1
|
Haidery F, Lambertini L, Tse I, Dodda S, Garcia-Ocaña A, Scott DK, Baumel-Alterzon S. NRF2 deficiency leads to inadequate beta cell adaptation during pregnancy and gestational diabetes. Redox Biol 2025; 81:103566. [PMID: 40054060 PMCID: PMC11930207 DOI: 10.1016/j.redox.2025.103566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/13/2025] [Accepted: 02/24/2025] [Indexed: 03/12/2025] Open
Abstract
The late stages of mammalian pregnancy are accompanied by a mild increase in insulin resistance likely due to enhanced glucose demand of the growing fetus. Therefore, as an adaptive process to maintain euglycemia during pregnancy, maternal β-cell mass expands leading to increased insulin release. Defects in functional β-cell adaptive expansion during pregnancy can lead to gestational diabetes mellitus (GDM). While the exact mechanisms that promote GDM are poorly understood, GDM is associated with inadequate functional β-cell mass expansion and with a systematic increase of oxidative stress. Here, we show that NRF2 levels are upregulated in mouse β-cells at gestational day 15 (GD15). Inducible β-cell-specific Nrf2 deleted (βNrf2KO) mice display reduced β-cell proliferation, increased β-cell oxidative stress and lipid peroxidation, compromised β-cell function, and elevated β-cell death, leading to impaired β-cell mass expansion and dysregulated glucose homeostasis towards the end of pregnancy. Importantly, the gestational hormone 17-β-estradiol (E2) increases NRF2 levels, and downregulation of NRF2 suppresses E2-induced protection of β-cells against oxidative stress, suggesting that E2 exerts its antioxidant effects through activation of NRF2 signaling in β-cells. Collectively, these data highlight the critical role of NRF2 in regulating oxidative stress during the adaptive response of β-cells in pregnancy and identify NRF2 as a potential therapeutic target for GDM treatment.
Collapse
Affiliation(s)
- Fatema Haidery
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Luca Lambertini
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Isabelle Tse
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sriya Dodda
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adolfo Garcia-Ocaña
- Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes & Metabolism Research Institute at City of Hope, Duarte, CA, USA
| | - Donald K Scott
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sharon Baumel-Alterzon
- Diabetes, Obesity and Metabolism Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Molecular and Cellular Endocrinology, Arthur Riggs Diabetes & Metabolism Research Institute at City of Hope, Duarte, CA, USA.
| |
Collapse
|
2
|
Hill DJ, Hill TG. Maternal diet during pregnancy and adaptive changes in the maternal and fetal pancreas have implications for future metabolic health. Front Endocrinol (Lausanne) 2024; 15:1456629. [PMID: 39377073 PMCID: PMC11456468 DOI: 10.3389/fendo.2024.1456629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/28/2024] [Indexed: 10/09/2024] Open
Abstract
Fetal and neonatal development is a critical period for the establishment of the future metabolic health and disease risk of an individual. Both maternal undernutrition and overnutrition can result in abnormal fetal organ development resulting in inappropriate birth size, child and adult obesity, and increased risk of Type 2 diabetes and cardiovascular diseases. Inappropriate adaptive changes to the maternal pancreas, placental function, and the development of the fetal pancreas in response to nutritional stress during pregnancy are major contributors to a risk trajectory in the offspring. This interconnected maternal-placental-fetal metabolic axis is driven by endocrine signals in response to the availability of nutritional metabolites and can result in cellular stress and premature aging in fetal tissues and the inappropriate expression of key genes involved in metabolic control as a result of long-lasting epigenetic changes. Such changes result is insufficient pancreatic beta-cell mass and function, reduced insulin sensitivity in target tissues such as liver and white adipose and altered development of hypothalamic satiety centres and in basal glucocorticoid levels. Whilst interventions in the obese mother such as dieting and increased exercise, or treatment with insulin or metformin in mothers who develop gestational diabetes, can improve metabolic control and reduce the risk of a large-for-gestational age infant, their effectiveness in changing the adverse metabolic trajectory in the child is as yet unclear.
Collapse
Affiliation(s)
- David J. Hill
- Lawson Health Research Institute, St. Joseph’s Health Care, London, ON, Canada
- Departments of Medicine, Physiology and Pharmacology, Western University, London, ON, Canada
| | - Thomas G. Hill
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Yu D, Luo L, Wang H, Shyh-Chang N. Pregnancy-induced metabolic reprogramming and regenerative responses to pro-aging stresses. Trends Endocrinol Metab 2024:S1043-2760(24)00192-9. [PMID: 39122601 DOI: 10.1016/j.tem.2024.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/12/2024] [Accepted: 07/17/2024] [Indexed: 08/12/2024]
Abstract
Pregnancy is associated with physiological adaptations that affect virtually all organs, enabling the mother to support the growing fetus and placenta while withstanding the demands of pregnancy. As a result, mammalian pregnancy is a unique state that exerts paradoxical effects on maternal health. On one hand, the metabolic stress induced by pregnancy can accelerate aging and functional decline in organs. On the other hand, pregnancy activates metabolic programming and tissue regenerative responses that can reverse age-related impairments. In this sense, the oocyte-to-blastocyst transition is not the only physiological reprogramming event in the mammalian body, as pregnancy-induced regeneration could constitute a second physiological reprogramming event. Here, we review findings on how pregnancy dualistically leads to aging and rejuvenation in the maternal body.
Collapse
Affiliation(s)
- Dainan Yu
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China
| | - Lanfang Luo
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; School of Biological Engineering, Zhuhai Campus of Zunyi Medical University, Guangdong 519000, China
| | - Hongmei Wang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Ng Shyh-Chang
- Key Laboratory of Organ Regeneration and Reconstruction, State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Tanday N, Tarasov AI, Moffett RC, Flatt PR, Irwin N. Pancreatic islet cell plasticity: Pathogenic or therapeutically exploitable? Diabetes Obes Metab 2024; 26:16-31. [PMID: 37845573 DOI: 10.1111/dom.15300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 10/18/2023]
Abstract
The development of pancreatic islet endocrine cells is a tightly regulated process leading to the generation of distinct cell types harbouring different hormones in response to small changes in environmental stimuli. Cell differentiation is driven by transcription factors that are also critical for the maintenance of the mature islet cell phenotype. Alteration of the insulin-secreting β-cell transcription factor set by prolonged metabolic stress, associated with the pathogenesis of diabetes, obesity or pregnancy, results in the loss of β-cell identity through de- or transdifferentiation. Importantly, the glucose-lowering effects of approved and experimental antidiabetic agents, including glucagon-like peptide-1 mimetics, novel peptides and small molecules, have been associated with preventing or reversing β-cell dedifferentiation or promoting the transdifferentiation of non-β-cells towards an insulin-positive β-cell-like phenotype. Therefore, we review the manifestations of islet cell plasticity in various experimental settings and discuss the physiological and therapeutic sides of this phenomenon, focusing on strategies for preventing β-cell loss or generating new β-cells in diabetes. A better understanding of the molecular mechanisms underpinning islet cell plasticity is a prerequisite for more targeted therapies to help prevent β-cell decline in diabetes.
Collapse
Affiliation(s)
- Neil Tanday
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Andrei I Tarasov
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland
| | - R Charlotte Moffett
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland
| | - Peter R Flatt
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland
| | - Nigel Irwin
- Diabetes Research Centre, School of Biomedical Sciences, Ulster University, Coleraine, Northern Ireland
| |
Collapse
|
5
|
Usman TO, Chhetri G, Yeh H, Dong HH. Beta-cell compensation and gestational diabetes. J Biol Chem 2023; 299:105405. [PMID: 38229396 PMCID: PMC10694657 DOI: 10.1016/j.jbc.2023.105405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/16/2023] [Accepted: 10/18/2023] [Indexed: 01/18/2024] Open
Abstract
Gestational diabetes mellitus (GDM) is characterized by glucose intolerance in pregnant women without a previous diagnosis of diabetes. While the etiology of GDM remains elusive, the close association of GDM with increased maternal adiposity and advanced gestational age implicates insulin resistance as a culpable factor for the pathogenesis of GDM. Pregnancy is accompanied by the physiological induction of insulin resistance in the mother secondary to maternal weight gain. This effect serves to spare blood glucose for the fetus. To overcome insulin resistance, maternal β-cells are conditioned to release more insulin into the blood. Such an adaptive response, termed β-cell compensation, is essential for maintaining normal maternal metabolism. β-cell compensation culminates in the expansion of β-cell mass and augmentation of β-cell function, accounting for increased insulin synthesis and secretion. As a result, a vast majority of mothers are protected from developing GDM during pregnancy. In at-risk pregnant women, β-cells fail to compensate for maternal insulin resistance, contributing to insulin insufficiency and GDM. However, gestational β-cell compensation ensues in early pregnancy, prior to the establishment of insulin resistance in late pregnancy. How β-cells compensate for pregnancy and what causes β-cell failure in GDM are subjects of investigation. In this mini-review, we will provide clinical and preclinical evidence that β-cell compensation is pivotal for overriding maternal insulin resistance to protect against GDM. We will highlight key molecules whose functions are critical for integrating gestational hormones to β-cell compensation for pregnancy. We will provide mechanistic insights into β-cell decompensation in the etiology of GDM.
