1
|
Soleimani B, Lehnert H, Schikora A, Stahl A, Matros A, Wehner G. Bacterial N-Acyl Homoserine Lactone Priming Enhances Leaf-Rust Resistance in Winter Wheat and Some Genomic Regions Are Associated with Priming Efficiency. Microorganisms 2024; 12:1936. [PMID: 39458245 PMCID: PMC11509450 DOI: 10.3390/microorganisms12101936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/17/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Leaf rust (Puccinia triticina) is a common disease that causes significant yield losses in wheat. The most frequently used methods to control leaf rust are the application of fungicides and the cultivation of resistant genotypes. However, high genetic diversity and associated adaptability of pathogen populations hamper achieving durable resistance in wheat. Emerging alternatives, such as microbial priming, may represent an effective measure to stimulate plant defense mechanisms and could serve as a means of controlling a broad range of pathogens. In this study, 175 wheat genotypes were inoculated with two bacterial strains: Ensifer meliloti strain expR+ch (producing N-acyl homoserine lactone (AHL)) or transformed E. meliloti carrying the lactonase gene attM (control). In total, 21 genotypes indicated higher resistance upon bacterial AHL priming. Subsequently, the phenotypic data of 175 genotypes combined with 9917 single-nucleotide polymorphisms (SNPs) in a genome-wide association study to identify quantitative trait loci (QTLs) and associated markers for relative infection under attM and expR+ch conditions and priming efficiency using the Genome Association and Prediction Integrated Tool (GAPIT). In total, 15 QTLs for relative infection under both conditions and priming efficiency were identified on chromosomes 1A, 1B, 2A, 3A, 3B, 3D, 6A, and 6B, which may represent targets for wheat breeding for priming and leaf-rust resistance.
Collapse
Affiliation(s)
- Behnaz Soleimani
- Institute for Resistance Research and Stress Tolerance, Federal Research Centre for Cultivated Plants, Julius Kuehn Institute (JKI), Erwin-Baur-Str. 27, 06484 Quedlinburg, Germany; (B.S.); (A.S.); (A.M.)
| | - Heike Lehnert
- Institute for Biosafety in Plant Biotechnology, Federal Research Centre for Cultivated Plants, Julius Kuehn Institute (JKI), Erwin-Baur-Str. 27, 06484 Quedlinburg, Germany;
| | - Adam Schikora
- Institute for Epidemiology and Pathogen Diagnostics, Federal Research Centre for Cultivated Plants, Julius Kuehn Institute (JKI), Messeweg 11/12, 38104 Braunschweig, Germany;
| | - Andreas Stahl
- Institute for Resistance Research and Stress Tolerance, Federal Research Centre for Cultivated Plants, Julius Kuehn Institute (JKI), Erwin-Baur-Str. 27, 06484 Quedlinburg, Germany; (B.S.); (A.S.); (A.M.)
| | - Andrea Matros
- Institute for Resistance Research and Stress Tolerance, Federal Research Centre for Cultivated Plants, Julius Kuehn Institute (JKI), Erwin-Baur-Str. 27, 06484 Quedlinburg, Germany; (B.S.); (A.S.); (A.M.)
| | - Gwendolin Wehner
- Institute for Resistance Research and Stress Tolerance, Federal Research Centre for Cultivated Plants, Julius Kuehn Institute (JKI), Erwin-Baur-Str. 27, 06484 Quedlinburg, Germany; (B.S.); (A.S.); (A.M.)
| |
Collapse
|
2
|
Li Y, Chen Y, Fu Y, Shao J, Liu Y, Xuan W, Xu G, Zhang R. Signal communication during microbial modulation of root system architecture. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:526-537. [PMID: 37419655 DOI: 10.1093/jxb/erad263] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/06/2023] [Indexed: 07/09/2023]
Abstract
Every living organism on Earth depends on its interactions with other organisms. In the rhizosphere, plants and microorganisms constantly exchange signals and influence each other's behavior. Recent studies have shown that many beneficial rhizosphere microbes can produce specific signaling molecules that affect plant root architecture and therefore could have substantial effects on above-ground growth. This review examines these chemical signals and summarizes their mechanisms of action, with the aim of enhancing our understanding of plant-microbe interactions and providing references for the comprehensive development and utilization of these active components in agricultural production. In addition, we highlight future research directions and challenges, such as searching for microbial signals to induce primary root development.
Collapse
Affiliation(s)
- Yucong Li
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
- College of Environment and Ecology, Jiangsu Open University, Nanjing 210017, China
| | - Yu Chen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yansong Fu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiahui Shao
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunpeng Liu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wei Xuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruifu Zhang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing 210095, China
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
3
|
Duan Y, Han M, Grimm M, Ponath J, Reichelt M, Mithöfer A, Schikora A. Combination of bacterial N-acyl homoserine lactones primes Arabidopsis defenses via jasmonate metabolism. PLANT PHYSIOLOGY 2023; 191:2027-2044. [PMID: 36649188 PMCID: PMC10022612 DOI: 10.1093/plphys/kiad017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
N-acyl homoserine lactones (AHLs) are important players in plant-bacteria interactions. Different AHL-producing bacteria can improve plant growth and resistance against plant pathogens. In nature, plants may host a variety of AHL-producing bacteria and frequently experience numerous AHLs at the same time. Therefore, a coordinated response to combined AHL molecules is necessary. The purpose of this study was to explore the mechanism of AHL-priming using combined AHL molecules including N-(3-oxo-hexanoyl)-L-homoserine lactone, N-3-oxo-octanoyl-L-homoserine lactone, N-3-oxo-dodecanoyl-L-homoserine lactone, and N-3-oxo-tetradecanoyl-L-homoserine lactone and AHL-producing bacteria including Serratia plymuthica HRO-C48, Rhizobium etli CFN42, Burkholderia graminis DSM17151, and Ensifer meliloti (Sinorhizobium meliloti) Rm2011. We used transcriptome analysis, phytohormone measurements, as well as genetic and microbiological approaches to assess how the combination of structurally diverse AHL molecules influence Arabidopsis (Arabidopsis thaliana). Our findings revealed a particular response to a mixture of AHL molecules (AHL mix). Different expression patterns indicated that the reaction of plants exposed to AHL mix differs from that of plants exposed to single AHL molecules. In addition, different content of jasmonic acid (JA) and derivatives revealed that jasmonates play an important role in AHL mix-induced priming. The fast and stable decreased concentration of COOH-JA-Ile after challenge with the flagellin-derived peptide flg22 indicated that AHL mix modifies the metabolism of jasmonates. Study of various JA- and salicylic acid-related Arabidopsis mutants strengthened the notion that JA homeostasis is involved in AHL-priming. Understanding how the combination of AHLs primes plants for enhanced resistance has the potential to broaden our approaches in sustainable agriculture and will help to effectively protect plants against pathogens.
Collapse
Affiliation(s)
- Yongming Duan
- Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104 Braunschweig, Germany
| | - Min Han
- Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104 Braunschweig, Germany
| | - Maja Grimm
- Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104 Braunschweig, Germany
| | - Jessica Ponath
- Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104 Braunschweig, Germany
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Axel Mithöfer
- Max-Planck-Institute for Chemical Ecology, Research Group Plant Defense Physiology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | | |
Collapse
|
4
|
Lucero CT, Lorda GS, Halliday N, Ambrosino ML, Cámara M, Taurian T. Impact of quorum sensing from native peanut phosphate solubilizing Serratia sp. S119 strain on interactions with agronomically important crops. Symbiosis 2022. [DOI: 10.1007/s13199-022-00893-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
5
|
Shrestha A, Hernández-Reyes C, Grimm M, Krumwiede J, Stein E, Schenk ST, Schikora A. AHL-Priming Protein 1 mediates N-3-oxo-tetradecanoyl-homoserine lactone priming in Arabidopsis. BMC Biol 2022; 20:268. [PMID: 36464707 PMCID: PMC9721052 DOI: 10.1186/s12915-022-01464-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/15/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND N-3-oxo-tetradecanoyl-L-homoserine lactone (oxo-C14-HSL) is one of the N-acyl homoserine lactones (AHL) that mediate quorum sensing in Gram-negative bacteria. In addition to bacterial communication, AHL are involved in interactions with eukaryotes. Short-chain AHL are easily taken up by plants and transported over long distances. They promote root elongation and growth. Plants typically do not uptake hydrophobic long sidechain AHL such as oxo-C14-HSL, although they prime plants for enhanced resistance to biotic and abiotic stress. Many studies have focused on priming effects of oxo-C14-HSL for enhanced plant resistance to stress. However, specific plant factors mediating oxo-C14-HSL responses in plants remain unexplored. Here, we identify the Arabidopsis protein ALI1 as a mediator of oxo-C14-HSL-induced priming in plants. RESULTS We compared oxo-C14-HSL-induced priming between wild-type Arabidopsis Col-0 and an oxo-C14-HSL insensitive mutant ali1. The function of the candidate protein ALI1 was assessed through biochemical, genetic, and physiological approaches to investigate if the loss of the ALI1 gene resulted in subsequent loss of AHL priming. Through different assays, including MAP kinase activity assay, gene expression and transcriptome analysis, and pathogenicity assays, we revealed a loss of AHL priming in ali1. This phenomenon was reverted by the reintroduction of ALI1 into ali1. We also investigated the interaction between ALI1 protein and oxo-C14-HSL using biochemical and biophysical assays. Although biophysical assays did not reveal an interaction between oxo-C14-HSL and ALI1, a pull-down assay and an indirect method employing biosensor E. coli LuxCDABE support such interaction. We expressed fluorescently tagged ALI1 in tobacco leaves to assess the localization of ALI1 and demonstrate that ALI1 colocalizes with the plasma membrane, tonoplast, and endoplasmic reticulum. CONCLUSIONS These results suggest that the candidate protein ALI1 is indispensable for oxo-C14-HSL-dependent priming for enhanced resistance in Arabidopsis and that the ALI1 protein may interact with oxo-C14-HSL. Furthermore, ALI1 protein is localized in the cell periphery. Our findings advance the understanding of interactions between plants and bacteria and provide an avenue to explore desired outcomes such as enhanced stress resistance, which is useful for sustainable crop protection.
Collapse
Affiliation(s)
- Abhishek Shrestha
- grid.13946.390000 0001 1089 3517Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104 Braunschweig, Germany
| | | | - Maja Grimm
- grid.13946.390000 0001 1089 3517Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104 Braunschweig, Germany
| | - Johannes Krumwiede
- grid.13946.390000 0001 1089 3517Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104 Braunschweig, Germany
| | - Elke Stein
- grid.8664.c0000 0001 2165 8627Justus Liebig University Giessen, Institute for Phytopathology, , Heinrich-Buff-Ring 26, 35392 Giessen, Germany
| | - Sebastian T. Schenk
- grid.5963.9Cell Biology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Adam Schikora
- grid.13946.390000 0001 1089 3517Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104 Braunschweig, Germany
| |
Collapse
|
6
|
Hermann S, Orlik M, Boevink P, Stein E, Scherf A, Kleeberg I, Schmitt A, Schikora A. Biocontrol of Plant Diseases Using Glycyrrhiza glabra Leaf Extract. PLANT DISEASE 2022; 106:3133-3144. [PMID: 35549324 DOI: 10.1094/pdis-12-21-2813-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The growing concern regarding the potential risks of pesticides and their impact on nontarget organisms stimulates the development and application of alternative, environmentally friendly products. It seems necessary to develop alternatives for conventional products and for those already widely used in organic agriculture, e.g., copper. Very importantly, such alternative products should not limit the productivity and profitability of agriculture. In this study, we examined the efficacy of licorice (Glycyrrhiza glabra) leaf extract as such an alternative. We tested its impact on the virulence of Pseudomonas syringae toward the model plant Arabidopsis thaliana and the crop plant tomato (Solanum lycopersicum) as well as of Clavibacter michiganensis, Xanthomonas campestris, and Phytophthora infestans toward tomato, at multiple levels. We demonstrate that licorice leaf extract acts as a direct fungicide and bactericide. Moreover, it acts against a metalaxyl-resistant P. infestans strain. In addition, the extract from licorice leaves influences the plant immune system, modulating the plant responses to the challenge with pathogen(s); this involves both salicylic acid and ethylene-based responses. Our results show that in addition to the well-known use of licorice root extract in medicine, the leaf extract can be an effective alternative in organic and integrated farming, contributing to copper reduction and resistance management.[Formula: see text] Copyright © 2022 The Author(s). This is an open-access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
| | - Marc Orlik
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Biological Control, 64287 Darmstadt, Germany
| | - Petra Boevink
- The James Hutton Institute, Invergowrie, Dundee DD2 5DA, Scotland, U.K
| | - Elke Stein
- Justus Liebig University Giessen, Institute for Phytopathology, 35392 Giessen, Germany
| | - Andrea Scherf
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Biological Control, 64287 Darmstadt, Germany
| | | | - Annegret Schmitt
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Biological Control, 64287 Darmstadt, Germany
| | - Adam Schikora
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute of Epidemiology and Pathogen Diagnostics, 38104 Braunschweig, Germany
| |
Collapse
|
7
|
Macabuhay A, Arsova B, Watt M, Nagel KA, Lenz H, Putz A, Adels S, Müller-Linow M, Kelm J, Johnson AAT, Walker R, Schaaf G, Roessner U. Plant Growth Promotion and Heat Stress Amelioration in Arabidopsis Inoculated with Paraburkholderia phytofirmans PsJN Rhizobacteria Quantified with the GrowScreen-Agar II Phenotyping Platform. PLANTS (BASEL, SWITZERLAND) 2022; 11:2927. [PMID: 36365381 PMCID: PMC9655538 DOI: 10.3390/plants11212927] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/23/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
High temperatures inhibit plant growth. A proposed strategy for improving plant productivity under elevated temperatures is the use of plant growth-promoting rhizobacteria (PGPR). While the effects of PGPR on plant shoots have been extensively explored, roots-particularly their spatial and temporal dynamics-have been hard to study, due to their below-ground nature. Here, we characterized the time- and tissue-specific morphological changes in bacterized plants using a novel non-invasive high-resolution plant phenotyping and imaging platform-GrowScreen-Agar II. The platform uses custom-made agar plates, which allow air exchange to occur with the agar medium and enable the shoot to grow outside the compartment. The platform provides light protection to the roots, the exposure of it to the shoots, and the non-invasive phenotyping of both organs. Arabidopsis thaliana, co-cultivated with Paraburkholderia phytofirmans PsJN at elevated and ambient temperatures, showed increased lengths, growth rates, and numbers of roots. However, the magnitude and direction of the growth promotion varied depending on root type, timing, and temperature. The root length and distribution per depth and according to time was also influenced by bacterization and the temperature. The shoot biomass increased at the later stages under ambient temperature in the bacterized plants. The study offers insights into the timing of the tissue-specific, PsJN-induced morphological changes and should facilitate future molecular and biochemical studies on plant-microbe-environment interactions.
