1
|
Yang H, Huang C, Dong N, Xu Y, Zheng Y, Xu L, Guo S, Zhang X, Ma X, Bai L. [Ca2+]cyt-ASSOCIATED PROTEIN KINASE 1 and NIMA-RELATED KINASE 2 interact during root hair cell morphogenesis. PLANT PHYSIOLOGY 2024; 196:1595-1607. [PMID: 39054117 DOI: 10.1093/plphys/kiae379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/27/2024]
Abstract
Root hair growth has been studied to understand the principles underlying the regulation of directional growth. Arabidopsis (Arabidopsis thaliana) [Ca2+]cyt-ASSOCIATED PROTEIN KINASE 1 (CAP1) maintains normal vesicle trafficking and cytoskeleton arrangement during root hair growth in response to ammonium signaling. In the current study, we identified CAP1 SUPPRESSOR 1 (CAPS1) as a genetic suppressor of the cap1-1 mutation. The CAPS1 mutation largely rescued the short root hair phenotype of cap1-1. Loss of CAPS1 function resulted in significantly longer root hairs in cap1-1. MutMap analysis revealed that CAPS1 is identical to NIMA (NEVER IN MITOSIS A)-RELATED KINASE 2 (NEK2). In addition, our studies showed that NEK2 is expressed in root and root hairs. Its distribution was associated with the pattern of microtubule (MT) arrangement and partially colocalized with CAP1. Further biochemical studies revealed that CAP1 physically interacts with NEK2 and may enhance its phosphorylation. Our study suggests that NEK2 acts as a potential phosphorylation target of CAP1 in maintaining the stability of root hair MTs to regulate root hair elongation.
Collapse
Affiliation(s)
- Hong Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Chongzheng Huang
- Henan Key Laboratory of Germplasm Innovation and Utilization of Eco-economic Woody Plant, Pingdingshan University, Pingdingshan 467000, China
| | - Nannan Dong
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yifei Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yiling Zheng
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Lushun Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Sasa Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Xin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Xiaonan Ma
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Ling Bai
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
2
|
Chailertrit V, Panthum T, Kongkaew L, Chalermwong P, Singchat W, Ahmad SF, Kraichak E, Muangmai N, Duengkae P, Peyachoknagul S, Han K, Srikulnath K. Genome-wide SNP analysis provides insights into the XX/XY sex-determination system in silver barb (Barbonymus gonionotus). Genomics Inform 2023; 21:e47. [PMID: 38224714 PMCID: PMC10788355 DOI: 10.5808/gi.23075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 01/17/2024] Open
Abstract
Silver barb (Barbonymus gonionotus) is among the most economically important freshwater fish species in Thailand. It ranks fourth in economic value and third in production weight for fisheries and culture in Thailand. An XX/XY sex-determination system based on gynogenesis was previously reported for this fish. In this study, the molecular basis underlying the sex-determination system was further investigated. Genome-wide single-nucleotide polymorphism data were generated for 32 captive-bred silver barb individuals, previously scored by phenotypic sex, to identify sex-linked regions associated with sex determination. Sixty-three male-linked loci, indicating putative XY chromosomes, were identified. Male-specific loci were not observed, which indicates that the putative Y chromosome is young and the sex determination region is cryptic. A homology search revealed that most male-linked loci were homologous to the Mariner/Tc1 and Gypsy transposable elements and are probably the remnants of an initial accumulation of repeats on the Y chromosome from the early stages of sex chromosome differentiation. This research provides convincing insights into the mechanism of sex determination and reveals the potential sex determination regions in silver barb. The study provides the basic data necessary for increasing the commercial value of silver barbs through genetic improvements.