Collapse
Affiliation(s)
- Taofeek O Usman
- Division of Endocrinology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Goma Chhetri
- Division of Endocrinology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Hsuan Yeh
- Division of Endocrinology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - H Henry Dong
- Division of Endocrinology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
6
|
Spinelli P, Fields AM, Falcone S, Mesaros C, Susiarjo M. Susceptibility to Low Vitamin B6 Diet-induced Gestational Diabetes Is Modulated by Strain Differences in Mice. Endocrinology 2023; 164:bqad130. [PMID: 37624591 PMCID: PMC10686696 DOI: 10.1210/endocr/bqad130] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Gestational diabetes is a common pregnancy complication that adversely influences the health and survival of mother and child. Pancreatic islet serotonin signaling plays an important role in β-cell proliferation in pregnancy, and environmental and genetic factors that disrupt serotonin signaling are associated with gestational diabetes in mice. Our previous studies show that pregnant C57BL/6J mice fed a diet that is low in vitamin B6, a critical co-factor in serotonin synthesis, develop hyperglycemia and glucose intolerance, phenotypes that are consistent with gestational diabetes in humans. The current study shows that, unlike in the C57BL/6J mice, low vitamin B6 diet does not alter glucose tolerance and insulin secretion in pregnant DBA/2J mice. The hypothesis to be tested in the current study is that pregnant DBA/2J mice are protected against low vitamin B6-induced gestational diabetes due to their higher expression and enzymatic activities of tissue nonspecific alkaline phosphatase (ALPL) relative to C57BL/6J. ALPL is a rate-limiting enzyme that regulates vitamin B6 bioavailability. Interestingly, treating pregnant DBA/2J mice with 7.5 mg/kg/day of the ALPL inhibitor SBI-425 is associated with glucose intolerance in low vitamin B6-fed mice, implying that inhibition of ALPL activity is sufficient to modulate resilience to low vitamin B6-induced metabolic impairment.
Collapse
Affiliation(s)
- Philip Spinelli
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Ashley M Fields
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Sierra Falcone
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| | - Clementina Mesaros
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Martha Susiarjo
- Department of Environmental Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14642, USA
| |
Collapse
|
7
|
Burgos-Gamez X, Morales-Castillo P, Fernandez-Mejia C. Maternal adaptations of the pancreas and glucose homeostasis in lactation and after lactation. Mol Cell Endocrinol 2023; 559:111778. [PMID: 36162635 DOI: 10.1016/j.mce.2022.111778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 09/04/2022] [Accepted: 09/13/2022] [Indexed: 02/03/2023]
Abstract
During lactation, the maternal physiology adapts to bear the nutritional requirements of the offspring. The exocrine and endocrine pancreas are central to nutrient handling, promoting digestion and metabolism. In concert with prolactin, insulin is a determinant factor for milk synthesis. The investigation of the pancreas during lactation has been scattered over several periods. The investigations that laid the foundation of lactating pancreatic physiology and glucose homeostasis were conducted in the decades of 1970-1980. With the development of molecular biology, newer studies have revealed the molecular mechanisms involved in the endocrine pancreas during breastfeeding. There has been a surge of information recently about unexpected changes in the pancreas at the end of the lactation period and after weaning. In this review, we aim to gather information on the changes in the pancreas and glucose homeostasis during and after lactation and discuss the outcomes derived from the current discoveries.
Collapse
Affiliation(s)
- Xadeni Burgos-Gamez
- Unidad de Genética de la Nutrición. Instituto de Investigaciones Biomédicas. Universidad Nacional Autónoma de México/ Instituto Nacional de Pediatría. Avenida del Iman#1, 4th floor, Mexico City, 04500, Mexico
| | - Paulina Morales-Castillo
- Unidad de Genética de la Nutrición. Instituto de Investigaciones Biomédicas. Universidad Nacional Autónoma de México/ Instituto Nacional de Pediatría. Avenida del Iman#1, 4th floor, Mexico City, 04500, Mexico
| | - Cristina Fernandez-Mejia
- Unidad de Genética de la Nutrición. Instituto de Investigaciones Biomédicas. Universidad Nacional Autónoma de México/ Instituto Nacional de Pediatría. Avenida del Iman#1, 4th floor, Mexico City, 04500, Mexico.
| |
Collapse
|
8
|
Chen Y, Fan ZQ, Guo JC, Men K. Effect of artemisinin on improving islet function in rats fed with maternal high-fat diet. Gynecol Endocrinol 2022; 38:416-424. [PMID: 35348414 DOI: 10.1080/09513590.2022.2053955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
BACKGROUND Maternal high-fat diet (HFD) is a detrimental factor in developing glucose intolerance, obesity, and islet dysfunction. However, the effect of artemisinin on maternal HFD and whether it is related to the alterations of islet function is seldom studied since artemisinin treatments not only attenuate insulin resistance (IR) and restore islet ß cell function in Diabetes mellitus type 2. METHODS Female rats were randomly fed a HFD (45% kcal from fat), HFD + artemisinin, or a regular chow diet (RCD) before pregnancy and during gestation. Glucose metabolism and the β cell phenotypes were assessed. RESULTS Maternal HFD increased islet load in female rats, proliferation of pancreatic β cells, increased insulinogen, and decreased insulin secretion response to high glucose stimulation with delayed insulin release, increased fasting glucose, and glucose area under the curve compared with the general diet group. HFD inhibited expression of Foxo1 and PAX6 in female rats. Under the effect of both HFD and pregnancy, islet load was further increased, insulinogen was further increased, and fasting insulin level and fasting glucose were higher than RCD fed general-pregnancy group. ALDH1a3 transdifferentiation and PAX6, Foxo1, and PDX1 expression were increased in islets of high-fat pregnant rats. When adding artemisinin in HFD treated pregnant rats, islet function was significantly improved. CONCLUSIONS Intervention with artemisinin in maternal HFD resulted in reduced islet size, decreased number of β-cells and improved islet microcirculation, insulin processing shear process, decreased insulinogen/insulin ratio, and restored islet function through increased expression of PC1/3.
Collapse
Affiliation(s)
- Yu Chen
- Department of Endocrinology, The Second Hospital of Tianjin Medical University, Tianjin, PR China
| | - Zhen-Qian Fan
- Department of Endocrinology, The Second Hospital of Tianjin Medical University, Tianjin, PR China
| | - Jian-Chao Guo
- Department of Endocrinology, The Second Hospital of Tianjin Medical University, Tianjin, PR China
| | - Kun Men
- Department of Laboratory, The Second Hospital of Tianjin Medical University, Tianjin, PR China
| |
Collapse
|
9
|
Lei Z, Chen Y, Wang J, Zhang Y, Shi W, Wang X, Xing D, Li D, Jiao X. Txnip deficiency promotes β-cell proliferation in the HFD-induced obesity mouse model. Endocr Connect 2022; 11:EC-21-0641. [PMID: 35294398 PMCID: PMC9066588 DOI: 10.1530/ec-21-0641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/16/2022] [Indexed: 11/25/2022]
Abstract
Elucidating the mechanisms of regulation of β-cell proliferation is key to understanding the pathogenesis of diabetes mellitus. Txnip is a tumor suppressor that is upregulated in diabetes and plays an important role in the regulation of insulin sensitivity; however, its potential effect on pancreatic β-cell proliferation remains unclear. Here, we evaluated the role of Txnip in pancreatic β-cell compensatory proliferation by subjecting WT and Txnip knockout (KO) mice to a high-fat diet (HFD). Our results demonstrate that Txnip deficiency improves glucose tolerance and increases insulin sensitivity in HFD-induced obesity. The antidiabetogenic effect of Txnip deficiency was accompanied by increased β-cell proliferation and enhanced β-cell mass expansion. Furthermore, Txnip deficiency modulated the expression of a set of transcription factors with key roles in β-cell proliferation and cell cycle regulation. Txnip KO in HFD mice also led to activated levels of p-PI3K, p-AKT, p-mTOR and p-GSK3β, suggesting that Txnip may act via PI3K/AKT signaling to suppress β-cell proliferation. Thus, our work provides a theoretical basis for Txnip as a new therapeutic target for the treatment of diabetes mellitus.
Collapse
Affiliation(s)
- Zhandong Lei
- Key Laboratory of Cellular Physiology, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
- Department of Anatomy, Shanxi Medical University, Taiyuan, China
| | - Yunfei Chen
- Key Laboratory of Cellular Physiology, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Jin Wang
- Key Laboratory of Cellular Physiology, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Yan Zhang
- Key Laboratory of Cellular Physiology, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Wenjuan Shi
- Key Laboratory of Cellular Physiology, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Xuejiao Wang
- Key Laboratory of Cellular Physiology, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Dehai Xing
- Key Laboratory of Cellular Physiology, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Dongxue Li
- Key Laboratory of Cellular Physiology, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
| | - Xiangying Jiao
- Key Laboratory of Cellular Physiology, Ministry of Education, and the Department of Physiology, Shanxi Medical University, Taiyuan, China
- Correspondence should be addressed to X Jiao:
| |
Collapse
|
10
|
Szlapinski SK, Hill DJ. Metabolic Adaptations to Pregnancy in Healthy and Gestational Diabetic Pregnancies: The Pancreas - Placenta Axis. Curr Vasc Pharmacol 2021; 19:141-153. [PMID: 32196450 DOI: 10.2174/1570161118666200320111209] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/20/2020] [Accepted: 03/01/2020] [Indexed: 12/16/2022]
Abstract
Normal pregnancy is associated with increased insulin resistance as a metabolic adaptation to the nutritional demands of the placenta and fetus, and this is amplified in obese mothers. Insulin resistance is normally compensated for by an adaptive increase in pancreatic β-cell mass together with enhanced glucose-stimulated insulin release. Placentally-derived hormones and growth factors are central to the altered pancreatic morphology and function. A failure of β-cells to undergo adaptive change after the first trimester has been linked with gestational diabetes. In the pregnant mouse, an increase in β-cell replication contributes to a 2-3-fold increase in mass peaking in late gestation, depending on the proliferation of existing β-cells, the differentiation of resident progenitor β-cells, or islet cell transdifferentiation. Using mouse models and human studies placenta- and islet of Langerhans-derived molecules have been identified that are likely to contribute to the metabolic adaptations to pregnancy and whose physiology is altered in the obese, glucose-intolerant mother. Maternal obesity during pregnancy can create a pro-inflammatory environment that can disrupt the response of the β-cells to the endocrine signals of pregnancy and limit the adaptive changes in β-cell mass and function, resulting in an increased risk of gestational diabetes.