Collapse
Affiliation(s)
- Allene Macabuhay
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
- Institute for Bio- & Geosciences (IBG-2), Plant Sciences, Forschungszentrum Juelich GmbH, 52425 Juelich, Germany
- Institute of Crop Science and Resource Conservation, Department of Plant Nutrition, University of Bonn, 53115 Bonn, Germany
| | - Borjana Arsova
- Institute for Bio- & Geosciences (IBG-2), Plant Sciences, Forschungszentrum Juelich GmbH, 52425 Juelich, Germany
| | - Michelle Watt
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Kerstin A. Nagel
- Institute for Bio- & Geosciences (IBG-2), Plant Sciences, Forschungszentrum Juelich GmbH, 52425 Juelich, Germany
| | - Henning Lenz
- Institute for Bio- & Geosciences (IBG-2), Plant Sciences, Forschungszentrum Juelich GmbH, 52425 Juelich, Germany
| | - Alexander Putz
- Institute for Bio- & Geosciences (IBG-2), Plant Sciences, Forschungszentrum Juelich GmbH, 52425 Juelich, Germany
| | - Sascha Adels
- Institute for Bio- & Geosciences (IBG-2), Plant Sciences, Forschungszentrum Juelich GmbH, 52425 Juelich, Germany
| | - Mark Müller-Linow
- Institute for Bio- & Geosciences (IBG-2), Plant Sciences, Forschungszentrum Juelich GmbH, 52425 Juelich, Germany
| | - Jana Kelm
- Institute for Bio- & Geosciences (IBG-2), Plant Sciences, Forschungszentrum Juelich GmbH, 52425 Juelich, Germany
| | | | - Robert Walker
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
| | - Gabriel Schaaf
- Institute of Crop Science and Resource Conservation, Department of Plant Nutrition, University of Bonn, 53115 Bonn, Germany
| | - Ute Roessner
- School of BioSciences, University of Melbourne, Parkville, VIC 3010, Australia
- Research School of Biology, The Australian National University, Acton, ACT 2601, Australia
| |
Collapse
|
8
|
Cao XY, Zhao Q, Sun YN, Yu MX, Liu F, Zhang Z, Jia ZH, Song SS. Cellular messengers involved in the inhibition of the Arabidopsis primary root growth by bacterial quorum-sensing signal N-decanoyl-L-homoserine lactone. BMC PLANT BIOLOGY 2022; 22:488. [PMID: 36229795 PMCID: PMC9563914 DOI: 10.1186/s12870-022-03865-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND N-acyl-homoserine lactones (AHLs) are used as quorum-sensing signals by Gram-negative bacteria, but they can also affect plant growth and disease resistance. N-decanoyl-L-homoserine lactone (C10-HSL) is an AHL that has been shown to inhibit primary root growth in Arabidopsis, but the mechanisms underlying its effects on root architecture are unclear. Here, we investigated the signaling components involved in C10-HSL-mediated inhibition of primary root growth in Arabidopsis, and their interplay, using pharmacological, physiological, and genetic approaches. RESULTS Treatment with C10-HSL triggered a transient and immediate increase in the concentrations of cytosolic free Ca2+ and reactive oxygen species (ROS), increased the activity of mitogen-activated protein kinase 6 (MPK6), and induced nitric oxide (NO) production in Arabidopsis roots. Inhibitors of Ca2+ channels significantly alleviated the inhibitory effect of C10-HSL on primary root growth and reduced the amounts of ROS and NO generated in response to C10-HSL. Inhibition or scavenging of ROS and NO neutralized the inhibitory effect of C10-HSL on primary root growth. In terms of primary root growth, the respiratory burst oxidase homolog mutants and a NO synthase mutant were less sensitive to C10-HSL than wild type. Activation of MPKs, especially MPK6, was required for C10-HSL to inhibit primary root growth. The mpk6 mutant showed reduced sensitivity of primary root growth to C10-HSL, suggesting that MPK6 plays a key role in the inhibition of primary root growth by C10-HSL. CONCLUSION Our results indicate that MPK6 acts downstream of ROS and upstream of NO in the response to C10-HSL. Our data also suggest that Ca2+, ROS, MPK6, and NO are all involved in the response to C10-HSL, and may participate in the cascade leading to C10-HSL-inhibited primary root growth in Arabidopsis.
Collapse
Affiliation(s)
- Xiang-Yu Cao
- Biology Institute, Hebei Academy of Sciences, 46th, South Street of Friendship, 050051, Shijiazhuang, Hebei, China
| | - Qian Zhao
- Biology Institute, Hebei Academy of Sciences, 46th, South Street of Friendship, 050051, Shijiazhuang, Hebei, China
- Hebei Engineering and Technology Center of Microbiological Control on Main Crop Disease, 46th South Street of Friendship, Shijiazhuang, China
| | - Ya-Na Sun
- College of Life Science, Hebei University, 180th East Road of Wusi, Baoding, China
| | - Ming-Xiang Yu
- Biology Institute, Hebei Academy of Sciences, 46th, South Street of Friendship, 050051, Shijiazhuang, Hebei, China
| | - Fang Liu
- Biology Institute, Hebei Academy of Sciences, 46th, South Street of Friendship, 050051, Shijiazhuang, Hebei, China
- Hebei Engineering and Technology Center of Microbiological Control on Main Crop Disease, 46th South Street of Friendship, Shijiazhuang, China
| | - Zhe Zhang
- Biology Institute, Hebei Academy of Sciences, 46th, South Street of Friendship, 050051, Shijiazhuang, Hebei, China
| | - Zhen-Hua Jia
- Biology Institute, Hebei Academy of Sciences, 46th, South Street of Friendship, 050051, Shijiazhuang, Hebei, China
- Hebei Engineering and Technology Center of Microbiological Control on Main Crop Disease, 46th South Street of Friendship, Shijiazhuang, China
| | - Shui-Shan Song
- Biology Institute, Hebei Academy of Sciences, 46th, South Street of Friendship, 050051, Shijiazhuang, Hebei, China.
- Hebei Engineering and Technology Center of Microbiological Control on Main Crop Disease, 46th South Street of Friendship, Shijiazhuang, China.
- Hebei Collaboration Innovation Center for Cell Signaling Environmental Adaptation, 20 East NanErhuan Road, Shijiazhuang, China.
| |
Collapse
|
9
|
Sanchez-Mahecha O, Klink S, Heinen R, Rothballer M, Zytynska S. Impaired microbial N-acyl homoserine lactone signalling increases plant resistance to aphids across variable abiotic and biotic environments. PLANT, CELL & ENVIRONMENT 2022; 45:3052-3069. [PMID: 35852014 DOI: 10.1111/pce.14399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/14/2022] [Indexed: 06/15/2023]
Abstract
Beneficial bacteria interact with plants using signalling molecules, such as N-acyl homoserine-lactones (AHLs). Although there is evidence that these molecules affect plant responses to pathogens, few studies have examined their effect on plant-insect and microbiome interactions, especially under variable soil conditions. We investigated the effect of the AHL-producing rhizobacterium Acidovorax radicis and its AHL-negative mutant (does not produce AHLs) on modulating barley (Hordeum vulgare) plant interactions with cereal aphids (Sitobion avenae) and earthworms (Dendrobaena veneta) across variable nutrient soils. Acidovorax radicis inoculation increased plant growth and suppressed aphids, with stronger effects by the AHL-negative mutant. However, effects varied between barley cultivars and the presence of earthworms altered interaction outcomes. Bacteria-induced plant defences differed between cultivars, and aphid exposure, with pathogenesis-related and WRKY pathways partly explaining the ecological effects in the more resistant cultivars. Additionally, we observed few but specific indirect effects via the wider root microbiome where the AHL-mutant strain influenced rare OTU abundances. We conclude that bacterial AHL-signalling disruption affects plant-microbial interactions by inducing different plant pathways, leading to increased insect resistance, also mediated by the surrounding biotic and abiotic environment. Understanding the mechanisms by which beneficial bacteria can reduce insect pests is a key research area for developing effective insect pest management strategies in sustainable agriculture.
Collapse
Affiliation(s)
- Oriana Sanchez-Mahecha
- Department of Ecology and Ecosystem Management, Technical University of Munich, Terrestrial Ecology Research Group, School of Life Sciences Weihenstephan, Freising, Germany
| | - Sophia Klink
- Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Institute of Network Biology, Neuherberg, Germany
| | - Robin Heinen
- Department of Ecology and Ecosystem Management, Technical University of Munich, Terrestrial Ecology Research Group, School of Life Sciences Weihenstephan, Freising, Germany
| | - Michael Rothballer
- Helmholtz Center Munich, German Research Center for Environmental Health (GmbH), Institute of Network Biology, Neuherberg, Germany
| | - Sharon Zytynska
- Department of Ecology and Ecosystem Management, Technical University of Munich, Terrestrial Ecology Research Group, School of Life Sciences Weihenstephan, Freising, Germany
- Department of Evolution, Ecology, and Behaviour, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, UK
| |
Collapse
|
10
|
Korenblum E, Massalha H, Aharoni A. Plant-microbe interactions in the rhizosphere via a circular metabolic economy. THE PLANT CELL 2022; 34:3168-3182. [PMID: 35678568 PMCID: PMC9421461 DOI: 10.1093/plcell/koac163] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/25/2022] [Indexed: 05/30/2023]
Abstract
Chemical exchange often serves as the first step in plant-microbe interactions and exchanges of various signals, nutrients, and metabolites continue throughout the interaction. Here, we highlight the role of metabolite exchanges and metabolic crosstalk in the microbiome-root-shoot-environment nexus. Roots secret a diverse set of metabolites; this assortment of root exudates, including secondary metabolites such as benzoxazinoids, coumarins, flavonoids, indolic compounds, and terpenes, shapes the rhizosphere microbiome. In turn, the rhizosphere microbiome affects plant growth and defense. These inter-kingdom chemical interactions are based on a metabolic circular economy, a seemingly wasteless system in which rhizosphere members exchange (i.e. consume, reuse, and redesign) metabolites. This review also describes the recently discovered phenomenon "Systemically Induced Root Exudation of Metabolites" in which the rhizosphere microbiome governs plant metabolism by inducing systemic responses that shift the metabolic profiles of root exudates. Metabolic exchange in the rhizosphere is based on chemical gradients that form specific microhabitats for microbial colonization and we describe recently developed high-resolution methods to study chemical interactions in the rhizosphere. Finally, we propose an action plan to advance the metabolic circular economy in the rhizosphere for sustainable solutions to the cumulative degradation of soil health in agricultural lands.
