1
|
Kaviyarasu K. Investigation of structural, optical, photocatalytic, and antibacterial properties of ZnO doped GO nanoparticles for environment applications. Microsc Res Tech 2025; 88:73-91. [PMID: 39192686 PMCID: PMC11652825 DOI: 10.1002/jemt.24672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/14/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024]
Abstract
As a result of their unique and novel properties, nanocomposites have found applications in a wide variety of fields. The purpose of this study is to demonstrate the ability to synthesize nanoparticles consisting of zinc oxide (ZnO) and graphene oxide (GO) via sol-gel techniques. An x-ray diffractometer (XRD) as well as a UV-visible spectrometer were used to determine the crystalline and optical characteristics of the prepared samples. A hexagonal wurtzite crystal structure was observed in both pure ZnO nanoparticles and those that contain GO based on XRD results. It was estimated that the average crystallite size is based on the broadening of x-ray lines. In comparison with pure ZnO, the antimicrobial properties were enhanced when GO was incorporated with ZnO. In addition, experiments on the absorption edge indicated the presence of a red shift as a result of the incorporation of GO. When GO is incorporated in quantitative amounts, the bandgap value of pure ZnO decreased. FTIR spectra exhibit a band of absorption at 486 cm-1, which confirms Zn-O stretching in both samples. SEM images reveal a random pattern of structural features on the surface of the prepared samples. According to the EDX spectrum, pure GO nanoparticles and those doped with ZnO contain 61%-64% zinc and 32%-34% oxygen, respectively. When annealed at a higher temperature, ZnO NPs produced more H2 with a narrower bandgap than before annealing. In addition, methyl blue (MB) was used as an example of an organic compound in order to investigate the potential photocatalytic properties of nanoparticles with ZnO doped GO. In addition to DPPH assays, ZnO nanoparticles and ZnO doped GO nanoparticles were tested for their ability to scavenge free radicals. Comparing ZnO doped GO NPs with pure ZnO, these nanoparticles showed increased antioxidant activity. Based on the increased zone of inhibition observed for pure ZnO and ZnO doped GO (5, 10, 50, and 100 mg/mL), the antibacterial activity of pure ZnO and ZnO doped GO is concentration dependent. A detailed discussion of the results of the study demonstrated that ZnO doped GO and pure ZnO are toxic in different ways depending on how long they survive in degreased Zebrafish embryos and how fast they decompose. RESEARCH HIGHLIGHTS: The scope of the manuscript was under the results of the study confirmed that both nanoparticles exhibited concentration dependent antioxidative activity. Determined that 89% of methyl orange dye can be degraded photocatalytically. ZnO nanoparticles were found to be 74.86% antioxidant at a concentration of 50 g/mL in the present study. At a concentration of 50 g/mL, ZnO doped GO NPs showed 79.1% antioxidant activity. Photocatalytic degradation mechanism scheme is implicit in the photoexcited charge carrier transportation path is observed for all the samples. Survival rate of zebrafish embryos was shown to decrease with increasing concentrations of ZnO and zinc oxide plus GO nanoparticles.
Collapse
Affiliation(s)
- K. Kaviyarasu
- UNESCO‐UNISA Africa Chair in Nanosciences/Nanotechnology Laboratories, School of Interdisciplinary Research and Graduate Studies, College of Graduate StudiesUniversity of South Africa (UNISA)RoodepoortJohannesburgSouth Africa
| |
Collapse
|
2
|
Zuo Y, Wang J, Gong Z, Wang Y, Wang Q, Yang X, Liu F, Liu T. Hydrogen Protects Mitochondrial Function by Increasing the Expression of PGC-1α and Ameliorating Myocardial Ischaemia-Reperfusion Injury. J Cell Mol Med 2024; 28:e70236. [PMID: 39601332 PMCID: PMC11600203 DOI: 10.1111/jcmm.70236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 11/06/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
To investigate the application of H2 to alleviate cardiac ischaemia-reperfusion (I/R) injury in a PGC-1α-dependent manner. A rat in vitro myocardial I/R injury model was used, Western blot was used to detect the expression levels of apoptosis markers (Bax, cleaved caspase-3, Bcl2), inflammatory factors (IL-1β, TNF-α), mitochondrial fission (DRP1, MFF) and mitochondrial fusion (MFN1, MFN2, OPA1). HE staining was used to observe the effect of H2 on the myocardial tissue structure injured by I/R. Transmission electron microscopy (TEM) was used to observe the changes in the mitochondrial structure of myocardial tissue after I/R injury. Real-time quantitative PCR (qPCR) was used to detect the expression of PGC-1α in the myocardial tissue of rats after I/R injury and H2 treatment. H2 increases the expression level of PGC-1α, while the deletion of PGC-1α inhibited the therapeutic effect of H2. H2 can improve the changes of the myocardial tissue and mitochondrial structure caused by I/R injury. H2 treatment effectively inhibited the inflammatory response, and the loss of PGC-1α could inhibit the therapeutic effect of H2. The application of H2 can alleviate myocardial I/R injury, and the loss of PGC-1α weakens the protective effect of H2 on the I/R heart.
Collapse
Affiliation(s)
- Yue Zuo
- Heart CenterThe First Hospital of Tsinghua UniversityBeijingChina
- School of Clinical MedicineHebei UniversityBaodingChina
| | - Jiawei Wang
- School of Clinical MedicineHebei UniversityBaodingChina
| | - Zhexuan Gong
- School of Clinical MedicineHebei UniversityBaodingChina
| | - Yulong Wang
- School of Clinical MedicineHebei UniversityBaodingChina
| | - Qiang Wang
- Affiliated Hospital of Hebei UniversityBaodingChina
| | - Xueyang Yang
- School of Clinical MedicineHebei UniversityBaodingChina
| | - Fulin Liu
- Affiliated Hospital of Hebei UniversityBaodingChina
| | - Tongtong Liu
- Affiliated Hospital of Hebei UniversityBaodingChina
| |
Collapse
|
3
|
Koga M, Sato M, Nakagawa R, Tokuno S, Asai F, Maezawa Y, Nagamine M, Yoshino A, Toda H. Molecular hydrogen supplementation in mice ameliorates lipopolysaccharide-induced loss of interest. PCN REPORTS : PSYCHIATRY AND CLINICAL NEUROSCIENCES 2024; 3:e70000. [PMID: 39171191 PMCID: PMC11337204 DOI: 10.1002/pcn5.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/15/2024] [Accepted: 08/05/2024] [Indexed: 08/23/2024]
Abstract
Aim The objective of this study was to evaluate the potential of hydrogen in preventing and treating psychiatric symptoms, particularly depressed mood and loss of interest, and to explore its underlying mechanisms. A mouse model exhibiting inflammation-derived depressive symptoms was used for the investigation. Methods Institute of Cancer Research mice were subjected to a 7-day intervention of either 30% hydrogen or 40 g per day of air via jelly intake. On the final day, lipopolysaccharide (LPS) was intraperitoneally administered at 5 mg/kg to induce inflammation-related depressive symptoms. Behavioral and biochemical assessments were conducted 24 h post-LPS administration. Results Following LPS administration, a decrease in spontaneous behavior was observed; however, this effect was mitigated in the group treated with hydrogen. The social interaction test revealed a significant reduction in interactions with unfamiliar mice in the LPS-treated group, whereas the hydrogen-treated group exhibited no such decrease. No significant changes were noted in the forced-swim test for either group. Additionally, the administration of LPS in the hydrogen group did not result in a decrease in zonula occludens-1, a biochemical marker associated with barrier function at the cerebrovascular barrier and expressed in tight junctions. Conclusion Hydrogen administration demonstrated a preventive effect against the LPS-induced loss of interest, suggesting a potential role in symptom prevention. However, it did not exhibit a suppressive effect on depressive symptoms in this particular model. These findings highlight the nuanced impact of hydrogen in the context of inflammation-induced psychiatric symptoms, indicating potential avenues for further exploration and research.
Collapse
Affiliation(s)
- Minori Koga
- Department of Psychiatry, School of MedicineNational Defense Medical CollegeSaitamaJapan
| | - Mayumi Sato
- Department of Psychiatry, School of MedicineNational Defense Medical CollegeSaitamaJapan
| | - Ryuichi Nakagawa
- Department of Psychiatry, School of MedicineNational Defense Medical CollegeSaitamaJapan
| | - Shinichi Tokuno
- Graduate School of Health InnovationKanagawa University of Human ServicesKanagawaJapan
- Department of BioengineeringGraduate School of EngineeringTokyoJapan
| | - Fumiho Asai
- Department of Psychiatry, School of MedicineNational Defense Medical CollegeSaitamaJapan
| | - Yuri Maezawa
- Department of Psychiatry, School of MedicineNational Defense Medical CollegeSaitamaJapan
| | - Masanori Nagamine
- Division of Behavioral SciencesNational Defense Medical College Research InstituteSaitamaJapan
| | - Aihide Yoshino
- Department of Psychiatry, School of MedicineNational Defense Medical CollegeSaitamaJapan
| | - Hiroyuki Toda
- Department of Psychiatry, School of MedicineNational Defense Medical CollegeSaitamaJapan
| |
Collapse
|
4
|
McClendon LK, Lanz RB, Panigrahi A, Gomez K, Bolt MJ, Liu M, Stossi F, Mancini MA, Dacso CC, Lonard DM, O'Malley BW. Transcriptional coactivation of NRF2 signaling in cardiac fibroblasts promotes resistance to oxidative stress. J Mol Cell Cardiol 2024; 194:70-84. [PMID: 38969334 DOI: 10.1016/j.yjmcc.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 06/17/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
We recently discovered that steroid receptor coactivators (SRCs) SRCs-1, 2 and 3, are abundantly expressed in cardiac fibroblasts (CFs) and their activation with the SRC small molecule stimulator MCB-613 improves cardiac function and dramatically lowers pro-fibrotic signaling in CFs post-myocardial infarction. These findings suggest that CF-derived SRC activation could be beneficial in the mitigation of chronic heart failure after ischemic insult. However, the cardioprotective mechanisms by which CFs contribute to cardiac pathological remodeling are unclear. Here we present studies designed to identify the molecular and cellular circuitry that governs the anti-fibrotic effects of an MCB-613 derivative, MCB-613-10-1, in CFs. We performed cytokine profiling and whole transcriptome and proteome analyses of CF-derived signals in response to MCB-613-10-1. We identified the NRF2 pathway as a direct MCB-613-10-1 therapeutic target for promoting resistance to oxidative stress in CFs. We show that MCB-613-10-1 promotes cell survival of anti-fibrotic CFs exposed to oxidative stress by suppressing apoptosis. We demonstrate that an increase in HMOX1 expression contributes to CF resistance to oxidative stress-mediated apoptosis via a mechanism involving SRC co-activation of NRF2, hence reducing inflammation and fibrosis. We provide evidence that MCB-613-10-1 acts as a protectant against oxidative stress-induced mitochondrial damage. Our data reveal that SRC stimulation of the NRF2 transcriptional network promotes resistance to oxidative stress and highlights a mechanistic approach toward addressing pathologic cardiac remodeling.
Collapse
Affiliation(s)
- Lisa K McClendon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America.
| | - Rainer B Lanz
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America.
| | - Anil Panigrahi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America.
| | - Kristan Gomez
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America.
| | - Michael J Bolt
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America.
| | - Min Liu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America.
| | - Fabio Stossi
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America.
| | - Michael A Mancini
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America.
| | - Clifford C Dacso
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America.
| | - David M Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America.
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, United States of America.
| |
Collapse
|
5
|
Chen X, Zhang A, Zhao K, Gao H, Shi P, Chen Y, Cheng Z, Zhou W, Zhang Y. The role of oxidative stress in intervertebral disc degeneration: Mechanisms and therapeutic implications. Ageing Res Rev 2024; 98:102323. [PMID: 38734147 DOI: 10.1016/j.arr.2024.102323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/19/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
Oxidative stress is one of the main driving mechanisms of intervertebral disc degeneration(IDD). Oxidative stress has been associated with inflammation in the intervertebral disc, cellular senescence, autophagy, and epigenetics of intervertebral disc cells. It and the above pathological mechanisms are closely linked through the common hub reactive oxygen species(ROS), and promote each other in the process of disc degeneration and promote the development of the disease. This reveals the important role of oxidative stress in the process of IDD, and the importance and great potential of IDD therapy targeting oxidative stress. The efficacy of traditional therapy is unstable or cannot be maintained. In recent years, due to the rise of materials science, many bioactive functional materials have been applied in the treatment of IDD, and through the combination with traditional drugs, satisfactory efficacy has been achieved. At present, the research review of antioxidant bioactive materials in the treatment of IDD is not complete. Based on the existing studies, the mechanism of oxidative stress in IDD and the common antioxidant therapy were summarized in this paper, and the strategies based on emerging bioactive materials were reviewed.
Collapse
Affiliation(s)
- Xianglong Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Anran Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Kangcheng Zhao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Haiyang Gao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Pengzhi Shi
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuhang Chen
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhangrong Cheng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Wenjuan Zhou
- Department of Operating Room, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Yukun Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
6
|
Solanki K, Bezsonov E, Orekhov A, Parihar SP, Vaja S, White FA, Obukhov AG, Baig MS. Effect of reactive oxygen, nitrogen, and sulfur species on signaling pathways in atherosclerosis. Vascul Pharmacol 2024; 154:107282. [PMID: 38325566 DOI: 10.1016/j.vph.2024.107282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 02/04/2024] [Indexed: 02/09/2024]
Abstract
Atherosclerosis is a chronic inflammatory disease in which fats, lipids, cholesterol, calcium, proliferating smooth muscle cells, and immune cells accumulate in the intima of the large arteries, forming atherosclerotic plaques. A complex interplay of various vascular and immune cells takes place during the initiation and progression of atherosclerosis. Multiple reports indicate that tight control of reactive oxygen species (ROS), reactive nitrogen species (RNS), and reactive sulfur species (RSS) production is critical for maintaining vascular health. Unrestricted ROS and RNS generation may lead to activation of various inflammatory signaling pathways, facilitating atherosclerosis. Given these deleterious consequences, it is important to understand how ROS and RNS affect the signaling processes involved in atherogenesis. Conversely, RSS appears to exhibit an atheroprotective potential and can alleviate the deleterious effects of ROS and RNS. Herein, we review the literature describing the effects of ROS, RNS, and RSS on vascular smooth muscle cells, endothelial cells, and macrophages and focus on how changes in their production affect the initiation and progression of atherosclerosis. This review also discusses the contribution of ROS, RNS, and RSS in mediating various post-translational modifications, such as oxidation, nitrosylation, and sulfation, of the molecules involved in inflammatory signaling.
