Our findings are supported by evaluation in multiple mice models and ultimately demonstrate the potential of CMCB to serve as efficient tumor imaging agents. Stealth bacteria wrapped up with cell membranes have the potential for a myriad of bacterial-mediated biomedical applications. The use of engineered bacteria for biomedical applications is limited by side effects such as inflammatory response. Here the authors engineer cell membrane coated bacteria as in vivo tumor imaging agents, and show that these generate a lower inflammatory response and reduced macrophage clearance.
Collapse
Affiliation(s)
- Zhenping Cao
- Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Institute of Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200011, Shanghai, China
| | - Shanshan Cheng
- Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Institute of Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200011, Shanghai, China
| | - Xinyue Wang
- Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Institute of Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200011, Shanghai, China
| | - Yan Pang
- Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, 200011, Shanghai, China.
| | - Jinyao Liu
- Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Institute of Cancer, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200011, Shanghai, China. .,Shanghai Key Laboratory of Gynecologic Oncology, Department of Obstetrics and Gynecology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 200011, Shanghai, China.
| |
Collapse
|
22
|
Sprooten J, Ceusters J, Coosemans A, Agostinis P, De Vleeschouwer S, Zitvogel L, Kroemer G, Galluzzi L, Garg AD. Trial watch: dendritic cell vaccination for cancer immunotherapy. Oncoimmunology 2019; 8:e1638212. [PMID: 31646087 PMCID: PMC6791419 DOI: 10.1080/2162402x.2019.1638212] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022] Open
Abstract
Dendritic- cells (DCs) have received considerable attention as potential targets for the development of anticancer vaccines. DC-based anticancer vaccination relies on patient-derived DCs pulsed with a source of tumor-associated antigens (TAAs) in the context of standardized maturation-cocktails, followed by their reinfusion. Extensive evidence has confirmed that DC-based vaccines can generate TAA-specific, cytotoxic T cells. Nonetheless, clinical efficacy of DC-based vaccines remains suboptimal, reflecting the widespread immunosuppression within tumors. Thus, clinical interest is being refocused on DC-based vaccines as combinatorial partners for T cell-targeting immunotherapies. Here, we summarize the most recent preclinical/clinical development of anticancer DC vaccination and discuss future perspectives for DC-based vaccines in immuno-oncology.
Collapse
Affiliation(s)
- Jenny Sprooten
- Cell Death Research & Therapy (CDRT) unit, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jolien Ceusters
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, ImmunOvar Research Group, KU Leuven, Leuven Cancer Institute, Leuven, Belgium
| | - An Coosemans
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, ImmunOvar Research Group, KU Leuven, Leuven Cancer Institute, Leuven, Belgium
- Department of Gynecology and Obstetrics, UZ Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research & Therapy (CDRT) unit, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
- Center for Cancer Biology (CCB), VIB, Leuven, Belgium
| | - Steven De Vleeschouwer
- Research Group Experimental Neurosurgery and Neuroanatomy, KU Leuven, Leuven, Belgium
- Department of Neurosurgery, UZ Leuven, Leuven, Belgium
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
- Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Sciences, Suzhou, China
- Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
- Université de Paris Descartes, Paris, France
| | - Abhishek D. Garg
- Cell Death Research & Therapy (CDRT) unit, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
23
|
Starvation-Induced Differential Virotherapy Using an Oncolytic Measles Vaccine Virus. Viruses 2019; 11:v11070614. [PMID: 31284426 PMCID: PMC6669668 DOI: 10.3390/v11070614] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 06/27/2019] [Accepted: 07/01/2019] [Indexed: 12/12/2022] Open
Abstract
Starvation sensitizes tumor cells to chemotherapy while protecting normal cells at the same time, a phenomenon defined as differential stress resistance. In this study, we analyzed if starvation would also increase the oncolytic potential of an oncolytic measles vaccine virus (MeV-GFP) while protecting normal cells against off-target lysis. Human colorectal carcinoma (CRC) cell lines as well as human normal colon cell lines were subjected to various starvation regimes and infected with MeV-GFP. The applied fasting regimes were either short-term (24 h pre-infection) or long-term (24 h pre- plus 96 h post-infection). Cell-killing features of (i) virotherapy, (ii) starvation, as well as (iii) the combination of both were analyzed by cell viability assays and virus growth curves. Remarkably, while long-term low-serum, standard glucose starvation potentiated the efficacy of MeV-mediated cell killing in CRC cells, it was found to be decreased in normal colon cells. Interestingly, viral replication of MeV-GFP in CRC cells was decreased in long-term-starved cells and increased after short-term low-glucose, low-serum starvation. In conclusion, starvation-based virotherapy has the potential to differentially enhance MeV-mediated oncolysis in the context of CRC cancer patients while protecting normal colon cells from unwanted off-target effects.
Collapse
|
24
|
Miyagawa Y, Araki K, Yamashita T, Tanaka S, Tanaka Y, Tomifuji M, Ueda Y, Yonemitsu Y, Shimada H, Shiotani A. Induction of cell fusion/apoptosis in anaplastic thyroid carcinoma in orthotopic mouse model by urokinase‐specific oncolytic Sendai virus. Head Neck 2019; 41:2873-2882. [DOI: 10.1002/hed.25769] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 12/11/2022] Open
Affiliation(s)
- Yoshihiro Miyagawa
- Department of Otolaryngology ‐ Head and Neck SurgeryNational Defense Medical College Saitama Japan
| | - Koji Araki
- Department of Otolaryngology ‐ Head and Neck SurgeryNational Defense Medical College Saitama Japan
| | - Taku Yamashita
- Department of Otolaryngology ‐ Head and Neck SurgeryKitasato University School of Medicine Sagamihara Japan
| | - Shingo Tanaka
- Department of Otolaryngology ‐ Head and Neck SurgeryNational Defense Medical College Saitama Japan
| | - Yuya Tanaka
- Department of Otolaryngology ‐ Head and Neck SurgeryNational Defense Medical College Saitama Japan
| | - Masayuki Tomifuji
- Department of Otolaryngology ‐ Head and Neck SurgeryNational Defense Medical College Saitama Japan
| | - Yasuji Ueda
- Section of Gene Medicine, R&D CenterID Pharma Co., Ltd. Tokyo Japan
| | - Yoshikazu Yonemitsu
- R&D Laboratory for Innovative Biotherapeutics Science, Graduate School of Pharmaceutical SciencesKyushu University Fukuoka Japan
| | - Hideaki Shimada
- Department of SurgeryToho University School of Medicine Tokyo Japan
| | - Akihiro Shiotani
- Department of Otolaryngology ‐ Head and Neck SurgeryNational Defense Medical College Saitama Japan
| |
Collapse
|
25
|
Meng G, Fei Z, Fang M, Li B, Chen A, Xu C, Xia M, Yu D, Wei J. Fludarabine as an Adjuvant Improves Newcastle Disease Virus-Mediated Antitumor Immunity in Hepatocellular Carcinoma. MOLECULAR THERAPY-ONCOLYTICS 2019; 13:22-34. [PMID: 31011625 PMCID: PMC6461577 DOI: 10.1016/j.omto.2019.03.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 03/21/2019] [Indexed: 12/15/2022]
Abstract
In addition to direct oncolysis, oncolytic viruses (OVs) also induce antitumor immunity, also called viro-immunotherapy. Limited viral replication and immune-negative feedback are the major hurdles to effective viro-immunotherapy. In this study, we found that use of an adjuvant of fludarabine, a chemotherapeutic drug for chronic myeloid leukemia, increased the replication of Newcastle disease virus (NDV) by targeting signal transducer and activator of transcription 1 (STAT1), which led to enhanced oncolysis of hepatocellular carcinoma (HCC) cells. Moreover, fludarabine accelerated ubiquitin-proteasomal degradation by enhancing ubiquitylation rather than proteasomal activity. This resulted in accelerated degradation of phosphorylated STAT3 and indoleamine 2, 3-dioxygenase 1 (IDO1), whose expression was induced by NDV infection. In addition, fludarabine significantly increased the NDV-induced infiltration of NK cells and decreased the number of NDV-induced myeloid-derived suppressor cells (MDSCs) in the tumor microenvironment. The aforementioned effects of fludarabine significantly improved NDV-mediated antitumor immunity and prolonged survival in mouse model of HCC. Our findings indicate the utility of fludarabine as an adjuvant for oncolytic anticancer viro-immunotherapy.