Collapse
Affiliation(s)
- Elisa Korenblum
- Institute of Plant Science, Agricultural Research Organization, The Volcani Center, Rishon LeTsiyon 7528809, Israel
| | - Hassan Massalha
- Theory of Condensed Matter Group, Cavendish Laboratory, Wellcome Sanger Institute, University of Cambridge, Cambridge CB2 1TN, UK
| | - Asaph Aharoni
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
11
|
Zhu L, Huang J, Lu X, Zhou C. Development of plant systemic resistance by beneficial rhizobacteria: Recognition, initiation, elicitation and regulation. FRONTIERS IN PLANT SCIENCE 2022; 13:952397. [PMID: 36017257 PMCID: PMC9396261 DOI: 10.3389/fpls.2022.952397] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/21/2022] [Indexed: 06/15/2023]
Abstract
A plant growing in nature is not an individual, but it holds an intricate community of plants and microbes with relatively stable partnerships. The microbial community has recently been demonstrated to be closely linked with plants since their earliest evolution, to help early land plants adapt to environmental threats. Mounting evidence has indicated that plants can release diverse kinds of signal molecules to attract beneficial bacteria for mediating the activities of their genetics and biochemistry. Several rhizobacterial strains can promote plant growth and enhance the ability of plants to withstand pathogenic attacks causing various diseases and loss in crop productivity. Beneficial rhizobacteria are generally called as plant growth-promoting rhizobacteria (PGPR) that induce systemic resistance (ISR) against pathogen infection. These ISR-eliciting microbes can mediate the morphological, physiological and molecular responses of plants. In the last decade, the mechanisms of microbial signals, plant receptors, and hormone signaling pathways involved in the process of PGPR-induced ISR in plants have been well investigated. In this review, plant recognition, microbial elicitors, and the related pathways during plant-microbe interactions are discussed, with highlights on the roles of root hair-specific syntaxins and small RNAs in the regulation of the PGPR-induced ISR in plants.
Collapse
Affiliation(s)
- Lin Zhu
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu, China
- School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jiameng Huang
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu, China
| | - Xiaoming Lu
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu, China
| | - Cheng Zhou
- Key Lab of Bio-Organic Fertilizer Creation, Ministry of Agriculture and Rural Affairs, Anhui Science and Technology University, Bengbu, China
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-Saving Fertilizers, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
12
|
Bacterial signal C10-HSL stimulates spore germination of Galactomyces geotrichum by transboundary interaction. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.06.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
13
|
Liu F, Hu M, Zhang Z, Xue Y, Chen S, Hu A, Zhang LH, Zhou J. Dickeya Manipulates Multiple Quorum Sensing Systems to Control Virulence and Collective Behaviors. FRONTIERS IN PLANT SCIENCE 2022; 13:838125. [PMID: 35211146 PMCID: PMC8860905 DOI: 10.3389/fpls.2022.838125] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 01/07/2022] [Indexed: 06/12/2023]
Abstract
Soft rot Pectobacteriaceae (SRP), typical of Pectobacterium and Dickeya, are a class of Gram-negative bacterial pathogens that cause devastating diseases on a wide range of crops and ornamental plants worldwide. Quorum sensing (QS) is a cell-cell communication mechanism regulating the expression of specific genes by releasing QS signal molecules associated with cell density, in most cases, involving in the vital process of virulence and infection. In recent years, several types of QS systems have been uncovered in Dickeya pathogens to control diverse biological behaviors, especially bacterial pathogenicity and transkingdom interactions. This review depicts an integral QS regulation network of Dickeya, elaborates in detail the regulation of specific QS system on different biological functions of the pathogens and hosts, aiming at providing a systematic overview of Dickeya pathogenicity and interactions with hosts, and, finally, expects the future prospective of effectively controlling the bacterial soft rot disease caused by Dickeya by quenching the key QS signal.
Collapse
|
14
|
Liu F, Zhao Q, Jia Z, Zhang S, Wang J, Song S, Jia Y. N-3-Oxo-Octanoyl Homoserine Lactone Primes Plant Resistance Against Necrotrophic Pathogen Pectobacterium carotovorum by Coordinating Jasmonic Acid and Auxin-Signaling Pathways. FRONTIERS IN PLANT SCIENCE 2022; 13:886268. [PMID: 35774826 PMCID: PMC9237615 DOI: 10.3389/fpls.2022.886268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/25/2022] [Indexed: 05/13/2023]
Abstract
Many Gram-negative bacteria use small signal molecules, such as N-acyl-homoserine lactones (AHLs), to communicate with each other and coordinate their collective behaviors. Recently, increasing evidence has demonstrated that long-chained quorum-sensing signals play roles in priming defense responses in plants. Our previous work indicated that a short-chained signal, N-3-oxo-octanoyl homoserine lactone (3OC8-HSL), enhanced Arabidopsis resistance to the hemi-biotrophic bacteria Pseudomonas syringae pv. tomato DC3000 through priming the salicylic acid (SA) pathway. Here, we found that 3OC8-HSL could also prime resistance to the necrotrophic bacterium Pectobacterium carotovorum ssp. carotovorum (Pcc) through the jasmonic acid (JA) pathway, and is dependent on auxin responses, in both Chinese cabbage and Arabidopsis. The subsequent Pcc invasion triggered JA accumulation and increased the down-stream genes' expressions of JA synthesis genes (LOX, AOS, and AOC) and JA response genes (PDF1.2 and VSP2). The primed state was not observed in the Arabidopsis coi1-1 and jar1-1 mutants, which indicated that the primed resistance to Pcc was dependent on the JA pathway. The 3OC8-HSL was not transmitted from roots to leaves and it induced indoleacetic acid (IAA) accumulation and the DR5 and SAUR auxin-responsive genes' expressions in seedlings. When Arabidopsis and Chinese cabbage roots were pretreated with exogenous IAA (10 μM), the plants had activated the JA pathway and enhanced resistance to Pcc, which implied that the JA pathway was involved in AHL priming by coordinating with the auxin pathway. Our findings provide a new strategy for the prevention and control of soft rot in Chinese cabbage and provide theoretical support for the use of the quorum-sensing AHL signal molecule as a new elicitor.
Collapse
Affiliation(s)
- Fang Liu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
| | - Qian Zhao
- Biology Institute, Hebei Academy of Sciences, Shijiazhuang, China
| | - Zhenhua Jia
- Biology Institute, Hebei Academy of Sciences, Shijiazhuang, China
- Julu Institute of Applied Technology, Xingtai, China
| | - Siyuan Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Juan Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shuishan Song
- Biology Institute, Hebei Academy of Sciences, Shijiazhuang, China
- *Correspondence: Shuishan Song,
| | - Yantao Jia
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Yantao Jia,
| |
Collapse
|
15
|
Babenko LM, Kosakivska IV, Romanenko КО. Molecular mechanisms of N-acyl homoserine lactone signals perception by plants. Cell Biol Int 2021; 46:523-534. [PMID: 34937124 DOI: 10.1002/cbin.11749] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/29/2021] [Accepted: 12/19/2021] [Indexed: 11/12/2022]
Abstract
N-acyl homoserine lactones (AHLs) belong to the class of bacterial quorum sensing signal molecules involved in distance signal transduction between Gram-negative bacteria colonizers of the rhizosphere, as well as bacteria and plants. AHLs synchronize the activity of genes from individual cells, allowing the bacterial population to act as a multicellular organism, and establish a symbiotic or antagonistic relationship with the host plant. Although the effect of AHLs on plants has been studied for more than ten years, the mechanisms of plant perception of AHL signals are not fully understood. The specificity of the reactions caused by AHL indicates the existence of appropriate mechanisms for their perception by plants. In the current review, we summarize available data on the molecular mechanisms of AHL-signal perception in plants, its effect on plant growth, development, and stress resistance. We describe the latest research demonstrating direct (on plants) and indirect (on rhizosphere microflora) effects of AHLs, as well as the prospects of using these compounds in biotechnology to increase plant resistance to biotic and abiotic stresses.
Collapse
Affiliation(s)
- Lidia M Babenko
- Phytohormonology Department, M.G. Kholodny Institute of Botany National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Iryna V Kosakivska
- Phytohormonology Department, M.G. Kholodny Institute of Botany National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Кateryna О Romanenko
- Phytohormonology Department, M.G. Kholodny Institute of Botany National Academy of Sciences of Ukraine, Kyiv, Ukraine
| |
Collapse
|
16
|
Vasseur-Coronado M, Vlassi A, du Boulois HD, Schuhmacher R, Parich A, Pertot I, Puopolo G. Ecological Role of Volatile Organic Compounds Emitted by Pantoea agglomerans as Interspecies and Interkingdom Signals. Microorganisms 2021; 9:microorganisms9061186. [PMID: 34072820 PMCID: PMC8229667 DOI: 10.3390/microorganisms9061186] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 05/22/2021] [Accepted: 05/29/2021] [Indexed: 12/28/2022] Open
Abstract
Volatile organic compounds (VOCs) play an essential role in microbe–microbe and plant–microbe interactions. We investigated the interaction between two plant growth-promoting rhizobacteria, and their interaction with tomato plants. VOCs produced by Pantoea agglomerans MVC 21 modulates the release of siderophores, the solubilisation of phosphate and potassium by Pseudomonas (Ps.) putida MVC 17. Moreover, VOCs produced by P. agglomerans MVC 21 increased lateral root density (LRD), root and shoot dry weight of tomato seedlings. Among the VOCs released by P. agglomerans MVC 21, only dimethyl disulfide (DMDS) showed effects similar to P. agglomerans MVC 21 VOCs. Because of the effects on plants and bacterial cells, we investigated how P. agglomerans MVC 21 VOCs might influence bacteria–plant interaction. Noteworthy, VOCs produced by P. agglomerans MVC 21 boosted the ability of Ps. putida MVC 17 to increase LRD and root dry weight of tomato seedlings. These results could be explained by the positive effect of DMDS and P. agglomerans MVC 21 VOCs on acid 3-indoleacetic production in Ps. putida MVC 17. Overall, our results clearly indicated that P. agglomerans MVC 21 is able to establish a beneficial interaction with Ps. putida MVC 17 and tomato plants through the emission of DMDS.
Collapse
Affiliation(s)
- Maria Vasseur-Coronado
- Research and Innovation Centre, Department of Sustainable Agro-Ecosystems and Bioresources, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy; (M.V.-C.); (I.P.)
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, via Mesiano 77, 38123 Trento, Italy
- De Ceuster Meststoffen NV (DCM), Bannerlaan 79, 2280 Grobbendonk, Belgium;
- Scientia Terrae Research Institute, Fortsesteenweg 30A, 2860 Sint-Katelijne-Waver, Belgium
| | - Anthi Vlassi
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz Straße 20, 3430 Tulln, Austria; (A.V.); (R.S.); (A.P.)
| | | | - Rainer Schuhmacher
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz Straße 20, 3430 Tulln, Austria; (A.V.); (R.S.); (A.P.)
| | - Alexandra Parich
- Department of Agrobiotechnology (IFA-Tulln), Institute of Bioanalytics and Agro-Metabolomics, University of Natural Resources and Life Sciences, Vienna (BOKU), Konrad-Lorenz Straße 20, 3430 Tulln, Austria; (A.V.); (R.S.); (A.P.)
| | - Ilaria Pertot
- Research and Innovation Centre, Department of Sustainable Agro-Ecosystems and Bioresources, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy; (M.V.-C.); (I.P.)
- Center Agriculture Food Environment (C3A), University of Trento, via E. Mach 1, 38098 San Michele all’Adige, Italy
| | - Gerardo Puopolo
- Research and Innovation Centre, Department of Sustainable Agro-Ecosystems and Bioresources, Fondazione Edmund Mach, Via E. Mach 1, 38098 San Michele all’Adige, Italy; (M.V.-C.); (I.P.)