Collapse
Affiliation(s)
- Kundan Solanki
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Simrol, Indore, India
| | - Evgeny Bezsonov
- Laboratory of Angiopathology, Institute of General Pathology and Pathophysiology, Moscow, Russia; Laboratory of Cellular and Molecular Pathology of Cardiovascular System, Avtsyn Research Institute of Human Morphology, Petrovsky National Research Centre of Surgery, Moscow, Russia; Department of Biology and General Genetics, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia; The Cell Physiology and Pathology Laboratory, Turgenev State University of Orel, Orel, Russia
| | - Alexander Orekhov
- Institute for Atherosclerosis Research, Skolkovo Innovative Center, Moscow, Russia
| | - Suraj P Parihar
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Diseases and Molecular Medicine (IDM), Division of Medical Microbiology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Department of Biochemistry, Human Metabolomics, Faculty of Natural and Agricultural Sciences, North-West University, Potchefstroom, South Africa
| | - Shivani Vaja
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Simrol, Indore, India
| | - Fletcher A White
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Department of Anesthesia, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Alexander G Obukhov
- Department of Anatomy, Cell Biology & Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA; Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Mirza S Baig
- Department of Biosciences and Biomedical Engineering (BSBE), Indian Institute of Technology Indore (IITI), Simrol, Indore, India.
| |
Collapse
|
7
|
Mohammed FS, Babu D, Irfan Z, Fayed MA. A review on the traditional uses, nutritive importance, pharmacognostic features, phytochemicals, and pharmacology of Momordica cymbalaria Hook F. PeerJ 2024; 12:e16928. [PMID: 38436002 PMCID: PMC10906271 DOI: 10.7717/peerj.16928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 01/22/2024] [Indexed: 03/05/2024] Open
Abstract
Momordica cymbalaria Hook F. (MC), belonging to the family Cucurbitaceae, is a plant with several biological activities. This detailed, comprehensive review gathers and presents all the information related to the geographical distribution, morphology, therapeutic uses, nutritional values, pharmacognostic characters, phytochemicals, and pharmacological activities of MC. The available literature showed that MC fruits are utilized as a stimulant, tonic, laxative, stomachic, and to combat inflammatory disorders. The fruits are used to treat spleen and liver diseases and are applied in folk medicine to induce abortion and treat diabetes mellitus. The phytochemical screening studies report that MC fruits contain tannins, alkaloids, phenols, proteins, amino acids, vitamin C, carbohydrates, β-carotenes, palmitic acid, oleic acid, stearic acid, α-eleostearic acid, and γ-linolenic acid. The fruits also contain calcium, sodium, iron, potassium, copper, manganese, zinc, and phosphorus. Notably, momordicosides are cucurbitacin triterpenoids reported in the fruits of MC. Diverse pharmacological activities of MC, such as analgesic, anti-inflammatory, antioxidant, hepatoprotective, nephroprotective, antidiabetic, cardioprotective, antidepressant, anticonvulsant, anticancer, antiangiogenic, antifertility, antiulcer, antimicrobial, antidiarrheal and anthelmintic, have been reported by many investigators. M. cymbalaria methanolic extract is safe up to 2,000 mg/kg. Furthermore, no symptoms of toxicity were found. These pharmacological activities are mechanistically interpreted and described in this review. Additionally, the microscopic, powder and physiochemical characteristics of MC tubers are also highlighted. In summary, possesses remarkable medicinal values, which warrant further detailed studies to exploit its potential benefits therapeutically.
Collapse
Affiliation(s)
- Firdous Sayeed Mohammed
- Department of Pharmacology, Calcutta Institute of Pharmaceutical Technology and Allied Health Sciences, Uluberia, Howrah, West Bengal, India
| | - Dinesh Babu
- Faculty of Pharmacy and Pharmaceutical Sciences, Katz Group Centre for Pharmacy and Health Research, University of Alberta, Alberta, Canada
| | - Zainab Irfan
- Department of Pharmaceutical Technology, Brainware University, Kolkata, West Bengal, India
| | - Marwa A.A. Fayed
- Pharmacognosy Department, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| |
Collapse
|
8
|
Christensen LL, Poulsen HE, Andersen MS, Glintborg D. Whole-body oxidative stress reduction during testosterone therapy in aging men: A randomized placebo-controlled trial. Andrology 2024; 12:115-122. [PMID: 37177884 DOI: 10.1111/andr.13458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/19/2023] [Accepted: 05/10/2023] [Indexed: 05/15/2023]
Abstract
BACKGROUND Testosterone replacement therapy in aging men increases lean body mass and decreases whole-body fat. The safety of testosterone replacement therapy concerning cardiovascular disease is unresolved and assessment of whole-body oxidative stress may contribute to future decision making. OBJECTIVES To determine whole-body oxidative stress during testosterone replacement therapy and placebo in aging men and evaluate if a change in oxidative stress was mediated by changed body composition. MATERIALS AND METHODS This was a double-blinded, randomized, placebo-controlled study for 24 weeks in 38 men aged 60-78 years with bioavailable testosterone <7.3 nmol/L and waist circumference ≥94 cm who were randomized to testosterone replacement therapy (testosterone gel) (N = 20) or placebo (N = 18). At baseline and after 24 weeks, whole-body oxidative stress was assessed by oxidized derivatives of nucleic acids, 8-oxoguanosine and 8-oxo-2'-deoxyguanosine in 24-h urine samples by ultra-performance liquid chromatography tandem mass spectrometry. Lean body mass and whole-body fat were measured by dual X-ray absorptiometry. Subcutaneous and visceral adipose tissue were estimated by magnetic resonance imaging. Testosterone replacement therapy versus placebo was compared by Mann-Whitney tests on ∆-values (24-0 weeks). RESULTS Baseline age was 67 (64-72) years (median [interquartile range]), body mass index 29.8 (26.6-33.3) kg/m2 , waist 107 (99-117) cm, and bioavailable testosterone 4.7 (3.7-5.9) nmol/L. During testosterone replacement therapy, 8-oxoguanosine in 24-h urine samples decreased from 21.6 (19.8; 27.7) nm to 15.0 (12.2; 18.8) nm (p = 0.038 vs. placebo), lean body mass increased (p < 0.01) and whole-body fat (p = 0.02) and subcutaneous adipose tissue (p < 0.01) decreased. 8-Oxoguanosine in 24-h urine samples was inversely associated with Δ-lean body mass (ρ = -0.38, p = 0.03), which remained significant after adjusting for Δ-total testosterone. 8-Oxo-2'-deoxyguanosine in 24-h urine samples was unchanged (p = 0.06) during testosterone replacement therapy and Δ-8-oxo-2'-deoxyguanosine in 24-h urine samples was associated with Δ-whole-body fat (kg) (ρ = 0.47, p < 0.01). Δ-Values of oxidative stress biomarkers were not associated with Δ-fasting insulin or Δ-homeostatic model assessment of insulin resistance. DISCUSSION Oxidative stress decreased during testosterone replacement therapy compared to placebo, which could be mediated by changed body composition. CONCLUSION Whole-body oxidative stress decreased during 24 weeks of testosterone replacement therapy in aging men.
Collapse
Affiliation(s)
- Louise Lehmann Christensen
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
- University of Southern Denmark, Odense, Denmark
| | - Henrik Enghusen Poulsen
- Department of Endocrinology, University Hospital Copenhagen, Bispebjerg-Frederiksberg Hospital, Frederiksberg, Denmark
- Department of Cardiology, University Hospital Copenhagen, Nordsjaellands Hospital Hillerød, Hillerod, Denmark
| | - Marianne Skovsager Andersen
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
- University of Southern Denmark, Odense, Denmark
| | - Dorte Glintborg
- Department of Endocrinology, Odense University Hospital, Odense, Denmark
- University of Southern Denmark, Odense, Denmark
| |
Collapse
|
9
|
Otani M, Ishii D, Iwata H, Satake Y, Okada Y, Toriumi A, Imamura M, Nishikawa Y, Matsuno N. Preservation Efficacy of a Quercetin and Sucrose Solution for Warm Ischemically Damaged Porcine Liver Grafts. Transplant Proc 2023; 55:2212-2217. [PMID: 37770367 DOI: 10.1016/j.transproceed.2023.07.031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 06/08/2023] [Accepted: 07/04/2023] [Indexed: 09/30/2023]
Abstract
BACKGROUND The University of Wisconsin (UW) solution is the gold standard for preserving the liver, kidneys, and pancreas. For renal preservation, the addition of the flavonoid, quercetin (QE), to the preservation solution reduces damage to renal tubular cells, and the addition of sucrose (Suc) is also beneficial for preservation. The aim of this study was to investigate the protective effects of QE and Suc on porcine livers in terms of warm and cold injury and to evaluate whether their use improves ischemia-reperfusion (I/R) injury after simple cold storage (CS). METHODS We tested porcine livers procured after 30 minutes of warm ischemia followed by preservation for 6 hours under the following 2 conditions: group 1, preserved with the CS/UW solution (n = 4); group 2, preserved with the CS/UW solution containing Que 33.1 μM and Suc 0.1 M (n = 6). All livers were evaluated using an ex vivo isolated liver reperfusion model with saline-diluted autologous blood. RESULTS Aspartate aminotransferase, alanine aminotransferase, and lactate dehydrogenase levels in group 2 were significantly lower at 30 minutes of reperfusion than in group 1. Furthermore, histologic evaluation by hematoxylin and eosin staining showed significantly fewer morphologic changes in group 2 than in group 1, as indicated by the total Suzuki score. Group 2 also had significantly better scores for sinusoidal congestion and hepatocyte cytoplasmic vacuolization. CONCLUSION Adding Que and Suc to the UW solution can effectively prevent cold injury in livers donated after circulatory death.
Collapse
Affiliation(s)
- Masahide Otani
- Department of Surgery, Asahikawa Medical University, Midorigaoka higashi 2-1-1, Asahikawa, Hokkaido 078-8510, Japan; Department of Development of Transplantation Technology, Asahikawa Medical University, Midorigaoka higashi 2-1-1, Asahikawa, Hokkaido 078-8510, Japan.
| | - Daisuke Ishii
- Department of Surgery, Asahikawa Medical University, Midorigaoka higashi 2-1-1, Asahikawa, Hokkaido 078-8510, Japan; Department of Development of Transplantation Technology, Asahikawa Medical University, Midorigaoka higashi 2-1-1, Asahikawa, Hokkaido 078-8510, Japan
| | - Hiroyoshi Iwata
- Department of Surgery, Asahikawa Medical University, Midorigaoka higashi 2-1-1, Asahikawa, Hokkaido 078-8510, Japan; Department of Development of Transplantation Technology, Asahikawa Medical University, Midorigaoka higashi 2-1-1, Asahikawa, Hokkaido 078-8510, Japan
| | - Yoshiyasu Satake
- Department of Development of Transplantation Technology, Asahikawa Medical University, Midorigaoka higashi 2-1-1, Asahikawa, Hokkaido 078-8510, Japan
| | - Yoko Okada
- Department of Development of Transplantation Technology, Asahikawa Medical University, Midorigaoka higashi 2-1-1, Asahikawa, Hokkaido 078-8510, Japan
| | - Asuka Toriumi
- Department of Development of Transplantation Technology, Asahikawa Medical University, Midorigaoka higashi 2-1-1, Asahikawa, Hokkaido 078-8510, Japan
| | - Masashi Imamura
- Business Planning Division, Healthcare Business Headquarters, Ishihara Sangyo Kaisha, Ltd., 3-15, Edobori 1-chome, Nishi-ku, Osaka 550-0002, Japan
| | - Yuji Nishikawa
- Department of Pathology, Asahikawa Medical University, Midorigaoka higashi 2-1-1, Asahikawa, Hokkaido 078-8510, Japan
| | - Naoto Matsuno
- Department of Surgery, Asahikawa Medical University, Midorigaoka higashi 2-1-1, Asahikawa, Hokkaido 078-8510, Japan; Department of Development of Transplantation Technology, Asahikawa Medical University, Midorigaoka higashi 2-1-1, Asahikawa, Hokkaido 078-8510, Japan
| |
Collapse
|
10
|
Curieses Andrés CM, Pérez de la Lastra JM, Andrés Juan C, Plou FJ, Pérez-Lebeña E. From reactive species to disease development: Effect of oxidants and antioxidants on the cellular biomarkers. J Biochem Mol Toxicol 2023; 37:e23455. [PMID: 37437103 DOI: 10.1002/jbt.23455] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 06/14/2023] [Accepted: 06/29/2023] [Indexed: 07/14/2023]
Abstract
The influence of modern lifestyle, diet, exposure to chemicals such as phytosanitary substances, together with sedentary lifestyles and lack of exercise play an important role in inducing reactive stress (RS) and disease. The imbalance in the production and scavenging of free radicals and the induction of RS (oxidative, nitrosative, and halogenative) plays an essential role in the etiology of various chronic pathologies, such as cardiovascular diseases, diabetes, neurodegenerative diseases, and cancer. The implication of free radicals and reactive species injury in metabolic disturbances and the onset of many diseases have been accumulating for several decades, and are now accepted as a major cause of many chronic diseases. Exposure to elevated levels of free radicals can cause molecular structural impact on proteins, lipids, and DNA, as well as functional alteration of enzyme homeostasis, leading to aberrations in gene expression. Endogenous depletion of antioxidant enzymes can be mitigated using exogenous antioxidants. The current interest in the use of exogenous antioxidants as adjunctive agents for the treatment of human diseases allows a better understanding of these diseases, facilitating the development of new therapeutic agents with antioxidant activity to improve the treatment of various diseases. Here we examine the role that RS play in the initiation of disease and in the reactivity of free radicals and RS in organic and inorganic cellular components.