Collapse
Affiliation(s)
- Gang Meng
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China.,Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Ziwei Fei
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - Mingyue Fang
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - Binghua Li
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China.,Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Anxian Chen
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| | - Chun Xu
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China.,Department of Pathology and Pathophysiology, Medical School, Southeast University, Nanjing 210009, China
| | - Mao Xia
- Department of Clinical Laboratory, the Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Decai Yu
- Department of Hepatobiliary Surgery, the Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing 210008, China
| | - Jiwu Wei
- Jiangsu Key Laboratory of Molecular Medicine, Medical School of Nanjing University, Nanjing 210093, China
| |
Collapse
|
26
|
Igase M, Shousu K, Fujiki N, Sakurai M, Bonkobara M, Hwang CC, Coffey M, Noguchi S, Nemoto Y, Mizuno T. Anti-tumour activity of oncolytic reovirus against canine histiocytic sarcoma cells. Vet Comp Oncol 2019; 17:184-193. [PMID: 30761736 DOI: 10.1111/vco.12468] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/09/2019] [Accepted: 02/11/2019] [Indexed: 12/13/2022]
Abstract
Canine histiocytic sarcoma is an aggressive, fatal neoplastic disease with a poor prognosis. Lomustine is generally accepted as the first-line systemic therapy, although this compound does not provide complete regression. Therefore, research into a novel approach against canine histiocytic sarcoma is needed. However, anti-tumour effects of oncolytic therapy using reovirus against histiocytic sarcoma are unknown. Here, we showed that reovirus has oncolytic activity in canine histiocytic sarcoma cell lines in vitro and in vivo. We found that reovirus can replicate and induce caspase-dependent apoptosis in canine histiocytic sarcoma cell lines. A single intra-tumoural injection of reovirus completely suppressed the growth of subcutaneously grafted tumours in NOD/SCID mice. Additionally, we demonstrated that susceptibility to reovirus-induced cell death was attributable to the extent of expression of type I interferons induced by reovirus infection in vitro. In conclusion, oncolytic reovirus appears to be an effective treatment option for histiocytic sarcoma, and therefore warrants further investigation in early clinical trials.
Collapse
Affiliation(s)
- Masaya Igase
- Laboratory of Molecular Diagnostics and Therapeutics, The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - Kazuha Shousu
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Noriyuki Fujiki
- Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Masashi Sakurai
- Laboratory of Veterinary Pathology, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Makoto Bonkobara
- Laboratory of Veterinary Clinical Pathology, Faculty of Veterinary Medicine, Nippon Veterinary and Life Science University, Tokyo, Japan
| | - Chung C Hwang
- Laboratory of Molecular Diagnostics and Therapeutics, The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan
| | - Matt Coffey
- Oncolytics Biotech Inc., Calgary, Alberta, Canada
| | - Shunsuke Noguchi
- Laboratory of Veterinary Radiology, Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Osaka, Japan
| | - Yuki Nemoto
- Laboratory of Molecular Diagnostics and Therapeutics, The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan.,Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| | - Takuya Mizuno
- Laboratory of Molecular Diagnostics and Therapeutics, The United Graduate School of Veterinary Science, Yamaguchi University, Yamaguchi, Japan.,Laboratory of Molecular Diagnostics and Therapeutics, Joint Faculty of Veterinary Medicine, Yamaguchi University, Yamaguchi, Japan
| |
Collapse
|
27
|
Huff AL, Wongthida P, Kottke T, Thompson JM, Driscoll CB, Schuelke M, Shim KG, Harris RS, Molan A, Pulido JS, Selby PJ, Harrington KJ, Melcher A, Evgin L, Vile RG. APOBEC3 Mediates Resistance to Oncolytic Viral Therapy. Mol Ther Oncolytics 2018; 11:1-13. [PMID: 30294666 PMCID: PMC6169432 DOI: 10.1016/j.omto.2018.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 08/23/2018] [Indexed: 12/18/2022] Open
Abstract
Tumor cells frequently evade applied therapies through the accumulation of genomic mutations and rapid evolution. In the case of oncolytic virotherapy, understanding the mechanisms by which cancer cells develop resistance to infection and lysis is critical to the development of more effective viral-based platforms. Here, we identify APOBEC3 as an important factor that restricts the potency of oncolytic vesicular stomatitis virus (VSV). We show that VSV infection of B16 murine melanoma cells upregulated APOBEC3 in an IFN-β-dependent manner, which was responsible for the evolution of virus-resistant cell populations and suggested that APOBEC3 expression promoted the acquisition of a virus-resistant phenotype. Knockdown of APOBEC3 in B16 cells diminished their capacity to develop resistance to VSV infection in vitro and enhanced the therapeutic effect of VSV in vivo. Similarly, overexpression of human APOBEC3B promoted the acquisition of resistance to oncolytic VSV both in vitro and in vivo. Finally, we demonstrate that APOBEC3B expression had a direct effect on the fitness of VSV, an RNA virus that has not previously been identified as restricted by APOBEC3B. This research identifies APOBEC3 enzymes as key players to target in order to improve the efficacy of viral or broader nucleic acid-based therapeutic platforms.
Collapse
Affiliation(s)
- Amanda L. Huff
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | - Timothy Kottke
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Jill M. Thompson
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | | | | | - Kevin G. Shim
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
| | - Reuben S. Harris
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Amy Molan
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Jose S. Pulido
- Department of Ophthalmology, Mayo Clinic, Rochester, MN 55905, USA
| | - Peter J. Selby
- Leeds Institute of Cancer and Pathology, Faculty of Medicine and Health, University of Leeds, St James’s University Hospital, Beckett Street, Leeds, West Yorkshire LS9 7TF, UK
| | | | | | - Laura Evgin
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Richard G. Vile
- Department of Molecular Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA
- Leeds Institute of Cancer and Pathology, Faculty of Medicine and Health, University of Leeds, St James’s University Hospital, Beckett Street, Leeds, West Yorkshire LS9 7TF, UK
| |
Collapse
|
28
|
Pol JG, Atherton MJ, Bridle BW, Stephenson KB, Le Boeuf F, Hummel JL, Martin CG, Pomoransky J, Breitbach CJ, Diallo JS, Stojdl DF, Bell JC, Wan Y, Lichty BD. Development and applications of oncolytic Maraba virus vaccines. Oncolytic Virother 2018; 7:117-128. [PMID: 30538968 PMCID: PMC6263248 DOI: 10.2147/ov.s154494] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Oncolytic activity of the MG1 strain of the Maraba vesiculovirus has proven efficacy in numerous preclinical cancer models, and relied not only on a direct cytotoxicity but also on the induction of both innate and adaptive antitumor immunity. To further expand tumor-specific T-cell effector and long-lasting memory compartments, we introduced the MG1 virus in a prime-boost cancer vaccine strategy. To this aim, a replication-incompetent adenoviral [Ad] vector together with the oncolytic MG1 have each been armed with a transgene expressing a same tumor antigen. Immune priming with the Ad vaccine subsequently boosted with the MG1 vaccine mounted tumor-specific responses of remarkable magnitude, which significantly prolonged survival in various murine cancer models. Based on these promising results, we validated the safety profile of the Ad:MG1 oncolytic vaccination strategy in nonhuman primates and initiated clinical investigations in cancer patients. Two clinical trials are currently under way (NCT02285816; NCT02879760). The present review will recapitulate the discoveries that led to the development of MG1 oncolytic vaccines from bench to bedside.
Collapse
Affiliation(s)
- Jonathan G Pol
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Institut National de la Santé Et de la Recherche Médicale (INSERM), U1138, Paris, France
- Team 11 labelled Ligue Nationale contre le Cancer, Cordeliers Research Center, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Sorbonne Universités/Université Pierre et Marie Curie/Paris VI, Paris, France
| | - Matthew J Atherton
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada,
| | - Byram W Bridle
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | | | - Fabrice Le Boeuf
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Jeff L Hummel
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada,
- Clinical Trial Division, CANSWERS, Georgetown, ON, Canada
| | | | | | | | - Jean-Simon Diallo
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - David F Stojdl
- Turnstone Biologics, Ottawa, ON, Canada,
- Children's Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - John C Bell
- Turnstone Biologics, Ottawa, ON, Canada,
- Centre for Innovative Cancer Research, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Yonghong Wan
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada,
| | - Brian D Lichty
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada,
- Turnstone Biologics, Ottawa, ON, Canada,
| |
Collapse
|
29
|
García M, Moreno R, Gil-Martin M, Cascallò M, de Olza MO, Cuadra C, Piulats JM, Navarro V, Domenech M, Alemany R, Salazar R. A Phase 1 Trial of Oncolytic Adenovirus ICOVIR-5 Administered Intravenously to Cutaneous and Uveal Melanoma Patients. Hum Gene Ther 2018; 30:352-364. [PMID: 30234393 DOI: 10.1089/hum.2018.107] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Oncolytic viruses represent a unique type of agents that combine self-amplification, lytic, and immunostimulatory properties against tumors. A local and locoregional clinical benefit has been demonstrated upon intratumoral injections of an oncolytic herpes virus in melanoma patients, leading to its approval in the United States and Europe for patients without visceral disease (up to stage IVM1a). However, in order to debulk and change the local immunosuppressive environment of tumors that cannot be injected directly, oncolyitc viruses need to be administered systemically. Among different viruses, adenovirus has been extensively used in clinical trials but with few evidences of activity upon systemic administration. Preclinical efficacy of a single intravenous administration of our oncolytic adenovirus ICOVIR5, an adenovirus type 5 responsive to the retinoblastoma pathway commonly deregulated in tumors, led us to use this virus in a dose-escalation phase 1 trial in metastatic melanoma patients. The results in 12 patients treated with a single infusion of a dose up to 1 × 1013 viral particles show that ICOVIR5 can reach melanoma metastases upon a single intravenous administration but fails to induce tumor regressions. These results support the systemic administration of armed oncolytic viruses to treat disseminated cancer.