- Center Agriculture Food Environment (C3A), University of Trento, via E. Mach 1, 38098 San Michele all’Adige, Italy
- Correspondence:
| |
Collapse
|
17
|
Kalia VC, Gong C, Patel SKS, Lee JK. Regulation of Plant Mineral Nutrition by Signal Molecules. Microorganisms 2021; 9:microorganisms9040774. [PMID: 33917219 PMCID: PMC8068062 DOI: 10.3390/microorganisms9040774] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 03/30/2021] [Accepted: 04/03/2021] [Indexed: 01/15/2023] Open
Abstract
Microbes operate their metabolic activities at a unicellular level. However, it has been revealed that a few metabolic activities only prove beneficial to microbes if operated at high cell densities. These cell density-dependent activities termed quorum sensing (QS) operate through specific chemical signals. In Gram-negative bacteria, the most widely reported QS signals are acylhomoserine lactones. In contrast, a novel QS-like system has been elucidated, regulating communication between microbes and plants through strigolactones. These systems regulate bioprocesses, which affect the health of plants, animals, and human beings. This mini-review presents recent developments in the QS and QS-like signal molecules in promoting plant health.
Collapse
Affiliation(s)
- Vipin Chandra Kalia
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Korea; (V.C.K.); (S.K.S.P.)
| | - Chunjie Gong
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China;
| | - Sanjay K. S. Patel
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Korea; (V.C.K.); (S.K.S.P.)
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Korea; (V.C.K.); (S.K.S.P.)
- Correspondence:
| |
Collapse
|
18
|
Naamala J, Smith DL. Microbial Derived Compounds, a Step Toward Enhancing Microbial Inoculants Technology for Sustainable Agriculture. Front Microbiol 2021; 12:634807. [PMID: 33679668 PMCID: PMC7930237 DOI: 10.3389/fmicb.2021.634807] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Accepted: 01/29/2021] [Indexed: 11/16/2022] Open
Abstract
Sustainable agriculture remains a focus for many researchers, in an effort to minimize environmental degradation and climate change. The use of plant growth promoting microorganisms (PGPM) is a hopeful approach for enhancing plant growth and yield. However, the technology faces a number of challenges, especially inconsistencies in the field. The discovery, that microbial derived compounds can independently enhance plant growth, could be a step toward minimizing shortfalls related to PGPM technology. This has led many researchers to engage in research activities involving such compounds. So far, the findings are promising as compounds have been reported to enhance plant growth under stressed and non-stressed conditions in a wide range of plant species. This review compiles current knowledge on microbial derived compounds, taking a reader through a summarized protocol of their isolation and identification, their relevance in present agricultural trends, current use and limitations, with a view to giving the reader a picture of where the technology has come from, and an insight into where it could head, with some suggestions regarding the probable best ways forward.
Collapse
Affiliation(s)
- Judith Naamala
- Smith Laboratory, Department of Plant Science, McGill University, Quebec, QC, Canada
| | - Donald L Smith
- Smith Laboratory, Department of Plant Science, McGill University, Quebec, QC, Canada
| |
Collapse
|
19
|
Du X, Huang R, Zhang Z, Zhang D, Cheng J, Tian P, Wang Y, Zhai Z, Chen L, Kong X, Liu Y, Su P. Rhodopseudomonas palustris Quorum Sensing Molecule pC-HSL Induces Systemic Resistance to TMV Infection via Upregulation of NbSIPK/ NbWIPK Expressions in Nicotiana benthamiana. PHYTOPATHOLOGY 2021; 111:500-508. [PMID: 32876530 DOI: 10.1094/phyto-05-20-0177-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
G-negative bacteria produce myriad N-acyl-homoserine lactones (AHLs) that can function as quorum sensing (QS) signaling molecules. AHLs are also known to regulate various plant biological activities. p-Coumaroyl-homoserine lactone (pC-HSL) is the only QS molecule produced by a photosynthetic bacterium, Rhodopseudomonas palustris. The role of pC-HSL in the interaction between R. palustris and plant has not been investigated. In this study, we investigated the effect of pC-HSL on plant immunity and found that this QS molecule can induce a systemic resistance to Tobacco mosaic virus (TMV) infection in Nicotiana benthamiana. The results show that pC-HSL treatment can prolong the activation of two mitogen-associated protein kinase genes (i.e., NbSIPK and NbWIPK) and increase the expression of transcription factor WRKY8 as well as immune response marker genes NbPR1 and NbPR10, leading to an increased accumulation of reactive oxygen species (ROS) in the TMV-infected plants. Our results also show that pC-HSL treatment can increase activities of two ROS-scavenging enzymes, peroxidase and superoxide dismutase. Knockdown of NbSIPK or NbWIPK expression in N. benthamiana plants through virus-induced gene silencing nullified or attenuated pC-HSL-induced systemic resistance, indicating that the functioning of pC-HSL relies on the activity of those two kinases. Meanwhile, pC-HSL-pretreated plants also showed a strong induction of kinase activities of NbSIPK and NbWIPK after TMV inoculation. Taken together, our results demonstrate that pC-HSL treatment increases plant resistance to TMV infection, which is helpful to uncover the outcome of interaction between R. palustris and its host plants.
Collapse
Affiliation(s)
- Xiaohua Du
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
| | - Renyan Huang
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Zhuo Zhang
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Deyong Zhang
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Ju'e Cheng
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Peijie Tian
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yanqi Wang
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Zhongying Zhai
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Lijie Chen
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Xiaoting Kong
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Yong Liu
- College of Plant Protection, Hunan Agricultural University, Changsha 410128, China
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Pin Su
- Hunan Plant Protection Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| |
Collapse
|
20
|
|
21
|
Cai W, Ou F, Staehelin C, Dai W. Bradyrhizobium sp. strain ORS278 promotes rice growth and its quorum sensing system is required for optimal root colonization. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:656-666. [PMID: 32929871 DOI: 10.1111/1758-2229.12885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 09/10/2020] [Indexed: 05/25/2023]
Abstract
Many Gram-negative bacteria communicate by using homoserine lactones (HSLs) as quorum sensing (QS) signals in a cell density-dependent manner. In addition to fatty acyl-HSL (acyl-HSL) signals, certain strains, most of them associated with plants, produce non-canonical aryl-HSLs such as cinnamoyl-HSL. However, the role of aryl-HSL in endophytic associations remained elusive. Bradyrhizobium sp. strain ORS278 possesses a LuxI-LuxR type QS system and produces cinnamoyl-HSL as a QS signal. Here, we report that strain ORS278 promotes growth of domesticated rice (Oryza sativa). QS mutants unable to produce cinnamoyl-HSL exhibited reduced plant-growth promoting activity in comparison to the parent strain ORS278. Likewise, the QS mutants were impaired in their ability to colonize rice roots. These findings suggest that genes controlled by cinnamoyl-HSL play an important role in the association between rice and ORS278. However, biofilm production was not visibly altered in these mutants. In conclusion, our study highlights the importance of aryl-HSLs in endophytic plant-bacteria interactions.
Collapse
Affiliation(s)
- Wenjie Cai
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510006, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Fuwen Ou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510006, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, 510642, China
| | - Christian Staehelin
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Bioresources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, China
| | - Weijun Dai
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510006, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Center, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
22
|
Shrestha A, Schikora A. AHL-priming for enhanced resistance as a tool in sustainable agriculture. FEMS Microbiol Ecol 2020; 96:5957528. [DOI: 10.1093/femsec/fiaa226] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/04/2020] [Indexed: 01/28/2023] Open
Abstract
ABSTRACTBacteria communicate with each other through quorum sensing (QS) molecules. N-acyl homoserine lactones (AHL) are one of the most extensively studied groups of QS molecules. The role of AHL molecules is not limited to interactions between bacteria; they also mediate inter-kingdom interaction with eukaryotes. The perception mechanism of AHL is well-known in bacteria and several proteins have been proposed as putative receptors in mammalian cells. However, not much is known about the perception of AHL in plants. Plants generally respond to short-chained AHL with modification in growth, while long-chained AHL induce AHL-priming for enhanced resistance. Since plants may host several AHL-producing bacteria and encounter multiple AHL at once, a coordinated response is required. The effect of the AHL combination showed relatively low impact on growth but enhanced resistance. Microbial consortium of bacterial strains that produce different AHL could therefore be an interesting approach in sustainable agriculture. Here, we review the molecular and genetical basis required for AHL perception. We highlight recent advances in the field of AHL-priming. We also discuss the recent discoveries on the impact of combination(s) of multiple AHL on crop plants and the possible use of this knowledge in sustainable agriculture.
Collapse
Affiliation(s)
- Abhishek Shrestha
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104 Braunschweig, Germany
| | - Adam Schikora
- Julius Kühn Institute (JKI) - Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104 Braunschweig, Germany
| |
Collapse
|
23
|
Pazarlar S, Cetinkaya N, Bor M, Kara RS. N-acyl homoserine lactone-mediated modulation of plant growth and defense against Pseudoperonospora cubensis in cucumber. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6638-6654. [PMID: 32822478 DOI: 10.1093/jxb/eraa384] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
N-acyl-homoserine lactones (AHLs), a well-described group of quorum sensing molecules, may modulate plant defense responses and plant growth. However, there is limited knowledge regarding the defense responses of non-model crops to AHLs and the mechanism of action responsible for the modulation of defense responses against microbial pathogens. In the present study, long-chain N-3-oxo-tetradecanoyl-l-homoserine lactone (oxo-C14-HSL) was shown to have a distinct potential to prime cucumber for enhanced defense responses against the biotrophic oomycete pathogen Pseudoperonospora cubensis and the hemibiotrophic bacterium Pseudomonas syringae pv. lachrymans. We provide evidence that AHL-mediated enhanced defense against downy mildew disease is based on cell wall reinforcement by lignin and callose deposition, the activation of defense-related enzymes (peroxidase, β-1,3-glucanase, phenylalanine ammonia-lyase), and the accumulation of reactive oxygen species (hydrogen peroxide, superoxide) and phenolic compounds. Quantitative analysis of salicylic acid and jasmonic acid, and transcriptional analysis of several of genes associated with these phytohormones, revealed that defense priming with oxo-C14-HSL is commonly regulated by the salicylic acid signaling pathway. We also show that treatment with short- (N-hexanoyl-l-homoserine lactone) and medium-chain (N-3-oxo-decanoyl-l-homoserine lactone) AHLs promoted primary root elongation and modified root architecture, respectively, resulting in enhanced plant growth.
Collapse
Affiliation(s)
- Sercan Pazarlar
- Department of Plant Protection, Faculty of Agriculture, Ege University, Izmir, Turkey
| | - Nedim Cetinkaya
- Department of Plant Protection, Faculty of Agriculture, Ege University, Izmir, Turkey
| | - Melike Bor
- Department of Biology, Faculty of Science, Ege University, Izmir, Turkey
| | - Recep Serdar Kara
- Department of Water Resources, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Prague, Czechia
| |
Collapse
|
24
|
Wu Y, Ma L, Liu Q, Vestergård M, Topalovic O, Wang Q, Zhou Q, Huang L, Yang X, Feng Y. The plant-growth promoting bacteria promote cadmium uptake by inducing a hormonal crosstalk and lateral root formation in a hyperaccumulator plant Sedum alfredii. JOURNAL OF HAZARDOUS MATERIALS 2020; 395:122661. [PMID: 32305720 DOI: 10.1016/j.jhazmat.2020.122661] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 03/17/2020] [Accepted: 04/04/2020] [Indexed: 05/27/2023]
Abstract
Plant growth-promoting bacteria (PGPB) that inhabit hyperaccumulating plants assist cadmium (Cd) absorption, but the underlying mechanism has not been comprehensively studied. For this reason, we combined the fluorescence imaging, and transcriptomic and metabolomic methods in a Cd hyperaccumulator, Sedum alfredii, inoculated or not with PGPB Pseudomonas fluorescens. The results showed that the newly emerged lateral roots, that were heavily colonized by P. fluorescens, are the main entry for Cd influx in S. alfredii. Inoculation with P. fluorescens promoted a lateral root formation of its host plant, leading to a higher Cd phytoremediation efficiency. Furthermore, the plant transcriptome revealed that 146 plant hormone related genes were significantly up-regulated by the bacterial inoculation, with 119 of them showing a complex interaction, which suggests that a hormonal crosstalk participated root development. The targeted metabolomics analysis showed that P. fluorescens inoculation significantly increased indole acetic acid concentration and significantly decreased concentrations of abscisic acid, brassinolide, trans-zeatin, ethylene and jasmonic acid in S. alfredii roots, thereby inducing lateral root emergence. Altogether, our results highlight the importance of PGPB-induced lateral root formation for the increased Cd uptake in a hyperaccumulating plant.
