1
|
Liu J, Prahl LS, Huang AZ, Hughes AJ. Measurement of adhesion and traction of cells at high yield reveals an energetic ratchet operating during nephron condensation. Proc Natl Acad Sci U S A 2024; 121:e2404586121. [PMID: 39292750 PMCID: PMC11441508 DOI: 10.1073/pnas.2404586121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 08/21/2024] [Indexed: 09/20/2024] Open
Abstract
Developmental biology-inspired strategies for tissue-building have extraordinary promise for regenerative medicine, spurring interest in the relationship between cell biophysical properties and morphological transitions. However, mapping gene or protein expression data to cell biophysical properties to physical morphogenesis remains challenging with current techniques. Here, we present multiplexed adhesion and traction of cells at high yield (MATCHY). MATCHY advances the multiplexing and throughput capabilities of existing traction force and cell-cell adhesion assays using microfabrication and a semiautomated computation scheme with machine learning-driven cell segmentation. Both biophysical assays are coupled with serial downstream immunofluorescence to extract cell type/signaling state information. MATCHY is especially suited to complex primary tissue-, organoid-, or biopsy-derived cell mixtures since it does not rely on a priori knowledge of cell surface markers, cell sorting, or use of lineage-specific reporter animals. We first validate MATCHY on canine kidney epithelial cells engineered for rearranged during transfection (RET) tyrosine kinase expression and quantify a relationship between downstream signaling and cell traction. We then use MATCHY to create a biophysical atlas of mouse embryonic kidney primary cells and identify distinct biophysical states along the nephron differentiation trajectory. Our data complement expression-level knowledge of adhesion molecule changes that accompany nephron differentiation with quantitative biophysical information. These data reveal an "energetic ratchet" that accounts for spatial trends in nephron progenitor cell condensation as they differentiate into early nephron structures, which we validate through agent-based computational simulation. MATCHY offers semiautomated cell biophysical characterization at >10,000-cell throughput, an advance benefiting fundamental studies and new synthetic tissue strategies for regenerative medicine.
Collapse
Affiliation(s)
- Jiageng Liu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA19104
| | - Louis S. Prahl
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
- Center for Soft and Living Matter, University of Pennsylvania, Philadelphia, PA19104
| | - Aria Zheyuan Huang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA19104
| | - Alex J. Hughes
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA19104
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, PA19104
- Center for Soft and Living Matter, University of Pennsylvania, Philadelphia, PA19104
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, PA19104
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, PA19104
- Center for Precision Engineering for Health, University of Pennsylvania, Philadelphia, PA19104
- Materials Research Science and Engineering Center, University of Pennsylvania, Philadelphia, PA19104
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
2
|
Davies JA, Holland I, Gül H. Kidney organoids: steps towards better organization and function. Biochem Soc Trans 2024; 52:1861-1871. [PMID: 38934505 PMCID: PMC11668298 DOI: 10.1042/bst20231554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/20/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Abstract
Kidney organoids - 3D representations of kidneys made either from pluripotent or tissue stem cells - have been available for well over a decade. Their application could confer notable benefits over longstanding in vivo approaches with the potential for clinically aligned human cells and reduced ethical burdens. They been used, at a proof-of-concept level, in development in disease modeling (including with patient-derived stem cells), and in screening drugs for efficacy/toxicity. They differ from real kidneys: they represent only foetal-stage tissue, in their simplest forms they lack organ-scale anatomical organization, they lack a properly arranged vascular system, and include non-renal cells. Cell specificity may be improved by better techniques for differentiation and/or sorting. Sequential assembly techniques that mimic the sequence of natural development, and localized sources of differentiation-inducing signals, improve organ-scale anatomy. Organotypic vascularization remains a challenge: capillaries are easy, but the large vessels that should serve them are absent from organoids and, even in cultured real kidneys, these large vessels do not survive without blood flow. Transplantation of organoids into hosts results in their being vascularized (though probably not organotypically) and in some renal function. It will be important to transplant more advanced organoids, with a urine exit, in the near future to assess function more stringently. Transplantation of human foetal kidneys, followed by nephrectomy of host kidneys, keeps rats alive for many weeks, raising hope that, if organoids can be produced even to the limited size and complexity of foetal kidneys, they may one day be useful in renal replacement.
Collapse
Affiliation(s)
- Jamie A. Davies
- Deanery of Biomedical Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, U.K
| | - Ian Holland
- Deanery of Biomedical Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, U.K
| | - Huseyin Gül
- Deanery of Biomedical Sciences, University of Edinburgh, Hugh Robson Building, George Square, Edinburgh, U.K
| |
Collapse
|
3
|
Liu J, Prahl LS, Huang A, Hughes AJ. Measurement of adhesion and traction of cells at high yield (MATCHY) reveals an energetic ratchet driving nephron condensation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.07.579368. [PMID: 38370771 PMCID: PMC10871361 DOI: 10.1101/2024.02.07.579368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Engineering of embryonic strategies for tissue-building has extraordinary promise for regenerative medicine. This has led to a resurgence in interest in the relationship between cell biophysical properties and morphological transitions. However, mapping gene or protein expression data to cell biophysical properties to physical morphogenesis remains challenging with current techniques. Here we present MATCHY (multiplexed adhesion and traction of cells at high yield). MATCHY advances the multiplexing and throughput capabilities of existing traction force and cell-cell adhesion assays using microfabrication and an automated computation scheme with machine learning-driven cell segmentation. Both biophysical assays are coupled with serial downstream immunofluorescence to extract cell type/signaling state information. MATCHY is especially suited to complex primary tissue-, organoid-, or biopsy-derived cell mixtures since it does not rely on a priori knowledge of cell surface markers, cell sorting, or use of lineage-specific reporter animals. We first validate MATCHY on canine kidney epithelial cells engineered for RET tyrosine kinase expression and quantify a relationship between downstream signaling and cell traction. We go on to create a biophysical atlas of primary cells dissociated from the mouse embryonic kidney and use MATCHY to identify distinct biophysical states along the nephron differentiation trajectory. Our data complement expression-level knowledge of adhesion molecule changes that accompany nephron differentiation with quantitative biophysical information. These data reveal an 'energetic ratchet' that explains spatial nephron progenitor cell condensation from the niche as they differentiate, which we validate through agent-based computational simulation. MATCHY offers automated cell biophysical characterization at >104-cell throughput, a highly enabling advance for fundamental studies and new synthetic tissue design strategies for regenerative medicine.
Collapse
Affiliation(s)
- Jiageng Liu
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Louis S. Prahl
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Aria Huang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
| | - Alex J. Hughes
- Department of Bioengineering, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Bioengineering Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Department of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Cell and Molecular Biology Graduate Group, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Center for Soft and Living Matter, University of Pennsylvania, Philadelphia, 19104, PA, USA
- Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, 19104, PA, USA
| |
Collapse
|
4
|
Hamon M, Cheng HM, Johnson M, Yanagawa N, Hauser PV. Effect of Hypoxia on Branching Characteristics and Cell Subpopulations during Kidney Organ Culture. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120801. [PMID: 36551007 PMCID: PMC9774677 DOI: 10.3390/bioengineering9120801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 12/04/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
During early developmental stages, embryonic kidneys are not fully vascularized and are potentially exposed to hypoxic conditions, which is known to influence cell proliferation and survival, ureteric bud branching, and vascularization of the developing kidney. To optimize the culture conditions of in vitro cultured kidneys and gain further insight into the effect of hypoxia on kidney development, we exposed mouse embryonic kidneys isolated at E11.5, E12.5, and E13.5 to hypoxic and normal culture conditions and compared ureteric bud branching patterns, the growth of the progenitor subpopulation hoxb7+, and the expression patterns of progenitor and differentiation markers. Branching patterns were quantified using whole organ confocal imaging and gradient-vector-based analysis. In our model, hypoxia causes an earlier expression of UB tip cell markers, and a delay in stalk cell marker gene expression. The metanephric mesenchyme (MM) exhibited a later expression of differentiation marker FGF8, marking a delay in nephron formation. Hypoxia further delayed the expression of stroma cell progenitor markers, a delay in cortical differentiation markers, as well as an earlier expression of medullary and ureteral differentiation markers. We conclude that standard conditions do not apply universally and that tissue engineering strategies need to optimize suitable culture conditions for each application. We also conclude that adapting culture conditions to specific aspects of organ development in tissue engineering can help to improve individual stages of tissue generation.
Collapse
Affiliation(s)
- Morgan Hamon
- Medical and Research Services, Greater Los Angeles Veterans Affairs Healthcare System at Sepulveda, North Hills, CA 91344, USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Correspondence: (M.H.); (P.V.H.)
| | - Hsiao-Min Cheng
- Medical and Research Services, Greater Los Angeles Veterans Affairs Healthcare System at Sepulveda, North Hills, CA 91344, USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Ming Johnson
- Medical and Research Services, Greater Los Angeles Veterans Affairs Healthcare System at Sepulveda, North Hills, CA 91344, USA
| | - Norimoto Yanagawa
- Medical and Research Services, Greater Los Angeles Veterans Affairs Healthcare System at Sepulveda, North Hills, CA 91344, USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Peter V. Hauser
- Medical and Research Services, Greater Los Angeles Veterans Affairs Healthcare System at Sepulveda, North Hills, CA 91344, USA
- Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Correspondence: (M.H.); (P.V.H.)
| |
Collapse
|
5
|
Production of kidney organoids arranged around single ureteric bud trees, and containing endogenous blood vessels, solely from embryonic stem cells. Sci Rep 2022; 12:12573. [PMID: 35869233 PMCID: PMC9307805 DOI: 10.1038/s41598-022-16768-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 07/15/2022] [Indexed: 11/09/2022] Open
Abstract
There is intense worldwide effort in generating kidney organoids from pluripotent stem cells, for research, for disease modelling and, perhaps, for making transplantable organs. Organoids generated from pluripotent stem cells (PSC) possess accurate micro-anatomy, but they lack higher-organization. This is a problem, especially for transplantation, as such organoids will not be able to perform their physiological functions. In this study, we develop a method for generating murine kidney organoids with improved higher-order structure, through stages using chimaeras of ex-fetu and PSC-derived cells to a system that works entirely from embryonic stem cells. These organoids have nephrons organised around a single ureteric bud tree and also make vessels, with the endothelial network approaching podocytes.