Collapse
Affiliation(s)
- Margarita García
- 1 Clinical Research Unit, Institut Català d'Oncologia-IDIBELL, L'Hospitalet, Barcelona, Spain
| | - Rafael Moreno
- 2 ProCure and Oncobell Programs, Institut Català d'Oncologia-IDIBELL, L'Hospitalet, Barcelona, Spain
| | - Marta Gil-Martin
- 3 Department of Medical Oncology, Oncobell Program, Institut Català d'Oncologia-IDIBELL, L'Hospitalet, Barcelona, Spain
| | - Manel Cascallò
- 2 ProCure and Oncobell Programs, Institut Català d'Oncologia-IDIBELL, L'Hospitalet, Barcelona, Spain.,4 VCN Biosciences, Sant Cugat del Valles, Barcelona, Spain
| | - Maria Ochoa de Olza
- 3 Department of Medical Oncology, Oncobell Program, Institut Català d'Oncologia-IDIBELL, L'Hospitalet, Barcelona, Spain
| | - Carmen Cuadra
- 1 Clinical Research Unit, Institut Català d'Oncologia-IDIBELL, L'Hospitalet, Barcelona, Spain
| | - Josep Maria Piulats
- 3 Department of Medical Oncology, Oncobell Program, Institut Català d'Oncologia-IDIBELL, L'Hospitalet, Barcelona, Spain
| | - Valentin Navarro
- 1 Clinical Research Unit, Institut Català d'Oncologia-IDIBELL, L'Hospitalet, Barcelona, Spain
| | - Marta Domenech
- 3 Department of Medical Oncology, Oncobell Program, Institut Català d'Oncologia-IDIBELL, L'Hospitalet, Barcelona, Spain
| | - Ramon Alemany
- 2 ProCure and Oncobell Programs, Institut Català d'Oncologia-IDIBELL, L'Hospitalet, Barcelona, Spain
| | - Ramon Salazar
- 3 Department of Medical Oncology, Oncobell Program, Institut Català d'Oncologia-IDIBELL, L'Hospitalet, Barcelona, Spain
| |
Collapse
|
30
|
Garcia M, Moreno R, Gil M, Cascallo M, de Olza MO, Cuadra C, Piulat JM, Navarro V, Domenech M, Alemany R, Salazar R. A phase I trial of oncolytic adenovirus ICOVIR-5 administered intravenously to melanoma patients. HUM GENE THER CL DEV 2018. [DOI: 10.1089/humc.2018.107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Margarita Garcia
- Institut Català d'Oncologia-IDIBELL, Clinical Research Unit, L’Hospitalet, Spain
| | - Rafael Moreno
- Institut Català d'Oncologia-IDIBELL, ProCure and Oncobell Programs, L’Hospitalet, Spain
| | - Marta Gil
- Institut Català d'Oncologia-IDIBELL, Department of Medical Oncology, L’Hospitalet, Spain
| | - Manel Cascallo
- VCN Biosciences, Sant Cugat del Valles, Barcelona, Spain
| | - Maria Ochoa de Olza
- Institut Català d'Oncologia-IDIBELL, Department of Medical Oncology, L’Hospitalet, Spain
| | - Carmen Cuadra
- Institut Català d'Oncologia-IDIBELL, Clinical Research Unit, L’Hospitalet, Spain
| | - Josep Maria Piulat
- Institut Català d'Oncologia-IDIBELL, Department of Medical Oncology, L’Hospitalet, Spain
| | - Valentin Navarro
- Institut Català d'Oncologia-IDIBELL, Clinical Research Unit, L’Hospitalet, Spain
| | - Marta Domenech
- Institut Català d'Oncologia-IDIBELL, Department of Medical Oncology, L’Hospitalet, Spain
| | - Ramon Alemany
- Institut Català d'Oncologia-IDIBELL, ProCure and Oncobell Programs, L’Hospitalet, Spain
| | - Ramon Salazar
- Institut Català d'Oncologia-IDIBELL, Department of Medical Oncology, L’Hospitalet, Spain
| |
Collapse
|
31
|
Pol JG, Lévesque S, Workenhe ST, Gujar S, Le Boeuf F, Clements DR, Fahrner JE, Fend L, Bell JC, Mossman KL, Fucikova J, Spisek R, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Oncolytic viro-immunotherapy of hematologic and solid tumors. Oncoimmunology 2018; 7:e1503032. [PMID: 30524901 PMCID: PMC6279343 DOI: 10.1080/2162402x.2018.1503032] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 07/15/2018] [Indexed: 02/08/2023] Open
Abstract
Oncolytic viruses selectively target and kill cancer cells in an immunogenic fashion, thus supporting the establishment of therapeutically relevant tumor-specific immune responses. In 2015, the US Food and Drug Administration (FDA) approved the oncolytic herpes simplex virus T-VEC for use in advanced melanoma patients. Since then, a plethora of trials has been initiated to assess the safety and efficacy of multiple oncolytic viruses in patients affected with various malignancies. Here, we summarize recent preclinical and clinical progress in the field of oncolytic virotherapy.
Collapse
Affiliation(s)
- Jonathan G. Pol
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
| | - Sarah Lévesque
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
| | - Samuel T. Workenhe
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Shashi Gujar
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
- Department of Microbiology and Immunology, Dalhousie University, NS, Canada
- Department of Biology, Dalhousie University, NS, Canada
- Centre for Innovative and Collaborative Health Sciences Research, Quality and System Performance, IWK Health Centre, Halifax, NS, Canada
| | - Fabrice Le Boeuf
- Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | | | - Jean-Eudes Fahrner
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, Villejuif, France
- Transgene S.A., Illkirch-Graffenstaden, France
| | | | - John C. Bell
- Cancer Therapeutics, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Karen L. Mossman
- McMaster Immunology Research Centre, McMaster University, Hamilton, ON, Canada
- Institute for Infectious Disease Research, McMaster University, Hamilton, ON, Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Jitka Fucikova
- Sotio a.c., Prague, Czech Republic
- Department of Immunology, 2nd Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czech Republic
| | - Radek Spisek
- Sotio a.c., Prague, Czech Republic
- Department of Immunology, 2nd Faculty of Medicine, University Hospital Motol, Charles University, Prague, Czech Republic
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, Villejuif, France
| | - Guido Kroemer
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, Paris, France
- Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, Paris, France
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Université Pierre et Marie Curie/Paris VI, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, Paris, France
- Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
| |
Collapse
|
32
|
MacNeill AL, Weishaar KM, Séguin B, Powers BE. Safety of an Oncolytic Myxoma Virus in Dogs with Soft Tissue Sarcoma. Viruses 2018; 10:v10080398. [PMID: 30060548 PMCID: PMC6115854 DOI: 10.3390/v10080398] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 12/21/2022] Open
Abstract
Many oncolytic viruses that are efficacious in murine cancer models are ineffective in humans. The outcomes of oncolytic virus treatment in dogs with spontaneous tumors may better predict human cancer response and improve treatment options for dogs with cancer. The objectives of this study were to evaluate the safety of treatment with myxoma virus lacking the serp2 gene (MYXVΔserp2) and determine its immunogenicity in dogs. To achieve these objectives, dogs with spontaneous soft tissue sarcomas were treated with MYXVΔserp2 intratumorally (n = 5) or post-operatively (n = 5). In dogs treated intratumorally, clinical scores were recorded and tumor biopsies and swabs (from the mouth and virus injection site) were analyzed for viral DNA at multiple time-points. In all dogs, blood, urine, and feces were frequently collected to evaluate organ function, virus distribution, and immune response. No detrimental effects of MYXVΔserp2 treatment were observed in any canine cancer patients. No clinically significant changes in complete blood profiles, serum chemistry analyses, or urinalyses were measured. Viral DNA was isolated from one tumor swab, but viral dissemination was not observed. Anti-MYXV antibodies were occasionally detected. These findings provide needed safety information to advance clinical trials using MYXVΔserp2 to treat patients with cancer.