Collapse
Affiliation(s)
- Yingjie Wu
- Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark
| | - Luyao Ma
- Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qizhen Liu
- Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Mette Vestergård
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark
| | - Olivera Topalovic
- Department of Agroecology, Faculty of Technical Sciences, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark
| | - Qiong Wang
- Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiyao Zhou
- Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Lukuan Huang
- Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoe Yang
- Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ying Feng
- Key Laboratory of Environment Remediation and Ecological Health of Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
25
|
Shrestha A, Grimm M, Ojiro I, Krumwiede J, Schikora A. Impact of Quorum Sensing Molecules on Plant Growth and Immune System. Front Microbiol 2020; 11:1545. [PMID: 32765447 PMCID: PMC7378388 DOI: 10.3389/fmicb.2020.01545] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/15/2020] [Indexed: 02/05/2023] Open
Abstract
Bacterial quorum-sensing (QS) molecules are one of the primary means allowing communication between bacterial cells or populations. Plants also evolved to perceive and respond to those molecules. N-acyl homoserine lactones (AHL) are QS molecules, of which impact has been extensively studied in different plants. Most studies, however, assessed the interactions in a bilateral manner, a nature of interactions, which occurs rarely, if at all, in nature. Here, we investigated how Arabidopsis thaliana responds to the presence of different single AHL molecules and their combinations. We assumed that this reflects the situation in the rhizosphere more accurately than the presence of a single AHL molecule. In order to assess those effects, we monitored the plant growth and defense responses as well as resistance to the plant pathogen Pseudomonas syringae pathovar tomato (Pst). Our results indicate that the complex interactions between multiple AHL and plants may have surprisingly similar outcomes. Individually, some of the AHL molecules positively influenced plant growth, while others induced the already known AHL-priming for induced resistance. Their combinations had a relatively low impact on the growth but seemed to induce resistance mechanisms. Very striking was the fact that all triple, the quadruple as well as the double combination(s) with long-chained AHL molecules increased the resistance to Pst. These findings indicate that induced resistance against plant pathogens could be one of the major outcomes of an AHL perception. Taken together, we present here the first study on how plants respond to the complexity of bacterial quorum sensing.
Collapse
Affiliation(s)
- Abhishek Shrestha
- Institute for Epidemiology and Pathogen Diagnostics, Federal Research Centre for Cultivated Plants, Julius Kühn-Institut, Braunschweig, Germany
| | - Maja Grimm
- Institute for Epidemiology and Pathogen Diagnostics, Federal Research Centre for Cultivated Plants, Julius Kühn-Institut, Braunschweig, Germany
| | - Ichie Ojiro
- Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
| | - Johannes Krumwiede
- Institute for Epidemiology and Pathogen Diagnostics, Federal Research Centre for Cultivated Plants, Julius Kühn-Institut, Braunschweig, Germany
| | - Adam Schikora
- Institute for Epidemiology and Pathogen Diagnostics, Federal Research Centre for Cultivated Plants, Julius Kühn-Institut, Braunschweig, Germany
| |
Collapse
|
26
|
Veliz-Vallejos DF, Kawasaki A, Mathesius U. The Presence of Plant-Associated Bacteria Alters Responses to N-acyl Homoserine Lactone Quorum Sensing Signals that Modulate Nodulation in Medicago Truncatula. PLANTS 2020; 9:plants9060777. [PMID: 32580337 PMCID: PMC7357121 DOI: 10.3390/plants9060777] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/14/2020] [Accepted: 06/15/2020] [Indexed: 11/16/2022]
Abstract
Bacteria use quorum sensing signaling for cell-to-cell communication, which is also important for their interactions with plant hosts. Quorum sensing via N-acyl-homoserine lactones (AHLs) is important for successful symbioses between legumes and nitrogen-fixing rhizobia. Previous studies have shown that plant hosts can recognize and respond to AHLs. Here, we tested whether the response of the model legume Medicago truncatula to AHLs from its symbiont and other bacteria could be modulated by the abundance and composition of plant-associated microbial communities. Temporary antibiotic treatment of the seeds removed the majority of bacterial taxa associated with M. truncatula roots and significantly altered the effect of AHLs on nodule numbers, but lateral root density, biomass, and root length responses were much less affected. The AHL 3-oxo-C14-HSL (homoserine lactone) specifically increased nodule numbers but only after the treatment of seeds with antibiotics. This increase was associated with increased expression of the early nodulation genes RIP1 and ENOD11 at 24 h after infection. A 454 pyrosequencing analysis of the plant-associated bacteria showed that antibiotic treatment had the biggest effect on bacterial community composition. However, we also found distinct effects of 3-oxo-C14-HSL on the abundance of specific bacterial taxa. Our results revealed a complex interaction between plants and their associated microbiome that could modify plant responses to AHLs.
Collapse
Affiliation(s)
- Debora F. Veliz-Vallejos
- Division of Plant Sciences, Research School of Biology, Canberra, ACT 2601, Australia; (D.F.V.-V.); (A.K.)
| | - Akitomo Kawasaki
- Division of Plant Sciences, Research School of Biology, Canberra, ACT 2601, Australia; (D.F.V.-V.); (A.K.)
- CSIRO Agriculture and Food, Canberra, ACT 2601, Australia
| | - Ulrike Mathesius
- Division of Plant Sciences, Research School of Biology, Canberra, ACT 2601, Australia; (D.F.V.-V.); (A.K.)
- Correspondence: ; Tel.: +61-2-6125-2840
| |
Collapse
|
27
|
Abstract
A healthy soil acts as a dynamic living system that delivers multiple ecosystem services, such as sustaining water quality and plant productivity, controlling soil nutrient recycling decomposition, and removing greenhouse gases from the atmosphere. Soil health is closely associated with sustainable agriculture, because soil microorganism diversity and activity are the main components of soil health. Agricultural sustainability is defined as the ability of a crop production system to continuously produce food without environmental degradation. Arbuscular mycorrhizal fungi (AMF), cyanobacteria, and beneficial nematodes enhance water use efficiency and nutrient availability to plants, phytohormones production, soil nutrient cycling, and plant resistance to environmental stresses. Farming practices have shown that organic farming and tillage improve soil health by increasing the abundance, diversity, and activity of microorganisms. Conservation tillage can potentially increase grower’s profitability by reducing inputs and labor costs as compared to conventional tillage while organic farming might add extra management costs due to high labor demands for weeding and pest control, and for fertilizer inputs (particularly N-based), which typically have less consistent uniformity and stability than synthetic fertilizers. This review will discuss the external factors controlling the abundance of rhizosphere microbiota and the impact of crop management practices on soil health and their role in sustainable crop production.
Collapse
|
28
|
Acyl-Homoserine Lactone from Plant-Associated Pseudomonas sp. Influences Solanum lycopersicum Germination and Root Growth. J Chem Ecol 2020; 46:699-706. [DOI: 10.1007/s10886-020-01186-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/29/2020] [Accepted: 05/22/2020] [Indexed: 12/15/2022]
|
29
|
Sun SJ, Liu YC, Weng CH, Sun SW, Li F, Li H, Zhu H. Cyclic Dipeptides Mediating Quorum Sensing and Their Biological Effects in Hypsizygus Marmoreus. Biomolecules 2020; 10:biom10020298. [PMID: 32070027 PMCID: PMC7072446 DOI: 10.3390/biom10020298] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/10/2020] [Accepted: 02/12/2020] [Indexed: 01/19/2023] Open
Abstract
A novel quorum sensing (QS) system was discovered in Serratia odorifera, the symbiotic bacterium of Hypsizygus marmoreus. This system uses cyclo(Pro-Phe), cyclo(Pro-Tyr), cyclo(Pro-Val), cyclo(Pro-Leu), cyclo(Tyr-Leu), and cyclo(Tyr-Ile) as autoinducers. This discovery is the first attempt to characterize cyclic dipeptides as QS signaling molecules in S. odorifera and improves the classical QS theory. Significantly, except for cyclo(Tyr-Leu), these QS autoinducers can increase the transcription level of lignin-degrading enzyme genes of H. marmoreus. The cyclo(Pro-Phe) can increase the activity of extracellular laccase (1.32-fold) and manganese peroxidase (20%), which may explain why QS potentially regulates the hyphal growth, primordium formation, and fruit body development of H. marmoreus. Furthermore, it was demonstrated that the cyclo(Tyr-Ile) biosynthesis in S. odorifera was catalyzed by the nonribosomal peptide synthetase (NRPS). This study supports exploring the growth and development of H. marmoreus promoted by its symbiotic bacteria at QS signal transduction level.
Collapse
Affiliation(s)
- Shu-Jing Sun
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Correspondence: (S.-J.S.); (H.Z.); Tel.: +86-591-83-789-492 (S.-J.S.); +86-591-83-465-326 (H.Z.)
| | - Yun-Chao Liu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cai-Hong Weng
- Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China (S.-W.S.); (H.L.)
| | - Shi-Wei Sun
- Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China (S.-W.S.); (H.L.)
| | - Fan Li
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hui Li
- Centre for Bioengineering and Biotechnology, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China (S.-W.S.); (H.L.)
| | - Hu Zhu
- Fujian Provincial University Engineering Research Center of Industrial Biocatalysis, College of Chemistry and Materials Science, Fujian Normal University, 32 Shangsan Road, Fuzhou 350007, China
- Correspondence: (S.-J.S.); (H.Z.); Tel.: +86-591-83-789-492 (S.-J.S.); +86-591-83-465-326 (H.Z.)
| |
Collapse
|
30
|
Liu F, Zhao Q, Jia Z, Song C, Huang Y, Ma H, Song S. N-3-oxo-octanoyl-homoserine lactone-mediated priming of resistance to Pseudomonas syringae requires the salicylic acid signaling pathway in Arabidopsis thaliana. BMC PLANT BIOLOGY 2020; 20:38. [PMID: 31992205 PMCID: PMC6986161 DOI: 10.1186/s12870-019-2228-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 12/30/2019] [Indexed: 05/06/2023]
Abstract
BACKGROUD Many Gram-negative bacteria use N-acyl-homoserine lactones (AHLs) to communicate each other and to coordinate their collective behaviors. Recently, accumulating evidence shows that host plants are able to sense and respond to bacterial AHLs. Once primed, plants are in an altered state that enables plant cells to more quickly and/or strongly respond to subsequent pathogen infection or abiotic stress. RESULTS In this study, we report that pretreatment with N-3-oxo-octanoyl-homoserine lactone (3OC8-HSL) confers resistance against the pathogenic bacterium Pseudomonas syringae pv. tomato DC3000 (PstDC3000) in Arabidopsis. Pretreatment with 3OC8-HSL and subsequent pathogen invasion triggered an augmented burst of hydrogen peroxide, salicylic acid accumulation, and fortified expression of the pathogenesis-related genes PR1 and PR5. Upon PstDC3000 challenge, plants treated with 3OC8-HSL showed increased activities of defense-related enzymes including peroxidase, catalase, phenylalanine ammonialyase, and superoxide dismutase. In addition, the 3OC8-HSL-primed resistance to PstDC3000 in wild-type plants was impaired in plants expressing the bacterial NahG gene and in the npr1 mutant. Moreover, the expression levels of isochorismate synthases (ICS1), a critical salicylic acid biosynthesis enzyme, and two regulators of its expression, SARD1 and CBP60g, were potentiated by 3OC8-HSL pretreatment followed by pathogen inoculation. CONCLUSIONS Our data indicate that 3OC8-HSL primes the Arabidopsis defense response upon hemibiotrophic bacterial infection and that 3OC8-HSL-primed resistance is dependent on the SA signaling pathway. These findings may help establish a novel strategy for the control of plant disease.
Collapse
Affiliation(s)
- Fang Liu
- Biology Institute, Hebei Academy of Sciences, 46th South Street of Friendship, Shijiazhuang, 050051, China
- Hebei Engineering and Technology Center of Microbiological Control on Main Crop Disease, 46th South Street of Friendship, Shijiazhuang, 050051, China
| | - Qian Zhao
- Biology Institute, Hebei Academy of Sciences, 46th South Street of Friendship, Shijiazhuang, 050051, China
- Hebei Engineering and Technology Center of Microbiological Control on Main Crop Disease, 46th South Street of Friendship, Shijiazhuang, 050051, China
| | - Zhenhua Jia
- Biology Institute, Hebei Academy of Sciences, 46th South Street of Friendship, Shijiazhuang, 050051, China.