Collapse
Affiliation(s)
| | | | - Celia Andrés Juan
- Department of Organic Chemistry, Cinquima Institute, Faculty of Sciences, Valladolid University, Valladolid, Spain
| | - Francisco J Plou
- Institute of Catalysis and Petrochemistry, CSIC-Spanish Research Council, Madrid, Spain
| | | |
Collapse
|
11
|
Chen X, Yang Y, Cai Y, Yang H, Wang F, Deng M. Lysine-Specific Demethylase 4D Is Critical for the Regulation of the Cell Cycle and Antioxidant Capacity in Goat Fibroblast Cells. BIOLOGY 2023; 12:1095. [PMID: 37626981 PMCID: PMC10451980 DOI: 10.3390/biology12081095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023]
Abstract
Oxidative damage to skin fibroblast cells is a causative factor in many skin diseases. Previous studies have reported that lysine-specific demethylase 4D (Kdm4d) is involved in DNA replication, but its role on antioxidant capacity remains unclear. In the present study, we used goat fibroblast cells (GFCs) as the research model and identified 504 up-regulated and 1013 down-regulated genes following the knockdown of Kdm4d, respectively. The down-regulated genes of this enzyme were found to be enriched in the cell cycle, DNA replication, mitotic processes, and the oxidative phosphorylation pathway, as previously revealed from gene ontology (GO), Kyoto encyclopedia of genes and genomes (KEGG), and gene set enrichment analysis (GSEA), suggesting vital roles of the Kdm4d enzyme in the cell cycle and in antioxidant regulation. To this end, we found the cell proliferation rate was significantly decreased after the knockdown of Kdm4d. Moreover, both the mRNA and protein expression levels of superoxide dismutase 2 (SOD2), one of the major antioxidant enzymes, was decreased, while the reactive oxygen species (ROS) level was significantly increased in Kdm4d knocked-down cells. In addition, the expression of γH2A histone family member X (γH2AX) increased significantly, indicating the presence of DNA double-strand breaks after the knockdown of the Kdm4d enzyme. In conclusion, the knockdown of Kdm4d inhibited DNA replication and the cell cycle, repressed the expression of SOD2, and increased the generation of ROS, which led to the production of DNA damage in GFCs. Our data will be helpful for understanding the mechanism underlying antioxidant capacity regulation in fibroblast cells.
Collapse
Affiliation(s)
- Xiaowei Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.C.); (Y.Y.); (Y.C.); (H.Y.)
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing 210095, China
| | - Yingnan Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.C.); (Y.Y.); (Y.C.); (H.Y.)
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing 210095, China
| | - Yu Cai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.C.); (Y.Y.); (Y.C.); (H.Y.)
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing 210095, China
| | - Hua Yang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.C.); (Y.Y.); (Y.C.); (H.Y.)
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing 210095, China
| | - Feng Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.C.); (Y.Y.); (Y.C.); (H.Y.)
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing 210095, China
| | - Mingtian Deng
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing 210095, China; (X.C.); (Y.Y.); (Y.C.); (H.Y.)
- Jiangsu Livestock Embryo Engineering Laboratory, College of Animal Science and Technology, Nanjing 210095, China
| |
Collapse
|
12
|
Reimann B, Sleurs H, Dockx Y, Rasking L, De Boever P, Pirard C, Charlier C, Nawrot TS, Plusquin M. Exposure to endocrine disrupters and cardiometabolic health effects in preschool children: Urinary parabens are associated with wider retinal venular vessels. CHEMOSPHERE 2023; 328:138570. [PMID: 37019399 DOI: 10.1016/j.chemosphere.2023.138570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/28/2023] [Accepted: 03/31/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND AND AIM Parabens are widely used as antimicrobial preservatives in personal care products. Studies investigating obesogenic or cardiovascular effects of parabens show discordant results, while data on preschool children are lacking. Paraben exposure during early childhood could have profound cardiometabolic effects later in life. METHODS In this cross-sectional study paraben concentrations [methyl (MeP), ethyl (EtP), propyl (PrP), butyl (BuP)] were measured by ultra-performance liquid chromatography/tandem mass spectrometry in 300 urinary samples of 4-6-year-old children of the ENVIRONAGE birth cohort. Paraben values below the limit of quantitation (LOQ) were imputed by censored likelihood multiple imputation. The associations between log-transformed paraben values and cardiometabolic measurements (BMI z-scores, waist circumference, blood pressure and retinal microvasculature) were analyzed in multiple linear regression models with a priori selected covariates. Effect modification by sex was investigated by including interaction terms. RESULTS Geometric means (geometric SD) of urinary MeP, EtP, and PrP levels above the LOQ were 32.60 (6.64), 1.26 (3.45), and 4.82 (4.11) μg/L, respectively. For BuP more than 96% of all measurements were below the LOQ. Regarding the microvasculature, we found direct associations between MeP and central retinal venular equivalent (β = 1.23, p = 0.039) and PrP with the retinal tortuosity index (x103)(β = 1.75, p = 0.0044). Furthermore, we identified inverse associations between MeP and ∑parabens with BMI z-scores (β = -0.067, p = 0.015 and β = -0.070, p = 0.014 respectively), and EtP with mean arterial pressure (β = -0.69, p = 0.048). The direction of association between EtP and BMI z-scores showed evidence for sex-specific differences with a direct trend in boys (β = 0.10, p = 0.060). CONCLUSIONS Already at young age paraben exposure is associated with potentially adverse changes in the retinal microvasculature.
Collapse
Affiliation(s)
- Brigitte Reimann
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Hanne Sleurs
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Yinthe Dockx
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Leen Rasking
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Patrick De Boever
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium; Health Unit, Flemish Institute for Technological Research, Mol, Belgium
| | - Catherine Pirard
- Laboratory of Clinical, Forensic and Environmental Toxicology, CHU of Liege, B35, 4000, Liege, Belgium; Center for Interdisciplinary Research on Medicines (CIRM), University of Liege (ULg), CHU, (B35), 4000, Liege, Belgium
| | - Corinne Charlier
- Laboratory of Clinical, Forensic and Environmental Toxicology, CHU of Liege, B35, 4000, Liege, Belgium; Center for Interdisciplinary Research on Medicines (CIRM), University of Liege (ULg), CHU, (B35), 4000, Liege, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium; Department of Public Health, Environment & Health Unit, Leuven University (KU Leuven), 3000, Leuven, Belgium
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium.
| |
Collapse
|
13
|
Lambré C, Barat Baviera JM, Bolognesi C, Chesson A, Cocconcelli PS, Crebelli R, Gott DM, Grob K, Lampi E, Mengelers M, Mortensen A, Rivière G, Silano (until 21 December 2020†) V, Steffensen I, Tlustos C, Vernis L, Zorn H, Batke M, Bignami M, Corsini E, FitzGerald R, Gundert‐Remy U, Halldorsson T, Hart A, Ntzani E, Scanziani E, Schroeder H, Ulbrich B, Waalkens‐Berendsen D, Woelfle D, Al Harraq Z, Baert K, Carfì M, Castoldi AF, Croera C, Van Loveren H. Re-evaluation of the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA J 2023; 21:e06857. [PMID: 37089179 PMCID: PMC10113887 DOI: 10.2903/j.efsa.2023.6857] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
In 2015, EFSA established a temporary tolerable daily intake (t-TDI) for BPA of 4 μg/kg body weight (bw) per day. In 2016, the European Commission mandated EFSA to re-evaluate the risks to public health from the presence of BPA in foodstuffs and to establish a tolerable daily intake (TDI). For this re-evaluation, a pre-established protocol was used that had undergone public consultation. The CEP Panel concluded that it is Unlikely to Very Unlikely that BPA presents a genotoxic hazard through a direct mechanism. Taking into consideration the evidence from animal data and support from human observational studies, the immune system was identified as most sensitive to BPA exposure. An effect on Th17 cells in mice was identified as the critical effect; these cells are pivotal in cellular immune mechanisms and involved in the development of inflammatory conditions, including autoimmunity and lung inflammation. A reference point (RP) of 8.2 ng/kg bw per day, expressed as human equivalent dose, was identified for the critical effect. Uncertainty analysis assessed a probability of 57-73% that the lowest estimated Benchmark Dose (BMD) for other health effects was below the RP based on Th17 cells. In view of this, the CEP Panel judged that an additional uncertainty factor (UF) of 2 was needed for establishing the TDI. Applying an overall UF of 50 to the RP, a TDI of 0.2 ng BPA/kg bw per day was established. Comparison of this TDI with the dietary exposure estimates from the 2015 EFSA opinion showed that both the mean and the 95th percentile dietary exposures in all age groups exceeded the TDI by two to three orders of magnitude. Even considering the uncertainty in the exposure assessment, the exceedance being so large, the CEP Panel concluded that there is a health concern from dietary BPA exposure.
Collapse
|
14
|
Akram A, Jamshed A, Anwaar M, Rasheed HMF, Haider SI, Aslam N, Jabeen Q. Evaluation of Caralluma edulis for its Potential Against Obesity, Atherosclerosis and Hypertension. Dose Response 2023; 21:15593258231152112. [PMID: 36655145 PMCID: PMC9841870 DOI: 10.1177/15593258231152112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
Obesity, a chronic metabolic condition, is an increase in fat mass and blood lipid levels mainly causing atherosclerosis and hypertension, which further lead to cardiovascular complications. The objective of the study was to investigate the crude extract of Caralluma edulis (CE.Cr) for its potential against high-fat diet (HFD)-induced obesity and its related complications. Hyperlipidemia was induced in Wistar albino rats with HFD (1% cholesterol + 0.5% cholic acid) for 28 days. Treatment groups were administered with different doses of CE.Cr (100, 300 and 500 mg/Kg, p.o.) and the standard group received atorvastatin. At the end of study, sera were analyzed for biochemical markers and the aorta was dissected for microscopic examination. Antioxidant potential was evaluated and high-performance liquid chromatography (HPLC) analysis was performed. The hypotensive potential of CE.Cr was evaluated through an invasive technique. HPLC analysis of CE.Cr showed the presence of chlorogenic acid, caffeic acid, apigenin and naringenin. Histological examination of the aorta section showed anti-atherosclerotic effects which were also evident from decrease in serum total cholesterol, triglycerides and low-density lipoproteins levels. CE.Cr decreased mean arterial blood pressure and evoked significant hypotensive effects. The crude extract of C. edulis showed anti-obesity, antihypertensive, anti-atherosclerotic and antioxidant potential.
Collapse
Affiliation(s)
- Adnan Akram
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University, Bahawalpur, Pakistan,Department of Primary & Secondary Healthcare, Government of Punjab, Pakistan
| | - Ayesha Jamshed
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University, Bahawalpur, Pakistan,Ayesha Jamshed, Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.
| | - Mariya Anwaar
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University, Bahawalpur, Pakistan
| | - Hafiz Muhammad Farhan Rasheed
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University, Bahawalpur, Pakistan,Department of Primary & Secondary Healthcare, Government of Punjab, Pakistan
| | - Syed Ihtisham Haider
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University, Bahawalpur, Pakistan
| | - Naveed Aslam
- Department of Primary & Secondary Healthcare, Government of Punjab, Pakistan
| | - Qaiser Jabeen
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University, Bahawalpur, Pakistan,Qaiser Jabeen, Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan.
| |
Collapse
|
15
|
Tang C, Deng L, Luo Q, He G. Identification of oxidative stress-related genes and potential mechanisms in atherosclerosis. Front Genet 2023; 13:998954. [PMID: 36685865 PMCID: PMC9845256 DOI: 10.3389/fgene.2022.998954] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 12/05/2022] [Indexed: 01/06/2023] Open
Abstract
Atherosclerosis (AS) is the main cause of death in individuals with cardiovascular and cerebrovascular diseases. A growing body of evidence suggests that oxidative stress plays an essential role in Atherosclerosis pathology. The aim of this study was to determine genetic mechanisms associated with Atherosclerosis and oxidative stress, as well as to construct a diagnostic model and to investigate its immune microenvironment. Seventeen oxidative stress-related genes were identified. A four-gene diagnostic model was constructed using the least absolute shrinkage and selection operator (LASSO) algorithm based on these 17 genes. The area under the Receiver Operating Characteristic (ROC) curve (AUC) was 0.967. Based on the GO analysis, cell-substrate adherens junction and focal adhesion were the most enriched terms. KEGG analysis revealed that these overlapping genes were enriched in pathways associated with Alzheimer's disease and Parkinson's disease, as well as with prion disease pathways and ribosomes. Immune cell infiltration correlation analysis showed that the immune cells with significant differences were CD4 memory activated T cells and follicular helper T cells in the GSE43292 dataset and CD4 naïve T cells and CD4 memory resting T cells in the GSE57691 dataset. We identified 17 hub genes that were closely associated with oxidative stress in AS and constructed a four-gene (aldehyde dehydrogenase six family member A1 (ALDH6A1), eukaryotic elongation factor 2 kinase (EEF2K), glutaredoxin (GLRX) and l-lactate dehydrogenase B (LDHB)) diagnostic model with good accuracy. The four-gene diagnostic model was also found to have good discriminatory efficacy for the immune cell infiltration microenvironment of AS. Overall, these findings provide valuable information and directions for future research into Atherosclerosis diagnosis and aid in the discovery of biological mechanisms underlying AS with oxidative stress.