Collapse
Affiliation(s)
- Amy L MacNeill
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Kristen M Weishaar
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Bernard Séguin
- Department of Clinical Sciences, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Barbara E Powers
- Veterinary Diagnostic Laboratories, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
33
|
Kyi C, Roudko V, Sabado R, Saenger Y, Loging W, Mandeli J, Thin TH, Lehrer D, Donovan M, Posner M, Misiukiewicz K, Greenbaum B, Salazar A, Friedlander P, Bhardwaj N. Therapeutic Immune Modulation against Solid Cancers with Intratumoral Poly-ICLC: A Pilot Trial. Clin Cancer Res 2018; 24:4937-4948. [PMID: 29950349 DOI: 10.1158/1078-0432.ccr-17-1866] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 12/12/2017] [Accepted: 06/21/2018] [Indexed: 11/16/2022]
Abstract
Purpose: Polyinosinic-polycytidylic acid-poly-l-lysine carboxymethylcellulose (poly-ICLC), a synthetic double-stranded RNA complex, is a ligand for toll-like receptor-3 and MDA-5 that can activate immune cells, such as dendritic cells, and trigger natural killer cells to kill tumor cells.Patients and Methods: In this pilot study, eligible patients included those with recurrent metastatic disease in whom prior systemic therapy (head and neck squamous cell cancer and melanoma) failed. Patients received 2 treatment cycles, each cycle consisting of 1 mg poly-ICLC 3× weekly intratumorally (IT) for 2 weeks followed by intramuscular (IM) boosters biweekly for 7 weeks, with a 1-week rest period. Immune response was evaluated by immunohistochemistry (IHC) and RNA sequencing (RNA-seq) in tumor and blood.Results: Two patients completed 2 cycles of IT treatments, and 1 achieved clinical benefit (stable disease, progression-free survival 6 months), whereas the remainder had progressive disease. Poly-ICLC was well tolerated, with principal side effects of fatigue and inflammation at injection site (<grade 2). In the patient with clinical benefit, IHC analysis of tumor showed increased CD4, CD8, PD1, and PD-L1 levels compared with patients with progressive disease. RNA-seq analysis of the same patient's tumor and peripheral blood mononuclear cells showed dramatic changes in response to poly-ICLC treatment, including upregulation of genes associated with chemokine activity, T-cell activation, and antigen presentation.Conclusions: Poly-ICLC was well tolerated in patients with solid cancer and generated local and systemic immune responses, as evident in the patient achieving clinical benefit. These results warrant further investigation and are currently being explored in a multicenter phase II clinical trial (NCT02423863). Clin Cancer Res; 24(20); 4937-48. ©2018 AACR.
Collapse
Affiliation(s)
- Chrisann Kyi
- Tisch Cancer Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Vladimir Roudko
- Tisch Cancer Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Rachel Sabado
- Tisch Cancer Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - William Loging
- Tisch Cancer Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - John Mandeli
- Tisch Cancer Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Tin Htwe Thin
- Tisch Cancer Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Deborah Lehrer
- Tisch Cancer Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Michael Donovan
- Tisch Cancer Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Marshall Posner
- Tisch Cancer Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Benjamin Greenbaum
- Tisch Cancer Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Philip Friedlander
- Tisch Cancer Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Nina Bhardwaj
- Tisch Cancer Center, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
34
|
Wang Y, Jin J, Wu Z, Hu S, Hu H, Ning Z, Li Y, Dong Y, Zou J, Mao Z, Shi X, Zheng H, Dong S, Liu F, Fang Z, Wu J, Liu B. Stability and anti-tumor effect of oncolytic herpes simplex virus type 2. Oncotarget 2018; 9:24672-24683. [PMID: 29872496 PMCID: PMC5973869 DOI: 10.18632/oncotarget.25122] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 03/22/2018] [Indexed: 11/25/2022] Open
Abstract
Oncolytic virotherapy is a new therapeutic strategy based on the inherent cytotoxicity of viruses and their ability to replicate and spread in tumors in a selective manner. We constructed a new type of oncolytic herpes simplex virus type 2 (oHSV-2, named OH2) to treat human cancers, but a systematic evaluation of the stability and oncolytic ability of this virus is lacking. In this study, we evaluated its physical stability, gene modification stability and biological characteristics stability, including its anti-tumor activity in an animal model. The physical characteristics as well as genetic deletions and insertions in OH2 were stable, and the anti-tumor activity remained stable even after passage of the virus for more than 20 generations. In conclusion, OH2 is a virus that has stable structural and biological traits. Furthermore, OH2 is a potent oncolytic agent against tumor cells.
Collapse
Affiliation(s)
- Yang Wang
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Jing Jin
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Zhen Wu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Sheng Hu
- Department of Medical Oncology, Hubei Cancer Hospital, Wuhan, 430079, Hubei, China
| | - Han Hu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, Hubei, China
| | - Zhifeng Ning
- Basic Medicine College, Hubei University of Science and Technology, Xianning, 437100, Hubei, China
| | - Yanfei Li
- College of Pharmacology, Hubei University of Science and Technology, Xianning, 437100, Hubei, China
| | - Yuting Dong
- Wuhan Binhui Biotechnology Co., Ltd., Wuhan, 430075, Hubei, China
| | - Jianwen Zou
- College of Pharmacology, Hubei University of Science and Technology, Xianning, 437100, Hubei, China
| | - Zeyong Mao
- Wuhan Binhui Biotechnology Co., Ltd., Wuhan, 430075, Hubei, China
| | - Xiaotai Shi
- Wuhan Binhui Biotechnology Co., Ltd., Wuhan, 430075, Hubei, China
| | - Huajun Zheng
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, 201203, Shanghai, China
| | - Shuang Dong
- Department of Medical Oncology, Hubei Cancer Hospital, Wuhan, 430079, Hubei, China
| | - Fuxing Liu
- Basic Medicine College, Hubei University of Science and Technology, Xianning, 437100, Hubei, China
| | - Zhizheng Fang
- Wuhan Binhui Biotechnology Co., Ltd., Wuhan, 430075, Hubei, China
| | - Jiliang Wu
- Hubei Provincial Key Laboratory of Cardiocerebrovascular and Metabolic Diseases, Hubei University of Science and Technology, Xianning, 437100, Hubei, China
| | - Binlei Liu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, Hubei, China.,College of Pharmacology, Hubei University of Science and Technology, Xianning, 437100, Hubei, China
| |
Collapse
|
35
|
Leber MF, Baertsch MA, Anker SC, Henkel L, Singh HM, Bossow S, Engeland CE, Barkley R, Hoyler B, Albert J, Springfeld C, Jäger D, von Kalle C, Ungerechts G. Enhanced Control of Oncolytic Measles Virus Using MicroRNA Target Sites. MOLECULAR THERAPY-ONCOLYTICS 2018; 9:30-40. [PMID: 29988512 PMCID: PMC6026446 DOI: 10.1016/j.omto.2018.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 04/08/2018] [Indexed: 12/21/2022]
Abstract
Measles viruses derived from the live-attenuated Edmonton-B vaccine lineage are currently investigated as novel anti-cancer therapeutics. In this context, tumor specificity and oncolytic potency are key determinants of the therapeutic index. Here, we describe a systematic and comprehensive analysis of a recently developed post-entry targeting strategy based on the incorporation of microRNA target sites (miRTS) into the measles virus genome. We have established viruses with target sites for different microRNA species in the 3′ untranslated regions of either the N, F, H, or L genes and generated viruses harboring microRNA target sites in multiple genes. We report critical importance of target-site positioning with proximal genomic positions effecting maximum vector control. No relevant additional effect of six versus three miRTS copies for the same microRNA species in terms of regulatory efficiency was observed. Moreover, we demonstrate that, depending on the microRNA species, viral mRNAs containing microRNA target sites are directly cleaved and/or translationally repressed in presence of cognate microRNAs. In conclusion, we report highly efficient control of measles virus replication with various miRTS positions for development of safe and efficient cancer virotherapy and provide insights into the mechanisms underlying microRNA-mediated vector control.
Collapse
Affiliation(s)
- Mathias Felix Leber
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DFKZ), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Marc-Andrea Baertsch
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DFKZ), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
- Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Sophie Caroline Anker
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DFKZ), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
- Department of Hematology, Oncology and Rheumatology, Heidelberg University Hospital, Im Neuenheimer Feld 410, 69120 Heidelberg, Germany
| | - Luisa Henkel
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DFKZ), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Hans Martin Singh
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DFKZ), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Sascha Bossow
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DFKZ), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
- Center for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
| | - Christine E. Engeland
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DFKZ), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Russell Barkley
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DFKZ), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
- Center for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
| | - Birgit Hoyler
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DFKZ), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Jessica Albert
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DFKZ), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Christoph Springfeld
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Dirk Jäger
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Christof von Kalle
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DFKZ), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
| | - Guy Ungerechts
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) and Heidelberg University Hospital, Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
- Department of Translational Oncology, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DFKZ), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany
- Center for Innovative Cancer Therapeutics, Ottawa Hospital Research Institute, 501 Smyth Road, Ottawa, ON K1H 8L6, Canada
- Corresponding author: Guy Ungerechts, MD, PhD, National Center for Tumor Diseases (NCT), Im Neuenheimer Feld 460, 69120 Heidelberg, Germany.
| |
Collapse
|
36
|
Masemann D, Köther K, Kuhlencord M, Varga G, Roth J, Lichty BD, Rapp UR, Wixler V, Ludwig S. Oncolytic influenza virus infection restores immunocompetence of lung tumor-associated alveolar macrophages. Oncoimmunology 2018; 7:e1423171. [PMID: 29721377 PMCID: PMC5927530 DOI: 10.1080/2162402x.2017.1423171] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/20/2017] [Accepted: 12/22/2017] [Indexed: 12/30/2022] Open
Abstract
Non-small-cell lung cancer (NSCLC) is the most frequent type of lung cancer and demonstrates high resistance to radiation and chemotherapy. These tumors evade immune system detection by promoting an immunosuppressive tumor microenvironment. Genetic analysis has revealed oncogenic activation of the Ras/Raf/MEK/ERK signaling pathway to be a hallmark of NSCLCs, which promotes influenza A virus (IAV) infection and replication in these cells. Thus, we aimed to unravel the oncolytic properties of IAV infection against NSCLCs in an immunocompetent model in vivo. Using Raf-BxB transgenic mice that spontaneously develop NSCLCs, we demonstrated that infection with low-pathogenic IAV leads to rapid and efficient oncolysis, eliminating 70% of the initial tumor mass. Interestingly, IAV infection of Raf-BxB mice caused a functional reversion of immunosuppressed tumor-associated lung macrophages into a M1-like pro-inflammatory active phenotype that additionally supported virus-induced oncolysis of cancer cells. Altogether, our data demonstrate for the first time in an immunocompetent in vivo model that oncolytic IAV infection is capable of restoring and redirecting immune cell functions within the tumor microenvironment of NSCLCs.