- Hebei Engineering and Technology Center of Microbiological Control on Main Crop Disease, 46th South Street of Friendship, Shijiazhuang, 050051, China.
| | - Cong Song
- Biology Institute, Hebei Academy of Sciences, 46th South Street of Friendship, Shijiazhuang, 050051, China
- Hebei Engineering and Technology Center of Microbiological Control on Main Crop Disease, 46th South Street of Friendship, Shijiazhuang, 050051, China
| | - Yali Huang
- Biology Institute, Hebei Academy of Sciences, 46th South Street of Friendship, Shijiazhuang, 050051, China
- Hebei Engineering and Technology Center of Microbiological Control on Main Crop Disease, 46th South Street of Friendship, Shijiazhuang, 050051, China
| | - Hong Ma
- Biology Institute, Hebei Academy of Sciences, 46th South Street of Friendship, Shijiazhuang, 050051, China
- Hebei Engineering and Technology Center of Microbiological Control on Main Crop Disease, 46th South Street of Friendship, Shijiazhuang, 050051, China
| | - Shuishan Song
- Biology Institute, Hebei Academy of Sciences, 46th South Street of Friendship, Shijiazhuang, 050051, China.
- Hebei Engineering and Technology Center of Microbiological Control on Main Crop Disease, 46th South Street of Friendship, Shijiazhuang, 050051, China.
| |
Collapse
|
31
|
Pršić J, Ongena M. Elicitors of Plant Immunity Triggered by Beneficial Bacteria. FRONTIERS IN PLANT SCIENCE 2020; 11:594530. [PMID: 33304371 PMCID: PMC7693457 DOI: 10.3389/fpls.2020.594530] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/07/2020] [Indexed: 05/19/2023]
Abstract
The molecular basis of plant immunity triggered by microbial pathogens is being well-characterized as a complex sequential process leading to the activation of defense responses at the infection site, but which may also be systemically expressed in all organs, a phenomenon also known as systemic acquired resistance (SAR). Some plant-associated and beneficial bacteria are also able to stimulate their host to mount defenses against pathogen ingress via the phenotypically similar, induced systemic resistance phenomenon. Induced systemic resistance resembles SAR considering its mechanistic principle as it successively involves recognition at the plant cell surface, stimulation of early cellular immune-related events, systemic signaling via a fine-tuned hormonal cross-talk and activation of defense mechanisms. It thus represents an indirect but efficient mechanism by which beneficial bacteria with biocontrol potential improve the capacity of plants to restrict pathogen invasion. However, according to our current vision, induced systemic resistance is specific considering some molecular aspects underpinning these different steps. Here we overview the chemical diversity of compounds that have been identified as induced systemic resistance elicitors and thereby illustrating the diversity of plants species that are responsive as well as the range of pathogens that can be controlled via this phenomenon. We also point out the need for further investigations allowing better understanding how these elicitors are sensed by the host and the diversity and nature of the stimulated defense mechanisms.
Collapse
|
32
|
Rolfe SA, Griffiths J, Ton J. Crying out for help with root exudates: adaptive mechanisms by which stressed plants assemble health-promoting soil microbiomes. Curr Opin Microbiol 2019; 49:73-82. [PMID: 31731229 DOI: 10.1016/j.mib.2019.10.003] [Citation(s) in RCA: 166] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/29/2019] [Accepted: 10/03/2019] [Indexed: 01/13/2023]
Abstract
Plants employ immunological and ecological strategies to resist biotic stress. Recent evidence suggests that plants adapt to biotic stress by changing their root exudation chemistry to assemble health-promoting microbiomes. This so-called 'cry-for-help' hypothesis provides a mechanistic explanation for previously characterized soil feedback responses to plant disease, such as the development of disease-suppressing soils upon successive cultivations of take all-infected wheat. Here, we divide the hypothesis into individual stages and evaluate the evidence for each component. We review how plant immune responses modify root exudation chemistry, as well as what impact this has on microbial activities, and the subsequent plant responses to these activities. Finally, we review the ecological relevance of the interaction, along with its translational potential for future crop protection strategies.
Collapse
Affiliation(s)
- Stephen A Rolfe
- Plant Production and Protection (P(3)), Institute for Sustainable Food, The University of Sheffield, S10 2TN, UK; Department of Animal and Plant Sciences, The University of Sheffield, S10 2TN, UK
| | - Joseph Griffiths
- Department of Animal and Plant Sciences, The University of Sheffield, S10 2TN, UK
| | - Jurriaan Ton
- Plant Production and Protection (P(3)), Institute for Sustainable Food, The University of Sheffield, S10 2TN, UK; Department of Animal and Plant Sciences, The University of Sheffield, S10 2TN, UK.
| |
Collapse
|
33
|
Zaytseva YV, Sidorov AV, Marakaev OA, Khmel IA. Plant-Microbial Interactions Involving Quorum Sensing Regulation. Microbiology (Reading) 2019. [DOI: 10.1134/s0026261719040131] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
34
|
Jin T, Wang Y, Huang Y, Xu J, Zhang P, Wang N, Liu X, Chu H, Liu G, Jiang H, Li Y, Xu J, Kristiansen K, Xiao L, Zhang Y, Zhang G, Du G, Zhang H, Zou H, Zhang H, Jie Z, Liang S, Jia H, Wan J, Lin D, Li J, Fan G, Yang H, Wang J, Bai Y, Xu X. Taxonomic structure and functional association of foxtail millet root microbiome. Gigascience 2018; 6:1-12. [PMID: 29050374 PMCID: PMC7059795 DOI: 10.1093/gigascience/gix089] [Citation(s) in RCA: 162] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 08/28/2017] [Indexed: 01/09/2023] Open
Abstract
The root microbes play pivotal roles in plant productivity, nutrient uptakes, and disease resistance. The root microbial community structure has been extensively investigated by 16S/18S/ITS amplicons and metagenomic sequencing in crops and model plants. However, the functional associations between root microbes and host plant growth are poorly understood. This work investigates the root bacterial community of foxtail millet (Setaria italica) and its potential effects on host plant productivity. We determined the bacterial composition of 2882 samples from foxtail millet rhizoplane, rhizosphere and corresponding bulk soils from 2 well-separated geographic locations by 16S rRNA gene amplicon sequencing. We identified 16 109 operational taxonomic units (OTUs), and defined 187 OTUs as shared rhizoplane core OTUs. The β-diversity analysis revealed that microhabitat was the major factor shaping foxtail millet root bacterial community, followed by geographic locations. Large-scale association analysis identified the potential beneficial bacteria correlated with plant high productivity. Besides, the functional prediction revealed specific pathways enriched in foxtail millet rhizoplane bacterial community. We systematically described the root bacterial community structure of foxtail millet and found its core rhizoplane bacterial members. Our results demonstrated that host plants enrich specific bacteria and functions in the rhizoplane. The potentially beneficial bacteria may serve as a valuable knowledge foundation for bio-fertilizer development in agriculture.
Collapse
Affiliation(s)
- Tao Jin
- BGI-Qingdao, Qingdao, 266510, China.,China National Genebank-Shenzhen, BGI-Shenzhen, Shenzhen, 518083, China
| | | | | | - Jin Xu
- BGI-Qingdao, Qingdao, 266510, China.,Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL, USA
| | - Pengfan Zhang
- BGI-Qingdao, Qingdao, 266510, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL, USA
| | - Xin Liu
- BGI-Qingdao, Qingdao, 266510, China.,China National Genebank-Shenzhen, BGI-Shenzhen, Shenzhen, 518083, China
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing, 210008, China
| | | | | | | | - Jing Xu
- BGI-Qingdao, Qingdao, 266510, China
| | - Karsten Kristiansen
- BGI-Qingdao, Qingdao, 266510, China.,Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | | | - Yunzeng Zhang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL, USA
| | | | | | | | - Hongfeng Zou
- BGI-Qingdao, Qingdao, 266510, China.,BGI Millet Co., Ltd, Shenzhen, 518083, China
| | | | | | | | | | | | | | | | - Guangyi Fan
- BGI-Qingdao, Qingdao, 266510, China.,China National Genebank-Shenzhen, BGI-Shenzhen, Shenzhen, 518083, China
| | - Huanming Yang
- BGI-Qingdao, Qingdao, 266510, China.,James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | - Jian Wang
- BGI-Qingdao, Qingdao, 266510, China.,James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | - Yang Bai
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Science, Beijing, 100101, China.,Centre of Excellence for Plant and Microbial Sciences (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Science & John Innes Centre, Beijing, 100101, China.,The University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xun Xu
- BGI-Qingdao, Qingdao, 266510, China.,China National Genebank-Shenzhen, BGI-Shenzhen, Shenzhen, 518083, China
| |
Collapse
|
35
|
Calatrava-Morales N, McIntosh M, Soto MJ. Regulation Mediated by N-Acyl Homoserine Lactone Quorum Sensing Signals in the Rhizobium-Legume Symbiosis. Genes (Basel) 2018; 9:genes9050263. [PMID: 29783703 PMCID: PMC5977203 DOI: 10.3390/genes9050263] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 05/15/2018] [Accepted: 05/15/2018] [Indexed: 02/06/2023] Open
Abstract
Soil-dwelling bacteria collectively referred to as rhizobia synthesize and perceive N-acyl-homoserine lactone (AHL) signals to regulate gene expression in a population density-dependent manner. AHL-mediated signaling in these bacteria regulates several functions which are important for the establishment of nitrogen-fixing symbiosis with legume plants. Moreover, rhizobial AHL act as interkingdom signals triggering plant responses that impact the plant-bacteria interaction. Both the regulatory mechanisms that control AHL synthesis in rhizobia and the set of bacterial genes and associated traits under quorum sensing (QS) control vary greatly among the rhizobial species. In this article, we focus on the well-known QS system of the alfalfa symbiont Sinorhizobium(Ensifer)meliloti. Bacterial genes, environmental factors and transcriptional and posttranscriptional regulatory mechanisms that control AHL production in this Rhizobium, as well as the effects of the signaling molecule on bacterial phenotypes and plant responses will be reviewed. Current knowledge of S. meliloti QS will be compared with that of other rhizobia. Finally, participation of the legume host in QS by interfering with rhizobial AHL perception through the production of molecular mimics will also be addressed.
Collapse
Affiliation(s)
- Nieves Calatrava-Morales
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC; Granada 18008, Spain.
| | - Matthew McIntosh
- Institut für Mikrobiologie und Molekularbiologie, Universität Giessen, 35392 Giessen, Germany.
| | - María J Soto
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, CSIC; Granada 18008, Spain.
| |
Collapse
|
36
|
Gao P, Qin J, Li D, Zhou S. Inhibitory effect and possible mechanism of a Pseudomonas strain QBA5 against gray mold on tomato leaves and fruits caused by Botrytis cinerea. PLoS One 2018; 13:e0190932. [PMID: 29320571 PMCID: PMC5761960 DOI: 10.1371/journal.pone.0190932] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Accepted: 12/24/2017] [Indexed: 02/07/2023] Open
Abstract
The fungal pathogen Botrytis cinerea causes gray mold disease on various hosts, which results in serious economic losses. Over the past several decades, many kinds of fungicides have been used to successfully control the disease. Meanwhile, the uses of fungicides lead to environmental pollution as well as a potential threat to the human health by the chemical residues in tomato fruit. Also, the gray mold disease is difficult to control with fungicides. Therefore, exploring alternative measures such as biological controls could be the best choice to control the disease and alleviate damages caused by fungicides. In this study, we isolated and identified a novel Pseudomonas strain termed as QBA5 from healthy tomato plant based on the morphological, biochemical characteristics and molecular detection. The antifungal activity assays revealed that, in the presence of QBA5, conidia germination, germ tube elongation and mycelial growth of B. cinerea were significantly inhibited. Most importantly, QBA5 exerted a significant preventive effectiveness against gray mold on tomato fruits and plants. The possible mechanism of QBA5 involved in the inhibition of B. cinerea was investigated. It revealed that the conidia plasma membrane of B. cinerea was severely damaged by QBA5. Further, four different antifungal compounds in the supernatant of QBA5 were separated by preparative high performance liquid chromatography (PHPLC). Overall, the data indicate that there is a considerable potential for QBA5 to reduce the damage caused by gray mold disease on tomato.