Collapse
Affiliation(s)
- Sandra K Szlapinski
- Lawson Health Research Institute, St. Joseph's Health Care, 268 Grosvenor Street, London, Ontario N6A 4V2, Canada
| | - David J Hill
- Lawson Health Research Institute, St. Joseph's Health Care, 268 Grosvenor Street, London, Ontario N6A 4V2, Canada
| |
Collapse
|
11
|
Salazar-Petres ER, Sferruzzi-Perri AN. Pregnancy-induced changes in β-cell function: what are the key players? J Physiol 2021; 600:1089-1117. [PMID: 33704799 DOI: 10.1113/jp281082] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 02/17/2021] [Indexed: 12/11/2022] Open
Abstract
Maternal metabolic adaptations during pregnancy ensure appropriate nutrient supply to the developing fetus. This is facilitated by reductions in maternal peripheral insulin sensitivity, which enables glucose to be available in the maternal circulation for transfer to the fetus for growth. To balance this process and avoid excessive hyperglycaemia and glucose intolerance in the mother during pregnancy, maternal pancreatic β-cells undergo remarkable changes in their function including increasing their proliferation and glucose-stimulated insulin secretion. In this review we examine how placental and maternal hormones work cooperatively to activate several signalling pathways, transcription factors and epigenetic regulators to drive adaptations in β-cell function during pregnancy. We also explore how adverse maternal environmental conditions, including malnutrition, obesity, circadian rhythm disruption and environmental pollutants, may impact the endocrine and molecular mechanisms controlling β-cell adaptations during pregnancy. The available data from human and experimental animal studies highlight the need to better understand how maternal β-cells integrate the various environmental, metabolic and endocrine cues and thereby determine appropriate β-cell adaptation during gestation. In doing so, these studies may identify targetable pathways that could be used to prevent not only the development of pregnancy complications like gestational diabetes that impact maternal and fetal wellbeing, but also more generally the pathogenesis of other metabolic conditions like type 2 diabetes.
Collapse
Affiliation(s)
- Esteban Roberto Salazar-Petres
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| | - Amanda Nancy Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3EG, UK
| |
Collapse
|
12
|
Szlapinski SK, Bennett J, Strutt BJ, Hill DJ. Increased alpha and beta cell mass during mouse pregnancy is not dependent on transdifferentiation. Exp Biol Med (Maywood) 2021; 246:617-628. [PMID: 33231513 PMCID: PMC7934144 DOI: 10.1177/1535370220972686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
Maternal pancreatic beta-cell mass (BCM) increases during pregnancy to compensate for relative insulin resistance. If BCM expansion is suboptimal, gestational diabetes mellitus can develop. Alpha-cell mass (ACM) also changes during pregnancy, but there is a lack of information about α-cell plasticity in pregnancy and whether α- to β-cell transdifferentiation can occur. To investigate this, we used a mouse model of gestational glucose intolerance induced by feeding low-protein (LP) diet from conception until weaning and compared pregnant female offspring to control diet-fed animals. Control and LP pancreata were collected for immunohistochemical analysis and serum glucagon levels were measured. In order to lineage trace α- to β-cell conversion, we utilized transgenic mice expressing yellow fluorescent protein behind the proglucagon gene promoter (Gcg-Cre/YFP) and collected pancreata for histology at various gestational timepoints. Alpha-cell proliferation increased significantly at gestational day (GD) 9.5 in control pregnancies resulting in an increased ACM at GD18.5, and this was significantly reduced in LP animals. Despite these changes, serum glucagon was higher in LP mice at GD18.5. Pregnant Gcg-Cre/YFP mice showed no increase in the abundance of insulin+YFP+glucagon- cells (phenotypic β-cells). A second population of insulin+YFP+glucagon+ cells was identified which also did not alter during pregnancy. However, there was an altered anatomical distribution within islets with fewer insulin+YFP+glucagon- cells but more insulin+YFP+glucagon+ cells being present in the islet mantle at GD18.5. These findings demonstrate that dynamic changes in ACM occur during normal pregnancy and were altered in glucose-intolerant pregnancies.
Collapse
Affiliation(s)
- Sandra K Szlapinski
- Department of Physiology and Pharmacology, Western University, London, ON N6A 3K7, Canada
- Lawson Health Research Institute, Diabetes & Endocrinology, St Joseph’s Health Care, London, ON N6A 4V2, Canada
| | - Jamie Bennett
- Lawson Health Research Institute, Diabetes & Endocrinology, St Joseph’s Health Care, London, ON N6A 4V2, Canada
| | - Brenda J Strutt
- Department of Physiology and Pharmacology, Western University, London, ON N6A 3K7, Canada
- Lawson Health Research Institute, Diabetes & Endocrinology, St Joseph’s Health Care, London, ON N6A 4V2, Canada
| | - David J Hill
- Department of Physiology and Pharmacology, Western University, London, ON N6A 3K7, Canada
- Lawson Health Research Institute, Diabetes & Endocrinology, St Joseph’s Health Care, London, ON N6A 4V2, Canada
| |
Collapse
|
13
|
Protein malnutrition early in life increased apoptosis but did not alter the β-cell mass during gestation. Br J Nutr 2020; 125:1111-1124. [PMID: 32912341 DOI: 10.1017/s0007114520003554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We evaluated whether early-life protein restriction alters structural parameters that affect β-cell mass on the 15th day and 20th day of gestation in control pregnant (CP), control non-pregnant (CNP), low-protein pregnant (LPP) and low-protein non-pregnant (LPNP) rats from the fetal to the adult life stage as well as in protein-restricted rats that recovered after weaning (recovered pregnant (RP) and recovered non-pregnant). On the 15th day of gestation, the CNP group had a higher proportion of smaller islets, whereas the CP group exhibited a higher proportion of islets larger than the median. The β-cell mass was lower in the low-protein group than that in the recovered and control groups. Gestation increased the β-cell mass, β-cell proliferation frequency and neogenesis frequency independently of the nutritional status. The apoptosis frequency was increased in the recovered groups compared with that in the other groups. On the 20th day of gestation, a higher proportion of islets smaller than the median was observed in the non-pregnant groups, whereas a higher proportion of islets larger than the median was observed in the RP, LPP and CP groups. β-Cell mass was lower in the low-protein group than that in the recovered and control groups, regardless of the physiological status. The β-cell proliferation frequency was lower, whereas the apoptosis rate was higher in recovered rats compared with those in the low-protein and control rats. Thus, protein malnutrition early in life did not alter the mass of β-cells, especially in the first two-thirds of gestation, despite the increase in apoptosis.
Collapse
|
14
|
Quesada-Candela C, Tudurí E, Marroquí L, Alonso-Magdalena P, Quesada I, Nadal Á. Morphological and functional adaptations of pancreatic alpha-cells during late pregnancy in the mouse. Metabolism 2020; 102:153963. [PMID: 31593706 DOI: 10.1016/j.metabol.2019.153963] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/01/2019] [Accepted: 08/26/2019] [Indexed: 01/18/2023]
Abstract
BACKGROUND Pregnancy represents a major metabolic challenge for the mother, and involves a compensatory response of the pancreatic beta-cell to maintain normoglycemia. However, although pancreatic alpha-cells play a key role in glucose homeostasis and seem to be involved in gestational diabetes, there is no information about their potential adaptations or changes during pregnancy. MATERIAL AND METHODS Non-pregnant (controls) and pregnant C57BL/6 mice at gestational day 18.5 (G18.5) and their isolated pancreatic islets were used for in vivo and ex vivo studies, respectively. The effect of pregnancy hormones was tested in glucagon-secreting α-TC1.9 cells. Immunohistochemical analysis was performed in pancreatic slices. Glucagon gene expression was monitored by RT-qPCR. Glucagon secretion and plasma hormones were measured by ELISA. RESULTS Pregnant mice on G18.5 exhibited alpha-cell hypertrophy as well as augmented alpha-cell area and mass. This alpha-cell mass expansion was mainly due to increased proliferation. No changes in alpha-cell apoptosis, ductal neogenesis, or alpha-to-beta transdifferentiation were found compared with controls. Pregnant mice on G18.5 exhibited hypoglucagonemia. Additionally, in vitro glucagon secretion at low glucose levels was decreased in isolated islets from pregnant animals. Glucagon content was also reduced. Experiments in α-TC1.9 cells indicated that, unlike estradiol and progesterone, placental lactogens and prolactin stimulated alpha-cell proliferation. Placental lactogens, prolactin and estradiol also inhibited glucagon release from α-TC1.9 cells at low glucose levels. CONCLUSIONS The pancreatic alpha-cell in mice undergoes several morphofunctional changes during late pregnancy, which may contribute to proper glucose homeostasis. Gestational hormones are likely involved in these processes.
Collapse
Affiliation(s)
- Cristina Quesada-Candela
- Instituto de Biología Molecular y Celular (IBMC), Universitas Miguel Hernández, 03202 Elche, Spain; Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, 03202 Elche, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Spain
| | - Eva Tudurí
- Instituto de Biología Molecular y Celular (IBMC), Universitas Miguel Hernández, 03202 Elche, Spain; Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, 03202 Elche, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Spain
| | - Laura Marroquí
- Instituto de Biología Molecular y Celular (IBMC), Universitas Miguel Hernández, 03202 Elche, Spain; Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, 03202 Elche, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Spain
| | - Paloma Alonso-Magdalena
- Instituto de Biología Molecular y Celular (IBMC), Universitas Miguel Hernández, 03202 Elche, Spain; Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, 03202 Elche, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Spain
| | - Ivan Quesada
- Instituto de Biología Molecular y Celular (IBMC), Universitas Miguel Hernández, 03202 Elche, Spain; Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, 03202 Elche, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Spain.
| | - Ángel Nadal
- Instituto de Biología Molecular y Celular (IBMC), Universitas Miguel Hernández, 03202 Elche, Spain; Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universitas Miguel Hernández, 03202 Elche, Spain; Spanish Biomedical Research Centre in Diabetes and Associated Metabolic Disorders (CIBERDEM), Spain.
| |
Collapse
|
15
|
Enhanced PDGF signaling in gestational diabetes mellitus is involved in pancreatic β-cell dysfunction. Biochem Biophys Res Commun 2019; 516:402-407. [PMID: 31217075 DOI: 10.1016/j.bbrc.2019.06.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 06/09/2019] [Indexed: 12/13/2022]
Abstract
Gestational diabetes mellitus (GDM) is often accompanied by the development of hyperinsulinemia as an adaptation to increased insulin demand, but this subsequently causes insulin resistance. Loss of function in pancreatic β-cells further aggravates the development of GDM. The level of serum platelet-derived growth factor (PDGF) reportedly increases in GDM patients. The present study investigated whether enhanced PDGF signaling directly causes β-cell dysfunction during gestation. Serum PDGF levels were negatively correlated with β-cell function in GDM patients. Administration of PDGF-BB disrupted glucose tolerance and β-cell function without inducing apoptosis in gestational mice but had no similar effect in non-gestational mice. The β-cell-specific genes encoding insulin synthesis proteins were decreased in the islets of PDGF-BB-treated gestational mice. In vitro experiments using INS1 insulinoma cells showed that PDGF-BB promoted cell proliferation, whereas it downregulated β-cell-specific genes. Taken together, these findings suggested that PDGF reduces β-cell function during gestation possibly through β-cell dedifferentiation.