Collapse
|
6
|
Tekguc M, Gaal RCVAN, Uzel SGM, Gupta N, Riella LV, Lewis JA, Morizane R. Kidney organoids: a pioneering model for kidney diseases. Transl Res 2022; 250:1-17. [PMID: 35750295 PMCID: PMC9691572 DOI: 10.1016/j.trsl.2022.06.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 11/18/2022]
Abstract
The kidney is a vital organ that regulates the bodily fluid and electrolyte homeostasis via tailored urinary excretion. Kidney injuries that cause severe or progressive chronic kidney disease have driven the growing population of patients with end-stage kidney disease, leading to substantial patient morbidity and mortality. This irreversible kidney damage has also created a huge socioeconomical burden on the healthcare system, highlighting the need for novel translational research models for progressive kidney diseases. Conventional research methods such as in vitro 2D cell culture or animal models do not fully recapitulate complex human kidney diseases. By contrast, directed differentiation of human induced pluripotent stem cells enables in vitro generation of patient-specific 3D kidney organoids, which can be used to model acute or chronic forms of hereditary, developmental, and metabolic kidney diseases. Furthermore, when combined with biofabrication techniques, organoids can be used as building blocks to construct vascularized kidney tissues mimicking their in vivo counterpart. By applying gene editing technology, organoid building blocks may be modified to minimize the process of immune rejection in kidney transplant recipients. In the foreseeable future, the universal kidney organoids derived from HLA-edited/deleted induced pluripotent stem cell (iPSC) lines may enable the supply of bioengineered organotypic kidney structures that are immune-compatible for the majority of the world population. Here, we summarize recent advances in kidney organoid research coupled with novel technologies such as organoids-on-chip and biofabrication of 3D kidney tissues providing convenient platforms for high-throughput drug screening, disease modelling, and therapeutic applications.
Collapse
Affiliation(s)
- Murat Tekguc
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts; Harvard Stem Cell Institute (HSCI), Cambridge, Massachusetts
| | - Ronald C VAN Gaal
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts; School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
| | - Sebastien G M Uzel
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts; School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
| | - Navin Gupta
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts; Harvard Stem Cell Institute (HSCI), Cambridge, Massachusetts
| | - Leonardo V Riella
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts; Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Jennifer A Lewis
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts; School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts
| | - Ryuji Morizane
- Nephrology Division, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts; Harvard Stem Cell Institute (HSCI), Cambridge, Massachusetts; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts.
| |
Collapse
|
7
|
Safi W, Marco A, Moya D, Prado P, Garreta E, Montserrat N. Assessing kidney development and disease using kidney organoids and CRISPR engineering. Front Cell Dev Biol 2022; 10:948395. [PMID: 36120564 PMCID: PMC9479189 DOI: 10.3389/fcell.2022.948395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 07/06/2022] [Indexed: 11/26/2022] Open
Abstract
The differentiation of human pluripotent stem cells (hPSCs) towards organoids is one of the biggest scientific advances in regenerative medicine. Kidney organoids have not only laid the groundwork for various organ-like tissue systems but also provided insights into kidney embryonic development. Thus, several protocols for the differentiation of renal progenitors or mature cell types have been established. Insights into the interplay of developmental pathways in nephrogenesis and determination of different cell fates have enabled the in vitro recapitulation of nephrogenesis. Here we first provide an overview of kidney morphogenesis and patterning in the mouse model in order to dissect signalling pathways that are key to define culture conditions sustaining renal differentiation from hPSCs. Secondly, we also highlight how genome editing approaches have provided insights on the specific role of different genes and molecular pathways during renal differentiation from hPSCs. Based on this knowledge we further review how CRISPR/Cas9 technology has enabled the recapitulation and correction of cellular phenotypes associated with human renal disease. Last, we also revise how the field has positively benefited from emerging technologies as single cell RNA sequencing and discuss current limitations on kidney organoid technology that will take advantage from bioengineering solutions to help standardizing the use of this model systems to study kidney development and disease.
Collapse
Affiliation(s)
- Wajima Safi
- Pluripotency for Organ Regeneration. Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Technology (BIST), Barcelona, Spain
- *Correspondence: Wajima Safi, ; Elena Garreta, ; Nuria Montserrat,
| | - Andrés Marco
- Pluripotency for Organ Regeneration. Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Technology (BIST), Barcelona, Spain
| | | | - Patricia Prado
- Pluripotency for Organ Regeneration. Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Technology (BIST), Barcelona, Spain
| | - Elena Garreta
- Pluripotency for Organ Regeneration. Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Technology (BIST), Barcelona, Spain
- *Correspondence: Wajima Safi, ; Elena Garreta, ; Nuria Montserrat,
| | - Nuria Montserrat
- Pluripotency for Organ Regeneration. Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Technology (BIST), Barcelona, Spain
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Madrid, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- *Correspondence: Wajima Safi, ; Elena Garreta, ; Nuria Montserrat,
| |
Collapse
|
8
|
Generation of Induced Nephron Progenitor-like Cells from Human Urine-Derived Cells. Int J Mol Sci 2021; 22:ijms222413449. [PMID: 34948246 PMCID: PMC8708572 DOI: 10.3390/ijms222413449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/01/2021] [Accepted: 12/09/2021] [Indexed: 01/13/2023] Open
Abstract
Background: Regenerative medicine strategies employing nephron progenitor cells (NPCs) are a viable approach that is worthy of substantial consideration as a promising cell source for kidney diseases. However, the generation of induced nephron progenitor-like cells (iNPCs) from human somatic cells remains a major challenge. Here, we describe a novel method for generating NPCs from human urine-derived cells (UCs) that can undergo long-term expansion in a serum-free condition. Results: Here, we generated iNPCs from human urine-derived cells by forced expression of the transcription factors OCT4, SOX2, KLF4, c-MYC, and SLUG, followed by exposure to a cocktail of defined small molecules. These iNPCs resembled human embryonic stem cell-derived NPCs in terms of their morphology, biological characteristics, differentiation potential, and global gene expression and underwent a long-term expansion in serum-free conditions. Conclusion: This study demonstrates that human iNPCs can be readily generated and expanded, which will facilitate their broad applicability in a rapid, efficient, and patient-specific manner, particularly holding the potential as a transplantable cell source for patients with kidney disease.
Collapse
|
9
|
Sallam M, Palakkan AA, Mills CG, Tarnick J, Elhendawi M, Marson L, Davies JA. Differentiation of a Contractile, Ureter-Like Tissue, from Embryonic Stem Cell-Derived Ureteric Bud and Ex Fetu Mesenchyme. J Am Soc Nephrol 2020; 31:2253-2262. [PMID: 32826325 DOI: 10.1681/asn.2019101075] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 06/11/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND There is intense interest in replacing kidneys from stem cells. It is now possible to produce, from embryonic or induced pluripotent stem cells, kidney organoids that represent immature kidneys and display some physiologic functions. However, current techniques have not yet resulted in renal tissue with a ureter, which would be needed for engineered kidneys to be clinically useful. METHODS We used a published sequence of growth factors and drugs to induce mouse embryonic stem cells to differentiate into ureteric bud tissue. We characterized isolated engineered ureteric buds differentiated from embryonic stem cells in three-dimensional culture and grafted them into ex fetu mouse kidney rudiments. RESULTS Engineered ureteric buds branched in three-dimensional culture and expressed Hoxb7, a transcription factor that is part of a developmental regulatory system and a ureteric bud marker. When grafted into the cortex of ex fetu kidney rudiments, engineered ureteric buds branched and induced nephron formation; when grafted into peri-Wolffian mesenchyme, still attached to a kidney rudiment or in isolation, they did not branch but instead differentiated into multilayer ureter-like epithelia displaying robust expression of the urothelial marker uroplakin. This engineered ureteric bud tissue also organized the mesenchyme into smooth muscle that spontaneously contracted, with a period a little slower than that of natural ureteric peristalsis. CONCLUSIONS Mouse embryonic stem cells can be differentiated into ureteric bud cells. Grafting those UB-like structures into peri-Wolffian mesenchyme of cultured kidney rudiments can induce production of urothelium and organize the mesenchyme to produce rhythmically contracting smooth muscle layers. This development may represent a significant step toward the goal of renal regeneration.