Collapse
Affiliation(s)
- Chao Tang
- Department of Cardiology, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China,*Correspondence: Chao Tang,
| | - Lingchen Deng
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiang Luo
- Department of Cardiology, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| | - Guijun He
- Department of Cardiology, The Third People’s Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, China
| |
Collapse
|
16
|
Zaric BL, Macvanin MT, Isenovic ER. Free radicals: Relationship to Human Diseases and Potential Therapeutic applications. Int J Biochem Cell Biol 2023; 154:106346. [PMID: 36538984 DOI: 10.1016/j.biocel.2022.106346] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 12/06/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022]
Abstract
Reactive species are highly-reactive enzymatically, or non-enzymatically produced compounds with important roles in physiological and pathophysiological cellular processes. Although reactive species represent an extensively researched topic in biomedical sciences, many aspects of their roles and functions remain unclear. This review aims to systematically summarize findings regarding the biochemical characteristics of various types of reactive species and specify the localization and mechanisms of their production in cells. In addition, we discuss the specific roles of free radicals in cellular physiology, focusing on the current lines of research that aim to identify the reactive oxygen species-initiated cascades of reactions resulting in adaptive or pathological cellular responses. Finally, we present recent findings regarding the therapeutic modulations of intracellular levels of reactive oxygen species, which may have substantial significance in developing novel agents for treating several diseases.
Collapse
Affiliation(s)
- Bozidarka L Zaric
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia.
| | - Mirjana T Macvanin
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Esma R Isenovic
- Department of Radiobiology and Molecular Genetics, VINČA Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
17
|
Association between atherogenic risk-modulating proteins and endothelium-dependent flow-mediated dilation in coronary artery disease patients. Eur J Appl Physiol 2023; 123:367-380. [PMID: 36305972 PMCID: PMC9894982 DOI: 10.1007/s00421-022-05040-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 09/04/2022] [Indexed: 02/06/2023]
Abstract
PURPOSE Endothelial dysfunction is an early and integral event in the development of atherosclerosis and coronary artery disease (CAD). Reduced NO bioavailability, oxidative stress, vasoconstriction, inflammation and senescence are all implicated in endothelial dysfunction. However, there are limited data examining associations between these pathways and direct in vivo bioassay measures of endothelial function in CAD patients. This study aimed to examine the relationships between in vivo measures of vascular function and the expression of atherogenic risk-modulating proteins in endothelial cells (ECs) isolated from the radial artery of CAD patients. METHODS Fifty-six patients with established CAD underwent trans-radial catheterization. Prior to catheterization, radial artery vascular function was assessed using a) flow-mediated dilation (FMD), and b) exercise-induced dilation in response to handgrip (HE%). Freshly isolated ECs were obtained from the radial artery during catheterization and protein content of eNOS, NAD(P)H oxidase subunit NOX2, NFκB, ET-1 and the senescence markers p53, p21 and p16 were evaluated alongside nitrotyrosine abundance and eNOS Ser1177 phosphorylation. RESULTS FMD was positively associated with eNOS Ser1177 phosphorylation (r = 0.290, P = 0.037), and protein content of p21 (r = 0.307, P = 0.027) and p16 (r = 0.426, P = 0.002). No associations were found between FMD and markers of oxidative stress, vasoconstriction or inflammation. In contrast to FMD, HE% was not associated with any of the EC proteins. CONCLUSION These data revealed a difference in the regulation of endothelium-dependent vasodilation measured in vivo between patients with CAD compared to previously reported data in subjects without a clinical diagnosis, suggesting that eNOS Ser1177 phosphorylation may be the key to maintain vasodilation in CAD patients.
Collapse
|
18
|
Zhou J, Lin H, Lv T, Hao J, Zhang H, Sun S, Yang J, Chi J, Guo H. Inappropriate Activation of TLR4/NF-κB is a Cause of Heart Failure. CARDIOVASCULAR INNOVATIONS AND APPLICATIONS 2022. [DOI: 10.15212/cvia.2022.0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Significance: Heart failure, a disease with extremely high incidence, is closely associated with inflammation and oxidative stress. The Toll-like receptor 4 (TLR4)/nuclear factor kappa-B (NF-κB) pathway plays an important role in the occurrence and development of heart failure.
Recent advances: Previous studies have shown that TLR4/NF-κB causes heart failure by inducing oxidative stress and inflammation; damaging the endothelia; promoting fibrosis; and inducing myocardial hypertrophy, apoptosis, pyroptosis, and autophagy.
Critical issues: Understanding the pathogenesis of heart failure is essential for the treatment of this disease. In this review, we outline the mechanisms underlying TLR4/NF-κB pathway-mediated heart failure and discuss drugs that alleviate heart failure by regulating the TLR4/NF-κB pathway.
Future directions: During TLR4/NF-κB overactivation, interventions targeting specific receptor antagonists may effectively alleviate heart failure, thus providing a basis for the development of new anti-heart failure drugs.
Collapse
Affiliation(s)
- Jiedong Zhou
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, China
| | - Hui Lin
- Department of Cardiology, Shaoxing People’s Hospital Shaoxing Hospital, Shaoxing, China
| | - Tingting Lv
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, China
| | - Jinjin Hao
- Zhejiang University School of Medicine, Hangzhou, China
| | - Hanlin Zhang
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Shimin Sun
- The First Clinical Medical College, Wenzhou Medical University, Wenzhou, China
| | - Juntao Yang
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, China
| | - Jufang Chi
- Department of Cardiology, Shaoxing People’s Hospital Shaoxing Hospital, Shaoxing, China
| | - Hangyuan Guo
- Department of Clinical Medicine, School of Medicine, Shaoxing University, Shaoxing, China
| |
Collapse
|
19
|
Fludioxonil, a phenylpyrrol pesticide, induces Cytoskeleton disruption, DNA damage and apoptosis via oxidative stress on rat glioma cells. Food Chem Toxicol 2022; 170:113464. [DOI: 10.1016/j.fct.2022.113464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/22/2022] [Accepted: 10/06/2022] [Indexed: 11/05/2022]
|
20
|
Yim G, Reynaga L, Nunez V, Howe CG, Romano ME, Chen Y, Karagas MR, Toledo-Corral C, Farzan SF. Perinatal Metal and Metalloid Exposures and Offspring Cardiovascular Health Risk. Curr Environ Health Rep 2022; 9:714-734. [PMID: 35980568 PMCID: PMC11559654 DOI: 10.1007/s40572-022-00377-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2022] [Indexed: 01/31/2023]
Abstract
PURPOSE OF REVIEW Toxic metal exposures have been associated with cardiovascular disease in adults and growing evidence suggests metal exposures also adversely affect cardiovascular phenotypes in childhood and adolescence. However, to our knowledge, the influence of perinatal metals exposure, particularly metal mixtures, in relation to cardiovascular-related outcomes have not been comprehensively reviewed. RECENT FINDINGS We summarized 17 contemporary studies (2017-2021) that investigated the impact of perinatal metal exposures on measures of cardiovascular health in children. Accumulating evidence supports a potential adverse impact of perinatal Pb exposure on BP in children. Fewer recent studies have focused on perinatal As, Hg, and Cd; thus, the cardiovascular impacts of these metals are less clear. Studies of metal mixtures demonstrate that interactions between metals may be complex and have identified numerous understudied elements and essential metals, including Mo, Co, Ni, Se, Zn, and Mn, which may influence cardiovascular risk. A key question that remains is whether perinatal metals exposure influences cardiovascular health into adulthood. Comparisons across studies remain challenging due to several factors, including differences in the timing of exposure/outcome assessments and exposure biomarkers, as well as variability in exposure levels and mixture compositions across populations. Future studies longitudinally investigating trajectories of cardiovascular outcomes could help determine the influence of perinatal metals exposure on long-term effects of clinical relevance in later life and whether interventions, which reduce metals exposures during this key developmental window, could alter disease development.
Collapse
Affiliation(s)
- Gyeyoon Yim
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Lorena Reynaga
- Department of Health Sciences, California State University at Northridge, Northridge, CA, USA
| | - Velia Nunez
- Department of Health Sciences, California State University at Northridge, Northridge, CA, USA
| | - Caitlin G Howe
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Megan E Romano
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Yu Chen
- Department of Population Health, NYU School of Medicine, New York, NY, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Claudia Toledo-Corral
- Department of Health Sciences, California State University at Northridge, Northridge, CA, USA
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 1845 N Soto Street, Los Angeles, CA, 90032, USA
| | - Shohreh F Farzan
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, 1845 N Soto Street, Los Angeles, CA, 90032, USA.
| |
Collapse
|
21
|
Yesil S, Ozdemir C, Arslan M, Gundogdu AC, Kavutcu M, Atan A. Protective effect of cerium oxide on testicular function and oxidative stress after torsion/detorsion in adult male rats. Exp Ther Med 2022; 25:1. [PMID: 36561629 PMCID: PMC9748645 DOI: 10.3892/etm.2022.11700] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Testicular torsion (T)/detorsion (D) can cause testicular injury due to the rotation of the spermatic cord and its vessels, therefore it represents an urological emergency that is surgically treated. Oxidative damage occurs in the testis and distant organs because of the overproduction of free radicals and overexpression of proinflammatory cytokines by reperfusion after surgery. Cerium oxide (CeO2) nanoparticles, a material also known as nanoceria, have regenerative antioxidant properties on oxidative stress. The present study aimed to investigate the effects of nanoceria on testis tissues in testicular T/D in rats. A total of 24 rats were equally and randomly divided into four groups: Control, CeO2, T/D and CeO2-T/D groups. Left inguinoscrotal incision was performed in the control group. In the CeO2 group, 0.5 mg/kg CeO2 was given intraperitoneally 30 min before inguinoscrotal incision. In the T/D group, unilateral testicular T/D was performed through an inguinoscrotal incision and rotating the left testis 720˚ clockwise, which was then left ischemic for 120 min, followed by 120 min of reperfusion. In the CeO2-T/D group, 0.5 mg/kg CeO2 was given intraperitoneally 30 min before testicular T/D. At the end of the experiment, testis tissues were removed for histopathological and biochemical examinations. The samples were histologically examined, Glutathione-s transferase (GST), catalase (CAT), paraoxonase (PON) activities and malondialdehyde (MDA) levels were measured via biochemical analysis methods, while the expression levels of p53, Bax and Bcl-2 were detected using immunohistochemistry. The present results revealed statistically significant inter-group differences in PON, CAT and GST activities and MDA levels. GST, CAT and PON activities were significantly higher, whereas MDA levels in the CeO2-T/D group were significantly lower compared with those in the T/D group. The T/D group had increased Bax and decreased Bcl-2 expression levels in their seminiferous tubules compared with the control and CeO2 groups. CeO2 treatment led to downregulation of Bax and upregulation of Bcl-2. The expression of p53 was high in the T/D group compared with that in the control and CeO2 groups, and was upregulated in all germinal cells. However, compared with that in the T/D group, p53 expression was significantly decreased in the CeO2-T/D group. The testicular injury score significantly increased in the CeO2-T/D group compared with the control and CeO2 groups. Rats in the CeO2-T/D group demonstrated significantly milder tissue lesions compared with those in T/D group. The present findings indicated that nanoceria may protect testis in rats against the harmful effects of T/D. Further studies are required to evaluate how CeO2 reduces oxidative stress and cell death in testis tissue that underwent T/D-related injury.
Collapse
Affiliation(s)
- Suleyman Yesil
- Department of Urology, Medical Faculty, Gazi University, 06510 Ankara, Turkey
| | - Cagri Ozdemir
- Department of Anesthesiology and Reanimation, Medical Faculty, Gazi University, 06510 Ankara, Turkey
| | - Mustafa Arslan
- Department of Anesthesiology and Reanimation, Medical Faculty, Gazi University, 06510 Ankara, Turkey,Life Sciences Application and Research Center, Gazi University, 06510 Ankara, Turkey,Correspondence to: Dr Mustafa Arslan, Department of Anesthesiology and Reanimation, Medical Faculty, Gazi University, 29 Besevler Road, 06510 Ankara, Turkey
| | - Ayse Cakir Gundogdu
- Department of Histology and Embryology, Medical Faculty, Kutahya Health Sciences University, 43050 Kutahya, Turkey
| | - Mustafa Kavutcu
- Department of Medical Biochemistry, Medical Faculty, Gazi University, 06510 Ankara, Turkey
| | - Ali Atan
- Department of Urology, Medical Faculty, Gazi University, 06510 Ankara, Turkey
| |
Collapse
|
22
|
Xia Y, Wang D, Li J, Chen M, Wang D, Jiang Z, Liu B. Compounds purified from edible fungi fight against chronic inflammation through oxidative stress regulation. Front Pharmacol 2022; 13:974794. [PMID: 36160418 PMCID: PMC9500316 DOI: 10.3389/fphar.2022.974794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/17/2022] [Indexed: 01/24/2023] Open
Abstract
Chronic inflammation is associated with various chronic diseases, including cardiovascular disease, neurodegenerative disease, and cancer, which severely affect the health and quality of life of people. Oxidative stress induced by unbalanced production and elimination of reactive oxygen species (ROS) is one of the essential risk factors for chronic inflammation. Recent studies, including the studies of mushrooms, which have received considerable attention, report that the antioxidant effects of natural compounds have more advantages than synthetic antioxidants. Mushrooms have been consumed by humans as precious nourishment for 3,000 years, and so far, more than 350 types have been identified in China. Mushrooms are rich in polysaccharides, peptides, polyphenols, alkaloids, and terpenoids and are associated with several healthy biological functions, especially antioxidant properties. As such, the extracts purified from mushrooms could activate the expression of antioxidant enzymes through the Keap1/Nrf2/ARE pathway to neutralize excessive ROS and inhibit ROS-induced chronic inflammation through the NF-κB pathway. Recently, the antioxidant properties of mushrooms have been successfully applied to treating cardiovascular disease (CAD), neurodegenerative diseases, diabetes mellitus, and cancer. The present review summarizes the antioxidant properties and the mechanism of compounds purified from mushrooms, emphasizing the oxidative stress regulation of mushrooms to fight against chronic inflammation.