Collapse
|
16
|
Banerjee RR. Piecing together the puzzle of pancreatic islet adaptation in pregnancy. Ann N Y Acad Sci 2019; 1411:120-139. [PMID: 29377199 DOI: 10.1111/nyas.13552] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/18/2017] [Accepted: 10/24/2017] [Indexed: 12/20/2022]
Abstract
Pregnancy places acute demands on maternal physiology, including profound changes in glucose homeostasis. Gestation is characterized by an increase in insulin resistance, counterbalanced by an adaptive increase in pancreatic β cell production of insulin. Failure of normal adaptive responses of the islet to increased maternal and fetal demands manifests as gestational diabetes mellitus (GDM). The gestational changes and rapid reversal of islet adaptations following parturition are at least partly driven by an anticipatory program rather than post-factum compensatory adaptations. Here, I provide a comprehensive review of the cellular and molecular mechanisms underlying normal islet adaptation during pregnancy and how dysregulation may lead to GDM. Emerging areas of interest and understudied areas worthy of closer examination in the future are highlighted.
Collapse
Affiliation(s)
- Ronadip R Banerjee
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, and the Comprehensive Diabetes Center, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| |
Collapse
|
17
|
Teixeira CJ, Santos-Silva JC, de Souza DN, Rafacho A, Anhe GF, Bordin S. Dexamethasone during pregnancy impairs maternal pancreatic β-cell renewal during lactation. Endocr Connect 2019; 8:120-131. [PMID: 30768422 PMCID: PMC6376996 DOI: 10.1530/ec-18-0505] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 01/21/2019] [Indexed: 12/18/2022]
Abstract
Pancreatic islets from pregnant rats develop a transitory increase in the pancreatic β-cell proliferation rate and mass. Increased apoptosis during early lactation contributes to the rapid reversal of those morphological changes. Exposure to synthetic glucocorticoids during pregnancy has been previously reported to impair insulin secretion, but its impacts on pancreatic islet morphological changes during pregnancy and lactation have not been described. To address this issue, we assessed the morphological and molecular characteristics of pancreatic islets from rats that underwent undisturbed pregnancy (CTL) or were treated with dexamethasone between the 14th and 19th days of pregnancy (DEX). Pancreatic islets were analyzed on the 20th day of pregnancy (P20) and on the 3rd, 8th, 14th and 21st days of lactation (L3, L8, L14 and L21, respectively). Pancreatic islets from CTL rats exhibited transitory increases in cellular proliferation and pancreatic β-cell mass at P20, which were reversed at L3, when a transitory increase in apoptosis was observed. This was followed by the appearance of morphological features of pancreatic islet neogenesis at L8. Islets from DEX rats did not demonstrate an increase in apoptosis at L3, which coincided with an increase in the expression of M2 macrophage markers relative to M1 macrophage and T lymphocyte markers. Islets from DEX rats also did not exhibit the morphological characteristics of pancreatic islet neogenesis at L8. Our data demonstrate that maternal pancreatic islets undergo a renewal process during lactation that is impaired by exposure to DEX during pregnancy.
Collapse
Affiliation(s)
- Caio Jordão Teixeira
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | | | - Dailson Nogueira de Souza
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Alex Rafacho
- Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Gabriel Forato Anhe
- Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
| | - Silvana Bordin
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
- Correspondence should be addressed to S Bordin:
| |
Collapse
|
18
|
Baeyens L, Lemper M, Staels W, De Groef S, De Leu N, Heremans Y, German MS, Heimberg H. (Re)generating Human Beta Cells: Status, Pitfalls, and Perspectives. Physiol Rev 2018; 98:1143-1167. [PMID: 29717931 DOI: 10.1152/physrev.00034.2016] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Diabetes mellitus results from disturbed glucose homeostasis due to an absolute (type 1) or relative (type 2) deficiency of insulin, a peptide hormone almost exclusively produced by the beta cells of the endocrine pancreas in a tightly regulated manner. Current therapy only delays disease progression through insulin injection and/or oral medications that increase insulin secretion or sensitivity, decrease hepatic glucose production, or promote glucosuria. These drugs have turned diabetes into a chronic disease as they do not solve the underlying beta cell defects or entirely prevent the long-term complications of hyperglycemia. Beta cell replacement through islet transplantation is a more physiological therapeutic alternative but is severely hampered by donor shortage and immune rejection. A curative strategy should combine newer approaches to immunomodulation with beta cell replacement. Success of this approach depends on the development of practical methods for generating beta cells, either in vitro or in situ through beta cell replication or beta cell differentiation. This review provides an overview of human beta cell generation.
Collapse
Affiliation(s)
- Luc Baeyens
- Beta Cell Neogenesis (BENE), Vrije Universiteit Brussel, Brussels , Belgium ; Diabetes Center, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, and Department of Medicine, University of California San Francisco , San Francisco, California ; Genentech Safety Assessment, South San Francisco, California ; Investigative Toxicology, UCB BioPharma, Braine-l'Alleud, Belgium ; Department of Pediatrics, Division of Pediatric Endocrinology, Ghent University, Hospital and Department of Pediatrics and Genetics , Ghent , Belgium ; Department of Endocrinology, Universitair Ziekenhuis Brussel, Brussels , Belgium ; and Department of Endocrinology, Algemeen Stedelijk Ziekenhuis Aalst, Aalst, Belgium
| | - Marie Lemper
- Beta Cell Neogenesis (BENE), Vrije Universiteit Brussel, Brussels , Belgium ; Diabetes Center, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, and Department of Medicine, University of California San Francisco , San Francisco, California ; Genentech Safety Assessment, South San Francisco, California ; Investigative Toxicology, UCB BioPharma, Braine-l'Alleud, Belgium ; Department of Pediatrics, Division of Pediatric Endocrinology, Ghent University, Hospital and Department of Pediatrics and Genetics , Ghent , Belgium ; Department of Endocrinology, Universitair Ziekenhuis Brussel, Brussels , Belgium ; and Department of Endocrinology, Algemeen Stedelijk Ziekenhuis Aalst, Aalst, Belgium
| | - Willem Staels
- Beta Cell Neogenesis (BENE), Vrije Universiteit Brussel, Brussels , Belgium ; Diabetes Center, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, and Department of Medicine, University of California San Francisco , San Francisco, California ; Genentech Safety Assessment, South San Francisco, California ; Investigative Toxicology, UCB BioPharma, Braine-l'Alleud, Belgium ; Department of Pediatrics, Division of Pediatric Endocrinology, Ghent University, Hospital and Department of Pediatrics and Genetics , Ghent , Belgium ; Department of Endocrinology, Universitair Ziekenhuis Brussel, Brussels , Belgium ; and Department of Endocrinology, Algemeen Stedelijk Ziekenhuis Aalst, Aalst, Belgium
| | - Sofie De Groef
- Beta Cell Neogenesis (BENE), Vrije Universiteit Brussel, Brussels , Belgium ; Diabetes Center, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, and Department of Medicine, University of California San Francisco , San Francisco, California ; Genentech Safety Assessment, South San Francisco, California ; Investigative Toxicology, UCB BioPharma, Braine-l'Alleud, Belgium ; Department of Pediatrics, Division of Pediatric Endocrinology, Ghent University, Hospital and Department of Pediatrics and Genetics , Ghent , Belgium ; Department of Endocrinology, Universitair Ziekenhuis Brussel, Brussels , Belgium ; and Department of Endocrinology, Algemeen Stedelijk Ziekenhuis Aalst, Aalst, Belgium
| | - Nico De Leu
- Beta Cell Neogenesis (BENE), Vrije Universiteit Brussel, Brussels , Belgium ; Diabetes Center, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, and Department of Medicine, University of California San Francisco , San Francisco, California ; Genentech Safety Assessment, South San Francisco, California ; Investigative Toxicology, UCB BioPharma, Braine-l'Alleud, Belgium ; Department of Pediatrics, Division of Pediatric Endocrinology, Ghent University, Hospital and Department of Pediatrics and Genetics , Ghent , Belgium ; Department of Endocrinology, Universitair Ziekenhuis Brussel, Brussels , Belgium ; and Department of Endocrinology, Algemeen Stedelijk Ziekenhuis Aalst, Aalst, Belgium
| | - Yves Heremans
- Beta Cell Neogenesis (BENE), Vrije Universiteit Brussel, Brussels , Belgium ; Diabetes Center, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, and Department of Medicine, University of California San Francisco , San Francisco, California ; Genentech Safety Assessment, South San Francisco, California ; Investigative Toxicology, UCB BioPharma, Braine-l'Alleud, Belgium ; Department of Pediatrics, Division of Pediatric Endocrinology, Ghent University, Hospital and Department of Pediatrics and Genetics , Ghent , Belgium ; Department of Endocrinology, Universitair Ziekenhuis Brussel, Brussels , Belgium ; and Department of Endocrinology, Algemeen Stedelijk Ziekenhuis Aalst, Aalst, Belgium
| | - Michael S German
- Beta Cell Neogenesis (BENE), Vrije Universiteit Brussel, Brussels , Belgium ; Diabetes Center, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, and Department of Medicine, University of California San Francisco , San Francisco, California ; Genentech Safety Assessment, South San Francisco, California ; Investigative Toxicology, UCB BioPharma, Braine-l'Alleud, Belgium ; Department of Pediatrics, Division of Pediatric Endocrinology, Ghent University, Hospital and Department of Pediatrics and Genetics , Ghent , Belgium ; Department of Endocrinology, Universitair Ziekenhuis Brussel, Brussels , Belgium ; and Department of Endocrinology, Algemeen Stedelijk Ziekenhuis Aalst, Aalst, Belgium
| | - Harry Heimberg
- Beta Cell Neogenesis (BENE), Vrije Universiteit Brussel, Brussels , Belgium ; Diabetes Center, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, and Department of Medicine, University of California San Francisco , San Francisco, California ; Genentech Safety Assessment, South San Francisco, California ; Investigative Toxicology, UCB BioPharma, Braine-l'Alleud, Belgium ; Department of Pediatrics, Division of Pediatric Endocrinology, Ghent University, Hospital and Department of Pediatrics and Genetics , Ghent , Belgium ; Department of Endocrinology, Universitair Ziekenhuis Brussel, Brussels , Belgium ; and Department of Endocrinology, Algemeen Stedelijk Ziekenhuis Aalst, Aalst, Belgium