Collapse
Affiliation(s)
- May Sallam
- Deanery of Biomedical Science, University of Edinburgh, Edinburgh, UK .,Human Anatomy and Embryology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Anwar A Palakkan
- Deanery of Biomedical Science, University of Edinburgh, Edinburgh, UK
| | | | - Julia Tarnick
- Deanery of Biomedical Science, University of Edinburgh, Edinburgh, UK
| | - Mona Elhendawi
- Deanery of Biomedical Science, University of Edinburgh, Edinburgh, UK.,Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Lorna Marson
- Edinburgh Transplant Centre, Royal Infirmary of Edinburgh, Edinburgh, UK
| | - Jamie A Davies
- Deanery of Biomedical Science, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
10
|
Davies JA, Glykofrydis F. Engineering pattern formation and morphogenesis. Biochem Soc Trans 2020; 48:1177-1185. [PMID: 32510150 PMCID: PMC7329343 DOI: 10.1042/bst20200013] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/14/2020] [Accepted: 05/18/2020] [Indexed: 12/14/2022]
Abstract
The development of natural tissues, organs and bodies depends on mechanisms of patterning and of morphogenesis, typically (but not invariably) in that order, and often several times at different final scales. Using synthetic biology to engineer patterning and morphogenesis will both enhance our basic understanding of how development works, and provide important technologies for advanced tissue engineering. Focusing on mammalian systems built to date, this review describes patterning systems, both contact-mediated and reaction-diffusion, and morphogenetic effectors. It also describes early attempts to connect the two to create self-organizing physical form. The review goes on to consider how these self-organized systems might be modified to increase the complexity and scale of the order they produce, and outlines some possible directions for future research and development.
Collapse
Affiliation(s)
- Jamie A. Davies
- Deanery of Biomedical Sciences and Centre for Mammalian Synthetic Biology, University of Edinburgh, U.K
| | - Fokion Glykofrydis
- Deanery of Biomedical Sciences and Centre for Mammalian Synthetic Biology, University of Edinburgh, U.K
| |
Collapse
|
11
|
Koning M, van den Berg CW, Rabelink TJ. Stem cell-derived kidney organoids: engineering the vasculature. Cell Mol Life Sci 2020; 77:2257-2273. [PMID: 31807815 PMCID: PMC7275011 DOI: 10.1007/s00018-019-03401-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 10/16/2019] [Accepted: 11/26/2019] [Indexed: 01/12/2023]
Abstract
Kidney organoids can be generated from human pluripotent stem cells (PSCs) using protocols that resemble the embryonic development of the kidney. The renal structures thus generated offer great potential for disease modeling, drug screening, and possibly future therapeutic application. At the same time, use of these PSC-derived organoids is hampered by lack of maturation and off-target differentiation. Here, we review the main protocols for the generation of kidney organoids from human-induced PSCs, discussing their advantages and limitations. In particular, we will focus on the vascularization of the kidney organoids, which appears to be one of the critical factors to achieve maturation and functionality of the organoids.
Collapse
Affiliation(s)
- Marije Koning
- Department of Internal Medicine-Nephrology, Leiden University Medical Center, Leiden, The Netherlands.
- Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands.
| | - Cathelijne W van den Berg
- Department of Internal Medicine-Nephrology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Ton J Rabelink
- Department of Internal Medicine-Nephrology, Leiden University Medical Center, Leiden, The Netherlands
- Einthoven Laboratory of Vascular and Regenerative Medicine, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
12
|
Davies JA, Murray P, Wilm B. Regenerative medicine therapies: lessons from the kidney. CURRENT OPINION IN PHYSIOLOGY 2020; 14:41-47. [PMID: 32467861 PMCID: PMC7236377 DOI: 10.1016/j.cophys.2019.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
We focus on three strategies for renal regenerative medicine; administering cells to replace damaged tissue, promoting endogenous regeneration, and growing stem cell-derived organs. Mouse kidney regeneration can be promoted by stem cells injected into the circulation which do not become new kidney tissue but seem to secrete regeneration-promoting humoral factors. This argues against direct replacement but encourages developing pharmacological stimulators of endogenous regeneration. Simple ‘kidneys’ have been made from stem cells, but there is a large gap between what has been achieved and a useful transplantable organ. Most current work aims to stimulate endogenous regeneration or to grow new organs but much remains to be done; misplaced hype about short-term prospects of regenerative medicine helps neither researchers nor patients.
Collapse
Affiliation(s)
- Jamie A Davies
- Deanery of Biomedical Sciences, University of Edinburgh, EH8 9XB, Edinburgh, UK
| | - Patricia Murray
- Department of Cellular and Molecular Physiology, University of Liverpool, UK.,Centre for Preclinical Imaging, University of Liverpool, UK
| | - Bettina Wilm
- Department of Cellular and Molecular Physiology, University of Liverpool, UK.,Centre for Preclinical Imaging, University of Liverpool, UK
| |
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW To discuss existing expectations from organoids and how they can affect biomedical research and society, and to analyse the current limitations and how they can potentially be overcome. RECENT FINDINGS Recent success with engineering human organoids has created great enthusiasm and expectations, especially for their potential as tissue substitutes. The most feasible applications for organoid technologies at the moment are: drug testing, disease modelling and studying of human development. SUMMARY Being able to engineer transplantable tissues in a dish would fundamentally change the way we conduct biomedical research and clinical practice, and impact important aspects of science and society - from animal experimentation to personalized medicine, bioethics, transplantation and gene therapy. However, whether organoids will soon be able to fulfil these expectations is still unclear, because of significant existing limitations. By answering a set of questions, here I will examine the expectations on the future of organoids and how they can affect the field and the society, I will analyse the most important limitations that still prevent the production of transplantable human tissues in a dish, and discuss possible solution strategies.
Collapse
|
14
|
Steichen C, Giraud S, Hauet T. Combining Kidney Organoids and Genome Editing Technologies for a Better Understanding of Physiopathological Mechanisms of Renal Diseases: State of the Art. Front Med (Lausanne) 2020; 7:10. [PMID: 32118002 PMCID: PMC7010937 DOI: 10.3389/fmed.2020.00010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 01/13/2020] [Indexed: 12/15/2022] Open
Abstract
Kidney organoids derived from pluripotent stem cells became a real alternative to the use of in vitro cellular models or in vivo animal models. Indeed, the comprehension of the key steps involved during kidney embryonic development led to the establishment of protocols enabling the differentiation of pluripotent stem cells into highly complex and organized structures, composed of various renal cell types. These organoids are linked with one major application based on iPSC technology advantage: the possibility to control iPSC genome, by selecting patients with specific disease or by genome editing tools such as CRISPR/Cas9 system. This allows the generation of kidney organoïds which recapitulate important physiopathological mechanisms such as cyst formation in renal polycystic disease for example. This review will focus on studies combining these both cutting edge technologies i.e., kidney organoid differentiation and genome editing and will describe what are the main advances performed in the comprehension of physiopathological mechanisms of renal diseases, as well as discuss remaining technical barriers and perspectives in the field.
Collapse
Affiliation(s)
- Clara Steichen
- INSERM U1082-IRTOMIT, Poitiers, France.,Université de Poitiers, Faculté de Médecine et de Pharmacie, Poitiers, France
| | - Sébastien Giraud
- INSERM U1082-IRTOMIT, Poitiers, France.,CHU Poitiers, Service de Biochimie, Poitiers, France
| | - Thierry Hauet
- INSERM U1082-IRTOMIT, Poitiers, France.,Université de Poitiers, Faculté de Médecine et de Pharmacie, Poitiers, France.,CHU Poitiers, Service de Biochimie, Poitiers, France
| |
Collapse
|
15
|
Nishikawa M, Sakai Y, Yanagawa N. Design and strategy for manufacturing kidney organoids. Biodes Manuf 2020. [DOI: 10.1007/s42242-020-00060-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Tan Z, Rak-Raszewska A, Skovorodkin I, Vainio SJ. Mouse Embryonic Stem Cell-Derived Ureteric Bud Progenitors Induce Nephrogenesis. Cells 2020; 9:E329. [PMID: 32023845 PMCID: PMC7072223 DOI: 10.3390/cells9020329] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/16/2020] [Accepted: 01/27/2020] [Indexed: 12/14/2022] Open
Abstract
Generation of kidney organoids from pluripotent stem cells (PSCs) is regarded as a potentially powerful way to study kidney development, disease, and regeneration. Direct differentiation of PSCs towards renal lineages is well studied; however, most of the studies relate to generation of nephron progenitor population from PSCs. Until now, differentiation of PSCs into ureteric bud (UB) progenitor cells has had limited success. Here, we describe a simple, efficient, and reproducible protocol to direct differentiation of mouse embryonic stem cells (mESCs) into UB progenitor cells. The mESC-derived UB cells were able to induce nephrogenesis when co-cultured with primary metanephric mesenchyme (pMM). In generated kidney organoids, the embryonic pMM developed nephron structures, and the mESC-derived UB cells formed numerous collecting ducts connected with the nephron tubules. Altogether, our study established an uncomplicated and reproducible platform to generate ureteric bud progenitors from mouse embryonic stem cells.
Collapse
Affiliation(s)
- Zenglai Tan
- Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, Laboratory of Developmental Biology, Infotech Oulu, University of Oulu, Aapistie 5A, 90220 Oulu, Finland; (A.R.-R.); (I.S.)
| | - Aleksandra Rak-Raszewska
- Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, Laboratory of Developmental Biology, Infotech Oulu, University of Oulu, Aapistie 5A, 90220 Oulu, Finland; (A.R.-R.); (I.S.)
| | - Ilya Skovorodkin
- Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, Laboratory of Developmental Biology, Infotech Oulu, University of Oulu, Aapistie 5A, 90220 Oulu, Finland; (A.R.-R.); (I.S.)
| | - Seppo J. Vainio
- Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, Laboratory of Developmental Biology, Infotech Oulu, University of Oulu, Aapistie 5A, 90220 Oulu, Finland; (A.R.-R.); (I.S.)
