1
|
Fois MG, Tahmasebi Birgani ZN, López-Iglesias C, Knoops K, van Blitterswijk C, Giselbrecht S, Habibović P, Truckenmüller RK. In vitro vascularization of 3D cell aggregates in microwells with integrated vascular beds. Mater Today Bio 2024; 29:101260. [PMID: 39391792 PMCID: PMC11466645 DOI: 10.1016/j.mtbio.2024.101260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/20/2024] [Accepted: 09/17/2024] [Indexed: 10/12/2024] Open
Abstract
Most human tissues possess vascular networks supplying oxygen and nutrients. Engineering of functional tissue and organ models or equivalents often require the integration of artificial vascular networks. Several approaches, such as organs on chips and three-dimensional (3D) bioprinting, have been pursued to obtain vasculature and vascularized tissues in vitro. This technical feasibility study proposes a new approach for the in vitro vascularization of 3D microtissues. For this, we thermoform arrays of round-bottom microwells into thin non-porous and porous polymer films/membranes and culture vascular beds on them from which endothelial sprouting occurs in a Matrigel-based 3D extra cellular matrix. We present two possible culture configurations for the microwell-integrated vascular beds. In the first configuration, human umbilical vein endothelial cells (HUVECs) grow on and sprout from the inner wall of the non-porous microwells. In the second one, HUVECs grow on the outer surface of the porous microwells and sprout through the pores toward the inside. These approaches are extended to lymphatic endothelial cells. As a proof of concept, we demonstrate the in vitro vascularization of spheroids from human mesenchymal stem cells and MG-63 human osteosarcoma cells. Our results show the potential of this approach to provide the spheroids with an abundant outer vascular network and the indication of an inner vasculature.
Collapse
Affiliation(s)
- Maria G. Fois
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - Zeinab N. Tahmasebi Birgani
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - Carmen López-Iglesias
- Microscopy CORE Lab, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
| | - Kèvin Knoops
- Microscopy CORE Lab, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
| | - Clemens van Blitterswijk
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - Stefan Giselbrecht
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - Pamela Habibović
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| | - Roman K. Truckenmüller
- Department of Instructive Biomaterials Engineering, MERLN Institute for Technology-Inspired Regenerative Medicine, Faculty of Health, Medicine and Life Sciences, Maastricht University, Universiteitssingel 40, 6229 ER, Maastricht, the Netherlands
| |
Collapse
|
2
|
A S S, G MK. In vitro chondrogenic potential of marine biocomposite hydrogel construct for cartilage tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024:1-22. [PMID: 39431438 DOI: 10.1080/09205063.2024.2391223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 08/07/2024] [Indexed: 10/22/2024]
Abstract
Cartilage tissue engineering (CTE) is a field of regenerative medicine focused on constructing ideal substitutes for injured cartilage by effectively combining cells, scaffolds, and stimulatory factors. In vitro CTE employing chondrocytes and biopolymer-based hydrogels has the potential to repair damaged cartilage. In this research, primary chondrocytes were extracted from the rib cartilage of rats and seeded on a hydrogel construct named HACF, which is made from hydroxyapatite, alginate, chitosan, and fucoidan. We then evaluated in vitro chondrogenesis on HACF cartilage construct. The results revealed that the primary chondrocytes were successfully isolated from rat rib cartilage by collagenase D digestion and HACF cartilage construct was effectively synthesized. Chondrocyte viability and its differentiation inside the scaffold HACF were determined by MTT assay, NRU assay, live/dead assay, DAPI nuclear staining, flow cytometry analysis (FCA), mRNA expression studies, and quantification of extracellular matrix components in the HACF scaffold. The findings indicated excellent chondrocyte viability within the HACF scaffold, with no noticeable changes in morphology. Apoptosis was not detected in the chondrocytes cultured on these hydrogels, as confirmed by DAPI staining, live/dead assay, and FCA. This demonstrates that the cells were capable of proliferating, dividing, multiplying, and maintaining their integrity on HACF scaffold. The results also showed more collagen deposition and glycosaminoglycan synthesis showing the good health of chondrocytes on the HACF construct. It indicates that HACF is an ideal scaffold supporting stable cartilage matrix production, highlighting its suitability for cartilage tissue engineering.
Collapse
Affiliation(s)
- Sumayya A S
- Assistant Professor, Department of Biochemistry, T.K.M. College of Arts and Science, kollam-5, kerala, India
| | | |
Collapse
|
3
|
Sargenti A, Pasqua S, Leu M, Dionisi L, Filardo G, Grigolo B, Gazzola D, Santi S, Cavallo C. Adipose Stromal Cell Spheroids for Cartilage Repair: A Promising Tool for Unveiling the Critical Maturation Point. Bioengineering (Basel) 2023; 10:1182. [PMID: 37892912 PMCID: PMC10603958 DOI: 10.3390/bioengineering10101182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
Articular cartilage lacks intrinsic regenerative capabilities, and the current treatments fail to regenerate damaged tissue and lead only to temporary pain relief. These limitations have prompted the development of tissue engineering approaches, including 3D culture systems. Thanks to their regenerative properties and capacity to recapitulate embryonic processes, spheroids obtained from mesenchymal stromal cells are increasingly studied as building blocks to obtain functional tissues. The aim of this study was to investigate the capacity of adipose stromal cells to assemble in spheroids and differentiate toward chondrogenic lineage from the perspective of cartilage repair. Spheroids were generated by two different methods (3D chips vs. Ultra-Low Attachment plates), differentiated towards chondrogenic lineage, and their properties were investigated using molecular biology analyses, biophysical measurement of mass density, weight, and size of spheroids, and confocal imaging. Overall, spheroids showed the ability to differentiate by expressing specific cartilaginous markers that correlate with their mass density, defining a critical point at which they start to mature. Considering the spheroid generation method, this pilot study suggested that spheroids obtained with chips are a promising tool for the generation of cartilage organoids that could be used for preclinical/clinical approaches, including personalized therapy.
Collapse
Affiliation(s)
- Azzurra Sargenti
- CellDynamics iSRL, 40136 Bologna, Italy; (A.S.); (S.P.); (L.D.); (D.G.)
| | - Simone Pasqua
- CellDynamics iSRL, 40136 Bologna, Italy; (A.S.); (S.P.); (L.D.); (D.G.)
| | - Marco Leu
- abc biopply ag, 4500 Solothurn, Switzerland;
| | - Laura Dionisi
- CellDynamics iSRL, 40136 Bologna, Italy; (A.S.); (S.P.); (L.D.); (D.G.)
| | - Giuseppe Filardo
- Applied and Translational Research (ATR) Center, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Brunella Grigolo
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Daniele Gazzola
- CellDynamics iSRL, 40136 Bologna, Italy; (A.S.); (S.P.); (L.D.); (D.G.)
| | - Spartaco Santi
- Institute of Molecular Genetics “Luigi Luca Cavalli-Sforza”, Unit of Bologna, CNR, 40136 Bologna, Italy
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Carola Cavallo
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| |
Collapse
|
4
|
Singh D, Lindsay S, Gurbaxani S, Crawford A, Claeyssens F. Elastomeric Porous Poly(glycerol sebacate) Methacrylate (PGSm) Microspheres as 3D Scaffolds for Chondrocyte Culture and Cartilage Tissue Engineering. Int J Mol Sci 2023; 24:10445. [PMID: 37445620 DOI: 10.3390/ijms241310445] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Cartilage defects can be difficult to treat; therefore, tissue engineering of cartilage is emerging as a promising potential therapy. One interesting area of research explores the delivery of cells to the cartilage defect via scaffold-based cell delivery vehicles and microsurgery. This study explores the use of novel poly(glycerol sebacate) methacrylate (PGSm)-polymerised high internal phase emulsion (polyHIPE) microspheres as scaffolds with embedded cells for cartilage tissue engineering. Porous microsphere scaffolds (100 µm-1 mm diameter) were produced from emulsions consisting of water and a methacrylate-based photocurable resin of poly(glycerol sebacate). These resins were used in conjunction with a T-junction fluidic device and an ultraviolet (UV) curing lamp to produce porous microspheres with a tuneable size. This technique produced biodegradable PGSm microspheres with similar mechanical properties to cartilage. We further explore these microspheres as scaffolds for three-dimensional culture of chondrocytes. The microspheres proved to be very efficient scaffolds for primary chondrocyte culture and were covered by a dense extracellular matrix (ECM) network during the culture period, creating a tissue disk. The presence of glycosaminoglycans (GAGs) and collagen-II was confirmed, highlighting the utility of the PGSm microspheres as a delivery vehicle for chondrocytes. A number of imaging techniques were utilised to analyse the tissue disk and develop methodologies to characterise the resultant tissue. This study highlights the utility of porous PGSm microspheres for cartilage tissue engineering.
Collapse
Affiliation(s)
- Dharaminder Singh
- Kroto Research Institute, Department of Materials Science and Engineering, The University of Sheffield, Broad Lane, Sheffield S3 7HQ, UK
| | - Sarah Lindsay
- School of Clinical Dentistry, The University of Sheffield, Claremont Crescent, Sheffield S10 2TN, UK
| | - Shruti Gurbaxani
- School of Clinical Dentistry, The University of Sheffield, Claremont Crescent, Sheffield S10 2TN, UK
| | - Aileen Crawford
- School of Clinical Dentistry, The University of Sheffield, Claremont Crescent, Sheffield S10 2TN, UK
| | - Frederik Claeyssens
- Kroto Research Institute, Department of Materials Science and Engineering, The University of Sheffield, Broad Lane, Sheffield S3 7HQ, UK
- Insigneo Institute for in Silico Medicine, The University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
5
|
Injorhor P, Trongsatitkul T, Wittayakun J, Ruksakulpiwat C, Ruksakulpiwat Y. Biodegradable Polylactic Acid-Polyhydroxyalkanoate-Based Nanocomposites with Bio-Hydroxyapatite: Preparation and Characterization. Polymers (Basel) 2023; 15:polym15051261. [PMID: 36904502 PMCID: PMC10007227 DOI: 10.3390/polym15051261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Biodegradable polymers play a significant role in medical applications, especially internal devices because they can be broken down and absorbed into the body without producing harmful degradation products. In this study, biodegradable polylactic acid (PLA)-polyhydroxyalkanoate (PHA)-based nanocomposites with various PHA and nano-hydroxyapatite (nHAp) contents were prepared using solution casting method. Mechanical properties, microstructure, thermal stability, thermal properties, and in vitro degradation of the PLA-PHA-based composites were investigated. PLA-20PHA/5nHAp was shown to give the desired properties so it was selected to investigate electrospinnability at different applied high voltages. PLA-20PHA/5nHAp composite shows the highest improvement of tensile strength at 36.6 ± 0.7 MPa, while PLA-20PHA/10nHAp composite shows the highest thermal stability and in vitro degradation at 7.55% of weight loss after 56 days of immersion in PBS solution. The addition of PHA in PLA-PHA-based nanocomposites improved elongation at break, compared to the composite without PHA. PLA-20PHA/5nHAp solution was successfully fabricated into fibers by electrospinning. All obtained fibers showed smooth and continuous fibers without beads with diameters of 3.7 ± 0.9, 3.5 ± 1.2, and 2.1 ± 0.7 µm at applied high voltages of 15, 20, and 25 kV, respectively.