| |
Collapse
|
19
|
Untereiner A, Abdo S, Bhattacharjee A, Gohil H, Pourasgari F, Ibeh N, Lai M, Batchuluun B, Wong A, Khuu N, Liu Y, Al Rijjal D, Winegarden N, Virtanen C, Orser BA, Cabrera O, Varga G, Rocheleau J, Dai FF, Wheeler MB. GABA promotes β-cell proliferation, but does not overcome impaired glucose homeostasis associated with diet-induced obesity. FASEB J 2018; 33:3968-3984. [PMID: 30509117 DOI: 10.1096/fj.201801397r] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
γ-Aminobutyric acid (GABA) administration has been shown to increase β-cell mass, leading to a reversal of type 1 diabetes in mice. Whether GABA has any effect on β cells of healthy and prediabetic/glucose-intolerant obese mice remains unknown. In the present study, we show that oral GABA administration ( ad libitum) to mice indeed increased pancreatic β-cell mass, which led to a modest enhancement in insulin secretion and glucose tolerance. However, GABA treatment did not further increase insulin-positive islet area in high fat diet-fed mice and was unable to prevent or reverse glucose intolerance and insulin resistance. Mechanistically, whether in vivo or in vitro, GABA treatment increased β-cell proliferation. In vitro, the effect was shown to be mediated via the GABAA receptor. Single-cell RNA sequencing analysis revealed that GABA preferentially up-regulated pathways linked to β-cell proliferation and simultaneously down-regulated those networks required for other processes, including insulin biosynthesis and metabolism. Interestingly, single-cell differential expression analysis revealed GABA treatment gave rise to a distinct subpopulation of β cells with a unique transcriptional signature, including urocortin 3 ( ucn3), wnt4, and hepacam2. Taken together, this study provides new mechanistic insight into the proliferative nature of GABA but suggests that β-cell compensation associated with prediabetes overlaps with, and negates, its proliferative effects.-Untereiner, A., Abdo, S., Bhattacharjee, A., Gohil, H., Pourasgari, F., Ibeh, N., Lai, M., Batchuluun, B., Wong, A., Khuu, N., Liu, Y., Al Rijjal, D., Winegarden, N., Virtanen, C., Orser, B. A., Cabrera, O., Varga, G., Rocheleau, J., Dai, F. F., Wheeler, M. B. GABA promotes β-cell proliferation, but does not overcome impaired glucose homeostasis associated with diet-induced obesity.
Collapse
Affiliation(s)
- Ashley Untereiner
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Shaaban Abdo
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Alpana Bhattacharjee
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Himaben Gohil
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | | | - Neke Ibeh
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Mi Lai
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | | | - Anthony Wong
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Nicholas Khuu
- Princess Margaret Genomics Centre, University Health Network, Toronto, Ontario, Canada
| | - Ying Liu
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Dana Al Rijjal
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada
| | - Neil Winegarden
- Princess Margaret Genomics Centre, University Health Network, Toronto, Ontario, Canada
| | - Carl Virtanen
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Beverley A Orser
- Department of Anesthesia, University of Toronto, Toronto, Ontario, Canada
| | - Over Cabrera
- Diabetes and Complications Research, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana, USA
| | - Gabor Varga
- Diabetes and Complications Research, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, Indiana, USA
| | - Jonathan Rocheleau
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Feihan F Dai
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Michael B Wheeler
- Department of Physiology, University of Toronto, Toronto, Ontario, Canada.,Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
20
|
Moyce BL, Dolinsky VW. Maternal β-Cell Adaptations in Pregnancy and Placental Signalling: Implications for Gestational Diabetes. Int J Mol Sci 2018; 19:ijms19113467. [PMID: 30400566 PMCID: PMC6274918 DOI: 10.3390/ijms19113467] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/24/2018] [Accepted: 10/31/2018] [Indexed: 12/14/2022] Open
Abstract
Rates of gestational diabetes mellitus (GDM) are on the rise worldwide, and the number of pregnancies impacted by GDM and resulting complications are also increasing. Pregnancy is a period of unique metabolic plasticity, during which mild insulin resistance is a physiological adaptation to prioritize fetal growth. To compensate for this, the pancreatic β-cell utilizes a variety of adaptive mechanisms, including increasing mass, number and insulin-secretory capacity to maintain glucose homeostasis. When insufficient insulin production does not overcome insulin resistance, hyperglycemia can occur. Changes in the maternal system that occur in GDM such as lipotoxicity, inflammation and oxidative stress, as well as impairments in adipokine and placental signalling, are associated with impaired β-cell adaptation. Understanding these pathways, as well as mechanisms of β-cell dysfunction in pregnancy, can identify novel therapeutic targets beyond diet and lifestyle interventions, insulin and antihyperglycemic agents currently used for treating GDM.
Collapse
Affiliation(s)
- Brittany L Moyce
- Department of Pharmacology & Therapeutics and the Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of the Children's Hospital Research Institute of Manitoba and the Manitoba Developmental Origins of Chronic Diseases in Children Network (DEVOTION), University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| | - Vernon W Dolinsky
- Department of Pharmacology & Therapeutics and the Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Research Theme of the Children's Hospital Research Institute of Manitoba and the Manitoba Developmental Origins of Chronic Diseases in Children Network (DEVOTION), University of Manitoba, Winnipeg, MB R3E 3P4, Canada.
| |
Collapse
|
21
|
Placental control of metabolic adaptations in the mother for an optimal pregnancy outcome. What goes wrong in gestational diabetes? Placenta 2018; 69:162-168. [DOI: 10.1016/j.placenta.2018.01.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/02/2018] [Accepted: 01/05/2018] [Indexed: 12/25/2022]
|
22
|
An increase in immature β-cells lacking Glut2 precedes the expansion of β-cell mass in the pregnant mouse. PLoS One 2017; 12:e0182256. [PMID: 28753672 PMCID: PMC5533342 DOI: 10.1371/journal.pone.0182256] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Accepted: 07/14/2017] [Indexed: 11/19/2022] Open
Abstract
A compensatory increase in β-cell mass occurs during pregnancy to counter the associated insulin resistance, and a failure in adaptation is thought to contribute to gestational diabetes. Insulin-expressing but glucose-transporter-2-low (Ins+Glut2LO) progenitor cells are present in mouse and human pancreas, being predominantly located in extra-islet β-cell clusters, and contribute to the regeneration of the endocrine pancreas following induced ablation. We therefore sought to investigate the contribution of Ins+Glut2LO cells to β-cell mass expansion during pregnancy. Female C57Bl/6 mice were time mated and pancreata were collected at gestational days (GD) 6, 9, 12, 15, and 18, and postpartum D7 (n = 4/time-point) and compared to control (non-pregnant) animals. Beta cell mass, location, proliferation (Ki67+), and proportion of Ins+Glut2LO cells were measured using immunohistochemistry and bright field or confocal microscopy. Beta cell mass tripled by GD18 and β-cell proliferation peaked at GD12 in islets (≥6 β-cells) and small β-cell clusters (1–5 β-cells). The proportion and fraction of Ins+Glut2LO cells undergoing proliferation increased significantly at GD9 in both islets and clusters, preceding the increase in β-cell mass and proliferation, and their proliferation within clusters persisted until GD15. The overall number of clusters increased significantly at GD9. Quantitative PCR showed a significant increase in Pdx1 presence at GD9 vs. GD18 or control pancreas, and Pdx1 was visualized by immunohistochemistry within both Ins+Glut2LO and Ins+Glut2HI cells within clusters. These results indicate that Ins+Glut2LO cells are likely to contribute to β-cell mass expansion during pregnancy.
Collapse
|
23
|
Baeyens L, Hindi S, Sorenson RL, German MS. β-Cell adaptation in pregnancy. Diabetes Obes Metab 2016; 18 Suppl 1:63-70. [PMID: 27615133 PMCID: PMC5384851 DOI: 10.1111/dom.12716] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 06/09/2016] [Indexed: 12/15/2022]
Abstract
Pregnancy in placental mammals places unique demands on the insulin-producing β-cells in the pancreatic islets of Langerhans. The pancreas anticipates the increase in insulin resistance that occurs late in pregnancy by increasing β-cell numbers and function earlier in pregnancy. In rodents, this β-cell expansion depends on secreted placental lactogens that signal through the prolactin receptor. Then at the end of pregnancy, the β-cell population contracts back to its pre-pregnancy size. In the current review, we focus on how glucose metabolism changes during pregnancy, how β-cells anticipate these changes through their response to lactogens and what molecular mechanisms guide the adaptive compensation. In addition, we summarize current knowledge of β-cell adaptation during human pregnancy and what happens when adaptation fails and gestational diabetes ensues. A better understanding of human β-cell adaptation to pregnancy would benefit efforts to predict, prevent and treat gestational diabetes.
Collapse
Affiliation(s)
- L Baeyens
- Diabetes Center, University of California San Francisco, San Francisco
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California San Francisco, San Francisco
| | - S Hindi
- Diabetes Center, University of California San Francisco, San Francisco
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California San Francisco, San Francisco
- Department of Medicine, University of California San Francisco, San Francisco
| | - R L Sorenson
- Department of Genetics, Cell Biology and Development, University of Minnesota Medical School, Minneapolis
| | - M S German
- Diabetes Center, University of California San Francisco, San Francisco.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California San Francisco, San Francisco.