Collapse
Affiliation(s)
- Yidan Xia
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Jiaqi Li
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Minqi Chen
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Duo Wang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China
| | - Ziping Jiang
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China,*Correspondence: Ziping Jiang, ; Bin Liu,
| | - Bin Liu
- Department of Hand and Foot Surgery, The First Hospital of Jilin University, Changchun, China,*Correspondence: Ziping Jiang, ; Bin Liu,
| |
Collapse
|
23
|
The Relationship between Oxidative Stress and Subjective Sleep Quality in People with Coronary Artery Disease. Brain Sci 2022; 12:brainsci12081070. [PMID: 36009133 PMCID: PMC9406162 DOI: 10.3390/brainsci12081070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/25/2022] [Accepted: 08/05/2022] [Indexed: 12/02/2022] Open
Abstract
Background: (1) Sleep disorders are prevalent in coronary artery disease (CAD) patients and predict cardiac events and prognosis. While increased oxidative stress (OS) has been associated with sleep disorders, less is known about its relationship with sleep quality. Similarly, little is known of how this relationship might change with exercise, which can improve sleep quality. Factors of sleep quality, such as sleep duration and disturbances, are also important as they predict cardiovascular diseases better than a global score alone. This study investigated whether OS was associated with self-rated sleep quality and its factors before and after completing a 24-week exercise intervention. (2) Methods: CAD patients undergoing an exercise program were recruited. OS was measured at baseline by the concentrations of early- (lipid hydroperoxides, LPH) and late-stage (8-isoprostane, 8-ISO) lipid peroxidation products and their ratio. Sleep quality was measured by the self-reported Pittsburgh Sleep Quality Index (PSQI) instrument at baseline and termination. Three sleep factors—perceived sleep quality, sleep efficiency, and daily disturbances—were derived from the PSQI. (3) Results: Among CAD patients (n = 113, 85.0% male, age = 63.7 ± 6.4 years, global PSQI = 5.8 ± 4.0), those with poor sleep (PSQI ≥ 5) had higher baseline 8-ISO levels (F(1, 111) = 6.212, p = 0.014, ηp2 = 0.053) compared to those with normal sleep. Concentrations of LPH (F(1, 105) = 0.569, p = 0.453, ηp2 = 0.005) and 8-ISO/LPH ratios (F(1, 105) = 2.173, p = 0.143, ηp2 = 0.020) did not differ between those with poor sleep and normal sleep. Among factors, perceived sleep quality was associated with 8-ISO and 8-ISO/LPH, and daily disturbances were associated with 8-ISO. (4) Conclusions: A marker of late-stage lipid peroxidation is elevated in CAD patients with poor sleep and associated with daily disturbances, but not with other factors or with sleep quality and its factors after exercise intervention.
Collapse
|
24
|
Oxidative Stress in Ageing and Chronic Degenerative Pathologies: Molecular Mechanisms Involved in Counteracting Oxidative Stress and Chronic Inflammation. Int J Mol Sci 2022; 23:ijms23137273. [PMID: 35806275 PMCID: PMC9266760 DOI: 10.3390/ijms23137273] [Citation(s) in RCA: 129] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 12/17/2022] Open
Abstract
Ageing and chronic degenerative pathologies demonstrate the shared characteristics of high bioavailability of reactive oxygen species (ROS) and oxidative stress, chronic/persistent inflammation, glycation, and mitochondrial abnormalities. Excessive ROS production results in nucleic acid and protein destruction, thereby altering the cellular structure and functional outcome. To stabilise increased ROS production and modulate oxidative stress, the human body produces antioxidants, “free radical scavengers”, that inhibit or delay cell damage. Reinforcing the antioxidant defence system and/or counteracting the deleterious repercussions of immoderate reactive oxygen and nitrogen species (RONS) is critical and may curb the progression of ageing and chronic degenerative syndromes. Various therapeutic methods for ROS and oxidative stress reduction have been developed. However, scientific investigations are required to assess their efficacy. In this review, we summarise the interconnected mechanism of oxidative stress and chronic inflammation that contributes to ageing and chronic degenerative pathologies, including neurodegenerative diseases, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD), cardiovascular diseases CVD, diabetes mellitus (DM), and chronic kidney disease (CKD). We also highlight potential counteractive measures to combat ageing and chronic degenerative diseases.
Collapse
|
25
|
Mavrakanas TA, Soomro QH, Charytan DM. Hydralazine-Isosorbide Dinitrate Use In Patients With End-Stage Kidney Disease On Dialysis. Kidney Int Rep 2022; 7:1332-1340. [PMID: 35685328 PMCID: PMC9171697 DOI: 10.1016/j.ekir.2022.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 10/25/2022] Open
|
26
|
Advances on the Antioxidant Activity of a Phytocomplex Product Containing Berry Extracts from Romanian Spontaneous Flora. Processes (Basel) 2022. [DOI: 10.3390/pr10040646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The present study aimed to evaluate the antioxidant properties of a phytocomplex product obtained using 10% hydroalcoholic extractive solutions, in equal proportions, from Ribes nigrum, Rubus idaeus, Rubus fruticosus and Fragaria moschata fresh fruits harvested from the spontaneous flora of Romania. These plant products were recognized for their rich antioxidant content. The phytochemical profile was assessed using HPLC chromatography and UV-Vis spectrometry. The obtained results highlighted the presence of complex bioactive compounds with antioxidant actions, namely anthocyanins, proanthocyanins and vitamin C. The antioxidant actions of the hydroalcoholic extractive solutions and the phytocomplex product were evaluated using chemiluminescence, electrochemical and superoxide dismutase (SOD) methods. The experimental results showed evident antioxidant activity in both the hydroalcoholic extracts and the phytocomplex product.
Collapse
|
27
|
Basic fibroblast growth factor alleviates metabolic abnormalities in the heart of streptozotocin-induced diabetic rats. Int J Diabetes Dev Ctries 2022. [DOI: 10.1007/s13410-022-01059-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
28
|
Xu Z, Elrashidy RA, Li B, Liu G. Oxidative Stress: A Putative Link Between Lower Urinary Tract Symptoms and Aging and Major Chronic Diseases. Front Med (Lausanne) 2022; 9:812967. [PMID: 35360727 PMCID: PMC8960172 DOI: 10.3389/fmed.2022.812967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/14/2022] [Indexed: 11/13/2022] Open
Abstract
Aging and major chronic diseases are risk factors for lower urinary tract symptoms (LUTS). On the other hand, oxidative stress (OS) is one of the fundamental mechanisms of aging and the development of chronic diseases. Therefore, OS might be a candidate mechanism linking these two clinical entities. This article aims to summarize the studies on the prevalence of LUTS, the role of OS in aging and chronic diseases, and the potential mechanisms supporting the putative link. A comprehensive literature search was performed to identify recent reports investigating LUTS and OS in major chronic diseases. In addition, studies on the impact of OS on the lower urinary tract, including bladder, urethra, and prostate, were collected and summarized. Many studies showed LUTS are prevalent in aging and major chronic diseases, including obesity, metabolic syndrome, diabetes, cardiovascular disease, hypertension, obstructive sleep apnea, autoimmune diseases, Alzheimer’s disease, and Parkinson’s disease. At the same time, OS is a key component in the pathogenesis of those chronic diseases and conditions. Recent studies also provided evidence that exacerbated OS can cause functional and/or structural changes in the bladder, urethra, and prostate, leading to LUTS. The reviewed data support the concept that OS is involved in multiple risk factors-associated LUTS, although further studies are needed to confirm the causative relationship. The specific ROS/RNS and corresponding reactions/pathways involved in chronic diseases and associated LUTS should be identified in the future and could serve as therapeutic targets.
Collapse
Affiliation(s)
- Zhenqun Xu
- Department of Surgery, MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH, United States
- Department of Urology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Rania A. Elrashidy
- Department of Biochemistry, Faculty of Pharmacy, Zagazig University, Zagazig, Egypt
| | - Bo Li
- Department of Surgery, MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH, United States
- Department of Urology, Shengjing Hospital, China Medical University, Shenyang, China
| | - Guiming Liu
- Department of Surgery, MetroHealth Medical Center, Case Western Reserve University, Cleveland, OH, United States
- *Correspondence: Guiming Liu,
| |
Collapse
|
29
|
Ounissi A, Merouani H, Sobhi W, Ouddai N, Simmie J, Shahnawaz Khan M, Nadeem Asghar M, Benguerba Y. Comparative investigation of the reactivity of the ignored radical HO2* with that of HO* in the case of guanine/cytosine complex. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2021.113561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
30
|
Abbas HS, Nagy MM, Hammam WE, Abd El Fatah AA, Abd-Elafatah MS, Aref AAAENM, Abdulhamid HA, Ghotekar S, Abou Baker DH. A Comprehensive Review on the Synthesis, Surface Decoration of Nanoselenium and Their Medical Applications. NANOTECHNOLOGY FOR INFECTIOUS DISEASES 2022:197-220. [DOI: 10.1007/978-981-16-9190-4_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
31
|
Sun J, Wang R, Chao T, Wang C. Long Noncoding RNAs Involved in Cardiomyocyte Apoptosis Triggered by Different Stressors. J Cardiovasc Transl Res 2021; 15:588-603. [PMID: 34855148 DOI: 10.1007/s12265-021-10186-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/04/2021] [Indexed: 12/26/2022]
Abstract
Cardiomyocytes are essential to maintain the normal cardiac function. Ischemia, hypoxia, and drug stimulation can induce pathological apoptosis of cardiomyocytes which eventually leads to heart failure, arrhythmia, and other cardiovascular diseases. Understanding the molecular mechanisms that regulate cardiomyocyte apoptosis is of great significance for the prevention and treatment of cardiovascular diseases. In recent years, more and more evidences reveal that long noncoding RNAs (lncRNAs) play important regulatory roles in myocardial cell apoptosis. They can modulate the expression of apoptosis-related genes at post-transcriptional level by altering the translation efficacy of target mRNAs or functioning as a precursor for miRNAs or competing for miRNA-mediated inhibition. Moreover, reversing the abnormal expression of lncRNAs can attenuate and even reverse the pathological apoptosis of cardiomyocytes. Therefore, apoptosis-related lncRNAs may become a potential new field for studying cardiomyocyte apoptosis and provide new ideas for the treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Jinghui Sun
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ru Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Tiantian Chao
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chenglong Wang
- National Clinical Research Center for Chinese Medicine Cardiology, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
32
|
He F, Wu Z, Wang Y, Yin L, Lu S, Dai L. Downregulation of tripartite motif protein 11 attenuates cardiomyocyte apoptosis after ischemia/reperfusion injury via DUSP1-JNK1/2. Cell Biol Int 2021; 46:148-157. [PMID: 34694031 PMCID: PMC9299661 DOI: 10.1002/cbin.11716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/09/2021] [Accepted: 10/16/2021] [Indexed: 11/11/2022]
Abstract
Currently, the prevention of ischemic diseases such as myocardial infarction associated with ischemia/reperfusion (I/R) injury remains to be a challenge. Thus, this study was designed to explore the effects of tripartite motif protein 11 (TRIM11) on cardiomyocytes I/R injury and its underlying mechanism. Cardiomyocytes AC16 were used to establish an I/R injury cell model. After TRIM11 downregulation in I/R cells, cell proliferation (0, 12, 24, and 48 h) and apoptosis at 48 h as well as the related molecular changes in oxidative stress‐related pathways was detected. Further, after the treatment of TRIM11 overexpression, SP600125, or DUSP1 overexpression, cell proliferation, apoptosis, and related genes were detected again. As per our findings, it was determined that TRIM11 was highly expressed in the cardiomyocytes AC16 after I/R injury. Downregulation of TRIM11 was determined to have significantly reduced I/R‐induced proliferation suppression and apoptosis. Besides, I/R‐activated c‐Jun N‐terminal kinase (JNK) signaling and cleaved caspase 3 and Bax expression were significantly inhibited by TRIM11 downregulation. In addition, the overexpression of TRIM11 significantly promoted apoptosis in AC16 cells, and JNK1/2 inhibition and DUSP1 overexpression potently counteracted the induction of TRIM11 overexpression in AC16 cells. These suggested that the downregulation of TRIM11 attenuates apoptosis in AC16 cells after I/R injury probably through the DUSP1‐JNK1/2 pathways.