Collapse
Affiliation(s)
- Preeyaporn Injorhor
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Nakhon Ratchasima 30000, Thailand
| | - Tatiya Trongsatitkul
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Nakhon Ratchasima 30000, Thailand
| | - Jatuporn Wittayakun
- School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Chaiwat Ruksakulpiwat
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Nakhon Ratchasima 30000, Thailand
- Correspondence: (C.R.); (Y.R.); Tel.: +66-44-22-4430 (C.R.); +66-44-22-3033 (Y.R.)
| | - Yupaporn Ruksakulpiwat
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Nakhon Ratchasima 30000, Thailand
- Correspondence: (C.R.); (Y.R.); Tel.: +66-44-22-4430 (C.R.); +66-44-22-3033 (Y.R.)
| |
Collapse
|
6
|
Jess R, Ling T, Xiong Y, Wright CJ, Zhao F. Mechanical environment for in vitro cartilage tissue engineering assisted by in silico models. BIOMATERIALS TRANSLATIONAL 2023; 4:18-26. [PMID: 37206302 PMCID: PMC10189812 DOI: 10.12336/biomatertransl.2023.01.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/17/2023] [Accepted: 02/27/2023] [Indexed: 05/21/2023]
Abstract
Mechanobiological study of chondrogenic cells and multipotent stem cells for articular cartilage tissue engineering (CTE) has been widely explored. The mechanical stimulation in terms of wall shear stress, hydrostatic pressure and mechanical strain has been applied in CTE in vitro. It has been found that the mechanical stimulation at a certain range can accelerate the chondrogenesis and articular cartilage tissue regeneration. This review explicitly focuses on the study of the influence of the mechanical environment on proliferation and extracellular matrix production of chondrocytes in vitro for CTE. The multidisciplinary approaches used in previous studies and the need for in silico methods to be used in parallel with in vitro methods are also discussed. The information from this review is expected to direct facial CTE research, in which mechanobiology has not been widely explored yet.
Collapse
Affiliation(s)
- Rob Jess
- Department of Biomedical Engineering, Faculty of Science and Engineering, Swansea University, Swansea, UK
- Zienkiewicz Institute for Modelling, Data and AI, Swansea University, Swansea, UK
| | - Tao Ling
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Yi Xiong
- School of System Design and Intelligent Manufacturing, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
- Corresponding authors: Feihu Zhao, ; Yi Xiong,
| | - Chris J. Wright
- Department of Biomedical Engineering, Faculty of Science and Engineering, Swansea University, Swansea, UK
| | - Feihu Zhao
- Department of Biomedical Engineering, Faculty of Science and Engineering, Swansea University, Swansea, UK
- Zienkiewicz Institute for Modelling, Data and AI, Swansea University, Swansea, UK
- Corresponding authors: Feihu Zhao, ; Yi Xiong,
| |
Collapse
|
7
|
Saffari TM, Saffari S, Vyas KS, Mardini S, Shin AY. Role of adipose tissue grafting and adipose-derived stem cells in peripheral nerve surgery. Neural Regen Res 2022; 17:2179-2184. [PMID: 35259826 PMCID: PMC9083182 DOI: 10.4103/1673-5374.336870] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The application of autologous fat grafting in reconstructive surgery is commonly used to improve functional form. This review aims to provide an overview of the scientific evidence on the biology of adipose tissue, the role of adipose-derived stem cells, and the indications of adipose tissue grafting in peripheral nerve surgery. Adipose tissue is easily accessible through the lower abdomen and inner thighs. Non-vascularized adipose tissue grafting does not support oxidative and ischemic stress, resulting in variable survival of adipocytes within the first 24 hours. Enrichment of adipose tissue with a stromal vascular fraction is purported to increase the number of adipose-derived stem cells and is postulated to augment the long-term stability of adipose tissue grafts. Basic science nerve research suggests an increase in nerve regeneration and nerve revascularization, and a decrease in nerve fibrosis after the addition of adipose-derived stem cells or adipose tissue. In clinical studies, the use of autologous lipofilling is mostly applied to secondary carpal tunnel release revisions with promising results. Since the use of adipose-derived stem cells in peripheral nerve reconstruction is relatively new, more studies are needed to explore safety and long-term effects on peripheral nerve regeneration. The Food and Drug Administration stipulates that adipose-derived stem cell transplantation should be minimally manipulated, enzyme-free, and used in the same surgical procedure, e.g. adipose tissue grafts that contain native adipose-derived stem cells or stromal vascular fraction. Future research may be shifted towards the use of tissue-engineered adipose tissue to create a supportive microenvironment for autologous graft survival. Shelf-ready alternatives could be enhanced with adipose-derived stem cells or growth factors and eliminate the need for adipose tissue harvest.
Collapse
Affiliation(s)
- Tiam M Saffari
- Department of Orthopedic Surgery, Division of Microvascular and Hand Surgery, Mayo Clinic, Rochester, MN, USA; Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Plastic Surgery, Nijmegen, The Netherlands
| | - Sara Saffari
- Department of Orthopedic Surgery, Division of Microvascular and Hand Surgery, Mayo Clinic, Rochester, MN, USA; Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Plastic Surgery, Nijmegen, The Netherlands
| | - Krishna S Vyas
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Mayo Clinic, Rochester, MN, USA
| | - Samir Mardini
- Department of Surgery, Division of Plastic and Reconstructive Surgery, Mayo Clinic, Rochester, MN, USA
| | - Alexander Y Shin
- Department of Orthopedic Surgery, Division of Microvascular and Hand Surgery, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
8
|
Miri L, Irani S, Pezeshki-Modaress M, Daemi H, Atyabi SM. Guiding mesenchymal stem cells differentiation into chondrocytes using sulfated alginate/cold atmospheric plasma modified polycaprolactone nanofibrous scaffold. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04476-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Decellularised Cartilage ECM Culture Coatings Drive Rapid and Robust Chondrogenic Differentiation of Human Periosteal Cells. Bioengineering (Basel) 2022; 9:bioengineering9050203. [PMID: 35621481 PMCID: PMC9137502 DOI: 10.3390/bioengineering9050203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/16/2022] Open
Abstract
The control of cell behaviour in an effort to create highly homogeneous cultures is becoming an area of intense research, both to elucidate fundamental biology and for regenerative applications. The extracellular matrix (ECM) controls many cellular processes in vivo, and as such is a rich source of cues that may be translated in vitro. Herein, we describe the creation of cell culture coatings from porcine decellularised hyaline cartilage through enzymatic digestion. Surprisingly, heat-mediated sterilisation created a coating with the capacity to rapidly and robustly induce chondrogenic differentiation of human periosteal cells. This differentiation was validated through the alteration of cell phenotype from a fibroblastic to a cuboidal/cobblestone chondrocyte-like appearance. Moreover, chondrogenic gene expression further supported this observation, where cells cultured on heat sterilised ECM-coated plastic displayed higher expression of COL2A1, ACAN and PRG4 (p < 0.05) compared to non-coated plastic cultures. Interestingly, COL2A1 and ACAN expression in this context were sensitive to initial cell density; however, SOX9 expression appeared to be mainly driven by the coating independent of seeding density. The creation of a highly chondrogenic coating may provide a cost-effective solution for the differentiation and/or expansion of human chondrocytes aimed towards cartilage repair strategies.
Collapse
|
10
|
Staubli F, Stoddart MJ, D'Este M, Schwab A. Pre-culture of human mesenchymal stromal cells in spheroids facilitates chondrogenesis at a low total cell count upon embedding in biomaterials to generate cartilage microtissues. Acta Biomater 2022; 143:253-265. [PMID: 35240315 DOI: 10.1016/j.actbio.2022.02.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 02/21/2022] [Accepted: 02/24/2022] [Indexed: 12/29/2022]
Abstract
Material-assisted cartilage tissue engineering has limited application in cartilage treatment due to hypertrophic tissue formation and high cell counts required. This study aimed at investigating the potential of human mesenchymal stromal cell (hMSC) spheroids embedded in biomaterials to study the effect of biomaterial composition on cell differentiation. Pre-cultured (3 days, chondrogenic differentiation media) spheroids (250 cells/spheroid) were embedded in tyramine-modified hyaluronic acid (THA) and collagen type I (Col) composite hydrogels (four combinations of THA (12.5 vs 16.7 mg/ml) and Col (2.5 vs 1.7 mg/ml) content) at a cell density of 5 × 106 cells/ml (2 × 104 spheroids/ml). Macropellets derived from single hMSCs (2.5 × 105 cells, ScMP) or hMSC spheroids (2.5 × 105 cells, 103 spheroids, SpMP) served as control. hMSC differentiation was analyzed using glycosaminoglycan (GAG) quantification, gene expression analysis and (immuno-)histology. Embedding of hMSC spheroids in THA-Col induced chondrogenic differentiation marked by upregulation of aggrecan (ACAN) and COL2A1, and the production of GAGs . Lower THA led to more pronounced chondrogenic phenotype compared to higher THA content. Col content had no significant influence on hMSC chondrogenesis. Pellet cultures showed an upregulation in chondrogenic-associated genes and production of GAGs with less upregulation of hypertrophic-associated genes in SpMP culture compared to ScMP group. This study presents hMSC pre-culture in spheroids as promising approach to study chondrogenic differentiation after biomaterial encapsulation at low total cell count (5 × 106/ml) without compromising chondrogenic matrix production. This approach can be applied to assemble microtissues in biomaterials to generate large cartilage construct. STATEMENT OF SIGNIFICANCE: In vitro studies investigating the chondrogenic potential of biomaterials are limited due to the low cell-cell contact of encapsulated single cells. Here, we introduce the use of pre-cultured hMSC spheroids to study chondrogenesis upon encapsulation in a biomaterial. The use of spheroids takes advantage of the high cell-cell contact within each spheroid being critical in the early chondrogenesis of hMSCs. At a low seeding density of 5·106 cells/ml (2 × 104 spheroids/ml) we demonstrated hMSC chondrogenesis and cartilaginous matrix deposition. Our results indicate that the pre-culture might have a beneficial effect on hypertrophic gene expression without compromising chondrogenic differentiation. This approach has shown potential to assemble microtissues (here spheroids) in biomaterials to generate large cartilage constructs and to study the effect of biomaterial composition on cell alignment and migration.