Collapse
Affiliation(s)
- Visarut Chailertrit
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Pathum Thani Aquatic Animal Genetics Research and Development Center, Aquatic Animal Genetics Research and Development Division, Department of Fisheries, Pathum Thani 12120, Thailand
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Thitipong Panthum
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Lalida Kongkaew
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Piangjai Chalermwong
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Sciences for Industry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Worapong Singchat
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Syed Farhan Ahmad
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Ekaphan Kraichak
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Department of Botany, Kasetsart University, Bangkok 10900, Thailand
| | - Narongrit Muangmai
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Department of Fishery Biology, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand
| | - Prateep Duengkae
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
| | - Surin Peyachoknagul
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Kyudong Han
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Department of Microbiology, Dankook University, Cheonan 31116, Korea
- Bio-Medical Engineering Core Facility Research Center, Dankook University, Cheonan 31116, Korea
| | - Kornsorn Srikulnath
- Animal Genomics and Bioresource Research Unit (AGB Research Unit), Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Laboratory of Animal Cytogenetics and Comparative Genomics (ACCG), Department of Genetics, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Special Research Unit for Wildlife Genomics (SRUWG), Department of Forest Biology, Faculty of Forestry, Kasetsart University, Bangkok 10900, Thailand
- Sciences for Industry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
- Center for Advanced Studies in Tropical Natural Resources (CASTNAR), National Research University-Kasetsart University (NRU-KU), Kasetsart University, Bangkok 10900, Thailand
| |
Collapse
|
3
|
Zhang R, Ren Y, Wu H, Yang Y, Yuan M, Liang H, Zhang C. Mapping of Genetic Locus for Leaf Trichome Formation in Chinese Cabbage Based on Bulked Segregant Analysis. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10040771. [PMID: 33919922 PMCID: PMC8070908 DOI: 10.3390/plants10040771] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/11/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Chinese cabbage is a leafy vegetable, and its leaves are the main edible organs. The formation of trichomes on the leaves can significantly affect its taste, so studying this phenomenon is of great significance for improving the quality of Chinese cabbage. In this study, two varieties of Chinese cabbage, W30 with trichome leaves and 082 with glabrous leaves, were crossed to generate F1 and F1 plants, which were self-fertilized to develop segregating populations with trichome or glabrous morphotypes. The two bulks of the different segregating populations were used to conduct bulked segregant analysis (BSA). A total of 293.4 M clean reads were generated from the samples, and plants from the trichome leaves (AL) bulk and glabrous leaves (GL) bulk were identified. Between the two DNA pools generated from the trichome and glabrous plants, 55,048 SNPs and 272 indels were generated. In this study, three regions (on chromosomes 6, 10 and scaffold000100) were identified, and the annotation revealed three candidate genes that may participate in the formation of leaf trichomes. These findings suggest that the three genes-Bra025087 encoding a cyclin family protein, Bra035000 encoding an ATP-binding protein/kinase/protein kinase/protein serine/threonine kinase and Bra033370 encoding a WD-40 repeat family protein-influence the formation of trichomes by participating in trichome morphogenesis (GO: 0010090). These results demonstrate that BSA can be used to map genes associated with traits and provide new insights into the molecular mechanism of leafy trichome formation in Chinese cabbage.