Collapse
Affiliation(s)
- Pan Gao
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Jiaxing Qin
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
| | - Delong Li
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
- The Key Lab of Integrated Crop Pests Management of Shandong Province, Qingdao Agricultural University, Qingdao, China
| | - Shanyue Zhou
- College of Plant Health and Medicine, Qingdao Agricultural University, Qingdao, China
- The Key Lab of Integrated Crop Pests Management of Shandong Province, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
37
|
van der Meij A, Worsley SF, Hutchings MI, van Wezel GP. Chemical ecology of antibiotic production by actinomycetes. FEMS Microbiol Rev 2017; 41:392-416. [DOI: 10.1093/femsre/fux005] [Citation(s) in RCA: 220] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/02/2017] [Indexed: 12/13/2022] Open
|
38
|
Nievas F, Vilchez L, Giordano W, Bogino P. Arachis hypogaea L. produces mimic and inhibitory quorum sensing like molecules. Antonie van Leeuwenhoek 2017; 110:891-902. [PMID: 28357693 DOI: 10.1007/s10482-017-0862-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 03/20/2017] [Indexed: 11/24/2022]
Abstract
A wide variety of plant-associated soil bacteria (rhizobacteria) communicate with each other by quorum sensing (QS). Plants are able to detect and produce mimics and inhibitor molecules of the QS bacterial communicative process. Arachis hypogaea L. (peanut) establishes a nitrogen-fixing symbiosis with rhizobia belonging to the genus Bradyrhizobium. These bacteria use a QS mechanism dependent on the synthesis of N-acyl homoserine lactones (AHLs). Given the relevance that plant-rhizobacteria interactions have at the ecological level, this work addresses the involvement of peanut in taking part in the QS mechanism. By using biosensor bacterial strains capable of detecting AHLs, a series of standard and original bioassays were performed in order to determine both (i) the production of QS-like molecules in vegetal materials and (ii) the expression of the QS mechanism throughout plant-bacteria interaction. Mimic QS-like molecules (mQS) linked to AHLs with long acyl chains (lac-AHL), and inhibitor QS-like molecules (iQS) linked to AHLs with short acyl chains (sac-AHL) were detected in seed and root exudates. The results revealed that synthesis of specific signaling molecules by the plant (such as mQS and iQS) probably modulates the function and composition of the bacterial community established in its rhizosphere. Novel bioassays of QS detection during peanut-Bradyrhizobium interaction showed an intense production of QS signals in the contact zone between root and bacteria. It is demonstrated that root exudates stimulate the root colonization and synthesis of lac-AHL by Bradyrhizobium strains in the plant rhizosphere, which leads to the early stages of the development of beneficial plant-bacteria interactions.
Collapse
Affiliation(s)
- F Nievas
- Lab 11, Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, CP: 5800, Ruta 36 km 601, Río Cuarto, Córdoba, Argentina
| | - L Vilchez
- Lab 11, Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, CP: 5800, Ruta 36 km 601, Río Cuarto, Córdoba, Argentina
| | - W Giordano
- Lab 11, Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, CP: 5800, Ruta 36 km 601, Río Cuarto, Córdoba, Argentina
| | - P Bogino
- Lab 11, Departamento de Biología Molecular, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, CP: 5800, Ruta 36 km 601, Río Cuarto, Córdoba, Argentina.
| |
Collapse
|
39
|
Rankl S, Gunsé B, Sieper T, Schmid C, Poschenrieder C, Schröder P. Microbial homoserine lactones (AHLs) are effectors of root morphological changes in barley. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 253:130-140. [PMID: 27968982 DOI: 10.1016/j.plantsci.2016.09.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 09/22/2016] [Accepted: 09/26/2016] [Indexed: 05/26/2023]
Abstract
While colonizing the rhizosphere, bacterial intra- and inter-specific communication is accomplished by N-Acyl-homoserine-lactones (AHLs) in a density-dependent manner. Moreover, plants are naturally exposed to AHLs and respond with tissue-specificity. In the present study, we investigated the influence of N-hexanoyl- (C6-HSL), N-octanoyl- (C8-HSL) and N-dodecanoyl-d/l-homoserine lactone (C12-HSL) on growth and root development in barley (Hordeum vulgare L.), and identified initial reactions in root cells after AHL exposures using physiological, staining, and electrophysiological methods. Treatment with short- and long-chain AHLs modulated plant growth and branched root architecture and induced nitric oxide (NO) accumulation in the calyptra and root elongation zone of excised roots in an AHL derivative-independent way. Additionally, C6- and C8-HSL treatments stimulated K+ uptake in root cells only at certain concentrations, whereas all tested concentrations of C12-HSL induced K+ uptake. In further experiments, C8-HSL promoted membrane hyperpolarization in epidermal root cells. Thus, we conclude AHLs promote plant growth and lateral root formation, and cause NO accumulation as an early response to AHLs. Furthermore, the AHL-mediated membrane hyperpolarization is leading to increased K+ uptake of the root tissue.
Collapse
Affiliation(s)
- Simone Rankl
- Helmholtz Zentrum München, German Research Centre for Environmental Health, GmbH, Research Unit Environmental Genomics, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Benet Gunsé
- Lab. Fisiología Vegetal, Facultad Biociencias, Universidad Autónoma de Barcelona, 08193 Bellaterra, Spain
| | - Tina Sieper
- Helmholtz Zentrum München, German Research Centre for Environmental Health, GmbH, Research Unit Environmental Genomics, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Christoph Schmid
- Helmholtz Zentrum München, German Research Centre for Environmental Health, GmbH, Research Unit Environmental Genomics, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Charlotte Poschenrieder
- Lab. Fisiología Vegetal, Facultad Biociencias, Universidad Autónoma de Barcelona, 08193 Bellaterra, Spain
| | - Peter Schröder
- Helmholtz Zentrum München, German Research Centre for Environmental Health, GmbH, Research Unit Environmental Genomics, Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany.
| |
Collapse
|
40
|
Ali A, Ayesha, Hameed S, Imran A, Iqbal M, Iqbal J, Oresnik IJ. Functional characterization of a soybean growth stimulator Bradyrhizobium sp. strain SR-6 showing acylhomoserine lactone production. FEMS Microbiol Ecol 2016; 92:fiw115. [PMID: 27242370 DOI: 10.1093/femsec/fiw115] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2016] [Indexed: 01/09/2023] Open
Abstract
A soybean nodule endophytic bacterium Bradyrhizobium sp. strain SR-6 was characterized for production of acyl homoserine lactones (AHLs) as quorum sensing molecules. Mass spectrometry analysis of AHLs revealed the presence of C6-HSL, 3OH-C6-HSL, C8-HSL, C10-HSL, 3oxoC10-HSL, 3oxo-C12-HSL and 3OH-C12-HSL which are significantly different from those reported earlier in soybean symbionts. Purified AHL extracts significantly improved wheat and soybean seedling growth and root hair development along with increased soybean nodulation under axenic conditions. A positive correlation was observed among in vivo nitrogenase and catalase enzyme activities of the strain SR-6. Transmission electron microscopic analysis showed the cytochemical localization of catalase activity within the bacteroids, specifically attached to the peribacteroidal membrane. Root and nodule colonization proved rhizosphere competence of SR-6. The inoculation of SR-6 resulted in increased shoot length (13%), plant dry matter (50%), grain weight (16%), seed yield (20%) and N-uptake (14%) as compared to non-inoculated soybean plants. The symbiotic bacterium SR-6 has potential to improve soybean growth and yield in sub-humid climate of Azad Jammu and Kashmir region of Pakistan. The production and mass spectrometric profiling of AHLs as well as in vivo cytochemical localization of catalase enzyme activity in soybean Bradyrhizobium sp. have never been reported earlier elsewhere before our these investigations.
Collapse
Affiliation(s)
- Amanat Ali
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, PO Box no. 577, Faisalabad 38000, Pakistan
| | - Ayesha
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, PO Box no. 577, Faisalabad 38000, Pakistan
| | - Sohail Hameed
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, PO Box no. 577, Faisalabad 38000, Pakistan
| | - Asma Imran
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, PO Box no. 577, Faisalabad 38000, Pakistan
| | - Mazhar Iqbal
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, PO Box no. 577, Faisalabad 38000, Pakistan
| | - Javed Iqbal
- Soil and Environmental Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Jhang Road, PO Box no. 577, Faisalabad 38000, Pakistan
| | - Ivan J Oresnik
- Department of Microbiology, University of Manitoba, Winnipeg, Manitoba, R3T 2N2 Canada
| |
Collapse
|
41
|
Schikora A, Schenk ST, Hartmann A. Beneficial effects of bacteria-plant communication based on quorum sensing molecules of the N-acyl homoserine lactone group. PLANT MOLECULAR BIOLOGY 2016; 90:605-12. [PMID: 26898296 DOI: 10.1007/s11103-016-0457-8] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 02/18/2016] [Indexed: 05/08/2023]
Abstract
Bacterial quorum sensing (QS) mechanisms play a crucial role in the proper performance and ecological fitness of bacterial populations. Many key physiological processes are regulated in a QS-dependent manner by auto-inducers, like the N-acyl homoserine lactones (AHLs) in numerous Gram-negative bacteria. In addition, also the interaction between bacteria and eukaryotic hosts can be regulated by AHLs. Those mechanisms gained much attention, because of the positive effects of different AHL molecules on plants. This positive impact ranges from growth promotion to induced resistance and is quite contrasting to the rather negative effects observed in the interactions between bacterial AHL molecules and animals. Only very recently, we began to understand the molecular mechanisms underpinning plant responses to AHL molecules. In this review, we gathered the latest information in this research field. The first part gives an overview of the bacterial aspects of quorum sensing. Later we focus on the impact of AHLs on plant growth and AHL-priming, as one of the most understood phenomena in respect to the inter-kingdom interactions based on AHL-quorum sensing molecules. Finally, we discuss the potential benefits of the understanding of bacteria-plant interaction for the future agricultural applications.
Collapse
Affiliation(s)
- Adam Schikora
- Julius Kühn-Institut, Federal Research Centre for Cultivated Plants (JKI), Institute for Epidemiology and Pathogen Diagnostics, Messeweg 11/12, 38104, Brunswick, Germany.
| | - Sebastian T Schenk
- Institute of Plant Sciences - Paris-Saclay, INRA/CNRS, 630 rue de Noetzlin, Plateau du Moulon, 91405, Orsay, France
| | - Anton Hartmann
- Research Unit Microbe-Plant Interactions, Department for Environmental Sciences, German Research Center for Environmental Health (GmbH), Helmholtz Zentrum München, Ingolstaedter Landstr. 1, 85764, Neuherberg, Germany
| |
Collapse
|
42
|
Verbon EH, Liberman LM. Beneficial Microbes Affect Endogenous Mechanisms Controlling Root Development. TRENDS IN PLANT SCIENCE 2016; 21:218-229. [PMID: 26875056 PMCID: PMC4772406 DOI: 10.1016/j.tplants.2016.01.013] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 01/08/2016] [Accepted: 01/11/2016] [Indexed: 05/18/2023]
Abstract
Plants have incredible developmental plasticity, enabling them to respond to a wide range of environmental conditions. Among these conditions is the presence of plant growth-promoting rhizobacteria (PGPR) in the soil. Recent studies show that PGPR affect Arabidopsis thaliana root growth and development by modulating cell division and differentiation in the primary root and influencing lateral root development. These effects lead to dramatic changes in root system architecture that significantly impact aboveground plant growth. Thus, PGPR may promote shoot growth via their effect on root developmental programs. This review focuses on contextualizing root developmental changes elicited by PGPR in light of our understanding of plant-microbe interactions and root developmental biology.
Collapse
Affiliation(s)
- Eline H Verbon
- Plant-Microbe Interactions, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584CH Utrecht, The Netherlands
| | | |
Collapse
|
43
|
Corral-Lugo A, Daddaoua A, Ortega A, Espinosa-Urgel M, Krell T. Rosmarinic acid is a homoserine lactone mimic produced by plants that activates a bacterial quorum-sensing regulator. Sci Signal 2016; 9:ra1. [PMID: 26732761 DOI: 10.1126/scisignal.aaa8271] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2023]
Abstract
Quorum sensing is a bacterial communication mechanism that controls genes, enabling bacteria to live as communities, such as biofilms. Homoserine lactone (HSL) molecules function as quorum-sensing signals for Gram-negative bacteria. Plants also produce previously unidentified compounds that affect quorum sensing. We identified rosmarinic acid as a plant-derived compound that functioned as an HSL mimic. In vitro assays showed that rosmarinic acid bound to the quorum-sensing regulator RhlR of Pseudomonas aeruginosa PAO1 and competed with the bacterial ligand N-butanoyl-homoserine lactone (C4-HSL). Furthermore, rosmarinic acid stimulated a greater increase in RhlR-mediated transcription in vitro than that of C4-HSL. In P. aeruginosa, rosmarinic acid induced quorum sensing-dependent gene expression and increased biofilm formation and the production of the virulence factors pyocyanin and elastase. Because P. aeruginosa PAO1 infection induces rosmarinic acid secretion from plant roots, our results indicate that rosmarinic acid secretion is a plant defense mechanism to stimulate a premature quorum-sensing response. P. aeruginosa is a ubiquitous pathogen that infects plants and animals; therefore, identification of rosmarinic acid as an inducer of premature quorum-sensing responses may be useful in agriculture and inform human therapeutic strategies.