- Department of Medicine, University of California San Francisco, San Francisco.
| |
Collapse
|
24
|
Cigliola V, Thorel F, Chera S, Herrera PL. Stress-induced adaptive islet cell identity changes. Diabetes Obes Metab 2016; 18 Suppl 1:87-96. [PMID: 27615136 PMCID: PMC5021189 DOI: 10.1111/dom.12726] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 04/22/2016] [Indexed: 12/12/2022]
Abstract
The different forms of diabetes mellitus differ in their pathogenesis but, ultimately, they are all characterized by progressive islet β-cell loss. Restoring the β-cell mass is therefore a major goal for future therapeutic approaches. The number of β-cells found at birth is determined by proliferation and differentiation of pancreatic progenitor cells, and it has been considered to remain mostly unchanged throughout adult life. Recent studies in mice have revealed an unexpected plasticity in islet endocrine cells in response to stress; under certain conditions, islet non-β-cells have the potential to reprogram into insulin producers, thus contributing to restore the β-cell mass. Here, we discuss the latest findings on pancreas and islet cell plasticity upon physiological, pathological and experimental conditions of stress. Understanding the mechanisms involved in cell reprogramming in these models will allow the development of new strategies for the treatment of diabetes, by exploiting the intrinsic regeneration capacity of the pancreas.
Collapse
Affiliation(s)
- V Cigliola
- Department of Genetic Medicine and Development, Faculty of Medicine, Institute of Genetics and Genomics in Geneva (iGE3), and Centre facultaire du diabète, University of Geneva, Geneva, Switzerland
| | - F Thorel
- Department of Genetic Medicine and Development, Faculty of Medicine, Institute of Genetics and Genomics in Geneva (iGE3), and Centre facultaire du diabète, University of Geneva, Geneva, Switzerland
| | - S Chera
- Department of Clinical Science, Faculty of Medicine and Dentistry, University of Bergen, Bergen, Norway
| | - P L Herrera
- Department of Genetic Medicine and Development, Faculty of Medicine, Institute of Genetics and Genomics in Geneva (iGE3), and Centre facultaire du diabète, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
25
|
Ye R, Wang M, Wang QA, Spurgin SB, Wang ZV, Sun K, Scherer PE. Autonomous interconversion between adult pancreatic α-cells and β-cells after differential metabolic challenges. Mol Metab 2016; 5:437-448. [PMID: 27408770 PMCID: PMC4921793 DOI: 10.1016/j.molmet.2016.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 04/28/2016] [Accepted: 05/03/2016] [Indexed: 11/22/2022] Open
Abstract
Background Evidence hints at the ability of β-cells to emerge from non-β-cells upon genetic or pharmacological interventions. However, their quantitative contributions to the process of autonomous β-cell regeneration without genetic or pharmacological manipulations remain to be determined. Methods & results Using PANIC-ATTAC mice, a model of titratable, acute β-cell apoptosis capable of autonomous, and effective islet mass regeneration, we demonstrate that an extended washout of residual tamoxifen activity is crucial for β-cell lineage tracing studies using the tamoxifen-inducible Cre/loxP systems. We further establish a doxycycline-inducible system to label different cell types in the mouse pancreas and pursued a highly quantitative assessment to trace adult β-cells after various metabolic challenges. Beyond proliferation of pre-existing β-cells, non-β-cells contribute significantly to the post-challenge regenerated β-cell pool. α-cell trans-differentiation is the predominant mechanism upon post-apoptosis regeneration and multiparity. No contributions from exocrine acinar cells were observed. During diet-induced obesity, about 25% of α-cells arise de novo from β-cells. Ectopic expression of Nkx6.1 promotes α-to-β conversion and insulin production. Conclusions We identify the origins and fates of adult β-cells upon post-challenge upon autonomous regeneration of islet mass and establish the quantitative contributions of the different cell types using a lineage tracing system with high temporal resolution. Insufficient washout for tamoxifen leads to β-cell lineage tracing artifacts. Inter-conversion between α- and β-cells after differential metabolic challenges. Developmental distance and precursor population determine conversion efficiency. Nkx6.1 promotes α-to-β conversion.
Collapse
Affiliation(s)
- Risheng Ye
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Miao Wang
- Hamon Center for Therapeutic Oncology Research, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qiong A Wang
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Stephen B Spurgin
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Zhao V Wang
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kai Sun
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Cell Biology, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
26
|
Abstract
Pregnancy is associated with a compensatory increase in beta cell mass. It is well established that somatolactogenic hormones contribute to the expansion both indirectly by their insulin antagonistic effects and directly by their mitogenic effects on the beta cells via receptors for prolactin and growth hormone expressed in rodent beta cells. However, the beta cell expansion in human pregnancy seems to occur by neogenesis of beta cells from putative progenitor cells rather than by proliferation of existing beta cells. Claes Hellerström has pioneered the research on beta cell growth for decades, but the mechanisms involved are still not clarified. In this review the information obtained in previous studies is recapitulated together with some of the current attempts to resolve the controversy in the field: identification of the putative progenitor cells, identification of the factors involved in the expansion of the beta cell mass in human pregnancy, and the relative roles of endocrine factors and nutrients.
Collapse
Affiliation(s)
- Jens Høiriis Nielsen
- CONTACT Jens Høiriis Nielsen, Department of Biomedical Sciences, University of Copenhagen, Blegdamsvej 3, Bldg. 6.5, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
27
|
Hyslop CM, Tsai S, Shrivastava V, Santamaria P, Huang C. Prolactin as an Adjunct for Type 1 Diabetes Immunotherapy. Endocrinology 2016; 157:150-65. [PMID: 26512750 DOI: 10.1210/en.2015-1549] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Type 1 diabetes is caused by autoimmune destruction of β-cells. Although immunotherapy can restore self-tolerance thereby halting continued immune-mediated β-cell loss, residual β-cell mass and function is often insufficient for normoglycemia. Using a growth factor to boost β-cell mass can potentially overcome this barrier and prolactin (PRL) may fill this role. Previous studies have shown that PRL can stimulate β-cell proliferation and up-regulate insulin synthesis and secretion while reducing lymphocytic infiltration of islets, suggesting that it may restore normoglycemia through complementary mechanisms. Here, we test the hypothesis that PRL can improve the efficacy of an immune modulator, the anticluster of differentiation 3 monoclonal antibody (aCD3), in inducing diabetes remission by up-regulating β-cell mass and function. Diabetic nonobese diabetic (NOD) mice were treated with a 5-day course of aCD3 with or without a concurrent 3-week course of PRL. We found that a higher proportion of diabetic mice treated with the aCD3 and PRL combined therapy achieved diabetes reversal than those treated with aCD3 alone. The aCD3 and PRL combined group had a higher β-cell proliferation rate, an increased β-cell fraction, larger islets, higher pancreatic insulin content, and greater glucose-stimulated insulin release. Lineage-tracing analysis found minimal contribution of β-cell neogenesis to the formation of new β-cells. Although we did not detect a significant difference in the number or proliferative capacity of T cells, we observed a higher proportion of insulitis-free islets in the aCD3 and PRL group. These results suggest that combining a growth factor with an immunotherapy may be an effective treatment paradigm for autoimmune diabetes.
Collapse
Affiliation(s)
- Colin M Hyslop
- Department of Biochemistry and Molecular Biology (C.M.H., V.S., C.H.), Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1; Julia McFarlane Diabetes Research Centre and Department of Microbiology, Immunology and Infectious Diseases (S.T., P.S.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1; Institut D'Investigacions Biomediques August Pi i Sunyer (P.S.), 08036 Barcelona, Spain; and Department of Pediatrics (C.H.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Sue Tsai
- Department of Biochemistry and Molecular Biology (C.M.H., V.S., C.H.), Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1; Julia McFarlane Diabetes Research Centre and Department of Microbiology, Immunology and Infectious Diseases (S.T., P.S.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1; Institut D'Investigacions Biomediques August Pi i Sunyer (P.S.), 08036 Barcelona, Spain; and Department of Pediatrics (C.H.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Vipul Shrivastava
- Department of Biochemistry and Molecular Biology (C.M.H., V.S., C.H.), Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1; Julia McFarlane Diabetes Research Centre and Department of Microbiology, Immunology and Infectious Diseases (S.T., P.S.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1; Institut D'Investigacions Biomediques August Pi i Sunyer (P.S.), 08036 Barcelona, Spain; and Department of Pediatrics (C.H.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Pere Santamaria
- Department of Biochemistry and Molecular Biology (C.M.H., V.S., C.H.), Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1; Julia McFarlane Diabetes Research Centre and Department of Microbiology, Immunology and Infectious Diseases (S.T., P.S.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1; Institut D'Investigacions Biomediques August Pi i Sunyer (P.S.), 08036 Barcelona, Spain; and Department of Pediatrics (C.H.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| | - Carol Huang
- Department of Biochemistry and Molecular Biology (C.M.H., V.S., C.H.), Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1; Julia McFarlane Diabetes Research Centre and Department of Microbiology, Immunology and Infectious Diseases (S.T., P.S.), Snyder Institute for Chronic Diseases, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1; Institut D'Investigacions Biomediques August Pi i Sunyer (P.S.), 08036 Barcelona, Spain; and Department of Pediatrics (C.H.), Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada T2N 4N1
| |
Collapse
|
28
|
Li J, Ying H, Cai G, Guo Q, Chen L. Impaired proliferation of pancreatic beta cells, by reduced placental growth factor in pre-eclampsia, as a cause for gestational diabetes mellitus. Cell Prolif 2015; 48:166-74. [PMID: 25594238 DOI: 10.1111/cpr.12164] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Accepted: 09/29/2014] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES Reduced increase in serum placental growth factor (PLGF) levels frequently occurs in patients with pre-eclampsia (PE) and thus has been used as a predictive factor for developing PE. However, it has remained elusive how shortage of PLGF could affect pancreatic endocrine homoeostasis and function in pregnancy to lead to development of gestational diabetes mellitus (GDM). MATERIALS AND METHODS We used l-NAME injection in mice, as a model of human PE, in which PLGF levels were significantly reduced. RESULTS We not only confirmed reduced serum PLGF levels in patients with PE but also detected strong correlation of serum PLGF levels and presence of GDM. We found that growth of beta cell mass during pregnancy was significantly impaired by l-NAME injection, as a result of reduced beta cell proliferation. This may explain the higher risk of developing GDM in patients with PE. Moreover, provision of exogenous PLGF in l-NAME-treated pregnant mice significantly rescued beta cell proliferation, with subsequent increase in beta cell mass, suggesting that shortage in PLGF may be responsible for impaired beta cell growth and higher occurrence of GDM in patients with PE. CONCLUSIONS Our study highlighted a pivotal role for PLGF in prevention and treatment of GDM in patients with PE.