Collapse
|
11
|
Arredondo R, Poggioli F, Martínez-Díaz S, Piera-Trilla M, Torres-Claramunt R, Tío L, Monllau JC. Fibronectin-coating enhances attachment and proliferation of mesenchymal stem cells on a polyurethane meniscal scaffold. Regen Ther 2021; 18:480-486. [PMID: 34926733 PMCID: PMC8633527 DOI: 10.1016/j.reth.2021.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/19/2021] [Accepted: 11/10/2021] [Indexed: 11/03/2022] Open
Abstract
Introduction Partial meniscectomy is one of the most common surgical strategy for a meniscal injury, but sometimes, patients complain of knee pain due to an overload in the ablated compartment. In these cases, implantation of tissue engineering scaffold could be indicated. Currently, two commercial scaffolds, based on collagen or polycaprolactone-polyurethane (PCL-PU), are available for meniscus scaffolding. In short term follow-up assessments, both showed clinical improvement and tissue formation. However, long-term studies carried out in PCL-PU showed that the new tissue decreased in volume and assumed an irregular shape. Moreover, in some cases, the scaffold was totally reabsorbed, without new tissue formation. Mesenchymal stem cells (MSCs) combined with scaffolds could represents a promising approach for treating meniscal defects because of their multipotency and self-renewal. In this work, we aimed to compare the behaviour of MSCs and chondrocytes on a PCL-PU scaffold in vitro. MSCs express integrins that binds to fibronectin (FN), so we also investigate the effect of a FN coating on the bioactivity of the scaffold. Methods We isolated rabbit bone marrow MSCs (rBM-MSCs) from two skeletally mature New Zealand white rabbits and stablished the optimum culture condition to expand them. Then, they were seeded over non-coated and FN-coated scaffolds and cultured in chondrogenic conditions. To evaluate cell functionality, we performed an MTS assay to compare cell proliferation between both conditions. Finally, a histologic study was performed to assess extracellular matrix (ECM) production in both samples, and to compare them with the ones obtained with rabbit chondrocytes (rCHs) seeded in a non-coated scaffold. Results A culture protocol based on low FBS concentration was set as the best for rBM-MSCs expansion. The MTS assay revealed that rBM-MSCs seeded on FN-coated scaffolds have more cells on proliferation (145%; 95% CI: 107%–182%) compared with rBM-MSCs seeded on non-coated scaffolds. Finally, the histologic study demonstrated that rCHs seeded on non-coated scaffolds displayed the highest production of ECM, followed by rBM-MSCs seeded on FN-coated scaffolds. Furthermore, both cell types produced a comparable ECM pattern. Conclusion These results suggest that MSCs have low capacity attachment to PCL-PU scaffolds, but the presence of integrin alpha5beta1 (FN-receptor) in MSCs allows them to interact with the FN-coated scaffolds. These results could be applied in the design of scaffolds, and might have important clinical implications in orthopaedic surgery of meniscal injuries. Cultures with low FBS are more suitable to isolation and expansion of rBM-MSC. PCL-PU scaffolds coated with FN show improve adhesion properties for rBM-MSCs. rBM-MSCs seeded in PCL-PU + FN produce ECM similar to the one produced by chondrocytes.
Collapse
Key Words
- AMT, allograft meniscus transplantation
- CMI, collagen meniscal implant
- ECM, extracellular matrix
- FN, fibronectin
- Fibronectin
- ITS, Insulin Transferrin Selenium
- MNCs, mononuclear cells
- MSCs, mesenchymal stem cells
- Meniscal injuries
- Mesenchymal stem cell
- PCL-PU, polycaprolactone-polyurethane
- PSR, picrosirius red
- Post-meniscectomy syndrome
- RT, room temperature
- Scaffolds
- Tissue engineering
- rBM, rabbit bone marrow
- rCHs, rabbit chondrocytes
Collapse
Affiliation(s)
- Raquel Arredondo
- IMIM (Hospital del Mar Medical Research Institute), C/ Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Francesco Poggioli
- Orthopaedic Department, ICATME-Institut Universitari Quirón-Dexeus, Universitat Autònoma Barcelona, C/ Sabino de Arana 5-19, 08028 Barcelona, Spain.,ASST Papa Giovanni XXIII, Piazza OMS 1, 24127 Bergamo, Italy
| | - Santos Martínez-Díaz
- IMIM (Hospital del Mar Medical Research Institute), C/ Dr. Aiguader 88, 08003 Barcelona, Spain.,Orthopaedic Department, Hospital del Mar, Universitat Autònoma Barcelona, Passeig Marítim de la Barceloneta 25-29, 08003 Barcelona, Spain
| | - María Piera-Trilla
- IMIM (Hospital del Mar Medical Research Institute), C/ Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Raúl Torres-Claramunt
- IMIM (Hospital del Mar Medical Research Institute), C/ Dr. Aiguader 88, 08003 Barcelona, Spain.,Orthopaedic Department, ICATME-Institut Universitari Quirón-Dexeus, Universitat Autònoma Barcelona, C/ Sabino de Arana 5-19, 08028 Barcelona, Spain.,Orthopaedic Department, Hospital del Mar, Universitat Autònoma Barcelona, Passeig Marítim de la Barceloneta 25-29, 08003 Barcelona, Spain
| | - Laura Tío
- IMIM (Hospital del Mar Medical Research Institute), C/ Dr. Aiguader 88, 08003 Barcelona, Spain
| | - Joan C Monllau
- IMIM (Hospital del Mar Medical Research Institute), C/ Dr. Aiguader 88, 08003 Barcelona, Spain.,Orthopaedic Department, ICATME-Institut Universitari Quirón-Dexeus, Universitat Autònoma Barcelona, C/ Sabino de Arana 5-19, 08028 Barcelona, Spain.,Orthopaedic Department, Hospital del Mar, Universitat Autònoma Barcelona, Passeig Marítim de la Barceloneta 25-29, 08003 Barcelona, Spain
| |
Collapse
|
12
|
A rabbit model to investigate temporomandibular joint osteochondral regeneration. Oral Surg Oral Med Oral Pathol Oral Radiol 2021; 134:20-27. [PMID: 35165066 DOI: 10.1016/j.oooo.2021.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/03/2021] [Accepted: 12/03/2021] [Indexed: 01/24/2023]
Abstract
OBJECTIVE The objective of this study was 2-fold: (1) to describe the rabbit temporomandibular joint (TMJ) anatomy and (2) to provide a detailed, step-by-step description of a minimally invasive approach to perform a standard osteochondral TMJ defect that can be used to investigate the regenerative potential of biomaterials. STUDY DESIGN This study was performed in 2 steps. In the first, a total of 8 rabbit carcasses (n = 16 joints) were used to study the normal TMJ anatomy and histology to develop a minimally invasive approach to access the articulating surface of the condyle to perform a standard osteochondral defect. In the second, the surgical procedure was performed in 10 live animals to evaluate the feasibility of the model and to evaluate the regenerative potential of a biodegradable light-cured hydrogel seeded with stem cells (results not shown). RESULTS The cartilage of the mandibular condyle showed 4 layers: fibrous, proliferative, hypertrophic, and a zone of calcified cartilage. Positive safranin O staining was observed in the cartilage. The mean duration of the procedure (from incision to last stitch) was 35.5 (±9.21) minutes. All animals survived the procedures without any major complications. CONCLUSIONS This animal model represents an easy and nonmorbid surgical approach to rabbit TMJ.
Collapse
|
13
|
Nikhil A, Kumar A. Evaluating potential of tissue-engineered cryogels and chondrocyte derived exosomes in articular cartilage repair. Biotechnol Bioeng 2021; 119:605-625. [PMID: 34723385 DOI: 10.1002/bit.27982] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/18/2021] [Accepted: 10/26/2021] [Indexed: 12/12/2022]
Abstract
Treatment of articular cartilage injuries especially osteochondral tissue requires intervention of bioengineered scaffold. In this study, we investigated the potential of the tissue-engineered cryogel scaffold fabricated using cryogelation technology. Two types of cryogels viz. chitosan-gelatin-chondroitin sulfate (CGC) for articular cartilage and nano-hydroxyapatite-gelatin (HG) for subchondral bone were fabricated. Further, novel bilayer cryogel designed using single process fabrication of two layers (CGC as top layer and HG as the lower layer) was designed to mimic osteochondral unit. CGC cryogel was tested for their biocompatibility using the enzymatically isolated chondrcoytes from goat articular cartilage while HG cryogel was tested using pre-osteoblast cell line. Extracellular vesicles, specifically exosomes were isolated from the spent media of chondrocytes to validate their effect over cell proliferation and migration which are required for defect healing and infiltration respectively. These isolated exosomes were characterized and analyzed for confirming their size distribution profile and visualized morphologically using advanced microscopy techniques. For cartilage part, CGC cryogels were examined as delivery system for delivering exosomes at defect site, where 80% of release was observed in 72 h. Release of 18.7 µg chondroitin sulfate/mg cryogel was obtained in a period of one week from CGC cryogel (termed cryogel extract) which has chondroprotective effect. Further, effect of exosome concentration (10 and 20 µg/ml), CGC extract and combination of exosome and CGC extract (Exo-Ex) were assessed over the chondrocytes. In addition, in vitro scratch wound assay was performed to analyse the migration capacity over the micro-injury when treated with exosomes, cryogel extract and Exo-Ex. The overall results thus answer key questions of therapeutic potential of chondrocyte exosomes, cryogel extract in addition to potential of CGC and HG cryogel for osteochondral repair.
Collapse
Affiliation(s)
- Aman Nikhil
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Ashok Kumar
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India.,Centre for Environmental Sciences and Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India.,Centre for Nanosciences, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India.,The Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| |
Collapse
|
14
|
Mazek J, Gnatowski M, Salas AP, O'Donnell JM, Domżalski M, Radzimowski J. Arthroscopic utilization of ChondroFiller gel for the treatment of hip articular cartilage defects: a cohort study with 12- to 60-month follow-up. J Hip Preserv Surg 2021; 8:22-27. [PMID: 34567597 PMCID: PMC8460160 DOI: 10.1093/jhps/hnab002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 10/19/2020] [Indexed: 12/25/2022] Open
Abstract
ChondroFiller gel is an absorbable collagen implant. It serves as a protective cover for the cartilage defects, allowing chondrocyte migration into the lesion. The implant consists of collagen (Type I) and is derived from veterinary monitored rats. This study evaluates the use of ChondroFiller gel in the treatment of cartilage lesions during hip joint arthroscopy. A prospective study was conducted on a group of 26 adult patients. All patients had an existing femoroacetabular impingement together with acetabular cartilage lesions >2 cm2. All patients underwent hip arthroscopic surgery and the lesions were treated using ChondroFiller gel. The cartilage tissue healing was evaluated postoperatively using MRI. A total of 26 patients, including 5 females and 21 males, all with articular cartilage lesions, were included in the study. Cartilage healing conditions were evaluated for all patients, and the difference between pre- and post-surgery conditions was statistically significant. The follow-up scores have been acquired from 21 out of initial 26 patients (2 were disqualified after receiving THR, 3 could not be reached by researchers) after 3, 4 and 5 years consecutively with 17/21 patients having good/excellent results. The use of ChondroFiller gel during arthroscopy of the hip for acetabular cartilage lesions is an effective treatment technique. Encouraging long-term results have been observed, but further research on larger group of patient is required to better assess the full value of this technique. Patients with pre-existing osteoarthritis (Tönnis 2–3) have poor results.