- Borealis Biobank of Northern Finland, Oulu Central Hospital, 90220 Oulu, Finland
| |
Collapse
|
17
|
Dapkunas A, Rantanen V, Gui Y, Lalowski M, Sainio K, Kuure S, Sariola H. Simple 3D culture of dissociated kidney mesenchyme mimics nephron progenitor niche and facilitates nephrogenesis Wnt-independently. Sci Rep 2019; 9:13433. [PMID: 31530822 PMCID: PMC6748995 DOI: 10.1038/s41598-019-49526-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 08/21/2019] [Indexed: 02/06/2023] Open
Abstract
Kidney mesenchyme (KM) and nephron progenitors (NPs) depend on WNT activity, and their culture in vitro requires extensive repertoire of recombinant proteins and chemicals. Here we established a robust, simple culture of mouse KM using a combination of 3D Matrigel and growth media supplemented with Fibroblast Growth Factor 2 (FGF2) and Src inhibitor PP2. This allows dissociated KM to spontaneously self-organize into spheres. To reassess the requirement of WNT activity in KM self-organization and NPs maintenance, cells were cultured with short pulse of high-dose GSK3β inhibitor BIO, on a constant low-dose or without BIO. Robust proliferation at 48 hours and differentiation at 1 week were observed in cultures with high BIO pulse. Importantly, dissociated KM cultured without BIO, similarly to that exposed to constant low dose of BIO, maintained NPs up to one week and spontaneously differentiated into nephron tubules at 3 weeks of culture. Our results show that KM is maintained and induced to differentiate in a simple culture system. They also imply that GSK3β/WNT-independent pathways contribute to the maintenance and induction of mouse KM. The robust and easy 3D culture enables further characterization of NPs, and may facilitate disease modeling when applied to human cells.
Collapse
Affiliation(s)
- Arvydas Dapkunas
- Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, FI-00014, Helsinki, Finland. .,Meilahti Clinical Proteomics Core Facility, Helsinki Institute of Life Science, University of Helsinki, FI-00014, Helsinki, Finland.
| | - Ville Rantanen
- Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, FI-00014, Helsinki, Finland.,Genome-Scale Biology Research Program, Faculty of Medicine, University of Helsinki, FI-00014, Helsinki, Finland
| | - Yujuan Gui
- Institute of Biotechnology, Helsinki Institute of Life Science, University of Helsinki, FI-00014, Helsinki, Finland
| | - Maciej Lalowski
- Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, FI-00014, Helsinki, Finland.,Meilahti Clinical Proteomics Core Facility, Helsinki Institute of Life Science, University of Helsinki, FI-00014, Helsinki, Finland
| | - Kirsi Sainio
- Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, FI-00014, Helsinki, Finland
| | - Satu Kuure
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, FI-00014, Helsinki, Finland.,GM-unit, Laboratory Animal Centre, Helsinki Institute of Life Science, University of Helsinki, FI-00014, Helsinki, Finland
| | - Hannu Sariola
- Biochemistry and Developmental Biology, Faculty of Medicine, University of Helsinki, FI-00014, Helsinki, Finland
| |
Collapse
|
18
|
Abstract
In this issue of Cell Stem Cell, Taguchi and Nishinakamura (2017) describe a carefully optimized method for making a branch-competent ureteric bud, a tissue fundamental to kidney development, from mouse embryonic stem cells and human induced pluripotent stem cells. The work illuminates embryology and has important implications for making more realistic kidney organoids.
Collapse
Affiliation(s)
- Jamie A Davies
- Biomedical Sciences, University of Edinburgh, Edinburgh EH8 9XD, UK.
| |
Collapse
|
19
|
Abstract
Kidney organoids are regarded as important tools with which to study the development of the normal and diseased human kidney. Since the first reports of human pluripotent stem cell-derived kidney organoids 5 years ago, kidney organoids have been successfully used to model glomerular and tubular diseases. In parallel, advances in single-cell RNA sequencing have led to identification of a variety of cell types in the organoids, and have shown these to be similar to, but more immature than, human kidney cells in vivo. Protocols for the in vitro expansion of stem cell-derived nephron progenitor cells (NPCs), as well as those for the selective induction of specific lineages, especially glomerular podocytes, have also been reported. Although most current organoids are based on the induction of NPCs, an induction protocol for ureteric buds (collecting duct precursors) has also been developed, and approaches to generate more complex kidney structures may soon be possible. Maturation of organoids is a major challenge, and more detailed analysis of the developing kidney at a single cell level is needed. Eventually, organotypic kidney structures equipped with nephrons, collecting ducts, ureters, stroma and vascular flow are required to generate transplantable kidneys; such attempts are in progress.
Collapse
|
20
|
Abstract
For studies of gene function during development, it can be very useful to generate mosaic embryos in which a small subset of cells in a given cell lineage lacks a gene of interest and carries a marker that allows the mutant cells to be specifically visualized and compared to wild-type cells. Several methods have been used to generate genetically mosaic mouse kidneys for such studies. These include (1) chimeric embryos generated using embryonic stem cells, (2) chimeric renal organoids generated by dissociation and reaggregation of the fetal kidneys, (3) generation of a knockout allele with a built-in reporter gene, (4) mosaic analysis with double markers (MADM), and (5) mosaic mutant analysis with spatial and temporal control of recombination (MASTR). In this chapter, these five methods are described, and their advantages and disadvantages are discussed.
Collapse
|
21
|
Abstract
This review focus on kidney organoids derived from pluripotent stem cells, which become a real alternative to the use of in vitro cellular models or in vivo animals models. The comprehension of the key steps involved during kidney embryonic development led to the establishment of protocols enabling the differentiation of pluripotent stem cells into kidney organoids that are highly complex and organized structures, composed of various renal cell types. These mini-organs are endowed with major applications: the possibility to control iPSC genome (by selecting patients with specific disease or by genome editing) allows the generation of kidney organoïds which recapitulate important physiopathological mechanisms such as cyste formation in renal polycystic disease. Kidney organoids can also be used in high-throughput screening to fasten the screening of nephrotoxic/therapeutic compounds. Finally, kidney organoids have a huge interest in the context of tissue repair, which remains for now a challenging goal linked with technological barriers that need still to be overcome.
Collapse
Affiliation(s)
- Clara Steichen
- Inserm U1082 - IRTOMIT (Ischémie reperfusion en transplantation d'organes mécanismes et innovations thérapeutiques), Poitiers, F-86000, France - Université de Poitiers, Faculté de médecine et de pharmacie, Poitiers, F-86000, France
| | - Sébastien Giraud
- Inserm U1082 - IRTOMIT (Ischémie reperfusion en transplantation d'organes mécanismes et innovations thérapeutiques), Poitiers, F-86000, France - CHU de Poitiers, service de biochimie, Poitiers, F-86000, France
| | - Thierry Hauet
- Inserm U1082 - IRTOMIT (Ischémie reperfusion en transplantation d'organes mécanismes et innovations thérapeutiques), Poitiers, F-86000, France - Université de Poitiers, Faculté de médecine et de pharmacie, Poitiers, F-86000, France - CHU de Poitiers, service de biochimie, Poitiers, F-86000, France
| |
Collapse
|
22
|
Murakami Y, Naganuma H, Tanigawa S, Fujimori T, Eto M, Nishinakamura R. Reconstitution of the embryonic kidney identifies a donor cell contribution to the renal vasculature upon transplantation. Sci Rep 2019; 9:1172. [PMID: 30718617 PMCID: PMC6362047 DOI: 10.1038/s41598-018-37793-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/14/2018] [Indexed: 01/08/2023] Open
Abstract
The kidney possesses a highly organised vasculature that is required for its filtration function. While recent advances in stem cell biology have enabled the in vitro generation of kidney tissues, at least partially, recapitulation of the complicated vascular architecture remains a huge challenge. Herein we develop a method to reconstitute both the kidney and its vascular architecture in vitro, using dissociated and sorted mouse embryonic kidney cells. Upon transplantation, arteriolar networks were re-established that ran through the interstitial space between branching ureteric buds and eventually entered glomeruli. Using this system, we found that donor-derived endothelial cells significantly contributed to the arterioles and glomerular capillaries formed after transplantation. Unexpectedly, the near-complete depletion of canonical endothelial cells from the donor embryonic kidney suggested the existence of unidentified donor-derived endothelial precursors that were negative for canonical endothelial markers, but still contributed significantly to the vasculature in the transplants. Thus, our protocol will serve as a useful platform for identification of renal endothelial precursors and induction of these precursors from pluripotent stem cells.
Collapse
Affiliation(s)
- Yoichi Murakami
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Hidekazu Naganuma
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, 860-0811, Japan
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Shunsuke Tanigawa
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, 860-0811, Japan
| | - Toshihiko Fujimori
- Division of Embryology, National Institute for Basic Biology, Aichi, 444-8787, Japan
| | - Masatoshi Eto
- Department of Urology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Ryuichi Nishinakamura
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, Kumamoto, 860-0811, Japan.
| |
Collapse
|
23
|
An optimal serum-free defined condition for in vitro culture of kidney organoids. Biochem Biophys Res Commun 2018; 501:996-1002. [DOI: 10.1016/j.bbrc.2018.05.098] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 05/15/2018] [Indexed: 12/21/2022]
|
24
|
Burton TP, Corcoran A, Callanan A. The effect of electrospun polycaprolactone scaffold morphology on human kidney epithelial cells. Biomed Mater 2017; 13:015006. [PMID: 29165317 DOI: 10.1088/1748-605x/aa8dde] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
There is a pressing need for further advancement in tissue engineering of functional organs with a view to providing a more clinically relevant model for drug development and reduce the dependence on organ donation. Polymer-based scaffolds, such as polycaprolactone (PCL), have been highlighted as a potential avenue for tissue engineered kidneys, but there is little investigation down this stream. Focus within kidney tissue engineering has been on two-dimensional cell culture and decellularised tissue. Electrospun polymer scaffolds can be created with a variety of fibre diameters and have shown a great potential in many areas. The variation in morphology of tissue engineering scaffold has been shown to effect the way cells behave and integrate. In this study we examined the cellular response to scaffold architecture of novel electrospun scaffold for kidney tissue engineering. Fibre diameters of 1.10 ± 0.16 μm and 4.49 ± 0.47 μm were used with three distinct scaffold architectures. Traditional random fibres were spun onto a mandrel rotating at 250 rpm, aligned at 1800 rpm with novel cryogenic fibres spun onto a mandrel loaded with dry ice rotating at 250 rpm. Human kidney epithelial cells were grown for 1 and 2 weeks. Fibre morphology had no effect of cell viability in scaffolds with a large fibre diameter but significant differences were seen in smaller fibres. Fibre diameter had a significant effect in aligned and cryogenic scaffold. Imaging detailed the differences in cell attachment due to scaffold differences. These results show that architecture of the scaffold has a profound effect on kidney cells; whether that is effects of fibre diameter on the cell attachment and viability or the effect of fibre arrangement on the distribution of cells and their alignment with fibres. Results demonstrate that PCL scaffolds have the capability to maintain kidney cells life and should be investigated further as a potential scaffold in kidney tissue engineering.