Collapse
Affiliation(s)
- Dörthe Masemann
- Institute of Virology (IMV), Westfaelische-Wilhelms University, Muenster, Germany
- Cluster of Excellence “Cells in Motion”, University of Muenster, Muenster, Germany
| | - Katharina Köther
- Institute of Virology (IMV), Westfaelische-Wilhelms University, Muenster, Germany
- Rentschler Biotechnologie GmbH, Laupheim, Germany
| | - Meike Kuhlencord
- Institute of Immunology, Westfaelische-Wilhelms University, Muenster, Germany
| | - Georg Varga
- Department of Pediatric, Rheumatology and Immunology, University Children´s Hospital Muenster, Muenster, Germany
| | - Johannes Roth
- Institute of Immunology, Westfaelische-Wilhelms University, Muenster, Germany
- Cluster of Excellence “Cells in Motion”, University of Muenster, Muenster, Germany
| | - Brian Dennis Lichty
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario, Canada
| | - Ulf Rüdiger Rapp
- Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany
| | - Viktor Wixler
- Institute of Virology (IMV), Westfaelische-Wilhelms University, Muenster, Germany
- Cluster of Excellence “Cells in Motion”, University of Muenster, Muenster, Germany
| | - Stephan Ludwig
- Institute of Virology (IMV), Westfaelische-Wilhelms University, Muenster, Germany
- Cluster of Excellence “Cells in Motion”, University of Muenster, Muenster, Germany
| |
Collapse
|
37
|
Abstract
A group of impressive immunotherapies for cancer treatment, including immune checkpoint-blocking antibodies, gene therapy and immune cell adoptive cellular immunotherapy, have been established, providing new weapons to fight cancer. Natural killer (NK) cells are a component of the first line of defense against tumors and virus infections. Studies have shown dysfunctional NK cells in patients with cancer. Thus, restoring NK cell antitumor functionality could be a promising therapeutic strategy. NK cells that are activated and expanded ex vivo can supplement malfunctional NK cells in tumor patients. Therapeutic antibodies, chimeric antigen receptor (CAR), or bispecific proteins can all retarget NK cells precisely to tumor cells. Therapeutic antibody blockade of the immune checkpoints of NK cells has been suggested to overcome the immunosuppressive signals delivered to NK cells. Oncolytic virotherapy provokes antitumor activity of NK cells by triggering antiviral immune responses. Herein, we review the current immunotherapeutic approaches employed to restore NK cell antitumor functionality for the treatment of cancer.
Collapse
Affiliation(s)
- Yangxi Li
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei 230027, China
| | - Rui Sun
- Institute of Immunology and the CAS Key Laboratory of Innate Immunity and Chronic Disease, School of Life Sciences and Medical Center, University of Science and Technology of China, Hefei 230027, China
| |
Collapse
|
38
|
Rouanet M, Lebrin M, Gross F, Bournet B, Cordelier P, Buscail L. Gene Therapy for Pancreatic Cancer: Specificity, Issues and Hopes. Int J Mol Sci 2017; 18:ijms18061231. [PMID: 28594388 PMCID: PMC5486054 DOI: 10.3390/ijms18061231] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/01/2017] [Accepted: 06/01/2017] [Indexed: 12/13/2022] Open
Abstract
A recent death projection has placed pancreatic ductal adenocarcinoma as the second cause of death by cancer in 2030. The prognosis for pancreatic cancer is very poor and there is a great need for new treatments that can change this poor outcome. Developments of therapeutic innovations in combination with conventional chemotherapy are needed urgently. Among innovative treatments the gene therapy offers a promising avenue. The present review gives an overview of the general strategy of gene therapy as well as the limitations and stakes of the different experimental in vivo models, expression vectors (synthetic and viral), molecular tools (interference RNA, genome editing) and therapeutic genes (tumor suppressor genes, antiangiogenic and pro-apoptotic genes, suicide genes). The latest developments in pancreatic carcinoma gene therapy are described including gene-based tumor cell sensitization to chemotherapy, vaccination and adoptive immunotherapy (chimeric antigen receptor T-cells strategy). Nowadays, there is a specific development of oncolytic virus therapies including oncolytic adenoviruses, herpes virus, parvovirus or reovirus. A summary of all published and on-going phase-1 trials is given. Most of them associate gene therapy and chemotherapy or radiochemotherapy. The first results are encouraging for most of the trials but remain to be confirmed in phase 2 trials.
Collapse
Affiliation(s)
- Marie Rouanet
- Department of Gastroenterology, CHU Rangueil, 1 avenue Jean Poulhès, Toulouse 31059, France.
- INSERM UMR 1037, Cancer Research Center of Toulouse, Toulouse 31037, France.
| | - Marine Lebrin
- Center for Clinical Investigation 1436, Module of Biotherapy, CHU Rangueil, 1 avenue Jean Poulhès, Toulouse Cedex 9, France.
| | - Fabian Gross
- Center for Clinical Investigation 1436, Module of Biotherapy, CHU Rangueil, 1 avenue Jean Poulhès, Toulouse Cedex 9, France.
| | - Barbara Bournet
- Department of Gastroenterology, CHU Rangueil, 1 avenue Jean Poulhès, Toulouse 31059, France.
- INSERM UMR 1037, Cancer Research Center of Toulouse, Toulouse 31037, France.
- University of Toulouse III, Medical School of Medicine Rangueil, Toulouse 31062, France.
| | - Pierre Cordelier
- INSERM UMR 1037, Cancer Research Center of Toulouse, Toulouse 31037, France.
| | - Louis Buscail
- Department of Gastroenterology, CHU Rangueil, 1 avenue Jean Poulhès, Toulouse 31059, France.
- INSERM UMR 1037, Cancer Research Center of Toulouse, Toulouse 31037, France.
- Center for Clinical Investigation 1436, Module of Biotherapy, CHU Rangueil, 1 avenue Jean Poulhès, Toulouse Cedex 9, France.
- University of Toulouse III, Medical School of Medicine Rangueil, Toulouse 31062, France.
| |
Collapse
|
39
|
Studebaker AW, Hutzen BJ, Pierson CR, Haworth KB, Cripe TP, Jackson EM, Leonard JR. Oncolytic Herpes Virus rRp450 Shows Efficacy in Orthotopic Xenograft Group 3/4 Medulloblastomas and Atypical Teratoid/Rhabdoid Tumors. MOLECULAR THERAPY-ONCOLYTICS 2017. [PMID: 28649600 PMCID: PMC5472147 DOI: 10.1016/j.omto.2017.05.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Pediatric brain tumors including medulloblastoma and atypical teratoid/rhabdoid tumor are associated with significant mortality and treatment-associated morbidity. While medulloblastoma tumors within molecular subgroups 3 and 4 have a propensity to metastasize, atypical teratoid/rhabdoid tumors frequently afflict a very young patient population. Adjuvant treatment options for children suffering with these tumors are not only sub-optimal but also associated with many neurocognitive obstacles. A potentially novel treatment approach is oncolytic virotherapy, a developing therapeutic platform currently in early-phase clinical trials for pediatric brain tumors and recently US Food and Drug Administration (FDA)-approved to treat melanoma in adults. We evaluated the therapeutic potential of the clinically available oncolytic herpes simplex vector rRp450 in cell lines derived from medulloblastoma and atypical teratoid/rhabdoid tumor. Cells of both tumor types were supportive of virus replication and virus-mediated cytotoxicity. Orthotopic xenograft models of medulloblastoma and atypical teratoid/rhabdoid tumors displayed significantly prolonged survival following a single, stereotactic intratumoral injection of rRp450. Furthermore, addition of the chemotherapeutic prodrug cyclophosphamide (CPA) enhanced rRp450's in vivo efficacy. In conclusion, oncolytic herpes viruses with the ability to bioactivate the prodrug CPA within the tumor microenvironment warrant further investigation as a potential therapy for pediatric brain tumors.