Collapse
Affiliation(s)
- Fang He
- Shanghai Changning Mental Health Center, Shanghai, China
| | - Zheqian Wu
- Department of Emergency, Shidong Hospital of Yangpu District, Shanghai, China
| | - Yong Wang
- Department of Emergency, Shidong Hospital of Yangpu District, Shanghai, China
| | - Lili Yin
- Department of Emergency, Shidong Hospital of Yangpu District, Shanghai, China
| | - Shijie Lu
- Department of Emergency, Shidong Hospital of Yangpu District, Shanghai, China
| | - Lihua Dai
- Department of Emergency, Shidong Hospital of Yangpu District, Shanghai, China
| |
Collapse
|
33
|
Raghunandan S, Ramachandran S, Ke E, Miao Y, Lal R, Chen ZB, Subramaniam S. Heme Oxygenase-1 at the Nexus of Endothelial Cell Fate Decision Under Oxidative Stress. Front Cell Dev Biol 2021; 9:702974. [PMID: 34595164 PMCID: PMC8476872 DOI: 10.3389/fcell.2021.702974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/17/2021] [Indexed: 12/31/2022] Open
Abstract
Endothelial cells (ECs) form the inner lining of blood vessels and are central to sensing chemical perturbations that can lead to oxidative stress. The degree of stress is correlated with divergent phenotypes such as quiescence, cell death, or senescence. Each possible cell fate is relevant for a different aspect of endothelial function, and hence, the regulation of cell fate decisions is critically important in maintaining vascular health. This study examined the oxidative stress response (OSR) in human ECs at the boundary of cell survival and death through longitudinal measurements, including cellular, gene expression, and perturbation measurements. 0.5 mM hydrogen peroxide (HP) produced significant oxidative stress, placed the cell at this junction, and provided a model to study the effectors of cell fate. The use of systematic perturbations and high-throughput measurements provide insights into multiple regimes of the stress response. Using a systems approach, we decipher molecular mechanisms across these regimes. Significantly, our study shows that heme oxygenase-1 (HMOX1) acts as a gatekeeper of cell fate decisions. Specifically, HP treatment of HMOX1 knockdown cells reversed the gene expression of about 51% of 2,892 differentially expressed genes when treated with HP alone, affecting a variety of cellular processes, including anti-oxidant response, inflammation, DNA injury and repair, cell cycle and growth, mitochondrial stress, metabolic stress, and autophagy. Further analysis revealed that these switched genes were highly enriched in three spatial locations viz., cell surface, mitochondria, and nucleus. In particular, it revealed the novel roles of HMOX1 on cell surface receptors EGFR and IGFR, mitochondrial ETCs (MTND3, MTATP6), and epigenetic regulation through chromatin modifiers (KDM6A, RBBP5, and PPM1D) and long non-coding RNA (lncRNAs) in orchestrating the cell fate at the boundary of cell survival and death. These novel aspects suggest that HMOX1 can influence transcriptional and epigenetic modulations to orchestrate OSR affecting cell fate decisions.
Collapse
Affiliation(s)
- Sindhushree Raghunandan
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Srinivasan Ramachandran
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Eugene Ke
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States
| | - Yifei Miao
- Department of Diabetes Complications and Metabolism, City of Hope, Duarte, CA, United States
| | - Ratnesh Lal
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States.,Department of Mechanical and Aerospace Engineering, University of California, San Diego, San Diego, CA, United States
| | - Zhen Bouman Chen
- Department of Diabetes Complications and Metabolism, City of Hope, Duarte, CA, United States
| | - Shankar Subramaniam
- Department of Bioengineering, University of California, San Diego, San Diego, CA, United States.,Department of Computer Science and Engineering, University of California, San Diego, San Diego, CA, United States.,Department of Cellular and Molecular Medicine, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
34
|
Ganjiani V, Ahmadi N, Divar MR, Sharifiyazdi H, Meimandi-Parizi A. Protective effects of crocin on testicular torsion/detorsion in rats. Theriogenology 2021; 173:241-248. [PMID: 34399388 DOI: 10.1016/j.theriogenology.2021.07.021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 07/27/2021] [Accepted: 07/31/2021] [Indexed: 11/19/2022]
Abstract
Oxidative stress, caused by extreme accumulation of un-scavenged reactive oxygen species, plays an integral role in the Ischemia-Reperfusion (I/R) injury to the testicles following testicular torsion. The current research aimed to examine the protective effects of crocin as a natural antioxidant on testicular I/R injury in rats. Animals were divided randomly into five groups (seven each): (1) sham group, (2) torsion/detorsion (T/D) group, (3) intact group with 100 mg/kg crocin, (4) and (5) T/D groups followed by treatment with two different doses of crocin (50 and 100 mg/kg (IP)). I/R injury was induced by 720° clockwise torsion of the left testicles for 2 h. After 24 h of reperfusion, blood samples and epididymal sperms were collected to measure biochemical (GPx, SOD, and MDA), hormonal (testosterone), and sperm parameters (total sperm recovery, motility, viability, and morphology). Moreover, affected testicles were subjected to histopathology examination. I/R injury caused a significant reduction in sperm characteristics (except for morphology) (P < 0.05), which could not be significantly improved by crocin administration at either dose (P > 0.05). Johnsen's testicular score, mean seminiferous tubular diameter, and germinal epithelial cell thickness were significantly decreased in the T/D group compared to the intact and sham groups. However, crocin could significantly improve the histopathological parameters in both treatment groups compared to the T/D group (P < 0.05). T/D reduced SOD and GPx activity and testosterone level significantly (except for GPx) compared to the sham group (P < 0.05). However, crocin administration could significantly reverse them. Also, crocin reduced the amount of MDA significantly in the high-dose treatment group in comparison to T/D group (P < 0.05). The results of the current study revealed that crocin could be a promising agent to protect against I/R injury following surgical correction of the testicular torsion.
Collapse
Affiliation(s)
- Vahid Ganjiani
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Nasrollah Ahmadi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Mohammad Reza Divar
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | - Hassan Sharifiyazdi
- Department of Clinical Sciences, School of Veterinary Medicine, Shiraz University, Shiraz, Iran.
| | | |
Collapse
|
35
|
Cardiac Oxidative Stress and the Therapeutic Approaches to the Intake of Antioxidant Supplements and Physical Activity. Nutrients 2021; 13:nu13103483. [PMID: 34684484 PMCID: PMC8540093 DOI: 10.3390/nu13103483] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/22/2021] [Accepted: 09/25/2021] [Indexed: 01/01/2023] Open
Abstract
Reactive oxygen species (ROS) are strongly reactive chemical entities that include oxygen regulated by enzymatic and non-enzymatic antioxidant defense mechanisms. ROS contribute significantly to cell homeostasis in the heart by regulating cell proliferation, differentiation, and excitation-contraction coupling. When ROS generation surpasses the ability of the antioxidant defense mechanisms to buffer them, oxidative stress develops, resulting in cellular and molecular disorders and eventually in heart failure. Oxidative stress is a critical factor in developing hypoxia- and ischemia-reperfusion-related cardiovascular disorders. This article aimed to discuss the role of oxidative stress in the pathophysiology of cardiac diseases such as hypertension and endothelial dysfunction. This review focuses on the various clinical events and oxidative stress associated with cardiovascular pathophysiology, highlighting the benefits of new experimental treatments such as creatine supplementation, omega-3 fatty acids, microRNAs, and antioxidant supplements in addition to physical exercise
Collapse
|
36
|
Vaiciuleviciute R, Bironaite D, Uzieliene I, Mobasheri A, Bernotiene E. Cardiovascular Drugs and Osteoarthritis: Effects of Targeting Ion Channels. Cells 2021; 10:cells10102572. [PMID: 34685552 PMCID: PMC8534048 DOI: 10.3390/cells10102572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/24/2022] Open
Abstract
Osteoarthritis (OA) and cardiovascular diseases (CVD) share many similar features, including similar risk factors and molecular mechanisms. A great number of cardiovascular drugs act via different ion channels and change ion balance, thus modulating cell metabolism, osmotic responses, turnover of cartilage extracellular matrix and inflammation. These drugs are consumed by patients with CVD for many years; however, information about their effects on the joint tissues has not been fully clarified. Nevertheless, it is becoming increasingly likely that different cardiovascular drugs may have an impact on articular tissues in OA. Here, we discuss the potential effects of direct and indirect ion channel modulating drugs, including inhibitors of voltage gated calcium and sodium channels, hyperpolarization-activated cyclic nucleotide-gated channels, β-adrenoreceptor inhibitors and angiotensin-aldosterone system affecting drugs. The aim of this review was to summarize the information about activities of cardiovascular drugs on cartilage and subchondral bone and to discuss their possible consequences on the progression of OA, focusing on the modulation of ion channels in chondrocytes and other joint cells, pain control and regulation of inflammation. The implication of cardiovascular drug consumption in aetiopathogenesis of OA should be considered when prescribing ion channel modulators, particularly in long-term therapy protocols.
Collapse
Affiliation(s)
- Raminta Vaiciuleviciute
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania; (R.V.); (D.B.); (I.U.); (A.M.)
| | - Daiva Bironaite
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania; (R.V.); (D.B.); (I.U.); (A.M.)
| | - Ilona Uzieliene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania; (R.V.); (D.B.); (I.U.); (A.M.)
| | - Ali Mobasheri
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania; (R.V.); (D.B.); (I.U.); (A.M.)
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, FI-90014 Oulu, Finland
- Departments of Orthopedics, Rheumatology and Clinical Immunology, University Medical Center Utrecht, 508 GA Utrecht, The Netherlands
- Department of Joint Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Eiva Bernotiene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, LT-08406 Vilnius, Lithuania; (R.V.); (D.B.); (I.U.); (A.M.)
- Correspondence:
| |
Collapse
|
37
|
Zolty R. Novel Experimental Therapies for Treatment of Pulmonary Arterial Hypertension. J Exp Pharmacol 2021; 13:817-857. [PMID: 34429666 PMCID: PMC8380049 DOI: 10.2147/jep.s236743] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 07/07/2021] [Indexed: 12/18/2022] Open
Abstract
Pulmonary arterial hypertension (PAH) is a progressive and devastating disease characterized by pulmonary artery vasoconstriction and vascular remodeling leading to vascular rarefaction with elevation of pulmonary arterial pressures and pulmonary vascular resistance. Often PAH will cause death from right heart failure. Current PAH-targeted therapies improve functional capacity, pulmonary hemodynamics and reduce hospitalization. Nevertheless, today PAH still remains incurable and is often refractory to medical therapy, underscoring the need for further research. Over the last three decades, PAH has evolved from a disease of unknown pathogenesis devoid of effective therapy to a condition whose cellular, genetic and molecular underpinnings are unfolding. This article provides an update on current knowledge and summarizes the progression in recent advances in pharmacological therapy in PAH.
Collapse
Affiliation(s)
- Ronald Zolty
- Pulmonary Hypertension Program, University of Nebraska Medical Center, Lied Transplant Center, Omaha, NE, USA
| |
Collapse
|
38
|
Horvath C, Young M, Jarabicova I, Kindernay L, Ferenczyova K, Ravingerova T, Lewis M, Suleiman MS, Adameova A. Inhibition of Cardiac RIP3 Mitigates Early Reperfusion Injury and Calcium-Induced Mitochondrial Swelling without Altering Necroptotic Signalling. Int J Mol Sci 2021; 22:7983. [PMID: 34360749 PMCID: PMC8347133 DOI: 10.3390/ijms22157983] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/22/2021] [Accepted: 07/22/2021] [Indexed: 11/17/2022] Open
Abstract
Receptor-interacting protein kinase 3 (RIP3) is a convergence point of multiple signalling pathways, including necroptosis, inflammation and oxidative stress; however, it is completely unknown whether it underlies acute myocardial ischemia/reperfusion (I/R) injury. Langendorff-perfused rat hearts subjected to 30 min ischemia followed by 10 min reperfusion exhibited compromised cardiac function which was not abrogated by pharmacological intervention of RIP3 inhibition. An immunoblotting analysis revealed that the detrimental effects of I/R were unlikely mediated by necroptotic cell death, since neither the canonical RIP3-MLKL pathway (mixed lineage kinase-like pseudokinase) nor the proposed non-canonical molecular axes involving CaMKIIδ-mPTP (calcium/calmodulin-dependent protein kinase IIδ-mitochondrial permeability transition pore), PGAM5-Drp1 (phosphoglycerate mutase 5-dynamin-related protein 1) and JNK-BNIP3 (c-Jun N-terminal kinase-BCL2-interacting protein 3) were activated. Similarly, we found no evidence of the involvement of NLRP3 inflammasome signalling (NOD-, LRR- and pyrin domain-containing protein 3) in such injury. RIP3 inhibition prevented the plasma membrane rupture and delayed mPTP opening which was associated with the modulation of xanthin oxidase (XO) and manganese superoxide dismutase (MnSOD). Taken together, this is the first study indicating that RIP3 regulates early reperfusion injury via oxidative stress- and mitochondrial activity-related effects, rather than cell loss due to necroptosis.
Collapse
Affiliation(s)
- Csaba Horvath
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, 81499 Bratislava, Slovakia; (C.H.); (I.J.)
| | - Megan Young
- Faculty of Health Sciences, Bristol Heart Institute, The Bristol Medical School, University of Bristol, Bristol BS8 1TH, UK; (M.Y.); (M.L.); (M.S.S.)
| | - Izabela Jarabicova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, 81499 Bratislava, Slovakia; (C.H.); (I.J.)
| | - Lucia Kindernay
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 81438 Bratislava, Slovakia; (L.K.); (K.F.); (T.R.)
| | - Kristina Ferenczyova
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 81438 Bratislava, Slovakia; (L.K.); (K.F.); (T.R.)
| | - Tanya Ravingerova
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 81438 Bratislava, Slovakia; (L.K.); (K.F.); (T.R.)
| | - Martin Lewis
- Faculty of Health Sciences, Bristol Heart Institute, The Bristol Medical School, University of Bristol, Bristol BS8 1TH, UK; (M.Y.); (M.L.); (M.S.S.)
| | - M. Saadeh Suleiman
- Faculty of Health Sciences, Bristol Heart Institute, The Bristol Medical School, University of Bristol, Bristol BS8 1TH, UK; (M.Y.); (M.L.); (M.S.S.)
| | - Adriana Adameova
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Comenius University in Bratislava, 81499 Bratislava, Slovakia; (C.H.); (I.J.)