Collapse
Affiliation(s)
- Jacek Mazek
- Jan Kochanowski University in Kielce, Orthopaedic and Traumatology Clinic, Kielce, Poland
| | - Maciej Gnatowski
- Center for Specialized Surgery Ortopedika, 03-152 Warsaw, Poland
| | | | - John M O'Donnell
- Hip Arthroscopy Australia, 21 Erin Street, Richmond, Victoria 3121, Australia
| | - Marcin Domżalski
- Orthopedic and Trauma Department, Medical University of Lodz, Lodz, Poland
| | - Jakub Radzimowski
- Orthopaedic and Traumatology Clinic WUM, Miedzyleski Hospital Warsaw, Warsaw, Poland
| |
Collapse
|
15
|
Zhang Z, Lin S, Yan Y, You X, Ye H. Enhanced efficacy of transforming growth factor-β1 loaded an injectable cross-linked thiolated chitosan and carboxymethyl cellulose-based hydrogels for cartilage tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2021; 32:2402-2422. [PMID: 34428384 DOI: 10.1080/09205063.2021.1971823] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Growth factors (GFs) are soluble proteins extracellular that control a wide range of cellular processes as well as tissue regeneration. While transforming growth factor beta-1 (TGF-β1) promotes chondrogenesis, its medical use is restricted by its potential protein instability, which necessitates high doses of the protein, which can result in adverse side effects such as inefficient cartilage formation. In this work, we have developed a novel hydrogel composite based on the polymer, cross-linked thiolated chitosan; TCS and carboxymethyl cellulose; CMC (TCS/CMC) hydrogel system was utilized as injectable TGF-β1 carriers for cartilage tissue engineering applications. Rheological measurements showed that the elastic modulus of TCS/CMC hydrogels with an optimized CMC concentration could reach around 2.5 kPa or higher than their respective viscous modulus, indicating that they behaved like strong hydrogels. Crosslinking significantly alters the overall network distribution, surface morphology, pore size, porosity, gelation time, swelling ratio, water content, and in vitro degradation of the TCS/CMC hydrogels. TCS/CMC hydrogels maintain more than 90% of their weight and retain their original form after 21 days. TGF-β1 released marginally from TCS/CMC hydrogels as incubation time increased, up to 21 days, with around 18.6 ± 0.9% of the drug stored inside the TCS/CMC hydrogels. On day 21, BMSC treated with TGF-β1 in medium or TGF-β1-loaded TCS/CMC hydrogels grew faster than the other groups. For in vivo cartilage repair, full-thickness cartilage defects were induced on rat knees for 8 weeks. The optimal ability of this novel TGF-β1-loaded TCS/CMC hydrogel system was further demonstrated by histological analysis, resulting in a novel therapeutic strategy for repairing articular cartilage defects.Research HighlightsAn in situ forming and injectable thiolated chitosan and carboxymethyl cellulose hydrogel was fabricated for cartilage tissue engineering.TCS/CMC displays suitable gelation time with high swelling ratio, tunable mechanical properties and highly porous.TGF-β1-loaded-TCS/CMC hydrogels showed maximum drug release activity.TGF-β1-loaded-TCS/CMC hydrogels had good biocompatibility to articular chondrocytes.An injectable TCS/CMC/TGF-β1 hydrogel is a promising material system for cartilage tissue engineering.
Collapse
Affiliation(s)
- Zefeng Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Fujian Medical University, Fujian, PR China
| | - Shufeng Lin
- Department of Orthopedics, The Second Affiliated Hospital of Fujian Medical University, Fujian, PR China
| | - Yipeng Yan
- Department of Orthopedics, The Second Affiliated Hospital of Fujian Medical University, Fujian, PR China
| | - Xiaoxuan You
- Department of Orthopedics, The Second Affiliated Hospital of Fujian Medical University, Fujian, PR China
| | - Hui Ye
- Department of Orthopedics, The Second Affiliated Hospital of Fujian Medical University, Fujian, PR China
| |
Collapse
|
16
|
Jeyaraman N, Prajwal GS, Jeyaraman M, Muthu S, Khanna M. Chondrogenic Potential of Dental-Derived Mesenchymal Stromal Cells. OSTEOLOGY 2021; 1:149-174. [DOI: 10.3390/osteology1030016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The field of tissue engineering has revolutionized the world in organ and tissue regeneration. With the robust research among regenerative medicine experts and researchers, the plausibility of regenerating cartilage has come into the limelight. For cartilage tissue engineering, orthopedic surgeons and orthobiologists use the mesenchymal stromal cells (MSCs) of various origins along with the cytokines, growth factors, and scaffolds. The least utilized MSCs are of dental origin, which are the richest sources of stromal and progenitor cells. There is a paradigm shift towards the utilization of dental source MSCs in chondrogenesis and cartilage regeneration. Dental-derived MSCs possess similar phenotypes and genotypes like other sources of MSCs along with specific markers such as dentin matrix acidic phosphoprotein (DMP) -1, dentin sialophosphoprotein (DSPP), alkaline phosphatase (ALP), osteopontin (OPN), bone sialoprotein (BSP), and STRO-1. Concerning chondrogenicity, there is literature with marginal use of dental-derived MSCs. Various studies provide evidence for in-vitro and in-vivo chondrogenesis by dental-derived MSCs. With such evidence, clinical trials must be taken up to support or refute the evidence for regenerating cartilage tissues by dental-derived MSCs. This article highlights the significance of dental-derived MSCs for cartilage tissue regeneration.
Collapse
|
17
|
The Evolution of Fabrication Methods in Human Retina Regeneration. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11094102] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Optic nerve and retinal diseases such as age-related macular degeneration and inherited retinal dystrophies (IRDs) often cause permanent sight loss. Currently, a limited number of retinal diseases can be treated. Hence, new strategies are needed. Regenerative medicine and especially tissue engineering have recently emerged as promising alternatives to repair retinal degeneration and recover vision. Here, we provide an overview of retinal anatomy and diseases and a comprehensive review of retinal regeneration approaches. In the first part of the review, we present scaffold-free approaches such as gene therapy and cell sheet technology while in the second part, we focus on fabrication techniques to produce a retinal scaffold with a particular emphasis on recent trends and advances in fabrication techniques. To this end, the use of electrospinning, 3D bioprinting and lithography in retinal regeneration was explored.
Collapse
|
18
|
Gadomska‐Gajadhur A, Kruk A, Ruśkowski P, Sajkiewicz P, Dulnik J, Chwojnowski A. Original method of imprinting pores in scaffolds for tissue engineering. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Aleksandra Kruk
- Faculty of Chemistry Warsaw University of Technology Warsaw Poland
| | - Paweł Ruśkowski
- Faculty of Chemistry Warsaw University of Technology Warsaw Poland
| | - Paweł Sajkiewicz
- Institute of Fundamental Technological Research PAS Warsaw Poland
| | - Judyta Dulnik
- Institute of Fundamental Technological Research PAS Warsaw Poland
| | - Andrzej Chwojnowski
- Nałęcz Institute of Biocybernetics and Biomedical Engineering PAS Warsaw Poland
| |
Collapse
|
19
|
Munir N, McDonald A, Callanan A. Integrational Technologies for the Development of Three-Dimensional Scaffolds as Platforms in Cartilage Tissue Engineering. ACS OMEGA 2020; 5:12623-12636. [PMID: 32548446 PMCID: PMC7288368 DOI: 10.1021/acsomega.9b04022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 05/05/2020] [Indexed: 05/13/2023]
Abstract
The prevalence of osteoarthritis is on the rise, and an effective treatment for cartilage defects is still being sought. Cartilage tissue in vivo encompasses complex structures and composition, both of which influence cells and many properties of the native cartilage. The extracellular matrix structure and components provides both morphological cues and the necessary signals to promote cell functions including metabolism, proliferation, and differentiation. In the present study, cryo-printing and electrospinning were combined to produce multizone scaffolds that consist of three distinctive zones. These scaffolds successfully mimic the collagen fiber orientation of the native cartilage. Moreover, in vitro analysis of chondrocyte-seeded scaffolds demonstrated the ability of multizone scaffolds to support long-term chondrocyte attachment and survival over a 5 week culture period. Moreover, multizone scaffolds were found to regulate the expression of key genes in comparison to the controls and allowed the detection of sulfated glycosaminoglycan. Evaluation of the compressive properties revealed that the multizone scaffolds possess more suitable mechanical properties, for the native cartilage, in comparison to the electrospun and phase-separated controls. Multizone scaffolds provide viable initial platforms that capture the complex structure and compressive properties of the native cartilage. They also maintain chondrocyte phenotype and function, highlighting their potential in cartilage tissue engineering applications.
Collapse
|
20
|
Sveiven SN, Nordgren TM. Lung-resident mesenchymal stromal cells are tissue-specific regulators of lung homeostasis. Am J Physiol Lung Cell Mol Physiol 2020; 319:L197-L210. [PMID: 32401672 DOI: 10.1152/ajplung.00049.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Until recently, data supporting the tissue-resident status of mesenchymal stromal cells (MSC) has been ambiguous since their discovery in the 1950-60s. These progenitor cells were first discovered as bone marrow-derived adult multipotent cells and believed to migrate to sites of injury, opposing the notion that they are residents of all tissue types. In recent years, however, it has been demonstrated that MSC can be found in all tissues and MSC from different tissues represent distinct populations with differential protein expression unique to each tissue type. Importantly, these cells are efficient mediators of tissue repair, regeneration, and prove to be targets for therapeutics, demonstrated by clinical trials (phase 1-4) for MSC-derived therapies for diseases like graft-versus-host-disease, multiple sclerosis, rheumatoid arthritis, and Crohn's disease. The tissue-resident status of MSC found in the lung is a key feature of their importance in the context of disease and injuries of the respiratory system, since these cells could be instrumental to providing more specific and targeted therapies. Currently, bone marrow-derived MSC have been established in the treatment of disease, including diseases of the lung. However, with lung-resident MSC representing a unique population with a different phenotypic and gene expression pattern than MSC derived from other tissues, their role in remediating lung inflammation and injury could provide enhanced efficacy over bone marrow-derived MSC methods. Through this review, lung-resident MSC will be characterized, using previously published data, by surface markers, gene expression patterns, and compared with bone-marrow MSC to highlight similarities and, importantly, differences in these cell types.
Collapse
Affiliation(s)
- Stefanie Noel Sveiven
- Division of Biomedical Sciences, School of Medicine, University of California-Riverside, Riverside, California
| | - Tara M Nordgren
- Division of Biomedical Sciences, School of Medicine, University of California-Riverside, Riverside, California
| |
Collapse
|
21
|
Carbon Biomaterials. Biomater Sci 2020. [DOI: 10.1016/b978-0-12-816137-1.00025-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Polyhydroxybutyrate/Chitosan 3D Scaffolds Promote In Vitro and In Vivo Chondrogenesis. Appl Biochem Biotechnol 2019; 189:556-575. [PMID: 31073980 DOI: 10.1007/s12010-019-03021-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 04/22/2019] [Indexed: 12/11/2022]
Abstract
The articular cartilage is an avascular and aneural tissue and its injuries result mostly in osteoarthritic changes and formation of fibrous tissue. Efforts of scientists worldwide are focused on restoration of cartilage with increase in life quality of patients. Novel polymeric polyhydroxybutyrate/chitosan (PCH) porous 3D scaffolds were developed and characterized. The rat mesenchymal stem cells (MSCs) were seeded in vitro on PCH scaffolds by a simple filtration of MSCs suspension over scaffolds using syringe. The chondrogenesis of cell-scaffold constructs was carried out in supplemented chondrogenic cultivation medium. After 2 and 4 weeks of in vitro culturing cell-scaffold constructs in chondrogenic differentiation medium, the cartilage extracellular matrix components like glycosaminoglycans and collagens were identified in scaffolds by biochemical assays and histological and immunohistochemical staining. Preliminary in vivo experiments with acellular scaffolds, which filled the artificially created cartilage defect in sheep knee were done and evaluated. Cells released from the bone marrow cavity have penetrated into acellular PCH scaffold in cartilage defect and induced tissue formation similar to hyaline cartilage. The results demonstrated that PCH scaffolds supported chondrogenic differentiation of MSCs in vitro. Acellular PCH scaffolds were successfully utilized in vivo for reparation of artificially created knee cartilage defects in sheep and supported wound healing and formation of hyaline cartilage-like tissue.
Collapse
|
23
|
Abedin Zadeh M, Khoder M, Al-Kinani AA, Younes HM, Alany RG. Retinal cell regeneration using tissue engineered polymeric scaffolds. Drug Discov Today 2019; 24:1669-1678. [PMID: 31051266 DOI: 10.1016/j.drudis.2019.04.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/06/2019] [Accepted: 04/25/2019] [Indexed: 12/24/2022]
Abstract
Degenerative retinal diseases, such as age-related macular degeneration (AMD), can lead to permanent sight loss. Although intravitreal anti-vascular endothelial growth factor (VEGF) and steroid injections are effective for the management of early stages of wet and/or neovascular AMD (nAMD), no proven treatments currently exist for dry AMD or for the advanced geographic atrophy of the retina that follows. Tissue engineering (TE) has recently emerged as a promising alternative to repair retinal damaged and restore its functions. Here, we review recent advances in TE, with a particular emphasis on retinal regeneration. We provide an overview of retinal diseases, followed by a comprehensive review of TE techniques, cells, and polymers used in the fabrication of scaffolds for retinal cell regenerations, in particular the retinal pigment epithelium (RPE).