Collapse
Affiliation(s)
- Todd P Burton
- Institute for Bioengineering, School of Engineering, University of Edinburgh, Faraday Building, King's Buildings, EH9 3JL, United Kingdom
| | | | | |
Collapse
|
25
|
Taguchi A, Nishinakamura R. Higher-Order Kidney Organogenesis from Pluripotent Stem Cells. Cell Stem Cell 2017; 21:730-746.e6. [PMID: 29129523 DOI: 10.1016/j.stem.2017.10.011] [Citation(s) in RCA: 274] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 08/27/2017] [Accepted: 10/20/2017] [Indexed: 11/30/2022]
Abstract
Organogenesis generates higher-order structures containing functional subunits, connective components, and progenitor niches. Despite recent advances in organoid-based modeling of tissue development, recapitulating these complex configurations from pluripotent stem cells (PSCs) has remained challenging. In this study, we report assembly of kidney organoids that recapitulate embryonic branching morphogenesis. By studying the distinct origins and developmental processes of the ureteric bud, which contains epithelial kidney progenitors that undergo branching morphogenesis and thereby plays a central role in orchestrating organ geometry, and neighboring mesenchymal nephron progenitors, we established a protocol for differential induction of each lineage from mouse and human PSCs. Importantly, reassembled organoids developed the inherent architectures of the embryonic kidney, including the peripheral progenitor niche and internally differentiated nephrons that were interconnected by a ramified ureteric epithelium. This selective induction and reassembly strategy will be a powerful approach to recapitulate organotypic architecture in PSC-derived organoids.
Collapse
Affiliation(s)
- Atsuhiro Taguchi
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan.
| | - Ryuichi Nishinakamura
- Department of Kidney Development, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan.
| |
Collapse
|
26
|
Asymmetric BMP4 signalling improves the realism of kidney organoids. Sci Rep 2017; 7:14824. [PMID: 29093551 PMCID: PMC5665994 DOI: 10.1038/s41598-017-14809-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/13/2017] [Indexed: 11/25/2022] Open
Abstract
We present a strategy for increasing the anatomical realism of organoids by applying asymmetric cues to mimic spatial information that is present in natural embryonic development, and demonstrate it using mouse kidney organoids. Existing methods for making kidney organoids in mice yield developing nephrons arranged around a symmetrical collecting duct tree that has no ureter. We use transplant experiments to demonstrate plasticity in the fate choice between collecting duct and ureter, and show that an environment rich in BMP4 promotes differentiation of early collecting ducts into uroplakin-positive, unbranched, ureter-like epithelial tubules. Further, we show that application of BMP4-releasing beads in one place in an organoid can break the symmetry of the system, causing a nearby collecting duct to develop into a uroplakin-positive, broad, unbranched, ureter-like ‘trunk’ from one end of which true collecting duct branches radiate and induce nephron development in an arrangement similar to natural kidneys. The idea of using local symmetry-breaking cues to improve the realism of organoids may have applications to organoid systems other than the kidney.
Collapse
|
27
|
Davies JA. Adaptive self-organization in the embryo: its importance to adult anatomy and to tissue engineering. J Anat 2017; 232:524-533. [PMID: 29023694 PMCID: PMC5835792 DOI: 10.1111/joa.12691] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2017] [Indexed: 02/02/2023] Open
Abstract
The anatomy of healthy humans shows much minor variation, and twin‐studies reveal at least some of this variation cannot be explained genetically. A plausible explanation is that fine‐scale anatomy is not specified directly in a genetic programme, but emerges from self‐organizing behaviours of cells that, for example, place a new capillary where it happens to be needed to prevent local hypoxia. Self‐organizing behaviour can be identified by manipulating growing tissues (e.g. putting them under a spatial constraint) and observing an adaptive change that conserves the character of the normal tissue while altering its precise anatomy. Self‐organization can be practically useful in tissue engineering but it is limited; generally, it is good for producing realistic small‐scale anatomy but large‐scale features will be missing. This is because self‐organizing organoids miss critical symmetry‐breaking influences present in the embryo: simulating these artificially, for example, with local signal sources, makes anatomy realistic even at large scales. A growing understanding of the mechanisms of self‐organization is now allowing synthetic biologists to take their first tentative steps towards constructing artificial multicellular systems that spontaneously organize themselves into patterns, which may soon be extended into three‐dimensional shapes.
Collapse
Affiliation(s)
- Jamie A Davies
- Deanery of Biomedical Sciences, University of Edinburgh Medical School, Edinburgh, UK
| |
Collapse
|
28
|
The inter-dependence of basic and applied biomedical sciences: Lessons from kidney development and tissue-engineering. Porto Biomed J 2017; 2:136-139. [PMID: 32258606 DOI: 10.1016/j.pbj.2017.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
29
|
Lefevre JG, Chiu HS, Combes AN, Vanslambrouck JM, Ju A, Hamilton NA, Little MH. Self-organisation after embryonic kidney dissociation is driven via selective adhesion of ureteric epithelial cells. Development 2017; 144:1087-1096. [PMID: 28174247 DOI: 10.1242/dev.140228] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 01/12/2017] [Indexed: 12/19/2022]
Abstract
Human pluripotent stem cells, after directed differentiation in vitro, can spontaneously generate complex tissues via self-organisation of the component cells. Self-organisation can also reform embryonic organ structure after tissue disruption. It has previously been demonstrated that dissociated embryonic kidneys can recreate component epithelial and mesenchymal relationships sufficient to allow continued kidney morphogenesis. Here, we investigate the timing and underlying mechanisms driving self-organisation after dissociation of the embryonic kidney using time-lapse imaging, high-resolution confocal analyses and mathematical modelling. Organotypic self-organisation sufficient for nephron initiation was observed within a 24 h period. This involved cell movement, with structure emerging after the clustering of ureteric epithelial cells, a process consistent with models of random cell movement with preferential cell adhesion. Ureteric epithelialisation rapidly followed the formation of ureteric cell clusters with the reformation of nephron-forming niches representing a later event. Disruption of P-cadherin interactions was seen to impair this ureteric epithelial cell clustering without affecting epithelial maturation. This understanding could facilitate improved regulation of patterning within organoids and facilitate kidney engineering approaches guided by cell-cell self-organisation.
Collapse
Affiliation(s)
- James G Lefevre
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Han S Chiu
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Alexander N Combes
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane 4072, Australia.,Department of Anatomy and Neuroscience, Faculty of Science, University of Melbourne, Parkville 3052, Australia.,Murdoch Children's Research Institute, Parkville, Melbourne 3052, Australia
| | - Jessica M Vanslambrouck
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane 4072, Australia.,Murdoch Children's Research Institute, Parkville, Melbourne 3052, Australia
| | - Ali Ju
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane 4072, Australia.,Translational Research Institute, Woolloongabba, Brisbane 4102, Australia
| | - Nicholas A Hamilton
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Melissa H Little
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane 4072, Australia.,Murdoch Children's Research Institute, Parkville, Melbourne 3052, Australia.,Department of Pediatrics, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Parkville 3052, Australia
| |
Collapse
|
30
|
In Vitro Propagation and Branching Morphogenesis from Single Ureteric Bud Cells. Stem Cell Reports 2017; 8:401-416. [PMID: 28089670 PMCID: PMC5311471 DOI: 10.1016/j.stemcr.2016.12.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/12/2016] [Accepted: 12/13/2016] [Indexed: 01/10/2023] Open
Abstract
A method to maintain and rebuild ureteric bud (UB)-like structures from UB cells in vitro could provide a useful tool for kidney regeneration. We aimed in our present study to establish a serum-free culture system that enables the expansion of UB progenitor cells, i.e., UB tip cells, and reconstruction of UB-like structures. We found that fibroblast growth factors or retinoic acid (RA) was sufficient for the survival of UB cells in serum-free condition, while the proliferation and maintenance of UB tip cells required glial cell-derived neurotrophic factor together with signaling from either WNT-β-catenin pathway or RA. The activation of WNT-β-catenin signaling in UB cells by endogenous WNT proteins required R-spondins. Together with Rho kinase inhibitor, our culture system facilitated the expansion of UB tip cells to form UB-like structures from dispersed single cells. The UB-like structures thus formed retained the original UB characteristics and integrated into the native embryonic kidneys. FGFs and RA signaling sustain UB cell survival in serum-free culture condition WNT-β-catenin and RA signaling maintain the expansion of UB tip cells WNT proteins in UB cells activate WNT-β-catenin signaling through R-spondins Single UB cells form UB-like structures in vitro that integrate into native kidneys
Collapse
|
31
|
Takasato M, Little MH. A strategy for generating kidney organoids: Recapitulating the development in human pluripotent stem cells. Dev Biol 2016; 420:210-220. [PMID: 27565022 PMCID: PMC6186756 DOI: 10.1016/j.ydbio.2016.08.024] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/19/2016] [Accepted: 08/21/2016] [Indexed: 02/06/2023]
Abstract
Directed differentiation of human pluripotent stem cells (hPSCs) can provide us any required tissue/cell types by recapitulating the development in vitro. The kidney is one of the most challenging organs to generate from hPSCs as the kidney progenitors are composed of at least 4 different cell types, including nephron, collecting duct, endothelial and interstitium progenitors, that are developmentally distinguished populations. Although the actual developmental process of the kidney during human embryogenesis has not been clarified yet, studies using model animals accumulated knowledge about the origins of kidney progenitors. The implications of these findings for the directed differentiation of hPSCs into the kidney include the mechanism of the intermediate mesoderm specification and its patterning along with anteroposterior axis. Using this knowledge, we previously reported successful generation of hPSCs-derived kidney organoids that contained all renal components and modelled human kidney development in vitro. In this review, we explain the developmental basis of the strategy behind this differentiation protocol and compare strategies of studies that also recently reported the induction of kidney cells from hPSCs. We also discuss the characterization of such kidney organoids and limitations and future applications of this technology.