Collapse
Affiliation(s)
- Adam W Studebaker
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Brian J Hutzen
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Christopher R Pierson
- Department of Pathology and Laboratory Medicine, Nationwide Children's Hospital, Columbus, OH 43205, USA.,Department of Pathology, The Ohio State University College of Medicine, Columbus, OH 43210, USA.,Division of Anatomy, The Ohio State University, Columbus, OH 43210, USA
| | - Kellie B Haworth
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Division of Hematology/Oncology/Blood and Marrow Transplant, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Timothy P Cripe
- Center for Childhood Cancer and Blood Diseases, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA.,Division of Hematology/Oncology/Blood and Marrow Transplant, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Eric M Jackson
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD 21287, USA
| | - Jeffrey R Leonard
- Department of Neurosurgery, Nationwide Children's Hospital, Columbus, OH 43205, USA
| |
Collapse
|
40
|
Abstract
Malignant brain tumors represent one of the most devastating forms of cancer with abject survival rates that have not changed in the past 60years. This is partly because the brain is a critical organ, and poses unique anatomical, physiological, and immunological barriers. The unique interplay of these barriers also provides an opportunity for creative engineering solutions. Cancer immunotherapy, a means of harnessing the host immune system for anti-tumor efficacy, is becoming a standard approach for treating many cancers. However, its use in brain tumors is not widespread. This review discusses the current approaches, and hurdles to these approaches in treating brain tumors, with a focus on immunotherapies. We identify critical barriers to immunoengineering brain tumor therapies and discuss possible solutions to these challenges.
Collapse
|
41
|
Suryawanashi YR, Zhang T, Woyczesczyk HM, Christie J, Byers E, Kohler S, Eversole R, Mackenzie C, Essani K. T-independent response mediated by oncolytic tanapoxvirus recombinants expressing interleukin-2 and monocyte chemoattractant protein-1 suppresses human triple negative breast tumors. Med Oncol 2017; 34:112. [PMID: 28466296 DOI: 10.1007/s12032-017-0973-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 04/27/2017] [Indexed: 02/07/2023]
Abstract
Human triple negative breast cancer (TNBC) is an aggressive disease, associated with a high rate of recurrence and metastasis. Current therapeutics for TNBC are limited, highly toxic and show inconsistent efficacy due to a high degree of intra-tumoral and inter-tumoral heterogeneity. Oncolytic viruses (OVs) are an emerging treatment option for cancers. Several OVs are currently under investigation in preclinical and clinical settings. Here, we examine the oncolytic potential of two tanapoxvirus (TPV) recombinants expressing mouse monocyte chemoattractant protein (mMCP)-1 [also known as mCCL2] and mouse interleukin (mIL)-2, in human TNBC, in vitro and in vivo. Both wild-type (wt) TPV and TPV recombinants demonstrated efficient replicability in human TNBC cells and killed cancer cell efficiently in a dose-dependent manner in vitro. TPV/∆66R/mCCL2 and TPV/∆66R/mIL-2 expressing mCCL2 and mIL-2, respectively, suppressed the growth of MDA-MB-231 tumor xenografts in nude mice significantly, as compared to the mock-injected tumors. Histological analysis of tumors showed areas of viable tumor cells, necrotic foci and immune cell accumulation in virus-treated tumors. Moreover, TPV/∆66R/mIL-2-treated tumors showed a deep infiltration of mononuclear immune cells into the tumor capsule and focal cell death in tumors. In conclusion, TPV recombinants expressing mCCL2 and mIL-2 showed a significant therapeutic effect in MDA-MB-231 tumor xenografts, in nude mice through induction of potent antitumor immune responses. Considering the oncolytic potency of armed oncolytic TPV recombinants expressing mCCL2 and mIL-2 in an experimental nude mouse model, these viruses merit further investigation as alternative treatment options for human breast cancer.
Collapse
Affiliation(s)
- Yogesh R Suryawanashi
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008-5410, USA
| | - Tiantian Zhang
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008-5410, USA
| | - Helene M Woyczesczyk
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008-5410, USA
| | - John Christie
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008-5410, USA.,The Biodesign Institute, Arizona State University, Tempe, AZ, USA
| | - Emily Byers
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008-5410, USA.,General Toxicology, MPI Research, Mattawan, MI, USA
| | - Steven Kohler
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008-5410, USA
| | - Robert Eversole
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008-5410, USA
| | - Charles Mackenzie
- Department of Pathology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA, UK
| | - Karim Essani
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008-5410, USA.
| |
Collapse
|
42
|
Fajardo CA, Guedan S, Rojas LA, Moreno R, Arias-Badia M, de Sostoa J, June CH, Alemany R. Oncolytic Adenoviral Delivery of an EGFR-Targeting T-cell Engager Improves Antitumor Efficacy. Cancer Res 2017; 77:2052-2063. [PMID: 28143835 DOI: 10.1158/0008-5472.can-16-1708] [Citation(s) in RCA: 125] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 01/11/2017] [Accepted: 01/24/2017] [Indexed: 11/16/2022]
Abstract
Antiviral immune responses present a major hurdle to the efficacious use of oncolytic adenoviruses as cancer treatments. Despite the existence of a highly immunosuppressive tumor environment, adenovirus-infected cells can nonetheless be efficiently cleared by infiltrating cytotoxic T lymphocytes (CTL) without compromising tumor burden. In this study, we tested the hypothesis that tumor-infiltrating T cells could be more effectively activated and redirected by oncolytic adenoviruses that were armed with bispecific T-cell-engager (BiTE) antibodies. The oncolytic adenovirus ICOVIR-15K was engineered to express an EGFR-targeting BiTE (cBiTE) antibody under the control of the major late promoter, leading to generation of ICOVIR-15K-cBiTE, which retained its oncolytic properties in vitro cBiTE expression and secretion was detected in supernatants from ICOVIR-15K-cBiTE-infected cells, and the secreted BiTEs bound specifically to both CD3+ and EGFR+ cells. In cell coculture assays, ICOVIR-15K-cBiTE-mediated oncolysis resulted in robust T-cell activation, proliferation, and bystander cell-mediated cytotoxicity. Notably, intratumoral injection of this cBiTE-expressing adenovirus increased the persistence and accumulation of tumor-infiltrating T cells in vivo, compared with the parental virus lacking such effects. Moreover, in two distinct tumor xenograft models, combined delivery of ICOVIR-15K-cBiTE with peripheral blood mononuclear cells or T cells enhanced the antitumor efficacy achieved by the parental counterpart. Overall, our results show how arming oncolytic adenoviruses with BiTE can overcome key limitations in oncolytic virotherapy. Cancer Res; 77(8); 2052-63. ©2017 AACR.
Collapse
Affiliation(s)
| | - Sonia Guedan
- Abramson Cancer Center and the Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Luis Alfonso Rojas
- ProCure Program, IDIBELL-Institut Català d'Oncologia, L'Hospitalet de Llobregat, Spain
| | - Rafael Moreno
- ProCure Program, IDIBELL-Institut Català d'Oncologia, L'Hospitalet de Llobregat, Spain
| | - Marcel Arias-Badia
- ProCure Program, IDIBELL-Institut Català d'Oncologia, L'Hospitalet de Llobregat, Spain
| | - Jana de Sostoa
- ProCure Program, IDIBELL-Institut Català d'Oncologia, L'Hospitalet de Llobregat, Spain
| | - Carl H June
- Abramson Cancer Center and the Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ramon Alemany
- ProCure Program, IDIBELL-Institut Català d'Oncologia, L'Hospitalet de Llobregat, Spain.
| |
Collapse
|
43
|
Kaczorowski A, Hammer K, Liu L, Villhauer S, Nwaeburu C, Fan P, Zhao Z, Gladkich J, Groß W, Nettelbeck DM, Herr I. Delivery of improved oncolytic adenoviruses by mesenchymal stromal cells for elimination of tumorigenic pancreatic cancer cells. Oncotarget 2016; 7:9046-59. [PMID: 26824985 PMCID: PMC4891025 DOI: 10.18632/oncotarget.7031] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Accepted: 01/15/2016] [Indexed: 01/14/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDA) is one of the most aggressive malignancies and has poor therapeutic options. We evaluated improved oncolytic adenoviruses (OAds), in which the adenoviral gene E1B19K was deleted or a TRAIL transgene was inserted. Bone marrow mesenchymal stromal cells (MSCs) served as carriers for protected and tumor-specific virus transfers. The infection competence, tumor migration, and oncolysis were measured in cancer stem cell (CSC) models of primary and established tumor cells and in tumor xenografts. All OAds infected and lysed CSCs and prevented colony formation. MSCs migrated into PDA spheroids without impaired homing capacity. Xenotransplantation of non-infected PDA cells mixed with infected tumor cells strongly reduced the tumor volume and the expression of the proliferation marker Ki67 along with a necrotic morphology. Adenoviral capsid protein was detected in tumor xenograft tissue after intravenous injection of infected MSCs, but not in normal tissue, implying tumor-specific migration. Likewise, direct in vivo treatment correlated with a strongly reduced tumor volume, lower expression of Ki67 and CD24, and enhanced activity of caspase 3. These data demonstrate that the improved OAds induced efficient oncolysis with the OAd-TRAIL as most promising candidate for future clinical application.