Collapse
Affiliation(s)
- Jun Li
- Department of Gynecology and Obstetrics, Shengjing Hospital Affiliated to China Medical University, Shenyang, 110004, China
| | | | | | | | | |
Collapse
|
29
|
Alejandro EU, Gregg B, Blandino-Rosano M, Cras-Méneur C, Bernal-Mizrachi E. Natural history of β-cell adaptation and failure in type 2 diabetes. Mol Aspects Med 2014; 42:19-41. [PMID: 25542976 DOI: 10.1016/j.mam.2014.12.002] [Citation(s) in RCA: 171] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 11/04/2014] [Accepted: 12/05/2014] [Indexed: 02/07/2023]
Abstract
Type 2 diabetes mellitus (T2D) is a complex disease characterized by β-cell failure in the setting of insulin resistance. The current evidence suggests that genetic predisposition, and environmental factors can impair the capacity of the β-cells to respond to insulin resistance and ultimately lead to their failure. However, genetic studies have demonstrated that known variants account for less than 10% of the overall estimated T2D risk, suggesting that additional unidentified factors contribute to susceptibility of this disease. In this review, we will discuss the different stages that contribute to the development of β-cell failure in T2D. We divide the natural history of this process in three major stages: susceptibility, β-cell adaptation and β-cell failure, and provide an overview of the molecular mechanisms involved. Further research into mechanisms will reveal key modulators of β-cell failure and thus identify possible novel therapeutic targets and potential interventions to protect against β-cell failure.
Collapse
Affiliation(s)
- Emilyn U Alejandro
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, Brehm Center for Diabetes Research, University of Michigan, Ann Arbor, MI, USA
| | - Brigid Gregg
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Manuel Blandino-Rosano
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, Brehm Center for Diabetes Research, University of Michigan, Ann Arbor, MI, USA
| | - Corentin Cras-Méneur
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, Brehm Center for Diabetes Research, University of Michigan, Ann Arbor, MI, USA
| | - Ernesto Bernal-Mizrachi
- Department of Internal Medicine, Division of Metabolism, Endocrinology and Diabetes, Brehm Center for Diabetes Research, University of Michigan, Ann Arbor, MI, USA; VA Ann Arbor Healthcare System, Ann Arbor, MI, USA.
| |
Collapse
|
30
|
Teitelman G, Kedees M. Mouse insulin cells expressing an inducible RIPCre transgene are functionally impaired. J Biol Chem 2014; 290:3647-53. [PMID: 25533471 DOI: 10.1074/jbc.m114.615484] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We used cre-lox technology to test whether the inducible expression of Cre minimize the deleterious effect of the enzyme on beta cell function. We studied mice in which Cre is linked to a modified estrogen receptor (ER), and its expression is controlled by the rat insulin promoter (RIP). Following the injection of tamoxifen (TM), CreER- migrates to the nucleus and promotes the appearance of a reporter protein, enhanced yellow fluorescent protein (EYFP), in cells. Immunocytochemical analysis indicated that 46.6 ± 2.1% insulin cells of adult RIPCreER- EYFP expressed EYFP. RIPCreER-EYFP (+TM) mice were normoglycemic throughout the study, and their glucose tolerance test results were similar to control CD-1 mice. However, an extended exposure to reagents that stimulate insulin synthesis was detrimental to the survival of IN+EYFP+cells. The administration of an inhibitor of the enzyme dipeptidyl-peptidase (DPP4i), which prevents the cleavage of glucagon-like peptide (GLP-1), to adult RIPCreER-EYFP mice lead to a decrease in the percentage of IN+EYFP+ to 17.5 ± 1.73 and a significant increase in apoptotic cells in islets. Similarly, a 2-week administration of the GLP-1 analog exendin 4 (ex-4) induced an almost complete ablation of IN+ expressing a different reporter protein and a significant decrease in the beta cell mass and rate of beta cell proliferation. Since normal beta cells do not die when induced to increase insulin synthesis, our observations indicate that insulin cells expressing an inducible RIPCre transgene are functionally deficient. Studies employing these mice should carefully consider the pitfalls of the Cre-Lox technique.
Collapse
Affiliation(s)
- Gladys Teitelman
- From the Department of Cell Biology, SUNY-Downstate Medical Center, Brooklyn, New York 11203
| | - Mamdouh Kedees
- From the Department of Cell Biology, SUNY-Downstate Medical Center, Brooklyn, New York 11203
| |
Collapse
|
31
|
Søstrup B, Gaarn LW, Nalla A, Billestrup N, Nielsen JH. Co-ordinated regulation of neurogenin-3 expression in the maternal and fetal pancreas during pregnancy. Acta Obstet Gynecol Scand 2014; 93:1190-7. [DOI: 10.1111/aogs.12495] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 08/28/2014] [Indexed: 12/28/2022]
Affiliation(s)
- Birgitte Søstrup
- Department of Biomedical Sciences; Cellular and Molecular Medicine Section; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
- Centre for Fetal Programming; Danish Research Council for Strategic Research; Copenhagen Denmark
| | - Louise W. Gaarn
- Department of Biomedical Sciences; Cellular and Molecular Medicine Section; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
- Centre for Fetal Programming; Danish Research Council for Strategic Research; Copenhagen Denmark
| | - Amarnadh Nalla
- Department of Biomedical Sciences; Cellular and Molecular Medicine Section; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
- Centre for Fetal Programming; Danish Research Council for Strategic Research; Copenhagen Denmark
- The Danish Diabetes Academy; Odense University Hospital; Odense Denmark
| | - Nils Billestrup
- Department of Biomedical Sciences; Cellular and Molecular Medicine Section; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
- Centre for Fetal Programming; Danish Research Council for Strategic Research; Copenhagen Denmark
| | - Jens H. Nielsen
- Department of Biomedical Sciences; Cellular and Molecular Medicine Section; Faculty of Health and Medical Sciences; University of Copenhagen; Copenhagen Denmark
- Centre for Fetal Programming; Danish Research Council for Strategic Research; Copenhagen Denmark
| |
Collapse
|
32
|
Toselli C, Hyslop CM, Hughes M, Natale DR, Santamaria P, Huang CTL. Contribution of a non-β-cell source to β-cell mass during pregnancy. PLoS One 2014; 9:e100398. [PMID: 24940737 PMCID: PMC4062500 DOI: 10.1371/journal.pone.0100398] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Accepted: 05/26/2014] [Indexed: 12/11/2022] Open
Abstract
β-cell mass in the pancreas increases significantly during pregnancy as an adaptation to maternal insulin resistance. Lineage tracing studies in rodents have presented conflicting evidence on the role of cell duplication in the formation of new β-cells during gestation, while recent human data suggest that new islets are a major contributor to increased β-cell mass in pregnancy. Here, we aim to: 1) determine whether a non-β-cell source contributes to the appearance of new β-cells during pregnancy and 2) investigate whether recapitulation of the embryonic developmental pathway involving high expression of neurogenin 3 (Ngn3) plays a role in the up-regulation of β-cell mass during pregnancy. Using a mouse β-cell lineage-tracing model, which labels insulin-producing β-cells with red fluorescent protein (RFP), we found that the percentage of labeled β-cells dropped from 97% prior to pregnancy to 87% at mid-pregnancy. This suggests contribution of a non-β-cell source to the increase in total β-cell numbers during pregnancy. In addition, we observed a population of hormone-negative, Ngn3-positive cells in islets of both non-pregnant and pregnant mice, and this population dropped from 12% of all islets cells in the non-pregnant mice to 5% by day 8 of pregnancy. Concomitantly, a decrease in expression of Ngn3 and changes in its upstream regulatory network (Sox9 and Hes-1) as well as downstream targets (NeuroD, Nkx2.2, Rfx6 and IA1) were also observed during pregnancy. Our results show that duplication of pre-existing β-cells is not the sole source of new β-cells during pregnancy and that Ngn3 may be involved in this process.
Collapse
Affiliation(s)
- Chiara Toselli
- Department of Pediatrics, Alberta Children’s Hospital Research Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Colin M. Hyslop
- Department of Pediatrics, Alberta Children’s Hospital Research Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Martha Hughes
- Department of Pediatrics, Alberta Children’s Hospital Research Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - David R. Natale
- Department of Reproductive Medicine, University of California San Diego, San Diego, California, United States of America
| | - Pere Santamaria
- Julia McFarlane Diabetes Research Centre (JMDRC) and Department of Microbiology, Immunology and Infectious Diseases, Snyder Institute for Chronic Diseases, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
- Institut D’Investigacions Biomediques August Pi i Sunyer, Barcelona, Spain
| | - Carol T. L. Huang
- Department of Pediatrics, Alberta Children’s Hospital Research Institute, Faculty of Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
33
|
Hakonen E, Ustinov J, Palgi J, Miettinen PJ, Otonkoski T. EGFR signaling promotes β-cell proliferation and survivin expression during pregnancy. PLoS One 2014; 9:e93651. [PMID: 24695557 PMCID: PMC3973552 DOI: 10.1371/journal.pone.0093651] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 03/08/2014] [Indexed: 02/06/2023] Open
Abstract
Placental lactogen (PL) induced serotonergic signaling is essential for gestational β-cell mass expansion. We have previously shown that intact Epidermal growth factor –receptor (EGFR) function is a crucial component of this pathway. We now explored more specifically the link between EGFR and pregnancy-induced β-cell mass compensation. Islets were isolated from wild-type and β-cell-specific EGFR-dominant negative mice (E1-DN), stimulated with PL and analyzed for β-cell proliferation and expression of genes involved in gestational β-cell growth. β-cell mass dynamics were analyzed both with traditional morphometrical methods and three-dimensional optical projection tomography (OPT) of whole-mount insulin-stained pancreata. Insulin-positive volume analyzed with OPT increased 1.4-fold at gestational day 18.5 (GD18.5) when compared to non-pregnant mice. Number of islets peaked by GD13.5 (680 vs 1134 islets per pancreas, non-pregnant vs. GD13.5). PL stimulated beta cell proliferation in the wild-type islets, whereas the proliferative response was absent in the E1-DN mouse islets. Serotonin synthesizing enzymes were upregulated similarly in both the wild-type and E1-DN mice. However, while survivin (Birc5) mRNA was upregulated 5.5-fold during pregnancy in the wild-type islets, no change was seen in the E1-DN pregnant islets. PL induced survivin expression also in isolated islets and this was blocked by EGFR inhibitor gefitinib, mTOR inhibitor rapamycin and MEK inhibitor PD0325901. Our 3D-volumetric analysis of β-cell mass expansion during murine pregnancy revealed that islet number increases during pregnancy. In addition, our results suggest that EGFR signaling is required for lactogen-induced survivin expression via MAPK and mTOR pathways.