- Centre of Experimental Medicine, Institute for Heart Research, Slovak Academy of Sciences, 81438 Bratislava, Slovakia; (L.K.); (K.F.); (T.R.)
| |
Collapse
|
39
|
Masodsai K, Lin YY, Lin SY, Su CT, Lee SD, Yang AL. Aging Additively Influences Insulin- and Insulin-Like Growth Factor-1-Mediated Endothelial Dysfunction and Antioxidant Deficiency in Spontaneously Hypertensive Rats. Biomedicines 2021; 9:biomedicines9060676. [PMID: 34203897 PMCID: PMC8232669 DOI: 10.3390/biomedicines9060676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 11/25/2022] Open
Abstract
This study aimed to investigate the aging-related endothelial dysfunction mediated by insulin and insulin-like growth factor-1 (IGF-1) and antioxidant deficiency in hypertension. Male spontaneously hypertensive rats (SHRs) and age-matched normotensive Wistar–Kyoto rats (WKYs) were randomly divided into 24-week-old (younger) and 48-week-old (older) groups, respectively. The endothelial function was evaluated by the insulin- and IGF-1-mediated vasorelaxation of aortic rings via the organ bath system. Serum levels of nitric oxide (NO), malondialdehyde (MDA), catalase, and total antioxidant capacity (TAC) were examined. The insulin- and IGF-1-mediated vasorelaxation was significantly impaired in both 24- and 48-week-old SHRs compared with age-matched WKYs and was significantly worse in the 48-week-old SHR than the 24-week-old SHR. After pretreatments of phosphoinositide 3-kinase (PI3K) or NO synthase (NOS) inhibitors, the insulin- and IGF-1-mediated vasorelaxation became similar among four groups. The serum level of MDA was significantly increased, while the NO, catalase, and TAC were significantly reduced in the 48-week-old SHR compared with the 24-week-old SHR. This study demonstrated that the process of aging additively affected insulin- and IGF-1-mediated endothelial dysfunction in SHRs, which could be partly attributed to the reduced NO production and antioxidant deficiency.
Collapse
Affiliation(s)
- Kunanya Masodsai
- Faculty of Sports Science, Chulalongkorn University, Bangkok 10330, Thailand;
- Institute of Sports Sciences, University of Taipei, Taipei 11153, Taiwan;
| | - Yi-Yuan Lin
- Department of Exercise and Health Science, National Taipei University of Nursing and Health Sciences, Taipei 11257, Taiwan;
| | - Sih-Yin Lin
- Institute of Sports Sciences, University of Taipei, Taipei 11153, Taiwan;
| | - Chia-Ting Su
- Department of Occupational Therapy, College of Medicine, Fu Jen Catholic University, New Taipei City 24205, Taiwan;
| | - Shin-Da Lee
- Department of Physical Therapy, Asia University, Taichung 41354, Taiwan;
- Department of Physical Therapy, Graduate Institute of Rehabilitation Science, China Medical University, Taichung 40402, Taiwan
- School of Rehabilitation Medicine, Weifang Medical University, Shandong, Weifang 261000, China
| | - Ai-Lun Yang
- Institute of Sports Sciences, University of Taipei, Taipei 11153, Taiwan;
- Correspondence: or ; Tel.: +886-2-2871-8288 (ext. 5815)
| |
Collapse
|
40
|
Dhulqarnain AO, Takzaree N, Hassanzadeh G, Tooli H, Malekzadeh M, Khanmohammadi N, Yaghobinejad M, Solhjoo S, Rastegar T. Pentoxifylline improves the survival of spermatogenic cells via oxidative stress suppression and upregulation of PI3K/AKT pathway in mouse model of testicular torsion-detorsion. Heliyon 2021; 7:e06868. [PMID: 33997400 PMCID: PMC8095127 DOI: 10.1016/j.heliyon.2021.e06868] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/28/2020] [Accepted: 04/16/2021] [Indexed: 11/20/2022] Open
Abstract
Testicular torsion-detorsion results in enhanced formation of free radicals which contribute to the pathophysiology of testicular tissue damage. Recent reports have identified protective role of pentoxifylline (PTX) against free radicals. Thus, we determined the protective effect of pentoxifylline against testicular damage in mouse model of testicular torsion-detorsion. Twenty (6 weeks old) male mice were divided into 4 groups of 5 animals each namely: Control (sham operated group), T1 (Torsion-detosion + single dose 100 mg/kg PTX, T2 (torsion-detorsion + 20 mg/kg PTX for 2 weeks and T/D (torsion-detorsion only). Animals in T1, T2 and T/D groups underwent 2 h of testicular torsion with the left testes rotated 720° (clockwisely) followed by 30 min of detorsion. After detorsion, drug administration was done intraperitoneally. The left testes of all the animals were excised on the 35th day after torsion-detortion for histopathological and biochemical assay. Histomorphological analysis of the seminiferous tubules showed that there were significant increase (P < 0.01 or 0.05) in the mean seminiferous tubule diameter, Johnson score and germ cells of animals in Control and T1 compared to T2 and T/D with no significant difference (P > 0.05) in testes weight, sertoli, leydig and myoid cells in all groups. IHC results showed significant increase (P < 0.01 or 0.05) in id4 and scp3 protein markers in Control, T1 and T2 compared to T/D. Oxidative stress analysis revealed that Pentoxifylline significantly increased (P < 0.01 or 0.05) the level of SOD, catalase, mRNA expression of akt and pi3k genes but significantly suppress (P < 0.01 or 0.05) MDA and Caspase-3 level in Control, T1 and T2 compared to T/D. Pentoxifylline could be used as an adjunct therapy to surgery in the treatment of torsion-detorsion related testicular injury, However, Further studies are needed to evaluate the effects of pentoxifylline on testicular torsion.
Collapse
Affiliation(s)
- Akanji Omotosho Dhulqarnain
- Department of Anatomy, School of Medicine, International Campus, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasrin Takzaree
- Department of Anatomy, School of Medicine, International Campus, Tehran University of Medical Sciences, Tehran, Iran.,Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Golamreza Hassanzadeh
- Department of Anatomy, School of Medicine, International Campus, Tehran University of Medical Sciences, Tehran, Iran.,Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Heidar Tooli
- Department of Anatomy, School of Medicine, Shahroud University of Medical Sciences, Sharoud, Iran.,Tissue Engineering and Stem Cells Research Center, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mehrnoush Malekzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasrin Khanmohammadi
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahsa Yaghobinejad
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Somayeh Solhjoo
- Department of Anatomy, Kerman University of Medical Sciences, Kerman, Iran
| | - Tayebeh Rastegar
- Department of Anatomy, School of Medicine, International Campus, Tehran University of Medical Sciences, Tehran, Iran.,Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
Coskuner ER, Ozkan B. Reno-protective effects of Phosphodiesterase 5 inhibitors. Clin Exp Nephrol 2021; 25:585-597. [PMID: 33754203 DOI: 10.1007/s10157-021-02051-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 03/09/2021] [Indexed: 12/20/2022]
Abstract
The kidneys are vital organs that play an important role in removing waste materials from the blood, electrolyte balance, blood pressure regulation, and red blood cell genesis. Kidney disease can be caused by various factors, including diabetes, ischemia/reperfusion injury, and nephrotoxic agents. Inflammation and oxidative stress play a key role in the progression and pathogenesis of kidney diseases. Acute kidney injury (AKI) and chronic kidney disease (CKD) are important health problems worldwide, as they are associated with a long-term hospital stay, and increased morbidity and mortality in high-risk patients. Current standard therapeutic options are not sufficient to delay or stop the loss of kidney function. Therefore, it is necessary to develop new therapeutic options. Phosphodiesterase 5 inhibitors (PDE5Is) are a currently available class of drugs that are used to treat erectile dysfunction and pulmonary hypertension in humans. However, recent evidence suggests that PDE5Is have beneficial renoprotective effects via a variety of mechanisms. In this review, the benefits of PDE5 inhibitors in clinical conditions associated with kidney disease, such as diabetic nephropathy, ischemia-reperfusion injury, and acute and chronic kidney injury, are summarized.
Collapse
Affiliation(s)
- Enis Rauf Coskuner
- Department of Urology, Acibadem Mehmet Ali Aydinlar University School of Medicine, Acibadem Bakirkoy Hospital, Halit Ziya Usakligil Cad No:1, Bakirkoy, 34140, Istanbul, Turkey.
| | - Burak Ozkan
- Department of Urology, Acibadem Mehmet Ali Aydinlar University School of Medicine, Acibadem Bakirkoy Hospital, Halit Ziya Usakligil Cad No:1, Bakirkoy, 34140, Istanbul, Turkey
| |
Collapse
|
42
|
Segovia-Roldan M, Diez ER, Pueyo E. Melatonin to Rescue the Aged Heart: Antiarrhythmic and Antioxidant Benefits. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8876792. [PMID: 33791076 PMCID: PMC7984894 DOI: 10.1155/2021/8876792] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 01/16/2021] [Accepted: 01/23/2021] [Indexed: 12/19/2022]
Abstract
Aging comes with gradual loss of functions that increase the vulnerability to disease, senescence, and death. The mechanisms underlying these processes are linked to a prolonged imbalance between damage and repair. Damaging mechanisms include oxidative stress, mitochondrial dysfunction, chronodisruption, inflammation, and telomere attrition, as well as genetic and epigenetic alterations. Several endogenous tissue repairing mechanisms also decrease. These alterations associated with aging affect the entire organism. The most devastating manifestations involve the cardiovascular system and may lead to lethal cardiac arrhythmias. Together with structural remodeling, electrophysiological and intercellular communication alterations during aging predispose to arrhythmic events. Despite the knowledge on repairing mechanisms in the cardiovascular system, effective antiaging strategies able to reduce the risk of arrhythmias are still missing. Melatonin is a promising therapeutic candidate due to its pleiotropic actions. This indoleamine regulates chronobiology and endocrine physiology. Of relevance, melatonin is an antiaging, antioxidant, antiapoptotic, antiarrhythmic, immunomodulatory, and antiproliferative molecule. This review focuses on the protective effects of melatonin on age-induced cardiac functional and structural alterations, potentially becoming a new fountain of youth for the heart.
Collapse
Affiliation(s)
- Margarita Segovia-Roldan
- Biomedical Signal Interpretation and Computational Simulation (BSICoS), I3A, Universidad de Zaragoza, IIS Aragón and CIBER-BBN, Spain
| | | | - Esther Pueyo
- Biomedical Signal Interpretation and Computational Simulation (BSICoS), I3A, Universidad de Zaragoza, IIS Aragón and CIBER-BBN, Spain
| |
Collapse
|
43
|
Maissan P, Mooij EJ, Barberis M. Sirtuins-Mediated System-Level Regulation of Mammalian Tissues at the Interface between Metabolism and Cell Cycle: A Systematic Review. BIOLOGY 2021; 10:194. [PMID: 33806509 PMCID: PMC7999230 DOI: 10.3390/biology10030194] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/20/2021] [Accepted: 02/25/2021] [Indexed: 02/06/2023]
Abstract
Sirtuins are a family of highly conserved NAD+-dependent proteins and this dependency links Sirtuins directly to metabolism. Sirtuins' activity has been shown to extend the lifespan of several organisms and mainly through the post-translational modification of their many target proteins, with deacetylation being the most common modification. The seven mammalian Sirtuins, SIRT1 through SIRT7, have been implicated in regulating physiological responses to metabolism and stress by acting as nutrient sensors, linking environmental and nutrient signals to mammalian metabolic homeostasis. Furthermore, mammalian Sirtuins have been implicated in playing major roles in mammalian pathophysiological conditions such as inflammation, obesity and cancer. Mammalian Sirtuins are expressed heterogeneously among different organs and tissues, and the same holds true for their substrates. Thus, the function of mammalian Sirtuins together with their substrates is expected to vary among tissues. Any therapy depending on Sirtuins could therefore have different local as well as systemic effects. Here, an introduction to processes relevant for the actions of Sirtuins, such as metabolism and cell cycle, will be followed by reasoning on the system-level function of Sirtuins and their substrates in different mammalian tissues. Their involvement in the healthy metabolism and metabolic disorders will be reviewed and critically discussed.
Collapse
Affiliation(s)
- Parcival Maissan
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
| | - Eva J. Mooij
- Systems Biology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, UK;
- Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford GU2 7XH, Surrey, UK
| | - Matteo Barberis
- Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
- Systems Biology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, Surrey, UK;
- Centre for Mathematical and Computational Biology, CMCB, University of Surrey, Guildford GU2 7XH, Surrey, UK
| |
Collapse
|
44
|
Lee NK, Lim SM, Cheon MJ, Paik HD. Physicochemical Analysis of Yogurt Produced by Leuconostoc mesenteroides H40 and Its Effects on Oxidative Stress in Neuronal Cells. Food Sci Anim Resour 2021; 41:261-273. [PMID: 33987547 PMCID: PMC8115002 DOI: 10.5851/kosfa.2020.e97] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/16/2020] [Accepted: 11/26/2020] [Indexed: 12/11/2022] Open
Abstract
Leuconostoc mesenteroides H40 (H40) was isolated from kimchi,
and its probiotic properties and neuroprotective effect was evaluated in
oxidatively stressed SH-SY5Y cells. H40 was stable in artificial gastric
conditions and can be attached in HT-29 cells. In addition, H40 did not produce
β-glucuronidase and showed resistant to several antibiotics. The
conditioned medium (CM) was made using HT-29 cells refined with heat-killed
probiotics (Probiotics-CM) and heated yogurts (Y-CM) to investigate the
neuroprotective effect. Treatment with H40-CM not only increased cell viability
but also significantly improved brain derived neurotropic factor
(BDNF) expression and reduced the
Bax/Bcl-2 ratio in oxidatively stress-induced SH-SY5Y
cells. Besides, probiotic Y-CM significantly increased BDNF
mRNA expression and decreased Bax/Bcl-2 ratio. The
physicochemical properties of probiotic yogurt with H40 was not significantly
different from the control yogurt. The viable cell counts of lactic acid
bacteria in control and probiotic yogurt with H40 was 8.66 Log CFU/mL and 8.96
Log CFU/mL, respectively. Therefore, these results indicate that H40 can be used
as prophylactic functional dairy food having neuroprotective effects.