Collapse
Affiliation(s)
- Adam Kaczorowski
- Surgical Research Section, Molecular OncoSurgery, Department of General and Transplantation Surgery, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Katharina Hammer
- Oncolytic Adenovirus Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Li Liu
- Surgical Research Section, Molecular OncoSurgery, Department of General and Transplantation Surgery, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sabine Villhauer
- Surgical Research Section, Molecular OncoSurgery, Department of General and Transplantation Surgery, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Clifford Nwaeburu
- Surgical Research Section, Molecular OncoSurgery, Department of General and Transplantation Surgery, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Pei Fan
- Surgical Research Section, Molecular OncoSurgery, Department of General and Transplantation Surgery, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Zhefu Zhao
- Surgical Research Section, Molecular OncoSurgery, Department of General and Transplantation Surgery, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jury Gladkich
- Surgical Research Section, Molecular OncoSurgery, Department of General and Transplantation Surgery, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Wolfgang Groß
- Surgical Research Section, Molecular OncoSurgery, Department of General and Transplantation Surgery, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dirk M Nettelbeck
- Oncolytic Adenovirus Group, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ingrid Herr
- Surgical Research Section, Molecular OncoSurgery, Department of General and Transplantation Surgery, University of Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
44
|
Chen J, Gao P, Yuan S, Li R, Ni A, Chu L, Ding L, Sun Y, Liu XY, Duan Y. Oncolytic Adenovirus Complexes Coated with Lipids and Calcium Phosphate for Cancer Gene Therapy. ACS NANO 2016; 10:11548-11560. [PMID: 27977128 DOI: 10.1021/acsnano.6b06182] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Oncolytic adenovirus (OncoAd) is a promising therapeutic agent for treating cancer. However, the therapeutic potential of OncoAd is hindered by hepatic sequestration and the host immune response in vivo. Here, we constructed a PEG/Lipids/calcium phosphate (CaP)-OncoAd (PLC-OncoAd) delivery system for ZD55-IL-24, an oncolytic adenovirus that carries the IL-24 gene. The negatively charged PLC-ZD55-IL-24 were disperse and resisted serum-induced aggregation. Compared to naked ZD55-IL-24, the systemic administration of PLC-ZD55-IL-24 in BALB/c mice resulted in reduced liver sequestration and systemic toxicity and evaded the innate immune response. In addition, masking the surface of OncoAd protected it from neutralization by pre-existing neutralizing antibody. PLC-OncoAd achieved efficient targeted delivery in Huh-7-bearing nude mice, and intravenous administration of a high dose of PLC-ZD55-IL-24 increased therapeutic efficacy without inducing toxicity. The developed PLC-OncoAd delivery system represents a promising improvement for oncolytic adenovirus-based cancer gene therapy in vivo.
Collapse
Affiliation(s)
- Jianhua Chen
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200032, China
| | - Pei Gao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200032, China
| | - Sujing Yuan
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai 200031, China
| | - Rongxin Li
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200032, China
| | - Aimin Ni
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai 200031, China
| | - Liang Chu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai 200031, China
| | - Li Ding
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200032, China
| | - Ying Sun
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200032, China
| | - Xin-Yuan Liu
- State Key Laboratory of Cell Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences , Shanghai 200031, China
| | - Yourong Duan
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University , Shanghai 200032, China
| |
Collapse
|
45
|
Vassaux G, Angelova A, Baril P, Midoux P, Rommelaere J, Cordelier P. The Promise of Gene Therapy for Pancreatic Cancer. Hum Gene Ther 2016; 27:127-33. [PMID: 26603492 DOI: 10.1089/hum.2015.141] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Unlike for other digestive cancer entities, chemotherapy, radiotherapy, and targeted therapies have, so far, largely failed to improve patient survival in pancreatic adenocarcinoma (PDAC), which remains the fourth leading cause of cancer-related death in Europe and the United States. In this context, gene therapy may offer a new avenue for patients with PDAC. In this review, we explore the research currently ongoing in French laboratories aimed at defeating PDAC using nonviral therapeutic gene delivery, targeted transgene expression, or oncolytic virotherapy that recently or will soon bridge the gap between experimental models of cancer and clinical trials. These studies are likely to change clinical practice or thinking about PDAC management, as they represent a major advance not only for PDAC but may also significantly influence the field of gene-based molecular treatment of cancer.
Collapse
Affiliation(s)
- Georges Vassaux
- 1 Université de Nice Sophia Antipolis , Nice, France .,2 Laboratoire TIRO , UMRE 4320, CEA, Nice, France
| | - Assia Angelova
- 3 German Cancer Research Center (DKFZ) , Tumor Virology/F010, Heidelberg, Germany
| | - Patrick Baril
- 4 Centre de Biophysique Moléculaire, CNRS UPR4301 and University of Orléans , Orléans, France
| | - Patrick Midoux
- 4 Centre de Biophysique Moléculaire, CNRS UPR4301 and University of Orléans , Orléans, France
| | - Jean Rommelaere
- 3 German Cancer Research Center (DKFZ) , Tumor Virology/F010, Heidelberg, Germany
| | - Pierre Cordelier
- 5 INSERM , UMR1037 CRCT, F-31000 Toulouse, France .,6 Université Toulouse III-Paul Sabatier , F-31000 Toulouse, France
| |
Collapse
|
46
|
Robust Oncolytic Virotherapy Induces Tumor Lysis Syndrome and Associated Toxicities in the MPC-11 Plasmacytoma Model. Mol Ther 2016; 24:2109-2117. [PMID: 27669655 DOI: 10.1038/mt.2016.167] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 08/16/2016] [Indexed: 12/27/2022] Open
Abstract
Tumor-selective oncolytic vesicular stomatitis viruses (VSVs) are being evaluated in clinical trials. Here, we report that the MPC-11 murine plasmacytoma model is so extraordinarily susceptible to oncolytic VSVs that a low dose of virus leads to extensive intratumoral viral replication, sustained viremia, intravascular coagulation, and a rapidly fatal tumor lysis syndrome (TLS). Rapid softening, shrinkage and hemorrhagic necrosis of flank tumors was noted within 1-2 days after virus administration, leading to hyperkalemia, hyperphosphatemia, hypocalcemia, hyperuricemia, increase in plasma cell free DNA, lymphopenia, consumptive coagulopathy, increase in fibrinogen degradation products, decreased liver function tests, dehydration, weight loss, and euthanasia or death after 5-8 days. Secondary viremia was observed but viral replication in normal host tissues was not detected. Toxicity could be mitigated by using VSVs with slowed replication kinetics, and was less marked in animals with smaller flank tumors. The MPC-11 tumor represents an interesting model to further study the complex interplay of robust intratumoral viral replication, tumor lysis, and associated toxicities in cases where tumors are highly responsive to oncolytic virotherapy.
Collapse
|
47
|
Kleinpeter P, Fend L, Thioudellet C, Geist M, Sfrontato N, Koerper V, Fahrner C, Schmitt D, Gantzer M, Remy-Ziller C, Brandely R, Villeval D, Rittner K, Silvestre N, Erbs P, Zitvogel L, Quéméneur E, Préville X, Marchand JB. Vectorization in an oncolytic vaccinia virus of an antibody, a Fab and a scFv against programmed cell death -1 (PD-1) allows their intratumoral delivery and an improved tumor-growth inhibition. Oncoimmunology 2016; 5:e1220467. [PMID: 27853644 PMCID: PMC5087307 DOI: 10.1080/2162402x.2016.1220467] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 07/18/2016] [Accepted: 07/30/2016] [Indexed: 10/31/2022] Open
Abstract
We report here the successful vectorization of a hamster monoclonal IgG (namely J43) recognizing the murine Programmed cell death-1 (mPD-1) in Western Reserve (WR) oncolytic vaccinia virus. Three forms of mPD-1 binders have been inserted into the virus: whole antibody (mAb), Fragment antigen-binding (Fab) or single-chain variable fragment (scFv). MAb, Fab and scFv were produced and assembled with the expected patterns in supernatants of cells infected by the recombinant viruses. The three purified mPD-1 binders were able to block the binding of mPD-1 ligand to mPD-1 in vitro. Moreover, mAb was detected in tumor and in serum of C57BL/6 mice when the recombinant WR-mAb was injected intratumorally (IT) in B16F10 and MCA 205 tumors. The concentration of circulating mAb detected after IT injection was up to 1,900-fold higher than the level obtained after a subcutaneous (SC) injection (i.e., without tumor) confirming the virus tropism for tumoral cells and/or microenvironment. Moreover, the overall tumoral accumulation of the mAb was higher and lasted longer after IT injection of WR-mAb1, than after IT administration of 10 µg of J43. The IT injection of viruses induced a massive infiltration of immune cells including activated lymphocytes (CD8+ and CD4+). Interestingly, in the MCA 205 tumor model, WR-mAb1 and WR-scFv induced a therapeutic control of tumor growth similar to unarmed WR combined to systemically administered J43 and superior to that obtained with an unarmed WR. These results pave the way for next generation of oncolytic vaccinia armed with immunomodulatory therapeutic proteins such as mAbs.