Collapse
|
4
|
Takatani S, Verger S, Okamoto T, Takahashi T, Hamant O, Motose H. Microtubule Response to Tensile Stress Is Curbed by NEK6 to Buffer Growth Variation in the Arabidopsis Hypocotyl. Curr Biol 2020; 30:1491-1503.e2. [DOI: 10.1016/j.cub.2020.02.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 01/11/2020] [Accepted: 02/10/2020] [Indexed: 01/05/2023]
|
5
|
Otani K, Ishizaki K, Nishihama R, Takatani S, Kohchi T, Takahashi T, Motose H. An evolutionarily conserved NIMA-related kinase directs rhizoid tip growth in the basal land plant Marchantia polymorpha. Development 2018; 145:dev.154617. [PMID: 29440300 DOI: 10.1242/dev.154617] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 01/23/2018] [Indexed: 12/30/2022]
Abstract
Tip growth is driven by turgor pressure and mediated by the polarized accumulation of cellular materials. How a single polarized growth site is established and maintained is unclear. Here, we analyzed the function of NIMA-related protein kinase 1 (MpNEK1) in the liverwort Marchantia polymorpha In the wild type, rhizoid cells differentiate from the ventral epidermis and elongate through tip growth to form hair-like protrusions. In Mpnek1 knockout mutants, rhizoids underwent frequent changes in growth direction, resulting in a twisted and/or spiral morphology. The functional MpNEK1-Citrine protein fusion localized to microtubule foci in the apical growing region of rhizoids. Mpnek1 knockouts exhibited increases in both microtubule density and bundling in the apical dome of rhizoids. Treatment with the microtubule-stabilizing drug taxol phenocopied the Mpnek1 knockout. These results suggest that MpNEK1 directs tip growth in rhizoids through microtubule organization. Furthermore, MpNEK1 expression rescued ectopic outgrowth of epidermal cells in the Arabidopsis thaliana nek6 mutant, strongly supporting an evolutionarily conserved NEK-dependent mechanism of directional growth. It is possible that such a mechanism contributed to the evolution of the early rooting system in land plants.
Collapse
Affiliation(s)
- Kento Otani
- Department of Biological Science, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Okayama 700-8530, Japan
| | - Kimitsune Ishizaki
- Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan
| | - Ryuichi Nishihama
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Shogo Takatani
- Department of Biological Science, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Okayama 700-8530, Japan
| | - Takayuki Kohchi
- Division of Integrated Life Science, Graduate School of Biostudies, Kyoto University, Kyoto 606-8502, Japan
| | - Taku Takahashi
- Department of Biological Science, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Okayama 700-8530, Japan
| | - Hiroyasu Motose
- Department of Biological Science, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Okayama 700-8530, Japan
| |
Collapse
|
6
|
Takatani S, Ozawa S, Yagi N, Hotta T, Hashimoto T, Takahashi Y, Takahashi T, Motose H. Directional cell expansion requires NIMA-related kinase 6 (NEK6)-mediated cortical microtubule destabilization. Sci Rep 2017; 7:7826. [PMID: 28798328 PMCID: PMC5552743 DOI: 10.1038/s41598-017-08453-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 07/12/2017] [Indexed: 11/09/2022] Open
Abstract
Plant cortical microtubules align perpendicular to the growth axis to determine the direction of cell growth. However, it remains unclear how plant cells form well-organized cortical microtubule arrays in the absence of a centrosome. In this study, we investigated the functions of Arabidopsis NIMA-related kinase 6 (NEK6), which regulates microtubule organization during anisotropic cell expansion. Quantitative analysis of hypocotyl cell growth in the nek6-1 mutant demonstrated that NEK6 suppresses ectopic outgrowth and promotes cell elongation in different regions of the hypocotyl. Loss of NEK6 function led to excessive microtubule waving and distortion, implying that NEK6 suppresses the aberrant cortical microtubules. Live cell imaging showed that NEK6 localizes to the microtubule lattice and to the shrinking plus and minus ends of microtubules. In agreement with this observation, the induced overexpression of NEK6 reduced and disorganized cortical microtubules and suppressed cell elongation. Furthermore, we identified five phosphorylation sites in β-tubulin that serve as substrates for NEK6 in vitro. Alanine substitution of the phosphorylation site Thr166 promoted incorporation of mutant β-tubulin into microtubules. Taken together, these results suggest that NEK6 promotes directional cell growth through phosphorylation of β-tubulin and the resulting destabilization of cortical microtubules.