Collapse
Affiliation(s)
- Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Sung-Min Lim
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Min-Jeong Cheon
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resources, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
45
|
Selenium Biofortification: Roles, Mechanisms, Responses and Prospects. Molecules 2021; 26:molecules26040881. [PMID: 33562416 PMCID: PMC7914768 DOI: 10.3390/molecules26040881] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/28/2021] [Accepted: 02/05/2021] [Indexed: 12/16/2022] Open
Abstract
The trace element selenium (Se) is a crucial element for many living organisms, including soil microorganisms, plants and animals, including humans. Generally, in Nature Se is taken up in the living cells of microorganisms, plants, animals and humans in several inorganic forms such as selenate, selenite, elemental Se and selenide. These forms are converted to organic forms by biological process, mostly as the two selenoamino acids selenocysteine (SeCys) and selenomethionine (SeMet). The biological systems of plants, animals and humans can fix these amino acids into Se-containing proteins by a modest replacement of methionine with SeMet. While the form SeCys is usually present in the active site of enzymes, which is essential for catalytic activity. Within human cells, organic forms of Se are significant for the accurate functioning of the immune and reproductive systems, the thyroid and the brain, and to enzyme activity within cells. Humans ingest Se through plant and animal foods rich in the element. The concentration of Se in foodstuffs depends on the presence of available forms of Se in soils and its uptake and accumulation by plants and herbivorous animals. Therefore, improving the availability of Se to plants is, therefore, a potential pathway to overcoming human Se deficiencies. Among these prospective pathways, the Se-biofortification of plants has already been established as a pioneering approach for producing Se-enriched agricultural products. To achieve this desirable aim of Se-biofortification, molecular breeding and genetic engineering in combination with novel agronomic and edaphic management approaches should be combined. This current review summarizes the roles, responses, prospects and mechanisms of Se in human nutrition. It also elaborates how biofortification is a plausible approach to resolving Se-deficiency in humans and other animals.
Collapse
|
46
|
Adeyemi JA, Ukwenya VO, Arowolo OK, Olise CC. Pesticides-induced Cardiovascular Dysfunctions: Prevalence and Associated Mechanisms. Curr Hypertens Rev 2021; 17:27-34. [PMID: 33430736 DOI: 10.2174/1573402117666210111102508] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/24/2020] [Accepted: 10/28/2020] [Indexed: 11/22/2022]
Abstract
Increased applications of pesticides, mainly in agriculture and public health, have resulted in increased chances of human exposure to pesticides. Chronic exposure to pesticides has been implicated in several human diseases, including cardiovascular diseases. Cardiovascular diseases are broadly used for various heart pathological conditions, including a defect in blood vessels, and they include myocardial infarction, atherosclerosis, stroke, cardiomyopathy, coronary heart disease, etc. In this review, the association between human exposure to pesticides and the development of cardiovascular diseases was discussed using epidemiological and laboratory data. The toxicokinetics of pesticides in humans was reviewed, as well as the risk factors for cardiovascular diseases. The important role of oxidative stress principally the induction of reactive oxygen species as the signaling molecules for various signaling pathways involved in pesticides-induced cardiovascular disease, was discussed.
Collapse
Affiliation(s)
- Joseph A Adeyemi
- Department of Biology, School of Sciences, Federal University of Technology, P.M.B. 704, Akure, Ondo State, Nigeria
| | - Victor O Ukwenya
- Department of Human Anatomy, School of Health and Health Technology, Federal University of Technology, P.M.B. 704, Akure, Ondo State, Nigeria
| | - Olatunbosun K Arowolo
- Department of Biology, School of Sciences, Federal University of Technology, P.M.B. 704, Akure, Ondo State, Nigeria
| | - Christian C Olise
- Department of Biology, School of Sciences, Federal University of Technology, P.M.B. 704, Akure, Ondo State, Nigeria
| |
Collapse
|
47
|
Teucrium leucocladum: An Effective Tool for the Treatment of Hyperglycemia, Hyperlipidemia, and Oxidative Stress in Streptozotocin-Induced Diabetic Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3272103. [PMID: 33293988 PMCID: PMC7718044 DOI: 10.1155/2020/3272103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 10/05/2020] [Accepted: 10/23/2020] [Indexed: 11/17/2022]
Abstract
Teucrium leucocladum is among the most used traditional medicinal plants in Palestine, which is used for the treatment of hyperglycemia and colon spasms from ancient times. Therefore, the current investigation aimed for the first time to determine the hypoglycemic, hypolipidemic, and oxidative stress inhibitory effects of the aerial parts (stem and leaves) of T. leucocladum hydrophilic (water) extract in streptozotocin- (STZ-) induced diabetic rats (65 mg/kg), given intraperitoneally at a dose of 100 mg/kg for 21 days. The rats were divided into four groups as control (C), control + T. leucocladum extract (C + TL), diabetes (D), and diabetes + T. leucocladum extract (D + TL). The antioxidant activity was analyzed using in vitro 2,2-diphenyl-1-picrylhydrazyl and in vivo methods by measuring the plasma and tissue malondialdehyde (MDA) levels using a colorimetric assay. On the other hand, glutathione peroxidase (GSH-Px), erythrocyte superoxide dismutase (SOD) enzyme levels, serum paraoxonase (PON), and arylesterase (ARE) enzyme activities were assessed by utilizing standard biochemical kits. Besides, the blood glucose and serum insulin levels were assessed by a glucometer and Rat ELISA Kit, respectively. However, the autoanalyzer was used to evaluate the lipid profile. The diabetic rat group that administered T. leucocladum extract showed the best reduction in the tissue and plasma MDA levels and an increase of insulin-releasing potentials. Besides, the serum PON and ARE activities and erythrocyte superoxide dismutase and whole blood glutathione peroxidase enzyme levels were significantly increased in all animals treated with T. leucocladum extract. The current investigation demonstrated that T. leucocladum manifests antihyperglycemic and antihyperlipidemic effects and also increased the antioxidative defense system and reduced the lipid peroxidation process in experimental diabetic rats.
Collapse
|
48
|
Atale N, Yadav D, Rani V, Jin JO. Pathophysiology, Clinical Characteristics of Diabetic Cardiomyopathy: Therapeutic Potential of Natural Polyphenols. Front Nutr 2020; 7:564352. [PMID: 33344490 PMCID: PMC7744342 DOI: 10.3389/fnut.2020.564352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 10/27/2020] [Indexed: 12/20/2022] Open
Abstract
Diabetic cardiomyopathy (DCM) is an outcome of disturbances in metabolic activities through oxidative stress, local inflammation, and fibrosis, as well as a prime cause of fatality worldwide. Cardiovascular disorders in diabetic individuals have become a challenge in diagnosis and formulation of treatment prototype. It is necessary to have a better understanding of cellular pathophysiology that reveal the therapeutic targets and prevent the progression of cardiovascular diseases due to hyperglycemia. Critical changes in levels of collagen and integrin have been observed in the extracellular matrix of heart, which was responsible for cardiac remodeling in diabetic patients. This review explored the understanding of the mechanisms of how the phytochemicals provide cardioprotection under diabetes along with the caveats and provide future perspectives on these agents as prototypes for the development of drugs for managing DCM. Thus, here we summarized the effect of various plant extracts and natural polyphenols tested in preclinical and cell culture models of diabetic cardiomyopathy. Further, the potential use of selected polyphenols that improved the therapeutic efficacy against diabetic cardiomyopathy is also illustrated.
Collapse
Affiliation(s)
- Neha Atale
- Jaypee Institute of Information Technology, Noida, India
| | - Dhananjay Yadav
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Vibha Rani
- Jaypee Institute of Information Technology, Noida, India
| | - Jun-O Jin
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan, South Korea
- Research Institute of Cell Culture, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
49
|
Gochi M, Kato F, Toriumi A, Kawagoe T, Yotsuya S, Ishii D, Otani M, Nishikawa Y, Furukawa H, Matsuno N. A Novel Preservation Solution Containing Quercetin and Sucrose for Porcine Kidney Transplantation. Transplant Direct 2020; 6:e624. [PMID: 33204822 PMCID: PMC7665254 DOI: 10.1097/txd.0000000000001077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 08/26/2020] [Accepted: 09/13/2020] [Indexed: 01/20/2023] Open
Abstract
In organ transplantation, the University of Wisconsin (UW) solution has been the gold standard for organ preservation. Quercetin (Que) has numerous antioxidant and anti-inflammatory activities, and sucrose (Suc) may be effective for cold storage (CS). This study aimed to investigate the in vitro protective effect of Que and Suc on cold injury to the kidney and to determine whether Que + Suc could improve ischemia-reperfusion injury during CS and hypothermic oxygenated perfusion (HOPE) in autologous transplantation models. METHODS BHK-21 cells were stored at 4°C for 3 days in UW solution for CS/machine perfusion (CS/MP-UW) with Que (33.1 μM, 3.3 μM, 0.33 μM) and Suc (0.1 M). In a porcine model of renal autologous transplantation, left kidney grafts were preserved under 3 conditions: group 1, CS preservation for 24 hours; group 2, CS preservation for 22 hours and HOPE with CS/MP-UW solution for 2 hours; and group 3, identical preservation as group 2, with Que and Suc added to the solution. Animals were euthanized on day 7 after autologous transplantation. RESULTS After 3 days of CS preservation, the CS/MP-UW solution with Que (33.1 μM, 3.3 μM) and Suc showed significant cell protection against cold injury. In the porcine model of renal autologous transplantation, the last blood Cre level and the blood lipid hydroperoxide on posttransplantation day 2 were significantly different between group 1 and group 3. Moreover, the total endothelial, glomerular, tubular, interstitial (EGTI) histology score in the kidney tissue was also significantly different. Regarding the change in renal resistance in HOPE, the decrease observed in group 3 was significantly larger than that in group 2. CONCLUSIONS Our results suggest that the addition of Que and Suc to a UW solution can improve kidney preservation and could potentially enhance the outcome of kidney transplantation.
Collapse
Affiliation(s)
- Mikako Gochi
- Department of Transplantation Technology and Therapeutic Development, Asahikawa Medical University, Hokkaido, Japan
| | - Fuminori Kato
- Pharmaceutical Development Division, Life Science Business Development Headquarters, Ishihara Sangyo Kaisha, Ltd., Osaka, Japan
| | - Asuka Toriumi
- Department of Transplantation Technology and Therapeutic Development, Asahikawa Medical University, Hokkaido, Japan
| | - Tomoko Kawagoe
- Pharmaceutical Development Division, Life Science Business Development Headquarters, Ishihara Sangyo Kaisha, Ltd., Osaka, Japan
| | - Shuichi Yotsuya
- Pharmaceutical Development Division, Life Science Business Development Headquarters, Ishihara Sangyo Kaisha, Ltd., Osaka, Japan
| | - Daisuke Ishii
- Department of Transplantation Technology and Therapeutic Development, Asahikawa Medical University, Hokkaido, Japan
| | - Masahide Otani
- Department of Transplantation Technology and Therapeutic Development, Asahikawa Medical University, Hokkaido, Japan
| | - Yuji Nishikawa
- Department of Pathology, Asahikawa Medical University, Hokkaido, Japan
| | - Hiroyuki Furukawa
- Division of Hepato-Biliary-Pancreatic and Transplant Surgery, Department of Surgery, Asahikawa Medical University, Hokkaido, Japan
| | - Naoto Matsuno
- Department of Transplantation Technology and Therapeutic Development, Asahikawa Medical University, Hokkaido, Japan
| |
Collapse
|
50
|
Gao C, Hu W, Liu F, Zeng Z, Zhu Q, Fan J, Chen J, Cheng S, Yu K, Qian Y, Ren T, Zhao J, Liu X, Wang J. Aldo-keto reductase family 1 member B induces aortic valve calcification by activating hippo signaling in valvular interstitial cells. J Mol Cell Cardiol 2020; 150:54-64. [PMID: 33045251 DOI: 10.1016/j.yjmcc.2020.10.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 09/21/2020] [Accepted: 10/04/2020] [Indexed: 10/23/2022]
Abstract
AIMS Calcific aortic valve disease (CAVD) is a primary cause of cardiovascular mortality; however, its mechanisms are unknown. Currently, no effective pharmacotherapy is available for CAVD. Aldo-keto reductase family 1 member B (Akr1B1) has been identified as a potential therapeutic target for valve interstitial cell calcification. Herein, we hypothesized that inhibition of Akr1B1 can attenuate aortic valve calcification. METHODS AND RESULTS Normal and degenerative tricuspid calcific valves from human samples were analyzed by immunoblotting and immunohistochemistry. The results showed significant upregulation of Akr1B1 in CAVD leaflets. Akr1B1 inhibition attenuated calcification of aortic valve interstitial cells in osteogenic medium. In contrast, overexpression of Akr1B1 aggravated calcification in osteogenic medium. Mechanistically, using RNA sequencing (RNAseq), we revealed that Hippo-YAP signaling functions downstream of Akr1B1. Furthermore, we established that the protein level of the Hippo-YAP signaling effector active-YAP had a positive correlation with Akr1B1. Suppression of YAP reversed Akr1B1 overexpression-induced Runx2 upregulation. Moreover, YAP activated the Runx2 promoter through TEAD1 in a manner mediated by ChIP and luciferase reporter systems. Animal experiments showed that the Akr1B1 inhibitor epalrestat attenuated aortic valve calcification induced by a Western diet in LDLR-/- mice. CONCLUSION This study demonstrates that inhibition of Akr1B1 can attenuate the degree of calcification both in vitro and in vivo. The Akr1B1 inhibitor epalrestat may be a potential treatment option for CAVD.
Collapse
Affiliation(s)
- Chenyang Gao
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China
| | - Wangxing Hu
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China
| | - Feng Liu
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China
| | - Zhiru Zeng
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China
| | - Qifeng Zhu
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China
| | - Jiaqi Fan
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China
| | - Jinyong Chen
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China
| | - Si Cheng
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China
| | - Kaixiang Yu
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China
| | - Yi Qian
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China
| | - Tanchen Ren
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China
| | - Jing Zhao
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China
| | - Xianbao Liu
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China.
| | - Jian'an Wang
- Department of Cardiology of The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, PR China; Cardiovascular Key Laboratory of Zhejiang Province, Hangzhou, PR China.
| |
Collapse
|