Collapse
Affiliation(s)
- Elina Hakonen
- Research Programs Unit, Molecular Neurology, Biomedicum Stem Cell Center, University of Helsinki, Helsinki, Finland
- * E-mail:
| | - Jarkko Ustinov
- Research Programs Unit, Molecular Neurology, Biomedicum Stem Cell Center, University of Helsinki, Helsinki, Finland
| | - Jaan Palgi
- Research Programs Unit, Molecular Neurology, Biomedicum Stem Cell Center, University of Helsinki, Helsinki, Finland
| | - Päivi J. Miettinen
- Research Programs Unit, Molecular Neurology, Biomedicum Stem Cell Center, University of Helsinki, Helsinki, Finland
- Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| | - Timo Otonkoski
- Research Programs Unit, Molecular Neurology, Biomedicum Stem Cell Center, University of Helsinki, Helsinki, Finland
- Children's Hospital, University of Helsinki and Helsinki University Central Hospital, Helsinki, Finland
| |
Collapse
|
34
|
Mansouri A. Development and regeneration in the endocrine pancreas. ISRN ENDOCRINOLOGY 2012; 2012:640956. [PMID: 23326678 PMCID: PMC3544272 DOI: 10.5402/2012/640956] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 12/10/2012] [Indexed: 12/16/2022]
Abstract
The pancreas is composed of two compartments that deliver digestive enzymes and endocrine hormones to control the blood sugar level. The endocrine pancreas consists of functional units organized into cell clusters called islets of Langerhans where insulin-producing cells are found in the core and surrounded by glucagon-, somatostatin-, pancreatic polypeptide-, and ghrelin-producing cells. Diabetes is a devastating disease provoked by the depletion or malfunction of insulin-producing beta-cells in the endocrine pancreas. The side effects of diabetes are multiple, including cardiovascular, neuropathological, and kidney diseases. The analyses of transgenic and knockout mice gave major insights into the molecular mechanisms controlling endocrine pancreas genesis. Moreover, the study of animal models of pancreas injury revealed that the pancreas has the propensity to undergo regeneration and opened new avenues to develop novel therapeutic approaches for the treatment of diabetes. Thus, beside self-replication of preexisting insulin-producing cells, several potential cell sources in the adult pancreas were suggested to contribute to beta-cell regeneration, including acinar, intraislet, and duct epithelia. However, regeneration in the adult endocrine pancreas is still under controversial debate.
Collapse
Affiliation(s)
- Ahmed Mansouri
- Research Group Molecular Cell Differentiation, Department Molecular Cell Biology, Max-Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Goettingen, Germany ; Department of Clinical Neurophysiology, University of Goettingen, Robert-Koch-Strasse 40, 37075 Goettingen, Germany
| |
Collapse
|
35
|
Zhou L, Pelengaris S, Abouna S, Young J, Epstein D, Herold J, Nattkemper TW, Nakhai H, Khan M. Re-expression of IGF-II is important for beta cell regeneration in adult mice. PLoS One 2012; 7:e43623. [PMID: 22970135 PMCID: PMC3436856 DOI: 10.1371/journal.pone.0043623] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2012] [Accepted: 07/25/2012] [Indexed: 11/25/2022] Open
Abstract
Background The key factors which support re-expansion of beta cell numbers after injury are largely unknown. Insulin-like growth factor II (IGF-II) plays a critical role in supporting cell division and differentiation during ontogeny but its role in the adult is not known. In this study we investigated the effect of IGF-II on beta cell regeneration. Methodology/Principal Findings We employed an in vivo model of ‘switchable’ c-Myc-induced beta cell ablation, pIns-c-MycERTAM, in which 90% of beta cells are lost following 11 days of c-Myc (Myc) activation in vivo. Importantly, such ablation is normally followed by beta cell regeneration once Myc is deactivated, enabling functional studies of beta cell regeneration in vivo. IGF-II was shown to be re-expressed in the adult pancreas of pIns-c-MycERTAM/IGF-II+/+ (MIG) mice, following beta cell injury. As expected in the presence of IGF-II beta cell mass and numbers recover rapidly after ablation. In contrast, in pIns-c-MycERTAM/IGF-II+/− (MIGKO) mice, which express no IGF-II, recovery of beta cell mass and numbers were delayed and impaired. Despite failure of beta cell number increase, MIGKO mice recovered from hyperglycaemia, although this was delayed. Conclusions/Significance Our results demonstrate that beta cell regeneration in adult mice depends on re-expression of IGF-II, and supports the utility of using such ablation-recovery models for identifying other potential factors critical for underpinning successful beta cell regeneration in vivo. The potential therapeutic benefits of manipulating the IGF-II signaling systems merit further exploration.
Collapse
Affiliation(s)
- Luxian Zhou
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Stella Pelengaris
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Sylvie Abouna
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - James Young
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - David Epstein
- Department of Mathematics, University of Warwick, Coventry, United Kingdom
| | - Julia Herold
- Biodata Mining Group, Bielefeld University, Bielefeld, Germany
| | | | - Hassan Nakhai
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Michael Khan
- Warwick Medical School, University of Warwick, Coventry, United Kingdom
- * E-mail:
| |
Collapse
|
36
|
Tamoxifen-Induced Cre-loxP Recombination Is Prolonged in Pancreatic Islets of Adult Mice. PLoS One 2012; 7:e33529. [PMID: 22470452 PMCID: PMC3314663 DOI: 10.1371/journal.pone.0033529] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 02/13/2012] [Indexed: 12/17/2022] Open
Abstract
Tamoxifen (Tm)-inducible Cre recombinases are widely used to perform gene inactivation and lineage tracing studies in mice. Although the efficiency of inducible Cre-loxP recombination can be easily evaluated with reporter strains, the precise length of time that Tm induces nuclear translocation of CreERTm and subsequent recombination of a target allele is not well defined, and difficult to assess. To better understand the timeline of Tm activity in vivo, we developed a bioassay in which pancreatic islets with a Tm-inducible reporter (from Pdx1PB-CreERTm;R26RlacZ mice) were transplanted beneath the renal capsule of adult mice previously treated with three doses of 1 mg Tm, 8 mg Tm, or corn oil vehicle. Surprisingly, recombination in islet grafts, as assessed by expression of the β-galactosidase (β-gal) reporter, was observed days or weeks after Tm treatment, in a dose-dependent manner. Substantial recombination occurred in islet grafts long after administration of 3×8 mg Tm: in grafts transplanted 48 hours after the last Tm injection, 77.9±0.4% of β-cells were β-gal+; in β-cells placed after 1 week, 46.2±5.0% were β-gal+; after 2 weeks, 26.3±7.0% were β-gal+; and after 4 weeks, 1.9±0.9% were β-gal+. Islet grafts from mice given 3×1 mg Tm showed lower, but notable, recombination 48 hours (4.9±1.7%) and 1 week (4.5±1.9%) after Tm administration. These results show that Tm doses commonly used to induce Cre-loxP recombination may continue to label significant numbers of cells for weeks after Tm treatment, possibly confounding the interpretation of time-sensitive studies using Tm-dependent models. Therefore, investigators developing experimental approaches using Tm-inducible systems should consider both maximal recombination efficiency and the length of time that Tm-induced Cre-loxP recombination occurs.
Collapse
|
37
|
Ernst S, Demirci C, Valle S, Velazquez-Garcia S, Garcia-Ocaña A. Mechanisms in the adaptation of maternal β-cells during pregnancy. ACTA ACUST UNITED AC 2011; 1:239-248. [PMID: 21845205 DOI: 10.2217/dmt.10.24] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Pancreatic β-cell mass adapts to changing insulin demands in the body. One of the most amazing reversible β-cell adaptations occurs during pregnancy and postpartum conditions. During pregnancy, the increase in maternal insulin resistance is compensated by maternal β-cell hyperplasia and hyperfunctionality to maintain normal blood glucose. Although the cellular mechanisms involved in maternal β-cell expansion have been studied in detail in rodents, human studies are very sparse. A summary of these studies in rodents and humans is described below. Since β-cell mass expands during pregnancy, unraveling the endocrine/paracrine/autocrine molecular mechanisms responsible for these effects can be of great importance for predicting and treating gestational diabetes and for finding new cues that induce β-cell regeneration in diabetes. In addition to the well known implication of lactogens during maternal β-cell expansion, additional participants are being discovered such as serotonin and HGF. Transcription factors, such as hepatocyte nuclear factor-4α and the forkhead box protein-M1, and cell cycle regulators, such as menin, p27 and p18, are important intracellular signals responsible for these effects. In this article, we summarize and discuss novel studies uncovering molecular mechanisms involved in the maternal β-cell adaptive expansion during pregnancy.
Collapse
Affiliation(s)
- Sara Ernst
- Department of Medicine, Division of Endocrinology & Metabolism, University of Pittsburgh, 200 Lothrop St. BST-E1140, Pittsburgh, PA 15261, USA
| | | | | | | | | |
Collapse
|