Collapse
Affiliation(s)
- Minoru Takasato
- Murdoch Childrens Research Institute, Parkville, Victoria 3052, Australia; RIKEN Center for Developmental Biology, Kobe 650-0047, Japan.
| | - Melissa H Little
- Murdoch Childrens Research Institute, Parkville, Victoria 3052, Australia; Department of Pediatrics, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
32
|
Abstract
Worldwide, increasing numbers of patients are developing end-stage renal disease, and at present, the only treatment options are dialysis or kidney transplantation. Dialysis is associated with increased morbidity and mortality, poor life quality and high economic costs. Transplantation is by far the better option, but there are insufficient numbers of donor kidneys available. Therefore, there is an urgent need to explore alternative approaches. In this review, we discuss how this problem could potentially be addressed by using autologous cells and appropriate scaffolds to develop 'bioengineered' kidneys for transplantation. In particular, we will highlight recent breakthroughs in pluripotent stem cell biology that have led to the development of autologous renal progenitor cells capable of differentiating to all renal cell types and will discuss how these cells could be combined with appropriate scaffolds to develop a bioengineered kidney.
Collapse
Affiliation(s)
- Bettina Wilm
- Institute of Translational Medicine, Centre for Preclinical Imaging, University of Liverpool, Crown Street, Liverpool, L69 3BX UK
| | - Riccardo Tamburrini
- Department of Surgery, Section of Transplantation, Wake Forest School of Medicine,Wake Forest Baptist Hospital, Medical Center Blvd, Winston Salem, NC 27157 USA
| | - Giuseppe Orlando
- Department of Surgery, Section of Transplantation, Wake Forest School of Medicine,Wake Forest Baptist Hospital, Medical Center Blvd, Winston Salem, NC 27157 USA
| | - Patricia Murray
- Institute of Translational Medicine, Centre for Preclinical Imaging, University of Liverpool, Crown Street, Liverpool, L69 3BX UK
| |
Collapse
|
33
|
Leclerc K, Costantini F. Mosaic analysis of cell rearrangements during ureteric bud branching in dissociated/reaggregated kidney cultures and in vivo. Dev Dyn 2016; 245:483-96. [PMID: 26813041 PMCID: PMC4803602 DOI: 10.1002/dvdy.24387] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 01/13/2016] [Accepted: 01/13/2016] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Cell rearrangements mediated by GDNF/Ret signaling underlie the formation of the ureteric bud (UB) tip domain during kidney development. Whether FGF signaling also influences these rearrangements is unknown. Chimeric embryos are a powerful tool for examining the genetic controls of cellular behaviors, but generating chimeras by traditional methods is expensive and laborious. Dissociated fetal kidney cells can reorganize to form complex structures including branching UB tubules, providing an easier method to generate renal chimeras. RESULTS Cell behaviors in normal or chimeric kidney cultures were investigated using time-lapse imaging. In Spry1(-/-) ↔ wild-type chimeras, cells lacking Spry1 (a negative regulator of Ret and FGF receptor signaling) preferentially occupied the UB tips, as previously observed in traditional chimeras, thus validating this experimental system. In Fgfr2(UB-/-) ↔ wild-type chimeras, the wild-type cells preferentially occupied the tips. Independent evidence for a role of Fgfr2 in UB tip formation was obtained using Mosaic mutant Analysis with Spatial and Temporal control of Recombination (MASTR). CONCLUSIONS Dissociation and reaggregation of fetal kidney cells of different genotypes, with suitable fluorescent markers, provides an efficient way to analyze cell behaviors in chimeric cultures. FGF/Fgfr2 signaling promotes UB cell rearrangements that form the tip domain, similarly to GDNF/Ret signaling.
Collapse
Affiliation(s)
- Kevin Leclerc
- Department of Genetics and Development, Columbia University Medical Center, 701 W. 168 Street, New York, NY 10032
| | - Frank Costantini
- Department of Genetics and Development, Columbia University Medical Center, 701 W. 168 Street, New York, NY 10032
| |
Collapse
|
34
|
Davies JA. Self-organized Kidney Rudiments: Prospects for Better in vitro Nephrotoxicity Assays. Biomark Insights 2015; 10:117-23. [PMID: 26244008 PMCID: PMC4507472 DOI: 10.4137/bmi.s20056] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/08/2015] [Accepted: 03/11/2015] [Indexed: 12/29/2022] Open
Abstract
Kidneys are essential to life but vulnerable to a range of toxicants, including therapeutic drugs and their metabolites. Indeed, nephrotoxicity is often a limiting factor in both drug use and drug development. Most toxicants damage kidneys by one of four mechanisms: damage to the membrane and its junctions, oxidative stress and free radical generation, activation of inflammatory processes, and interference with vascular regulation. Traditionally, animal models were used in preclinical screening for nephrotoxicity, but these can be poorly predictive of human reactions. Animal screens have been joined by simple single-cell–type in vitro assays using primary or immortalized human cells, particularly proximal tubule cells as these are especially vulnerable to toxicants. Recent research, aimed mainly at engineering new kidneys for transplant purposes, has resulted in a method for constructing anatomically realistic mini-kidneys from renogenic stem cells. So far, this has been done only using renogenic stem cells obtained directly from mouse embryos but, in principle, it should be possible to make them from renogenically directed human-induced pluripotent cells. If this can be done, the resulting human-based mini-kidneys would be a promising system for detecting some types of nephrotoxicity and for developing nephroprotective drugs.
Collapse
Affiliation(s)
- Jamie A Davies
- Centre for Integrative Physiology, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
35
|
Yuri S, Nishikawa M, Yanagawa N, Jo OD, Yanagawa N. Maintenance of Mouse Nephron Progenitor Cells in Aggregates with Gamma-Secretase Inhibitor. PLoS One 2015; 10:e0129242. [PMID: 26075891 PMCID: PMC4468097 DOI: 10.1371/journal.pone.0129242] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 05/06/2015] [Indexed: 01/27/2023] Open
Abstract
Knowledge on how to maintain and expand nephron progenitor cells (NPC) in vitro is important to provide a potentially valuable source for kidney replacement therapies. In our present study, we examined the possibility of optimizing NPC maintenance in the "re-aggregate" system. We found that Six2-expressing (Six2(+))-NPC could be maintained in aggregates reconstituted with dispersed cells from E12.5 mouse embryonic kidneys for at least up to 21 days in culture. The maintenance of Six2(+)-NPC required the presence of ureteric bud cells. The number of Six2(+)-NPC increased by more than 20-fold at day 21, but plateaued after day 14. In an attempt to further sustain NPC proliferation by passage subculture, we found that the new (P1) aggregates reconstituted from the original (P0) aggregates failed to maintain NPC. However, based on the similarity between P1 aggregates and aggregates derived from E15.5 embryonic kidneys, we suspected that the differentiated NPC in P1 aggregates may interfere with NPC maintenance. In support of this notion, we found that preventing NPC differentiation by DAPT, a γ-secretase inhibitor that inhibits Notch signaling pathway, was effective to maintain and expand Six2(+)-NPC in P1 aggregates by up to 65-fold. The Six2(+)-NPC in P1 aggregates retained their potential to epithelialize upon exposure to Wnt signal. In conclusion, we demonstrated in our present study that the "re-aggregation" system can be useful for in vitro maintenance of NPC when combined with γ-secretase inhibitor.