Collapse
Affiliation(s)
- Maria Abedin Zadeh
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston upon Thames, London, United Kingdom; Pharmaceutics & Polymeric Drug Delivery Research Laboratory, College of Pharmacy, Qatar University, Doha, Qatar
| | - Mouhamad Khoder
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston upon Thames, London, United Kingdom; Pharmaceutics & Polymeric Drug Delivery Research Laboratory, College of Pharmacy, Qatar University, Doha, Qatar.
| | - Ali A Al-Kinani
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston upon Thames, London, United Kingdom; Pharmaceutics & Polymeric Drug Delivery Research Laboratory, College of Pharmacy, Qatar University, Doha, Qatar
| | - Husam M Younes
- Pharmaceutics & Polymeric Drug Delivery Research Laboratory, College of Pharmacy, Qatar University, Doha, Qatar; Office of Vice President for Research & Graduate Studies, Qatar University, Doha, Qatar
| | - Raid G Alany
- Drug Discovery, Delivery and Patient Care (DDDPC) Theme, School of Life Sciences, Pharmacy and Chemistry, Kingston University London, Kingston upon Thames, London, United Kingdom; Pharmaceutics & Polymeric Drug Delivery Research Laboratory, College of Pharmacy, Qatar University, Doha, Qatar; School of Pharmacy, The University of Auckland, Auckland, New Zealand.
| |
Collapse
|
24
|
Nikbakht M, Karbasi S, Rezayat SM, Tavakol S, Sharifi E. Evaluation of the effects of hyaluronic acid on poly (3-hydroxybutyrate)/chitosan/carbon nanotubes electrospun scaffold: structure and mechanical properties. POLYM-PLAST TECH MAT 2019. [DOI: 10.1080/25740881.2019.1602645] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Mohammad Nikbakht
- Department of Medical Nanotechnology, School of Advanced Technology in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Saeed Karbasi
- Department of Biomaterials and Tissue Engineering, School of Advanced Technology in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed Mahdi Rezayat
- Department of Medical Nanotechnology, School of Advanced Technology in Medicine, Tehran University of Medical Sciences (TUMS), Tehran, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
25
|
Effects of Cell Seeding Methods on Chondrogenic Differentiation of Rat Mesenchymal Stem Cells in Polyhydroxybutyrate/Chitosan Scaffolds. FOLIA VETERINARIA 2019. [DOI: 10.2478/fv-2019-0002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstract
The aim of our study was to examine the effects of passive and active cell seeding techniques on in vitro chondrogenic differentiation of mesenchymal stem cells (MSC) isolated from rat bone marrow and seeded on porous biopolymer scaffolds based on polyhydroxybutyrate/chitosan (PCH) blends. This paper is focused on the distribution of the cells on and in the scaffolds, since it influences the uniformity of the created extracellular matrix (ECM), as well as the homogenity of the distribution of chondrogenic markers in vitro which ultimately affects the quality of the newly created tissue after in vivo implantation. The three types of cell-scaffold constructs were examined by: fluorescence microscopy, SEM, histology and quantitative analysis of the glycosaminoglycans after chondrogenic cultivation. The results demonstrated that the active cells seeded via the centrifugation of the cell suspension onto the scaffold guaranteed an even distribution of cells on the bulk of the scaffold and the uniform secretion of the ECM products by the differentiated cells.
Collapse
|
26
|
Novel Bionanocellulose/κ-Carrageenan Composites for Tissue Engineering. APPLIED SCIENCES-BASEL 2018. [DOI: 10.3390/app8081352] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In this work, novel bacterial cellulose/κ-carrageenan (BNC/κ-Car) composites, being potential scaffolds for tissue engineering (TE), and outperforming the two polymers when used as scaffolds separately, were for the first time obtained using an in situ method, based on the stationary culture of bacteria Komagateibacter xylinus E25. The composites were compared with native BNC in terms of the morphology of fibers, chemical composition, crystallinity, tensile and compression strength, water holding capacity, water retention ratio and swelling properties. Murine chondrogenic ATDC5 cells were applied to assess the utility of the BNC/κ-Car composites as potential scaffolds. The impact of the composites on the cells viability, chondrogenic differentiation, and expression patterns of Col1α1, Col2α1, Runx2, and Sox9, which are indicative of ATDC5 chondrogenic differentiation, was determined. None of the composites obtained in this study caused the chondrocyte hypertrophy. All of them supported the differentiation of ATDC5 cells to more chondrogenic phenotype.
Collapse
|
27
|
Goonoo N. Vascularization and angiogenesis in electrospun tissue engineered constructs: towards the creation of long-term functional networks. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aaab03] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
28
|
Mirza YH, Oussedik S. Is there a role for stem cells in treating articular injury? Br J Hosp Med (Lond) 2017; 78:372-377. [PMID: 28692374 DOI: 10.12968/hmed.2017.78.7.372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Articular cartilage is a specialized tissue with a high prevalence of injuries. The complex architecture of articular cartilage means that injuries are difficult to treat. The sequelae of such injuries include post-traumatic osteoarthritis. Current treatments include microfracture, microdrilling, osteochondral transplantation and matrix autologous chondral implantation. However, current surgical therapies have a number of disadvantages. Mesenchymal stem cells have been suggested as a potential alternative therapy, with a theoretical ability to regenerate articular cartilage. Research, although positive, is mainly limited to case series, in which the follow up is short to medium term. Stem cells may hold the answer to the age-old problem of articular cartilage injury but more robust evidence is required.
Collapse
Affiliation(s)
- Yusuf H Mirza
- Trauma Fellow, Department of Trauma and Orthopaedics, Royal Gwent Hospital, Newport, NP20 2UB
| | - Sam Oussedik
- Consultant Trauma and Orthopaedic Surgeon, Department of Department of Trauma and Orthopaedics, University College Hospital, London
| |
Collapse
|
29
|
Combined effects of oscillating hydrostatic pressure, perfusion and encapsulation in a novel bioreactor for enhancing extracellular matrix synthesis by bovine chondrocytes. Cell Tissue Res 2017; 370:179-193. [PMID: 28687928 DOI: 10.1007/s00441-017-2651-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 05/16/2017] [Indexed: 01/10/2023]
Abstract
The influence of combined shear stress and oscillating hydrostatic pressure (OHP), two forms of physical forces experienced by articular cartilage (AC) in vivo, on chondrogenesis, is investigated in a unique bioreactor system. Our system introduces a single reaction chamber design that does not require transfer of constructs after seeding to a second chamber for applying the mechanical forces, and, as such, biochemical and mechanical stimuli can be applied in combination. The biochemical and mechanical properties of bovine articular chondrocytes encapsulated in agarose scaffolds cultured in our bioreactors for 21 days are compared to cells statically cultured in agarose scaffolds in addition to static micromass and pellet cultures. Our findings indicate that glycosaminoglycan and collagen secretions were enhanced by at least 1.6-fold with scaffold encapsulation, 5.9-fold when adding 0.02 Pa of shear stress and 7.6-fold with simultaneous addition of 4 MPa of OHP when compared to micromass samples. Furthermore, shear stress and OHP have chondroprotective effects as evidenced by lower mRNA expression of β1 integrin and collagen X to non-detectable levels and an absence of collagen I upregulation as observed in micromass controls. These collective results are further supported by better mechanical properties as indicated by 1.6-19.8-fold increases in elastic moduli measured by atomic force microscopy.
Collapse
|
30
|
Evans A, Ratcliffe E. Rising influence of synthetic biology in regenerative medicine. ENGINEERING BIOLOGY 2017. [DOI: 10.1049/enb.2017.0007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Angharad Evans
- Centre for Biological Engineering, Department of Chemical Engineering Loughborough University Loughborough Leicestershire UK
| | - Elizabeth Ratcliffe
- Centre for Biological Engineering, Department of Chemical Engineering Loughborough University Loughborough Leicestershire UK
| |
Collapse
|
31
|
Study on the effects of gradient mechanical pressures on the proliferation, apoptosis, chondrogenesis and hypertrophy of mandibular condylar chondrocytes in vitro. Arch Oral Biol 2017; 73:186-192. [DOI: 10.1016/j.archoralbio.2016.10.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 09/03/2016] [Accepted: 10/15/2016] [Indexed: 11/23/2022]
|
32
|
Kumar R, Griffin M, Butler P. A Review of Current Regenerative Medicine Strategies that Utilize Nanotechnology to Treat Cartilage Damage. Open Orthop J 2016; 10:862-876. [PMID: 28217211 PMCID: PMC5299562 DOI: 10.2174/1874325001610010862] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Revised: 05/31/2016] [Accepted: 05/31/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Cartilage is an important tissue found in a variety of anatomical locations. Damage to cartilage is particularly detrimental, owing to its intrinsically poor healing capacity. Current reconstructive options for cartilage repair are limited, and alternative approaches are required. Biomaterial science and Tissue engineering are multidisciplinary areas of research that integrate biological and engineering principles for the purpose of restoring premorbid tissue function. Biomaterial science traditionally focuses on the replacement of diseased or damaged tissue with implants. Conversely, tissue engineering utilizes porous biomimetic scaffolds, containing cells and bioactive molecules, to regenerate functional tissue. However, both paradigms feature several disadvantages. Faced with the increasing clinical burden of cartilage defects, attention has shifted towards the incorporation of Nanotechnology into these areas of regenerative medicine. METHODS Searches were conducted on Pubmed using the terms "cartilage", "reconstruction", "nanotechnology", "nanomaterials", "tissue engineering" and "biomaterials". Abstracts were examined to identify articles of relevance, and further papers were obtained from the citations within. RESULTS The content of 96 articles was ultimately reviewed. The literature yielded no studies that have progressed beyond in vitro and in vivo experimentation. Several limitations to the use of nanomaterials to reconstruct damaged cartilage were identified in both the tissue engineering and biomaterial fields. CONCLUSION Nanomaterials have unique physicochemical properties that interact with biological systems in novel ways, potentially opening new avenues for the advancement of constructs used to repair cartilage. However, research into these technologies is in its infancy, and clinical translation remains elusive.