Collapse
Affiliation(s)
- Andrés Corral-Lugo
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/ Prof. Albareda, 1, 18008 Granada, Spain
| | - Abdelali Daddaoua
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/ Prof. Albareda, 1, 18008 Granada, Spain
| | - Alvaro Ortega
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/ Prof. Albareda, 1, 18008 Granada, Spain
| | - Manuel Espinosa-Urgel
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/ Prof. Albareda, 1, 18008 Granada, Spain
| | - Tino Krell
- Department of Environmental Protection, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, C/ Prof. Albareda, 1, 18008 Granada, Spain.
| |
Collapse
|
44
|
de Souza R, Ambrosini A, Passaglia LM. Plant growth-promoting bacteria as inoculants in agricultural soils. Genet Mol Biol 2015; 38:401-19. [PMID: 26537605 PMCID: PMC4763327 DOI: 10.1590/s1415-475738420150053] [Citation(s) in RCA: 355] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/22/2015] [Indexed: 12/12/2022] Open
Abstract
Plant-microbe interactions in the rhizosphere are the determinants of plant health, productivity and soil fertility. Plant growth-promoting bacteria (PGPB) are bacteria that can enhance plant growth and protect plants from disease and abiotic stresses through a wide variety of mechanisms; those that establish close associations with plants, such as the endophytes, could be more successful in plant growth promotion. Several important bacterial characteristics, such as biological nitrogen fixation, phosphate solubilization, ACC deaminase activity, and production of siderophores and phytohormones, can be assessed as plant growth promotion (PGP) traits. Bacterial inoculants can contribute to increase agronomic efficiency by reducing production costs and environmental pollution, once the use of chemical fertilizers can be reduced or eliminated if the inoculants are efficient. For bacterial inoculants to obtain success in improving plant growth and productivity, several processes involved can influence the efficiency of inoculation, as for example the exudation by plant roots, the bacterial colonization in the roots, and soil health. This review presents an overview of the importance of soil-plant-microbe interactions to the development of efficient inoculants, once PGPB are extensively studied microorganisms, representing a very diverse group of easily accessible beneficial bacteria.
Collapse
Affiliation(s)
- Rocheli de Souza
- Departamento de Genética, Instituto de Biociências, Universidade Federal
do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Adriana Ambrosini
- Departamento de Genética, Instituto de Biociências, Universidade Federal
do Rio Grande do Sul, Porto Alegre, RS, Brazil
| | - Luciane M.P. Passaglia
- Departamento de Genética, Instituto de Biociências, Universidade Federal
do Rio Grande do Sul, Porto Alegre, RS, Brazil
| |
Collapse
|
45
|
Kusari P, Kusari S, Spiteller M, Kayser O. Implications of endophyte-plant crosstalk in light of quorum responses for plant biotechnology. Appl Microbiol Biotechnol 2015; 99:5383-90. [DOI: 10.1007/s00253-015-6660-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 04/28/2015] [Accepted: 04/30/2015] [Indexed: 11/30/2022]
|
46
|
Helman Y, Chernin L. Silencing the mob: disrupting quorum sensing as a means to fight plant disease. MOLECULAR PLANT PATHOLOGY 2015; 16:316-29. [PMID: 25113857 PMCID: PMC6638422 DOI: 10.1111/mpp.12180] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Bacteria are able to sense their population's density through a cell-cell communication system, termed 'quorum sensing' (QS). This system regulates gene expression in response to cell density through the constant production and detection of signalling molecules. These molecules commonly act as auto-inducers through the up-regulation of their own synthesis. Many pathogenic bacteria, including those of plants, rely on this communication system for infection of their hosts. The finding that the countering of QS-disrupting mechanisms exists in many prokaryotic and eukaryotic organisms offers a promising novel method to fight disease. During the last decade, several approaches have been proposed to disrupt QS pathways of phytopathogens, and hence to reduce their virulence. Such studies have had varied success in vivo, but most lend promising support to the idea that QS manipulation could be a potentially effective method to reduce bacterial-mediated plant disease. This review discusses the various QS-disrupting mechanisms found in both bacteria and plants, as well as the different approaches applied artificially to interfere with QS pathways and thus protect plant health.
Collapse
Affiliation(s)
- Yael Helman
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | | |
Collapse
|
47
|
Zhao Q, Zhang C, Jia Z, Huang Y, Li H, Song S. Involvement of calmodulin in regulation of primary root elongation by N-3-oxo-hexanoyl homoserine lactone in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2015; 5:807. [PMID: 25628641 PMCID: PMC4292405 DOI: 10.3389/fpls.2014.00807] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Accepted: 12/26/2014] [Indexed: 05/22/2023]
Abstract
Many bacteria use signal molecules of low molecular weight to monitor their local population density and to coordinate their collective behavior in a process called "quorum sensing" (QS). N-acyl-homoserine lactones (AHLs) are the primary QS signals among Gram-negative bacteria. AHL-mediated QS plays an essential role in diverse bacterial physiological processes. Recent evidence shows that plants are able to sense bacterial AHLs and respond to them appropriately. However, little is known about the mechanism by which plants perceive and transduce the bacterial AHLs within cells. In this study, we found that the stimulatory effect of N-3-oxo-hexanoyl homoserine lactone (3OC6-HSL) on primary root elongation of Arabidopsis was abolished by the calmodulin (CaM) antagonists N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide (W-7) and trifluoperazine (TFP). Western-blot and ELISA analysis revealed that the concentration of CaM protein in Arabidopsis roots increased after treatment with 1 μM 3OC6-HSL. Results from quantitative RT-PCR demonstrated that the transcription of all nine CaM genes in Arabidopsis genome was up-regulated in the plants treated with 3OC6-HSL. The loss-of-function mutants of each AtCaM gene (AtCaM1-9) were insensitive to 3OC6-HSL-stimulation of primary root elongation. On the other hand, the genetic evidence showed that CaM may not participates the inhibition of primary root length caused by application of long-chained AHLs such as C10-HSL and C12-HSL. Nevertheless, our results suggest that CaM is involved in the bacterial 3OC6-HSL signaling in plant cells. These data offer new insight into the mechanism of plant response to bacterial QS signals.
Collapse
Affiliation(s)
- Qian Zhao
- Department of Bioengineering, Biology Institute, Hebei Academy of SciencesShijiazhuang, China
- Hebei Engineering and Technology Center of Microbiological Control on Main Crop DiseaseShijiazhuang, China
| | - Chao Zhang
- Department of Bioengineering, Biology Institute, Hebei Academy of SciencesShijiazhuang, China
| | - Zhenhua Jia
- Department of Bioengineering, Biology Institute, Hebei Academy of SciencesShijiazhuang, China
- Hebei Engineering and Technology Center of Microbiological Control on Main Crop DiseaseShijiazhuang, China
| | - Yali Huang
- Department of Bioengineering, Biology Institute, Hebei Academy of SciencesShijiazhuang, China
- Hebei Engineering and Technology Center of Microbiological Control on Main Crop DiseaseShijiazhuang, China
| | - Haili Li
- Department of Bioengineering, Biology Institute, Hebei Academy of SciencesShijiazhuang, China
| | - Shuishan Song
- Department of Bioengineering, Biology Institute, Hebei Academy of SciencesShijiazhuang, China
- Hebei Engineering and Technology Center of Microbiological Control on Main Crop DiseaseShijiazhuang, China
| |
Collapse
|
48
|
Hartmann A, Schikora A. Editorial: Plant responses to bacterial quorum sensing molecules. FRONTIERS IN PLANT SCIENCE 2015; 6:643. [PMID: 26347761 PMCID: PMC4541025 DOI: 10.3389/fpls.2015.00643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 08/02/2015] [Indexed: 05/08/2023]
Affiliation(s)
- Anton Hartmann
- Research Unit Microbe-Plant Interactions, Department of Environmental Sciences, Helmholtz Zentrum München - German Research Center for Environmental Health GmbHNeuherberg, Germany
| | - Adam Schikora
- Research Centre for Biosystems, Land Use and Nutrition (IFZ), Institute for Phytopathology, Justus Liebig University GiessenGiessen, Germany
- *Correspondence: Adam Schikora,
| |
Collapse
|
49
|
Smith DL, Praslickova D, Ilangumaran G. Inter-organismal signaling and management of the phytomicrobiome. FRONTIERS IN PLANT SCIENCE 2015; 6:722. [PMID: 26442036 PMCID: PMC4568390 DOI: 10.3389/fpls.2015.00722] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 08/28/2015] [Indexed: 05/18/2023]
Abstract
The organisms of the phytomicrobiome use signal compounds to regulate aspects of each other's behavior. Legumes use signals (flavonoids) to regulate rhizobial nod gene expression during establishment of the legume-rhizobia N2-fixation symbiosis. Lipochitooligosaccharides (LCOs) produced by rhizobia act as return signals to the host plant and are recognized by specific lysine motif receptor like kinases, which triggers a signal cascade leading to nodulation of legume roots. LCOs also enhance plant growth, particularly when plants are stressed. Chitooligosaccharides activate plant immune responses, providing enhanced resistance against diseases. Co-inoculation of rhizobia with other plant growth promoting rhizobacteria (PGPR) can improve nodulation and crop growth. PGPR also alleviate plant stress by secreting signal compounds including phytohormones and antibiotics. Thuricin 17, a small bacteriocin produced by a phytomicrobiome member promotes plant growth. Lumichrome synthesized by soil rhizobacteria function as stress-sensing cues. Inter-organismal signaling can be used to manage/engineer the phytomicrobiome to enhance crop productivity, particularly in the face of stress. Stressful conditions are likely to become more frequent and more severe because of climate change.
Collapse
Affiliation(s)
- Donald L. Smith
- *Correspondence: Donald L. Smith, Plant Science Department, McGill University/Macdonald Campus, 21,111 Lakeshore Road, Sainte Anne de Bellevue, QC H9X 3V9, Canada,
| | | | | |
Collapse
|
50
|
Singh RP, Baghel RS, Reddy CRK, Jha B. Effect of quorum sensing signals produced by seaweed-associated bacteria on carpospore liberation from Gracilaria dura. FRONTIERS IN PLANT SCIENCE 2015; 6:117. [PMID: 25788899 PMCID: PMC4349058 DOI: 10.3389/fpls.2015.00117] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 02/12/2015] [Indexed: 05/10/2023]
Abstract
Epiphytic and endophytic bacteria associated with green macroalgae Ulva (U. fasciata and U. lactuca) and red macroalgae Gracilaria (G. corticata and G. dura) have been identified from three different seasons to evaluate the effect of quorum sensing (QS) molecules on carpospores liberation from Gracilaria dura. The bacterial isolates belonging to the orders Bacillales, Pseudomonadales, Alteromonadales, and Vibrionales were present in all seasons, whereas Actinomycetales and Enterobacteriales were confined to pre-monsoon and post-monsoon seasons, respectively. Among all the Gram-negative bacteria, seven isolates were found to produce different types of N-acyl homoserine lactones (AHLs). Interestingly, Shewanella algae produced five types of AHL: C4-HSL, HC4-HSL, C6-HSL, 3-oxo-C6-HSL, and 3-oxo-C12-HSL. Subsequently, the AHLs producing bacterial isolates were screened for carpospore liberation from G. dura and these isolates were found to positively induce carpospore liberation over the control. Also, observed that carpospore liberation increased significantly in C4- and C6-HSL treated cystocarps. Sodium dodecyl sulfate and native polyacrylamide gel electrophoresis of the total protein of the C4- and C6-HSL treated cystocarps showed two specific peptide bands of different molecular weights (50 kDa and 60 kDa) as compared to the control, confirming their indirect effect on carpospore liberation.
Collapse
Affiliation(s)
- Ravindra Pal Singh
- Seaweed Biology and Cultivation Group, Division of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research InstituteBhavnagar, India
| | - Ravi S. Baghel
- Seaweed Biology and Cultivation Group, Division of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research InstituteBhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR)New Delhi, India
| | - C. R. K. Reddy
- Seaweed Biology and Cultivation Group, Division of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research InstituteBhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR)New Delhi, India
- *Correspondence: C. R. K. Reddy, Discipline of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, India e-mail:
| | - Bhavanath Jha
- Seaweed Biology and Cultivation Group, Division of Marine Biotechnology and Ecology, CSIR-Central Salt and Marine Chemicals Research InstituteBhavnagar, India
- Academy of Scientific and Innovative Research (AcSIR)New Delhi, India
| |
Collapse
|