Collapse
Affiliation(s)
- Shunsuke Yuri
- Medical and Research Services, Greater Los Angeles Veterans Affairs Healthcare System at Sepulveda, North Hills, California, United States of America
- University of California at Los Angeles, David Geffen School of Medicine, Los Angeles, California, United States of America
- * E-mail: (SY); (NY)
| | - Masaki Nishikawa
- Medical and Research Services, Greater Los Angeles Veterans Affairs Healthcare System at Sepulveda, North Hills, California, United States of America
- University of California at Los Angeles, David Geffen School of Medicine, Los Angeles, California, United States of America
| | - Naomi Yanagawa
- Medical and Research Services, Greater Los Angeles Veterans Affairs Healthcare System at Sepulveda, North Hills, California, United States of America
- University of California at Los Angeles, David Geffen School of Medicine, Los Angeles, California, United States of America
| | - Oak D. Jo
- Medical and Research Services, Greater Los Angeles Veterans Affairs Healthcare System at Sepulveda, North Hills, California, United States of America
- University of California at Los Angeles, David Geffen School of Medicine, Los Angeles, California, United States of America
| | - Norimoto Yanagawa
- Medical and Research Services, Greater Los Angeles Veterans Affairs Healthcare System at Sepulveda, North Hills, California, United States of America
- University of California at Los Angeles, David Geffen School of Medicine, Los Angeles, California, United States of America
- * E-mail: (SY); (NY)
| |
Collapse
|
36
|
Transport of organic anions and cations in murine embryonic kidney development and in serially-reaggregated engineered kidneys. Sci Rep 2015; 5:9092. [PMID: 25766625 PMCID: PMC4357899 DOI: 10.1038/srep09092] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 02/17/2015] [Indexed: 01/11/2023] Open
Abstract
Recent advances in renal tissue engineering have shown that dissociated, early renogenic tissue from the developing embryo can self-assemble into morphologically accurate kidney-like organs arranged around a central collecting duct tree. In order for such self-assembled kidneys to be useful therapeutically or as models for drug screening, it is necessary to demonstrate that they are functional. One of the main functional characteristics of mature kidneys is transport of organic anions and cations into and out of the proximal tubule. Here, we show that the transport function of embryonic kidneys allowed to develop in culture follows a developmental time-course that is comparable to embryonic kidney development in vivo. We also demonstrate that serially-reaggregated engineered kidneys can transport organic anions and cations through specific uptake and efflux channels. These results support the physiological relevance of kidneys grown in culture, a commonly used model for kidney development and research, and suggest that serially-reaggregated kidneys self-assembled from separated cells have some functional characteristics of intact kidneys.
Collapse
|
37
|
Abstract
The mammalian kidney forms via cell-cell interactions between an epithelial outgrowth of the nephric duct and the surrounding nephrogenic mesenchyme. Initial morphogenetic events include ureteric bud branching to form the collecting duct (CD) tree and mesenchymal-to-epithelial transitions to form the nephrons, requiring reciprocal induction between adjacent mesenchyme and epithelial cells. Within the tips of the branching ureteric epithelium, cells respond to mesenchyme-derived trophic factors by proliferation, migration, and mitosis-associated cell dispersal. Self-inhibition signals from one tip to another play a role in branch patterning. The position, survival, and fate of the nephrogenic mesenchyme are regulated by ECM and secreted signals from adjacent tip and stroma. Signals from the ureteric tip promote mesenchyme self-renewal and trigger nephron formation. Subsequent fusion to the CDs, nephron segmentation and maturation, and formation of a patent glomerular basement membrane also require specialized cell-cell interactions. Differential cadherin, laminin, nectin, and integrin expression, as well as intracellular kinesin and actin-mediated regulation of cell shape and adhesion, underlies these cell-cell interactions. Indeed, the capacity for the kidney to form via self-organization has now been established both via the recapitulation of expected morphogenetic interactions after complete dissociation and reassociation of cellular components during development as well as the in vitro formation of 3D kidney organoids from human pluripotent stem cells. As we understand more about how the many cell-cell interactions required for kidney formation operate, this enables the prospect of bioengineering replacement structures based on these self-organizing properties.
Collapse
|
38
|
Peloso A, Katari R, Murphy SV, Zambon JP, DeFrancesco A, Farney AC, Rogers J, Stratta RJ, Manzia TM, Orlando G. Prospect for kidney bioengineering: shortcomings of the status quo. Expert Opin Biol Ther 2015; 15:547-58. [PMID: 25640286 DOI: 10.1517/14712598.2015.993376] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Dialysis and renal transplantation are the only two therapeutic options offered to patients affected by end-stage kidney disease; however, neither treatment can be considered definitive. In fact, dialysis is able to replace only the filtration function of the kidney without substituting its endocrine and metabolic roles, and dramatically impacts on patient's quality of life. On the other hand, kidney transplantation is severely limited by the shortage of transplantable organs, the need for immunosuppressive therapies and a narrow half-life. Regenerative medicine approaches are promising tools aiming to improve this condition. AREAS COVERED Cell therapies, bioartificial kidney, organ bioengineering, 3D printer and kidney-on-chip represent the most appealing areas of research for the treatment of end-stage kidney failure. The scope of this review is to summarize the state of the art, limits and directions of each branch. EXPERT OPINION In the future, these emerging technologies could provide definitive, curative and theoretically infinite options for the treatment of end-stage kidney disease. Progress in stem cells-based therapies, decellularization techniques and the more recent scientific know-how for the use of the 3D printer and kidney-on-chip could lead to a perfect cellular-based therapy, the futuristic creation of a bioengineered kidney in the lab or to a valid bioartificial alternative.
Collapse
Affiliation(s)
- Andrea Peloso
- Wake Forest School of Medicine , Winston-Salem, NC , USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Shamir ER, Ewald AJ. Three-dimensional organotypic culture: experimental models of mammalian biology and disease. Nat Rev Mol Cell Biol 2014; 15:647-64. [PMID: 25237826 PMCID: PMC4352326 DOI: 10.1038/nrm3873] [Citation(s) in RCA: 517] [Impact Index Per Article: 47.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mammalian organs are challenging to study as they are fairly inaccessible to experimental manipulation and optical observation. Recent advances in three-dimensional (3D) culture techniques, coupled with the ability to independently manipulate genetic and microenvironmental factors, have enabled the real-time study of mammalian tissues. These systems have been used to visualize the cellular basis of epithelial morphogenesis, to test the roles of specific genes in regulating cell behaviours within epithelial tissues and to elucidate the contribution of microenvironmental factors to normal and disease processes. Collectively, these novel models can be used to answer fundamental biological questions and generate replacement human tissues, and they enable testing of novel therapeutic approaches, often using patient-derived cells.
Collapse
Affiliation(s)
- Eliah R Shamir
- Departments of Cell Biology and Oncology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University, 855 North Wolfe Street, Baltimore, Maryland 21205, USA
| | - Andrew J Ewald
- Departments of Cell Biology and Oncology, Center for Cell Dynamics, School of Medicine, Johns Hopkins University, 855 North Wolfe Street, Baltimore, Maryland 21205, USA
| |
Collapse
|
40
|
Davies JA, Chang CH, Lawrence ML, Mills CG, Mullins JJ. Engineered kidneys: principles, progress, and prospects. ACTA ACUST UNITED AC 2014. [DOI: 10.3402/arb.v1.24990] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
41
|
Junttila S, Saarela U, Halt K, Manninen A, Pärssinen H, Lecca MR, Brändli AW, Sims-Lucas S, Skovorodkin I, Vainio SJ. Functional genetic targeting of embryonic kidney progenitor cells ex vivo. J Am Soc Nephrol 2014; 26:1126-37. [PMID: 25201883 DOI: 10.1681/asn.2013060584] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 07/23/2014] [Indexed: 01/11/2023] Open
Abstract
The embryonic mammalian metanephric mesenchyme (MM) is a unique tissue because it is competent to generate the nephrons in response to Wnt signaling. An ex vivo culture in which the MM is separated from the ureteric bud (UB), the natural inducer, can be used as a classic tubule induction model for studying nephrogenesis. However, technological restrictions currently prevent using this model to study the molecular genetic details before or during tubule induction. Using nephron segment-specific markers, we now show that tubule induction in the MM ex vivo also leads to the assembly of highly segmented nephrons. This induction capacity was reconstituted when MM tissue was dissociated into a cell suspension and then reaggregated (drMM) in the presence of human recombinant bone morphogenetic protein 7/human recombinant fibroblast growth factor 2 for 24 hours before induction. Growth factor-treated drMM also recovered the capacity for organogenesis when recombined with the UB. Cell tracking and time-lapse imaging of chimeric drMM cultures indicated that the nephron is not derived from a single progenitor cell. Furthermore, viral vector-mediated transduction of green fluorescent protein was much more efficient in dissociated MM cells than in intact mesenchyme, and the nephrogenic competence of transduced drMM progenitor cells was preserved. Moreover, drMM cells transduced with viral vectors mediating Lhx1 knockdown were excluded from the nephric tubules, whereas cells transduced with control vectors were incorporated. In summary, these techniques allow reproducible cellular and molecular examinations of the mechanisms behind nephrogenesis and kidney organogenesis in an ex vivo organ culture/organoid setting.
Collapse
Affiliation(s)
- Sanna Junttila
- Biocenter Oulu, Infotech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Ulla Saarela
- Biocenter Oulu, Infotech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Kimmo Halt
- Biocenter Oulu, Infotech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Aki Manninen
- Biocenter Oulu, Infotech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Heikki Pärssinen
- Biocenter Oulu, Infotech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - M Rita Lecca
- Functional Genomics Center Zurich, University of Zurich/ETH Zurich, Zurich, Switzerland
| | - André W Brändli
- Walter-Brendel-Centre of Experimental Medicine, Ludwig-Maximilians-University of Munich, Munich, Germany; and
| | - Sunder Sims-Lucas
- Rangos Research Center, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania
| | - Ilya Skovorodkin
- Biocenter Oulu, Infotech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Seppo J Vainio
- Biocenter Oulu, Infotech Oulu, Center for Cell Matrix Research, Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland;
| |
Collapse
|
42
|
Davies J. Engineered renal tissue as a potential platform for pharmacokinetic and nephrotoxicity testing. Drug Discov Today 2014; 19:725-9. [PMID: 24201224 PMCID: PMC7615218 DOI: 10.1016/j.drudis.2013.10.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/01/2013] [Accepted: 10/25/2013] [Indexed: 12/30/2022]
Abstract
Pharmacology and regenerative medicine interact in two ways. One is the use of drugs to promote tissue regeneration. The other, less obvious but with great potential, is the use of techniques developed for regenerative medicine to engineer realistic human organoids for drug screening. This review focuses on testing for nephrotoxicity, often a problem with drugs and poorly predicted in animals. Current human-based screens mainly use proximal tubule cells growing in 2D monolayers. Realism might be improved by collagen-based culture systems that encourage proximal tubule cells to grow as tubules. More realistic would be a recently developed technique for engineering functioning 'mini-kidneys' from suspensions of stem cells, a technique that works in mouse but that could also be applied to humans.