Collapse
Affiliation(s)
- R. Kumar
- Medicine, UCL Division of Surgery & Interventional Science, London, UK
| | - M. Griffin
- Medicine, UCL Division of Surgery & Interventional Science, London, UK
| | - P.E. Butler
- Medicine, UCL Division of Surgery & Interventional Science, London, UK
- Department of Plastic and Reconstructive Surgery, Royal Free Hampstead NHS Trust Hospital, London, UK
| |
Collapse
|
33
|
Salehi M, Naseri-Nosar M, Azami M, Nodooshan SJ, Arish J. Comparative study of poly(L-lactic acid) scaffolds coated with chitosan nanoparticles prepared via ultrasonication and ionic gelation techniques. Tissue Eng Regen Med 2016; 13:498-506. [PMID: 30603431 DOI: 10.1007/s13770-016-9083-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 12/11/2015] [Accepted: 12/18/2015] [Indexed: 11/28/2022] Open
Abstract
In this study, an attempt was made to develop bi-functional constructs serving both as scaffolds and potential delivery systems for application in neural tissue engineering. The constructs were prepared in two steps. In the first step, the bulks of poly (L-lactic acid) (PLLA) in 1, 4-dioxane/water (87:13) were fabricated using liquid-liquid thermally induced phase separation technique. In the next step, the prepared bulks were coated with chitosan nanoparticles produced by two different techniques of ultrasonication and ionic gelation by grafting-coating technique. In ultrasonication technique, the chitosan solution (2 mg/mL) in acetic acid/sodium acetate buffer (90:10) was irradiated by an ultrasound generator at 20 kHz and power output of 750 W for 100 s. In ionic gelation technique, the tripolyphosphate in water solution (1 mg/mL) was added to the same chitosan solution. The physicochemical properties of the products were characterized by Scanning Electron Microscopy, Attenuated Total Reflection Fourier Transform-Infrared, liquid displacement technique, contact angle measurement, compressive and tensile tests, as well as zeta potential and particle size analysis using dynamic light scattering. Moreover, the cell proliferation and attachment on the scaffolds were evaluated through human glioblastoma cell line (U-87 MG) and human neuroblastoma cell line [BE (2)-C] culture respectively. The results showed that the samples coated with chitosan nanoparticles prepared by ultrasonication possessed enhanced hydrophilicity, biodegradation and cytocompatibility compared with pure PLLA and PLLA coated with chitosan nanoparticles prepared by ionic gelation. This study suggests successful nanoparticles-scaffold systems which can act simultaneously as potential delivery systems and tissue engineering scaffolds.
Collapse
Affiliation(s)
- Majid Salehi
- 1Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469 Iran
| | - Mahdi Naseri-Nosar
- 1Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469 Iran
| | - Mahmoud Azami
- 1Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1417755469 Iran
| | - Saeedeh Jafari Nodooshan
- 2Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Javad Arish
- 3Department of Nanotechnology, School of New Sciences and Technology, Pharmaceutical Sciences Branch of Islamic Azad University, Tehran, Iran
| |
Collapse
|
34
|
Sadeghi-Ataabadi M, Mostafavi-Pour Z, Vojdani Z, Sani M, Latifi M, Talaei-Khozani T. Fabrication and characterization of platelet-rich plasma scaffolds for tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 71:372-380. [PMID: 27987720 DOI: 10.1016/j.msec.2016.10.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 09/27/2016] [Accepted: 10/01/2016] [Indexed: 01/08/2023]
Abstract
Platelet-Rich Plasma (PRP), as a rich source of growth factor, can form a fibrin gel that recapitulates the extracellular matrix of the tissues. The aim of this study was to evaluate the effects of different concentrations of CaCl2 on the PRP scaffold structure which in turn could change the cell's behavior. PRP was mixed with 2.5, 5 and 10% (w/v) CaCl2. Then, the tensile strength, biodegradability and water content of the scaffolds were evaluated. We also performed immunostaining for assessment of the actin stress fiber orientation and SEM for detecting the cell phenotype and physical properties of the fibers. Cell viability, attachment and migration were also evaluated. The highest cell attachment and short term proliferation rate was observed on the scaffolds with 2.5% CaCl2. The cells cultured on the scaffold with higher CaCl2 concentration had fusiform phenotype with few cell processes and parallel arrangement of stress fibers while those cultured on the other scaffolds were fibroblast-like with more processes and net-like stress fibers. The scaffolds with 10% CaCl2 demonstrated the highest osmolarity (358.75±4.99mOsmole), fiber thickness (302.1±54.3nm), pore size (332.1±118.9nm2) and the longest clotting time (12.2±0.776min) compared with the other scaffolds. Water content, branching angle, porosity, orientation and tensile strength did not change by gelation with different CaCl2 concentrations. In conclusion, the cell shape, viability and proliferation were modified by culturing on the PRP scaffolds prepared with various concentrations of CaCl2, and as a result, the scaffolds showed different physical and biological properties.
Collapse
Affiliation(s)
- Mahmoud Sadeghi-Ataabadi
- Tissue engineering Lab, Anatomy department, Medical School, Shiraz University of Medical Sciences, Iran
| | - Zohreh Mostafavi-Pour
- Recombinant protein lab, Department of Biochemistry, Medical School, Shiraz University of Medical Sciences, Iran
| | - Zahra Vojdani
- Tissue engineering Lab, Anatomy department, Medical School, Shiraz University of Medical Sciences, Iran
| | - Mahsa Sani
- Tissue engineering Lab, Anatomy department, Medical School, Shiraz University of Medical Sciences, Iran
| | - Mona Latifi
- Tissue Engineering Department, National Institute of Genetic Engineering and Biotechnoloy, Iran; Tissue engineering Lab, Anatomy department, Medical School, Shiraz University of Medical Sciences, Iran
| | - Tahereh Talaei-Khozani
- Tissue engineering Lab, Anatomy department, Medical School, Shiraz University of Medical Sciences, Iran.
| |
Collapse
|
35
|
García-Martínez L, Campos F, Godoy-Guzmán C, Del Carmen Sánchez-Quevedo M, Garzón I, Alaminos M, Campos A, Carriel V. Encapsulation of human elastic cartilage-derived chondrocytes in nanostructured fibrin-agarose hydrogels. Histochem Cell Biol 2016; 147:83-95. [PMID: 27586854 DOI: 10.1007/s00418-016-1485-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2016] [Indexed: 12/20/2022]
Abstract
The generation of elastic cartilage substitutes for clinical use is still a challenge. In this study, we investigated the possibility of encapsulating human elastic cartilage-derived chondrocytes (HECDC) in biodegradable nanostructured fibrin-agarose hydrogels (NFAH). Viable HECDC from passage 2 were encapsulated in NFAH and maintained in culture conditions. Constructs were harvested for histochemical and immunohistochemical analyses after 1, 2, 3, 4 and 5 weeks of development ex vivo. Histological results demonstrated that it is possible to encapsulate HECDC in NFAH, and that HECDC were able to proliferate and form cells clusters expressing S-100 and vimentin. Additionally, histochemical and immunohistochemical analyses of the extracellular matrix (ECM) showed that HECDC synthetized different ECM molecules (type I and II collagen, elastic fibers and proteoglycans) in the NFAH ex vivo. In conclusion, this study suggests that NFAH can be used to generate biodegradable and biologically active constructs for cartilage tissue engineering applications. However, further cell differentiation, biomechanical and in vivo studies are still needed.
Collapse
Affiliation(s)
- Laura García-Martínez
- Department of Histology, Tissue Engineering Group, Faculty of Medicine, University of Granada and Instituto de Investigación Biosanitaria ibis. GRANADA, Granada, Spain.,Doctoral Program in Biomedicine, University of Granada, Granada, Spain
| | - Fernando Campos
- Department of Histology, Tissue Engineering Group, Faculty of Medicine, University of Granada and Instituto de Investigación Biosanitaria ibis. GRANADA, Granada, Spain
| | - Carlos Godoy-Guzmán
- Department of Histology, Tissue Engineering Group, Faculty of Medicine, University of Granada and Instituto de Investigación Biosanitaria ibis. GRANADA, Granada, Spain.,Unit of Histology (CIBAP), School of Medicine, Universidad de Santiago de Chile, (USACH), Santiago, Chile
| | - María Del Carmen Sánchez-Quevedo
- Department of Histology, Tissue Engineering Group, Faculty of Medicine, University of Granada and Instituto de Investigación Biosanitaria ibis. GRANADA, Granada, Spain
| | - Ingrid Garzón
- Department of Histology, Tissue Engineering Group, Faculty of Medicine, University of Granada and Instituto de Investigación Biosanitaria ibis. GRANADA, Granada, Spain
| | - Miguel Alaminos
- Department of Histology, Tissue Engineering Group, Faculty of Medicine, University of Granada and Instituto de Investigación Biosanitaria ibis. GRANADA, Granada, Spain
| | - Antonio Campos
- Department of Histology, Tissue Engineering Group, Faculty of Medicine, University of Granada and Instituto de Investigación Biosanitaria ibis. GRANADA, Granada, Spain
| | - Víctor Carriel
- Department of Histology, Tissue Engineering Group, Faculty of Medicine, University of Granada and Instituto de Investigación Biosanitaria ibis. GRANADA, Granada, Spain.
| |
Collapse
|
36
|
Sun AX, Numpaisal PO, Gottardi R, Shen H, Yang G, Tuan RS. Cell and Biomimetic Scaffold-Based Approaches for Cartilage Regeneration. ACTA ACUST UNITED AC 2016. [DOI: 10.1053/j.oto.2016.06.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
37
|
Paduszyński P, Aleksander-Konert E, Zajdel A, Wilczok A, Jelonek K, Witek A, Dzierżewicz Z. Changes in expression of cartilaginous genes during chondrogenesis of Wharton's jelly mesenchymal stem cells on three-dimensional biodegradable poly(L-lactide-co-glycolide) scaffolds. Cell Mol Biol Lett 2016; 21:14. [PMID: 28536617 PMCID: PMC5414664 DOI: 10.1186/s11658-016-0012-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 01/08/2016] [Indexed: 01/08/2023] Open
Abstract
Background In cartilage tissue regeneration, it is important to develop biodegradable scaffolds that provide a structural and logistic template for three-dimensional cultures of chondrocytes. In this study, we evaluated changes in expression of cartilaginous genes during in vitro chondrogenic differentiation of WJ-MSCs on PLGA scaffolds. Methods The biocompatibility of the PLGA material was investigated using WJ-MSCs by direct and indirect contact methods according to the ISO 10993–5 standard. PLGA scaffolds were fabricated by the solvent casting/salt-leaching technique. We analyzed expression of chondrogenic genes of WJ-MSCs after a 21-day culture. Results The results showed the biocompatibility of PLGA and confirmed the usefulness of PLGA as material for fabrication of 3D scaffolds that can be applied for WJ-MSC culture. The in vitro penetration and colonization of the scaffolds by WJ-MSCs were assessed by confocal microscopy. The increase in cell number demonstrated that scaffolds made of PLGA copolymers enabled WJ-MSC proliferation. The obtained data showed that as a result of chondrogenesis of WJ-MSCs on the PLGA scaffold the expression of the key markers collagen type II and aggrecan was increased. Conclusions The observed changes in transcriptional activity of cartilaginous genes suggest that the PLGA scaffolds may be applied for WJ-MSC differentiation. This primary study suggests that chondrogenic capacity of WJ-MSCs cultured on the PLGA scaffolds can be useful for cell therapy of cartilage.