Collapse
Affiliation(s)
| | - Laetitia Fend
- Transgene S.A., Illkirch-Graffenstaden, France; Institut Gustave Roussy Cancer Campus (GRCC), Villejuif, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Laurence Zitvogel
- Institut Gustave Roussy Cancer Campus (GRCC), Villejuif, France; INSERM U1015, GRCC, Villejuif, France; Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1418, GRCC, Villejuif, France; University of Paris Sud XI, Kremlin Bicêtre, France; Department of Immuno-Oncology, GRCC, Villejuif, France
| | | | | | | |
Collapse
|
48
|
Su BH, Shieh GS, Tseng YL, Shiau AL, Wu CL. Etoposide enhances antitumor efficacy of MDR1-driven oncolytic adenovirus through autoupregulation of the MDR1 promoter activity. Oncotarget 2016; 6:38308-26. [PMID: 26515462 PMCID: PMC4742001 DOI: 10.18632/oncotarget.5702] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 10/06/2015] [Indexed: 12/11/2022] Open
Abstract
Conditionally replicating adenoviruses (CRAds), or oncolytic adenoviruses, such as E1B55K-deleted adenovirus, are attractive anticancer agents. However, the therapeutic efficacy of E1B55K-deleted adenovirus for refractory solid tumors has been limited. Environmental stress conditions may induce nuclear accumulation of YB-1, which occurs in multidrug-resistant and adenovirus-infected cancer cells. Overexpression and nuclear localization of YB-1 are associated with poor prognosis and tumor recurrence in various cancers. Nuclear YB-1 transactivates the multidrug resistance 1 (MDR1) genes through the Y-box. Here, we developed a novel E1B55K-deleted adenovirus driven by the MDR1 promoter, designed Ad5GS3. We tested the feasibility of using YB-1 to transcriptionally regulate Ad5GS3 replication in cancer cells and thereby to enhance antitumor efficacy. We evaluated synergistic antitumor effects of oncolytic virotherapy in combination with chemotherapy. Our results show that adenovirus E1A induced E2F-1 activity to augment YB-1 expression, which shut down host protein synthesis in cancer cells during adenovirus replication. In cancer cells infected with Ad5WS1, an E1B55K-deleted adenovirus driven by the E1 promoter, E1A enhanced YB-1 expression, and then further phosphorylated Akt, which, in turn, triggered nuclear translocation of YB-1. Ad5GS3 in combination with chemotherapeutic agents facilitated nuclear localization of YB-1 and, in turn, upregulated the MDR1 promoter activity and enhanced Ad5GS3 replication in cancer cells. Thus, E1A, YB-1, and the MDR1 promoter form a positive feedback loop to promote Ad5GS3 replication in cancer cells, and this regulation can be further augmented when chemotherapeutic agents are added. In the in vivo study, Ad5GS3 in combination with etoposide synergistically suppressed tumor growth and prolonged survival in NOD/SCID mice bearing human lung tumor xenografts. More importantly, Ad5GS3 exerted potent oncolytic activity against clinical advanced lung adenocarcinoma, which was associated with elevated levels of nuclear YB-1 and cytoplasmic MDR1 expression in the advanced tumors. Therefore, Ad5GS3 may have therapeutic potential for cancer treatment, especially in combination with chemotherapy. Because YB-1 is expressed in a broad spectrum of cancers, this oncolytic adenovirus may be broadly applicable.
Collapse
Affiliation(s)
- Bing-Hua Su
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Gia-Shing Shieh
- Department of Urology, Tainan Hospital, Ministry of Health and Welfare, Executive Yuan, Tainan, Taiwan
| | - Yau-Lin Tseng
- Division of Thoracic Surgery, Department of Surgery, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ai-Li Shiau
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chao-Liang Wu
- Department of Biochemistry and Molecular Biology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
49
|
Oncolytic virus efficiency inhibited growth of tumour cells with multiple drug resistant phenotype in vivo and in vitro. J Transl Med 2016; 14:241. [PMID: 27538520 PMCID: PMC4989492 DOI: 10.1186/s12967-016-1002-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Accepted: 08/05/2016] [Indexed: 12/17/2022] Open
Abstract
Background Tumour resistance to a wide range of drugs (multiple drug resistant, MDR) acquired after intensive chemotherapy is considered to be the main obstacle of the curative treatment of cancer patients. Recent work has shown that oncolytic viruses demonstrated prominent potential for effective treatment of diverse cancers. Here, we evaluated whether genetically modified vaccinia virus (LIVP-GFP) may be effective in treatment of cancers displaying MDR phenotype. Methods LIVP-GFP replication, transgene expression and cytopathic effects were analysed in human cervical carcinomas KB-3-1 (MDR−), KB-8-5 (MDR+) and in murine melanoma B-16 (MDR−), murine lymphosarcomas RLS and RLS-40 (MDR+). To investigate the efficacy of this therapy in vivo, we treated immunocompetent mice bearing murine lymphosarcoma RLS-40 (MDR+) (6- to 8-week-old female CBA mice; n = 10/group) or melanoma B-16 (MDR−) (6- to 8-week-old female C57Bl mice; n = 6/group) with LIVP-GFP (5 × 107 PFU of virus in 0.1 mL of IMDM immediately and 4 days after tumour implantation). Results We demonstrated that LIVP-GFP replication was effective in human cervical carcinomas KB-3-1 (MDR−) and KB-8-5 (MDR+) and in murine melanoma B-16 (MDR−), whereas active viral production was not detected in murine lymphosarcomas RLS and RLS-40 (MDR+). Additionally, it was found that in tumour models in immunocompetent mice under the optimized regimen intratumoural injections of LIVP-GFP significantly inhibited melanoma B16 (33 % of mice were with complete response after 90 days) and RLS-40 tumour growth (fourfold increase in tumour doubling time) as well as metastasis. Conclusion The anti-tumour activity of LIVP-GFP is a result of direct oncolysis of tumour cells in case of melanoma B-16 because the virus effectively replicates and destroys these cells, and virus-mediated activation of the host immune system followed by immunologically mediated destruction of of tumour cells in case of lymphosarcoma RLS-40. Thus, the recombinant vaccinia virus LIVP-GFP is able to inhibit the growth of malignant cells with the MDR phenotype and tumour metastasis when administered in the early stages of tumour development. Electronic supplementary material The online version of this article (doi:10.1186/s12967-016-1002-x) contains supplementary material, which is available to authorized users.
Collapse
|
50
|
Vacchelli E, Bloy N, Aranda F, Buqué A, Cremer I, Demaria S, Eggermont A, Formenti SC, Fridman WH, Fucikova J, Galon J, Spisek R, Tartour E, Zitvogel L, Kroemer G, Galluzzi L. Trial Watch: Immunotherapy plus radiation therapy for oncological indications. Oncoimmunology 2016; 5:e1214790. [PMID: 27757313 DOI: 10.1080/2162402x.2016.1214790] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 07/15/2016] [Indexed: 02/08/2023] Open
Abstract
Malignant cells succumbing to some forms of radiation therapy are particularly immunogenic and hence can initiate a therapeutically relevant adaptive immune response. This reflects the intrinsic antigenicity of malignant cells (which often synthesize a high number of potentially reactive neo-antigens) coupled with the ability of radiation therapy to boost the adjuvanticity of cell death as it stimulates the release of endogenous adjuvants from dying cells. Thus, radiation therapy has been intensively investigated for its capacity to improve the therapeutic profile of several anticancer immunotherapies, including (but not limited to) checkpoint blockers, anticancer vaccines, oncolytic viruses, Toll-like receptor (TLR) agonists, cytokines, and several small molecules with immunostimulatory effects. Here, we summarize recent preclinical and clinical advances in this field of investigation.
Collapse
Affiliation(s)
- Erika Vacchelli
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France
| | - Norma Bloy
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France
| | - Fernando Aranda
- Group of Immune receptors of the Innate and Adaptive System, Institut d'Investigacions Biomédiques August Pi i Sunyer (IDIBAPS) , Barcelona, Spain
| | - Aitziber Buqué
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France
| | - Isabelle Cremer
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 13, Center de Recherche des Cordeliers, Paris, France
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medical College , New York, NY, USA
| | | | | | - Wolf Hervé Fridman
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 13, Center de Recherche des Cordeliers, Paris, France
| | - Jitka Fucikova
- Sotio, Prague, Czech Republic; Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Jérôme Galon
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Laboratory of Integrative Cancer Immunology, Center de Recherche des Cordeliers, Paris, France
| | - Radek Spisek
- Sotio, Prague, Czech Republic; Department of Immunology, 2nd Faculty of Medicine and University Hospital Motol, Charles University, Prague, Czech Republic
| | - Eric Tartour
- Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; INSERM, U970, Paris, France; Paris-Cardiovascular Research Center (PARCC), Paris, France; Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou (HEGP), AP-HP, Paris, France
| | - Laurence Zitvogel
- Gustave Roussy Cancer Campus, Villejuif, France; INSERM, U1015, CICBT1428, Villejuif, France
| | - Guido Kroemer
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France; Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France; Metabolomics and Cell Biology Platforms, Gustave Roussy Cancer Campus, Villejuif, France; Department of Women's and Children's Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- INSERM, U1138, Paris, France; Université Paris Descartes/Paris V, Sorbonne Paris Cité, Paris, France; Université Pierre et Marie Curie/Paris VI, Paris, France; Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Center de Recherche des Cordeliers, Paris, France; Gustave Roussy Cancer Campus, Villejuif, France; Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|