Collapse
|
43
|
Xinaris C, Yokoo T. Reforming the kidney starting from a single-cell suspension. Nephron Clin Pract 2014; 126:107. [PMID: 24854651 DOI: 10.1159/000360682] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Chronic kidney disease affects 5-7% of people worldwide. The increasing number of patients and the shortage of transplantable organs create an imperative need to develop new methods for generating kidney tissue. SUMMARY Recent advances in our understanding of the developmental biology of the kidney, along with the establishment of novel methodologies in the field of regenerative medicine, have created significant potential for kidney regeneration. These advances incorporate both transplantation of metanephric primordia into adult recipients and construction of 'fetal' kidney tissue from suspensions of single cells of metanephric origin. This paper examines these approaches in the context of organ regeneration. KEY MESSAGES The use of transplants of metanephric origin has the advantage over undifferentiated stem cells of already being committed to a renal developmental program. Although several technical difficulties remain to be overcome, the validation of these systems in preclinical models of renal disease will be of decisive importance in the coming years.
Collapse
Affiliation(s)
- Christodoulos Xinaris
- IRCCS - Istituto di Ricerche Farmacologiche 'Mario Negri', Centro Anna Maria Astori, Science and Technology Park Kilometro Rosso, Bergamo, Italy
| | | |
Collapse
|
44
|
Costantini F. Genetic controls and cellular behaviors in branching morphogenesis of the renal collecting system. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2014; 1:693-713. [PMID: 22942910 DOI: 10.1002/wdev.52] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The mammalian kidney, which at maturity contains thousands of nephrons joined to a highly branched collecting duct (CD) system, is an important model system for studying the development of a complex organ. Furthermore, congenital anomalies of the kidney and urinary tract, often resulting from defects in ureteric bud branching morphogenesis, are relatively common human birth defects. Kidney development is initiated by interactions between the nephric duct and the metanephric mesenchyme, leading to the outgrowth and repeated branching of the ureteric bud epithelium, which gives rise to the entire renal CD system. Meanwhile, signals from the ureteric bud induce the mesenchyme cells to form the nephron epithelia. This review focuses on development of the CD system, with emphasis on the mouse as an experimental system. The major topics covered include the origin and development of the nephric duct, formation of the ureteric bud, branching morphogenesis of the ureteric bud, and elongation of the CDs. The signals, receptors, transcription factors, and other regulatory molecules implicated in these processes are discussed. In addition, our current knowledge of cellular behaviors that are controlled by these genes and underlie development of the collecting system is reviewed.
Collapse
Affiliation(s)
- Frank Costantini
- Department of Genetics and Development, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
45
|
Hauser PV, Nishikawa M, Kimura H, Fujii T, Yanagawa N. Controlled tubulogenesis from dispersed ureteric bud-derived cells using a micropatterned gel. J Tissue Eng Regen Med 2014; 10:762-71. [DOI: 10.1002/term.1871] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 11/15/2013] [Accepted: 01/02/2014] [Indexed: 11/12/2022]
Affiliation(s)
- Peter V. Hauser
- Renal Regeneration Laboratory; VAGLAHS at Sepulveda; North Hills CA USA
- David Geffen School of Medicine; University of California at Los Angeles; CA USA
| | - Masaki Nishikawa
- Renal Regeneration Laboratory; VAGLAHS at Sepulveda; North Hills CA USA
- David Geffen School of Medicine; University of California at Los Angeles; CA USA
| | - Hiroshi Kimura
- Institute of Industrial Science; University of Tokyo; Japan
| | - Teruo Fujii
- Institute of Industrial Science; University of Tokyo; Japan
| | - Norimoto Yanagawa
- Renal Regeneration Laboratory; VAGLAHS at Sepulveda; North Hills CA USA
- David Geffen School of Medicine; University of California at Los Angeles; CA USA
| |
Collapse
|
46
|
Davies JA, Chang CH. Engineering kidneys from simple cell suspensions: an exercise in self-organization. Pediatr Nephrol 2014; 29:519-24. [PMID: 23989397 PMCID: PMC3928531 DOI: 10.1007/s00467-013-2579-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 06/28/2013] [Accepted: 07/12/2013] [Indexed: 02/06/2023]
Abstract
Increasing numbers of people approaching and living with end-stage renal disease and failure of the supply of transplantable kidneys to keep pace has created an urgent need for alternative sources of new organs. One possibility is tissue engineering of new organs from stem cells. Adult kidneys are arguably too large and anatomically complex for direct construction, but engineering immature kidneys, transplanting them, and allowing them to mature within the host may be more feasible. In this review, we describe a technique that begins with a suspension of renogenic stem cells and promotes these cells' self-organization into organ rudiments very similar to foetal kidneys, with a collecting duct tree, nephrons, corticomedullary zonation and extended loops of Henle. The engineered rudiments vascularize when transplanted to appropriate vessel-rich sites in bird eggs or adult animals, and show preliminary evidence for physiological function. We hope that this approach might one day be the basis of a clinically useful technique for renal replacement therapy.
Collapse
|
47
|
Chang CH, Davies JA. An improved method of renal tissue engineering, by combining renal dissociation and reaggregation with a low-volume culture technique, results in development of engineered kidneys complete with loops of Henle. Nephron Clin Pract 2012; 121:e79-85. [PMID: 23235540 DOI: 10.1159/000345514] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 10/23/2012] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Tissue engineering of functional kidney tissue is an important goal for clinical restoration of renal function in patients damaged by infectious, toxicological, or genetic disease. One promising approach is the use of the self-organizing abilities of embryonic kidney cells to arrange themselves, from a simply reaggregated cell suspension, into engineered organs similar to fetal kidneys. The previous state-of-the-art method for this results in the formation of a branched collecting duct tree, immature nephrons (S-shaped bodies) beside and connected to it, and supportive stroma. It does not, though, result in the significant formation of morphologically detectable loops of Henle - anatomical features of the nephron that are critical to physiological function. METHODS We have combined the best existing technique for renal tissue engineering from cell suspensions with a low-volume culture technique that allows intact kidney rudiments to make loops of Henle to test whether engineered kidneys can produce these loops. RESULTS The result is the formation of loops of Henle in engineered cultured 'fetal kidneys', very similar in both morphology and in number to those formed by intact organ rudiments. CONCLUSION This brings the engineering technique one important step closer to production of a fully realistic organ.
Collapse
Affiliation(s)
- C-Hong Chang
- University of Edinburgh Centre for Integrative Physiology, Edinburgh, UK.
| | | |
Collapse
|
48
|
D'Agati VD. Growing new kidneys from embryonic cell suspensions: fantasy or reality? J Am Soc Nephrol 2012; 23:1763-6. [PMID: 23085630 DOI: 10.1681/asn.2012090888] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
|
49
|
Xinaris C, Benedetti V, Rizzo P, Abbate M, Corna D, Azzollini N, Conti S, Unbekandt M, Davies JA, Morigi M, Benigni A, Remuzzi G. In vivo maturation of functional renal organoids formed from embryonic cell suspensions. J Am Soc Nephrol 2012; 23:1857-68. [PMID: 23085631 DOI: 10.1681/asn.2012050505] [Citation(s) in RCA: 129] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The shortage of transplantable organs provides an impetus to develop tissue-engineered alternatives. Producing tissues similar to immature kidneys from simple suspensions of fully dissociated embryonic renal cells is possible in vitro, but glomeruli do not form in the avascular environment. Here, we constructed renal organoids from single-cell suspensions derived from E11.5 kidneys and then implanted these organoids below the kidney capsule of a living rat host. This implantation resulted in further maturation of kidney tissue, formation of vascularized glomeruli with fully differentiated capillary walls, including the slit diaphragm, and appearance of erythropoietin-producing cells. The implanted tissue exhibited physiologic functions, including tubular reabsorption of macromolecules, that gained access to the tubular lumen on glomerular filtration. The ability to generate vascularized nephrons from single-cell suspensions marks a significant step to the long-term goal of replacing renal function by a tissue-engineered kidney.
Collapse
Affiliation(s)
- Christodoulos Xinaris
- Department of Molecular Medicine, Mario Negri Institute for Pharmacological Research, Bergamo, Italy.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Basu J, Ludlow JW. Developmental engineering the kidney: leveraging principles of morphogenesis for renal regeneration. ACTA ACUST UNITED AC 2012; 96:30-8. [PMID: 22457175 DOI: 10.1002/bdrc.20224] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multiple methodological approaches are currently under active development for application in tissue engineering and regenerative medicine of tubular and solid organs. Most recently, developmental engineering (TE/RM), or the leveraging of embryonic and morphological paradigms to recapitulate aspects of organ development, has been proposed as a strategy for the sequential, iterative de novo assembly of tissues and organs as discrete developmental modules ex vivo, prior to implantation in vivo. In this article, we focus on the kidney to highlight in detail how principles of developmental biology are impacting approaches to TE of this complex solid organ. Ultimately, such methodologies may facilitate the establishment of clinically relevant therapeutic strategies for regeneration of renal structure and function, greatly impacting treatment regimens for chronic kidney disease.
Collapse
Affiliation(s)
- Joydeep Basu
- Tengion, Inc., Winston-Salem, North Carolina 27103, USA. joydeep.
| | | |
Collapse
|