Collapse
Affiliation(s)
- Piotr Paduszyński
- Department of Biopharmacy, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Ewelina Aleksander-Konert
- Department of Biopharmacy, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Alicja Zajdel
- Department of Biopharmacy, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Adam Wilczok
- Department of Biopharmacy, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland
| | - Katarzyna Jelonek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, Zabrze, Poland
| | - Andrzej Witek
- Department of Gynecology and Obstetrics, School of Medicine in Katowice, Medical University of Silesia, Katowice, Poland
| | - Zofia Dzierżewicz
- Department of Biopharmacy, School of Pharmacy with the Division of Laboratory Medicine in Sosnowiec, Medical University of Silesia, Katowice, Poland.,Department of Health Care, Silesian Medical College, Katowice, Poland
| |
Collapse
|
38
|
Ceylan HH, Bilsel K, Buyukpinarbasili N, Ceylan H, Erdil M, Tuncay I, Sen C. Can chondral healing be improved following microfracture? The effect of adipocyte tissue derived stem cell therapy. Knee 2016; 23:442-9. [PMID: 27068292 DOI: 10.1016/j.knee.2015.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Revised: 09/13/2015] [Accepted: 11/26/2015] [Indexed: 02/02/2023]
Abstract
BACKGROUND We aimed to investigate the effect of adipose tissue-derived mesenchymal stem cells (ADSCs) on chondral healing using the microfracture (MF) technique. METHODS Thirty male rabbits were randomly divided into three groups. Standard cylindrical osteochondral defects (OCDs) were created in the weight-bearing areas of the medial condyles of all the right knees; the defects were four millimeters in diameter and two millimeters in depth. The control group (group A) was restricted to spontaneous healing. For group B, we performed MF with a 1.5-mm drill. For group C, we applied MF using the same method and then applied 3×10(6) ADSCs to the defect area. At eight weeks post-operation, the subjects were sacrificed, and the distal femoral joint surfaces were evaluated histopathologically for chondral healing. The samples were scored according to the International Cartilage Repair Society (ICRS) scale. RESULTS The results for group C were significantly better than those for group A in terms of the surface properties (p=0.003). The matrix evaluation was better for group A than for group C (p=0.01). The cell distribution, cell viability and subchondral bone parameters were similar between the groups (p=0.198, p=0.387 and p=0.699). The cartilage mineralization parameter was better for group C than for group A (p=0.001). The signs of healing were better for group C than for group B, but the differences were not significant (p=0.185). CONCLUSIONS Improvements with additional ADSC treatments were not statistically significant in cases in which ADSC treatment was compared with isolated MF treatment. CLINICAL RELEVANCE Additional ADSCs treatment may have positive effect on chondral healing but it doesn't seem significant.
Collapse
Affiliation(s)
- Hasan H Ceylan
- LNB State Hospital, Department of Orthopaedics and Traumatology, Istanbul, Turkey
| | - Kerem Bilsel
- Bezmialem Vakif University Medical School, Department of Orthopaedics and Traumatology, Istanbul, Turkey
| | - Nur Buyukpinarbasili
- Bezmialem Vakif University Medical School, Department of Medical Pathology, Istanbul, Turkey
| | - Hamid Ceylan
- Ataturk University Science Faculty, Department of Molecular Biology and Genetics, Erzurum, Turkey
| | - Mehmet Erdil
- Istanbul Medipol University, Department of Orthopaedics and Traumatology, Istanbul, Turkey.
| | - Ibrahim Tuncay
- Bezmialem Vakif University Medical School, Department of Orthopaedics and Traumatology, Istanbul, Turkey
| | - Cengiz Sen
- Istanbul University Istanbul Medical School, Department of Orthopaedics and Traumatology, Istanbul, Turkey
| |
Collapse
|
39
|
Rodenas-Rochina J, Kelly DJ, Gómez Ribelles JL, Lebourg M. Compositional changes to synthetic biodegradable scaffolds modulate the influence of hydrostatic pressure on chondrogenesis of mesenchymal stem cells. Biomed Phys Eng Express 2016. [DOI: 10.1088/2057-1976/2/3/035005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
40
|
Comparative repair capacity of knee osteochondral defects using regenerated silk fiber scaffolds and fibrin glue with/without autologous chondrocytes during 36 weeks in rabbit model. Cell Tissue Res 2016; 364:559-572. [DOI: 10.1007/s00441-015-2355-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 12/17/2015] [Indexed: 10/22/2022]
|
41
|
Lee JY, Chung J, Chung WJ, Kim G. Fabrication and in vitro biocompatibilities of fibrous biocomposites consisting of PCL and M13 bacteriophage-conjugated alginate for bone tissue engineering. J Mater Chem B 2015; 4:656-665. [PMID: 32262947 DOI: 10.1039/c5tb01748c] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
As the M13 bacteriophage, which has integrin binding and calcium binding sites, provides topological cues from the nanofibrous shape and biochemical cues from the Arg-Gly-Asp (RGD) sequence attached to the surface of fibrous phage, it has been recommended as a bioactive component for use in bone tissue engineering. However, although it has good biological activities, its low mechanical properties and low processing ability represent major issues that must be overcome before its use as a tissue engineering substitute. To overcome these issues, we chemically conjugated the M13 bacteriophage and alginate with a cross-linking agent and it was used as a bioactive component on electrospun poly(ε-caprolactone) (PCL) micro/nanofibres. Assessment of the physical properties and in vitro biocompatibility using osteoblast-like cells indicated that the biocomposite supplemented with the conjugated phage/alginate was mechanically enhanced, and the extent of mineralisation of cells on the composite was significantly higher compared to that on the fibrous composites fabricated using physically mixed M13 phage/alginate and RGD-modified alginate. These results indicate that M13 phage-conjugated alginate may have potential to be used as an excellent bioactive component for bone tissue regeneration.
Collapse
Affiliation(s)
- Jae Yoon Lee
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering, Sungkyunkwan University, Suwon 440-746, Republic of Korea.
| | | | | | | |
Collapse
|
42
|
A 3D Porous Gelatin-Alginate-Based-IPN Acts as an Efficient Promoter of Chondrogenesis from Human Adipose-Derived Stem Cells. Stem Cells Int 2015; 2015:252909. [PMID: 26106422 PMCID: PMC4461772 DOI: 10.1155/2015/252909] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 01/18/2015] [Indexed: 12/30/2022] Open
Abstract
Cartilage has limited regeneration potential. Thus, there is an imperative need to develop new strategies for cartilage tissue engineering (CTE) amenable for clinical use. Recent CTE approaches rely on optimal cell-scaffold interactions, which require a great deal of optimization. In this study we attempt to build a novel gelatin- (G-) alginate- (A-) polyacrylamide (PAA) 3D interpenetrating network (IPN) with superior performance in promoting chondrogenesis from human adipose-derived stem cells (hADSCs). We show that our G-A-PAA scaffold is capable of supporting hADSCs proliferation and survival, with no apparent cytotoxic effect. Moreover, we find that after exposure to prochondrogenic conditions a key transcription factor known to induce chondrogenesis, namely, Sox9, is highly expressed in our hADSCs/G-A-PAA bioconstruct, along with cartilage specific markers such as collagen type II, CEP68, and COMP extracellular matrix (ECM) components. These data suggest that our G-A-PAA structural properties and formulation might enable hADSCs conversion towards functional chondrocytes. We conclude that our novel G-A-PAA biomatrix is a good candidate for prospective in vivo CTE applications.
Collapse
|
43
|
Anisimova NY, Kiselevsky MV, Sukhorukova IV, Shvindina NV, Shtansky DV. Fabrication method, structure, mechanical, and biological properties of decellularized extracellular matrix for replacement of wide bone tissue defects. J Mech Behav Biomed Mater 2015; 49:255-68. [PMID: 26051225 DOI: 10.1016/j.jmbbm.2015.05.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 04/27/2015] [Accepted: 05/08/2015] [Indexed: 01/07/2023]
Abstract
The present paper was focused on the development of a new method of decellularized extracellular matrix (DECM) fabrication via a chemical treatment of a native bone tissue. Particular attention was paid to the influence of chemical treatment on the mechanical properties of native bones, sterility, and biological performance in vivo using the syngeneic heterotopic and orthotopic implantation models. The obtained data indicated that after a chemical decellularization treatment in 4% aqueous sodium chlorite, no noticeable signs of the erosion of compact cortical bone surface or destruction of trabeculae of spongy bone in spinal channel were observed. The histological studies showed that the chemical treatment resulted in the decellularization of both bone and cartilage tissues. The DECM samples demonstrated no signs of chemical and biological degradation in vivo. Thorough structural characterization revealed that after decellularization, the mineral frame retained its integrity with the organic phase; however clotting and destruction of organic molecules and fibers were observed. FTIR studies revealed several structural changes associated with the destruction of organic molecules, although all organic components typical of intact bone were preserved. The decellularization-induced structural changes in the collagen constituent resulted changed the deformation under compression mechanism: from the major fracture by crack propagation throughout the sample to the predominantly brittle fracture. Although the mechanical properties of radius bones subjected to decellularization were observed to degrade, the mechanical properties of ulna bones in compression and humerus bones in bending remained unchanged. The compressive strength of both the intact and decellularized ulna bones was 125-130 MPa and the flexural strength of humerus bones was 156 and 145 MPa for the intact and decellularized samples, respectively. These results open new avenues for the use of DECM samples as the replacement of wide bone tissue defects.
Collapse
Affiliation(s)
- N Y Anisimova
- Blokhin Russian Cancer Research Center of the Russian Academy of Medical Sciences, Kashirskoe Shosse 24, Moscow 115478, Russia
| | - M V Kiselevsky
- Blokhin Russian Cancer Research Center of the Russian Academy of Medical Sciences, Kashirskoe Shosse 24, Moscow 115478, Russia
| | - I V Sukhorukova
- National University of Science and Technology "MISIS", Leninsky Prospect 4, Moscow 119049, Russia.
| | - N V Shvindina
- National University of Science and Technology "MISIS", Leninsky Prospect 4, Moscow 119049, Russia
| | - D V Shtansky
- National University of Science and Technology "MISIS", Leninsky Prospect 4, Moscow 119049, Russia.
| |
Collapse
|
44
|
Salehi M, Naseri Nosar M, Amani A, Azami M, Tavakol S, Ghanbari H. Preparation of Pure PLLA, Pure Chitosan, and PLLA/Chitosan Blend Porous Tissue Engineering Scaffolds by Thermally Induced Phase Separation Method and Evaluation of the Corresponding Mechanical and Biological Properties. INT J POLYM MATER PO 2015. [DOI: 10.1080/00914037.2014.1002093] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
45
|
Sheykhhasan M, Qomi RT, Kalhor N, Mehdizadeh M, Ghiasi M. Evaluation of the ability of natural and synthetic scaffolds in providing an appropriate environment for growth and chondrogenic differentiation of adipose-derived mesenchymal stem cells. Indian J Orthop 2015; 49:561-8. [PMID: 26538764 PMCID: PMC4598549 DOI: 10.4103/0019-5413.164043] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Although progenitor cells have been observed in articular cartilage, this part has a limited ability to repair due to a lack of blood supply. Formerly, tissue engineering was mainly based on collecting chondrocytes from the joint surface, culturing them on resorbable scaffolds such as poly D, L-lactic glycolic acid (PLGA) and then autologous transplantation. In recent times, due to difficulties in collecting chondrocytes, most of the researchers are focused on stem cells for producing these cells. Among the important factors in this approach, is using appropriate scaffolds with good mechanical and biological properties to provide optimal environment for growth and development of stem cells. In this study, we evaluated the potential of fibrin glue, PLGA and alginate scaffolds in providing a suitable environment for growth and chondrogenic differentiation of mesenchymal stem cells (MSCs) in the presence of transforming growth factor-β3. MATERIALS AND METHODS Fibrin glue, PLGA and alginate scaffolds were prepared and MSCs were isolated from human adipose tissue. Cells were cultured separately on the scaffolds and 2 weeks after differentiation, chondrogenic genes, cell proliferation ability and morphology in each scaffold were evaluated using real time-polymerase chain reaction, MTT chondrogenic assay and histological examination, respectively. RESULTS Proliferation of differentiated adipose tissue derived mesenchymal stem cells (AD-MSCs) to chondrogenic cells in Fibrin glue were significantly higher than in other scaffolds. Also, Fibrin glue caused the highest expression of chondrogenic genes compared to the other scaffolds. Histological examination revealed that the pores of the Fibrin glue scaffolds were filled with cells uniformly distributed. CONCLUSION According to the results of the study, it can be concluded that natural scaffolds such as fibrin can be used as an appropriate environment for cartilage differentiation.
Collapse
Affiliation(s)
- Mohsen Sheykhhasan
- Department of Stem Cell, The Academic Center for Education, Culture and Research, Qom Branch, Qom, Iran
| | - Reza Tabatabaei Qomi
- Department of Stem Cell, The Academic Center for Education, Culture and Research, Qom Branch, Qom, Iran
| | - Naser Kalhor
- Department of Stem Cell, The Academic Center for Education, Culture and Research, Qom Branch, Qom, Iran
| | - Mohammad Mehdizadeh
- Department of Oral and Maxillofacial Surgery, Dental Faculty, Babol Medical Science University, Babol, Iran
| | - Mahdieh Ghiasi
- Department of Stem Cell, The Academic Center for Education, Culture and Research, Qom Branch, Qom, Iran,Address for correspondence: Dr. Mahdieh Ghiasi, Department of Stem Cell, The Academic Center for Education, Culture and Research, Qom Branch, Qom, Iran. E-mail:
| |
Collapse
|
46
|
Ghorayeb SR, Levin A, Ast M, Schwartz JA, Grande DA. Sonographic evaluation of knee cartilage defects implanted with preconditioned scaffolds. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2014; 33:1241-1253. [PMID: 24958411 DOI: 10.7863/ultra.33.7.1241] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
OBJECTIVES The purpose of this study was to develop a novel method for creating an acellular bioactive scaffold, to prove its efficacy in vivo and in vitro for the augmentation of biological repair, and to confirm that sonographic microscopy is a viable modality for monitoring the healing process of osteochondral defects implanted with preconditioned bioactive scaffolds. METHODS Rabbit marrow stromal cells were retrovirally transduced with either bone morphogenetic protein 7 (BMP-7) or insulinlike growth factor 1 (IGF-1) genes, cultured for 9 weeks in nonwoven poly-L-lactic acid scaffolds, and then frozen and lyophilized. The knees were evaluated at 3, 6, and 12 weeks after surgery using 20-MHz ultrasound and then prepared for routine histologic analysis. B-scans of the extracellular matrix defects were compared to histologic results. RESULTS Control defects showed a void or a mixture of fibrocartilage tissue. Both types of scaffolds resulted in a higher percentage (both P< .001) of primarily hyaline cartilage tissue with intact articular surfaces. The osteochondral defects were clearly observed in each sonographic signature. There were no differences between images of scaffolds treated with IGF-1 or BMP-7. Extracellular matrix regrowth was found to closely parallel (R(2) = 0.968; P < .003) the histologic images. A 3-mm defect depth and a 2.5-mm scaffold thickness were measured on the sonograms, comparing well to actual dimensions. CONCLUSIONS There was a gradual increase in healing bordering the defects for the 3-, 6-, and 12-week samples. Also, we have shown that sonography can aid in monitoring implantation of preconditioned scaffolds in osteochondral defects and thus assessing the healing process and cartilage/bone quality.
Collapse
Affiliation(s)
- Sleiman R Ghorayeb
- School of Engineering and Applied Sciences, Ultrasound Research Laboratory, Hofstra University, Hempstead, New York USA (S.R.G.); Department of Orthopedic Surgery, North Shore-LIJ Health System, Great Neck, New York USA (A.L., M.A.); and Orthopedics Research Laboratory, Feinstein Institute for Medical Research, North Shore Hospital, Manhasset, New York USA (S.R.G., J.A.S., D.A.G.).
| | - Adam Levin
- School of Engineering and Applied Sciences, Ultrasound Research Laboratory, Hofstra University, Hempstead, New York USA (S.R.G.); Department of Orthopedic Surgery, North Shore-LIJ Health System, Great Neck, New York USA (A.L., M.A.); and Orthopedics Research Laboratory, Feinstein Institute for Medical Research, North Shore Hospital, Manhasset, New York USA (S.R.G., J.A.S., D.A.G.)
| | - Michael Ast
- School of Engineering and Applied Sciences, Ultrasound Research Laboratory, Hofstra University, Hempstead, New York USA (S.R.G.); Department of Orthopedic Surgery, North Shore-LIJ Health System, Great Neck, New York USA (A.L., M.A.); and Orthopedics Research Laboratory, Feinstein Institute for Medical Research, North Shore Hospital, Manhasset, New York USA (S.R.G., J.A.S., D.A.G.)
| | - John A Schwartz
- School of Engineering and Applied Sciences, Ultrasound Research Laboratory, Hofstra University, Hempstead, New York USA (S.R.G.); Department of Orthopedic Surgery, North Shore-LIJ Health System, Great Neck, New York USA (A.L., M.A.); and Orthopedics Research Laboratory, Feinstein Institute for Medical Research, North Shore Hospital, Manhasset, New York USA (S.R.G., J.A.S., D.A.G.)
| | - Daniel A Grande
- School of Engineering and Applied Sciences, Ultrasound Research Laboratory, Hofstra University, Hempstead, New York USA (S.R.G.); Department of Orthopedic Surgery, North Shore-LIJ Health System, Great Neck, New York USA (A.L., M.A.); and Orthopedics Research Laboratory, Feinstein Institute for Medical Research, North Shore Hospital, Manhasset, New York USA (S.R.G., J.A.S., D.A.G.)
| |
Collapse
|
47
|
Lehmann M, Martin F, Mannigel K, Kaltschmidt K, Sack U, Anderer U. Three-dimensional scaffold-free fusion culture: the way to enhance chondrogenesis of in vitro propagated human articular chondrocytes. Eur J Histochem 2013; 57:e31. [PMID: 24441184 PMCID: PMC3896033 DOI: 10.4081/ejh.2013.e31] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 09/13/2013] [Accepted: 09/18/2013] [Indexed: 11/23/2022] Open
Abstract
Cartilage regeneration based on isolated and culture-expanded chondrocytes has been studied in various in vitro models, but the quality varies with respect to the morphology and the physiology of the synthesized tissues. The aim of our study was to promote in vitro chondrogenesis of human articular chondrocytes using a novel three-dimensional (3-D) cultivation system in combination with the chondrogenic differentiation factors transforming growth factor beta 2 (TGF-b2) and L-ascorbic acid. Articular chondrocytes isolated from six elderly patients were expanded in monolayer culture. A single-cell suspension of the dedifferentiated chondrocytes was then added to agar-coated dishes without using any scaffold material, in the presence, or absence of TGF-b2 and/or L-ascorbic acid. Three-dimensional cartilage-like constructs, called single spheroids, and microtissues consisting of several spheroids fused together, named as fusions, were formed. Generated tissues were mainly characterized using histological and immunohistochemical techniques. The morphology of the in vitro tissues shared some similarities to native hyaline cartilage in regard to differentiated S100-positive chondrocytes within a cartilaginous matrix, with strong collagen type II expression and increased synthesis of proteoglycans. Finally, our innovative scaffold-free fusion culture technique supported enhanced chondrogenesis of human articular chondrocytes in vitro. These 3-D hyaline cartilage-like microtissues will be useful for in vitro studies of cartilage differentiation and regeneration, enabling optimization of functional tissue engineering and possibly contributing to the development of new approaches to treat traumatic cartilage defects or osteoarthritis.
Collapse
Affiliation(s)
- M Lehmann
- Brandenburg University of Technology Cottbus - Senftenberg.
| | | | | | | | | | | |
Collapse
|
48
|
Wang L, Rao RR, Stegemann JP. Delivery of mesenchymal stem cells in chitosan/collagen microbeads for orthopedic tissue repair. Cells Tissues Organs 2013; 197:333-43. [PMID: 23571151 PMCID: PMC3711684 DOI: 10.1159/000348359] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2013] [Indexed: 12/13/2022] Open
Abstract
Microencapsulation and delivery of stem cells in biomaterials is a promising approach to repairing damaged tissue in a minimally invasive manner. An appropriate biomaterial niche can protect the embedded cells from the challenging environment in the host tissue, while also directing stem cell differentiation toward the desired lineage. In this study, adult human mesenchymal stem cells (MSC) were embedded in hydrogel microbeads consisting of chitosan and type I collagen using an emulsification process. Glyoxal and β-glycerophosphate were used as chemical and physical crosslinkers to initiate copolymerization of the matrix materials. The average size and size distribution of the microbeads could be varied by controlling the emulsification conditions. Spheroidal microbeads ranging in diameter from 82 ± 19 to 290 ± 78 µm were produced. Viability staining showed that MSC survived the encapsulation process (>90% viability) and spread inside the matrix over a period of 9 days in culture. Induced osteogenic differentiation using medium supplements showed that MSC increased gene expression of osterix and osteocalcin over time in culture, and also deposited calcium mineral. Bone sialoprotein and type I collagen gene expression were not affected. Delivery of microbeads through standard needles at practically relevant flow rates did not adversely affect cell viability, and microbeads could also be easily molded into prescribed geometries for delivery. Such protein-based microbeads may have utility in orthopedic tissue regeneration by allowing minimally invasive delivery of progenitor cells in microenvironments that are both protective and instructive.
Collapse
Affiliation(s)
- Limin Wang
- Department of Biomedical Engineering, University of Michigan Ann Arbor, MI 48109, USA
| | - Rameshwar R. Rao
- Department of Biomedical Engineering, University of Michigan Ann Arbor, MI 48109, USA
| | - Jan P. Stegemann
- Department of Biomedical Engineering, University of Michigan Ann Arbor, MI 48109, USA
| |
Collapse
|
49
|
Engineering cartilage tissue interfaces using a natural glycosaminoglycan hydrogel matrix — An in vitro study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:575-82. [DOI: 10.1016/j.msec.2012.09.015] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 08/30/2012] [Accepted: 09/24/2012] [Indexed: 12/22/2022]
|
50
|
Jeong JY, Park SH, Shin JW, Kang YG, Han KH, Shin JW. Effects of intermittent hydrostatic pressure magnitude on the chondrogenesis of MSCs without biochemical agents under 3D co-culture. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2012; 23:2773-2781. [PMID: 22802107 DOI: 10.1007/s10856-012-4718-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2012] [Accepted: 07/03/2012] [Indexed: 06/01/2023]
Abstract
Without using biochemical agents, in this study, we sought to investigate the potential of controlling the differentiation of mesenchymal stem cells (MSCs) into a specific cell type through the use of 3D co-culturing and mechanical stimuli. MSCs and primary cultured chondrocytes were separately encapsulated into alginate beads, and the two types of beads were separated by a membrane. For the investigation a computer-controllable bioreactor was designed and used to engage intermittent hydrostatic pressure (IHP). Five different magnitudes (0.20, 0.10, 0.05, 0.02 MPa and no stimulation) of IHP were applied. The stimulation pattern was the same for all groups: 2 h/day for 7 days starting at 24 h after seeding; 2 and 15 min cycles of stimulating and resting, respectively. Biochemical (DNA and GAG contents), histological (Alcian blue), and RT-PCR (Col II, SOX9, AGC) analyses were performed on days 1, 5, 10, and 20. The results from these analyses showed that stimulation with higher magnitudes of IHP (≥0.10 MPa) were more effective on the proliferation and differentiation of co-cultured MSCs. Together, these data demonstrate the potential of using mechanical stimulation and co-culturing for the proliferation and differentiation of MSCs, even without biochemical agents.
Collapse
Affiliation(s)
- Jae Young Jeong
- Department of Biomedical Engineering, Inje University, Gimhae, Gyeongnam, Republic of Korea
| | | | | | | | | | | |
Collapse
|