Collapse
Affiliation(s)
- Shogo Takatani
- Department of Biological Science, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Okayama, 700-8530, Japan
| | - Shinichiro Ozawa
- Department of Biological Science, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Okayama, 700-8530, Japan.,Japan Science and Technology Agency, 4-1-8 Kawaguchi, Saitama, 332-0012, Japan
| | - Noriyoshi Yagi
- Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan.,Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba, 278-8510, Japan
| | - Takashi Hotta
- Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan.,Department of Embryology, Carnegie Institution for Science, 3520 San Martin Drive, Baltimore, MD, 21218, USA
| | - Takashi Hashimoto
- Graduate School of Biological Science, Nara Institute of Science and Technology, Ikoma, 630-0192, Japan
| | - Yuichiro Takahashi
- Department of Biological Science, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Okayama, 700-8530, Japan.,Japan Science and Technology Agency, 4-1-8 Kawaguchi, Saitama, 332-0012, Japan
| | - Taku Takahashi
- Department of Biological Science, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Okayama, 700-8530, Japan
| | - Hiroyasu Motose
- Department of Biological Science, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Okayama, 700-8530, Japan.
| |
Collapse
|
7
|
Eng RC, Halat LS, Livingston SJ, Sakai T, Motose H, Wasteneys GO. The ARM Domain of ARMADILLO-REPEAT KINESIN 1 is Not Required for Microtubule Catastrophe But Can Negatively Regulate NIMA-RELATED KINASE 6 in Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2017; 58:1350-1363. [PMID: 28505371 DOI: 10.1093/pcp/pcx070] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 05/03/2017] [Indexed: 05/07/2023]
Abstract
Microtubules are dynamic filaments, the assembly and disassembly of which are under precise control of various associated proteins, including motor proteins and regulatory enzymes. In Arabidopsis thaliana, two such proteins are the ARMADILLO-REPEAT KINESIN 1 (ARK1), which promotes microtubule disassembly, and the NIMA-RELATED KINASE 6 (NEK6), which has a role in organizing microtubule arrays. Previous yeast two-hybrid and in vitro pull-down assays determined that NEK6 can interact with ARK1 through the latter protein's Armadillo-repeat (ARM) cargo domain. To explore the function of the ARM domain, we generated fluorescent reporter fusion proteins to ARK1 lacking the ARM domain (ARK1ΔARM-GFP) and to the ARM domain alone (ARM-GFP). Both of these constructs strongly associated with the growing plus ends of microtubules, but only ARK1ΔARM-GFP was capable of inducing microtubule catastrophe and rescuing the ark1-1 root hair phenotype. These results indicate that neither the ARM domain nor NEK6's putative interaction with it is required for ARK1 to induce microtubule catastrophe. In further exploration of the ARK1-NEK6 relationship, we demonstrated that, despite evidence that NEK6 can phosphorylate ARK1 in vitro, the in vivo distribution and function of ARK1 were not affected by the loss of NEK6, and vice versa. Moreover, NEK6 and ARK1 were found to have overlapping but non-identical distribution on microtubules, and hormone treatments known to affect NEK6 activity did not stimulate interaction. These findings suggest that ARK1 and NEK6 function independently in microtubule dynamics and cell morphogenesis. Despite the results of this functional analysis, we found that overexpression of the ARM domain led to complete loss of NEK6 transcription, suggesting that the ARM domain might have a regulatory role in NEK6 expression.
Collapse
Affiliation(s)
- Ryan C Eng
- Department of Botany, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Laryssa S Halat
- Department of Botany, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Samuel J Livingston
- Department of Botany, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| | - Tatsuya Sakai
- Graduate School of Science and Technology, Niigata University, Niigata 950-2181, Japan
| | - Hiroyasu Motose
- Graduate School of Natural Science & Technology, Okayama University, Okayama 700-8530, Japan
| | - Geoffrey O Wasteneys
- Department of Botany, University of British Columbia, Vancouver, BC, Canada V6T 1Z4
| |
Collapse
|
8
|
Lažetić V, Fay DS. Conserved Ankyrin Repeat Proteins and Their NIMA Kinase Partners Regulate Extracellular Matrix Remodeling and Intracellular Trafficking in Caenorhabditis elegans. Genetics 2017; 205:273-293. [PMID: 27799278 PMCID: PMC5223508 DOI: 10.1534/genetics.116.194464] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Accepted: 10/28/2016] [Indexed: 12/27/2022] Open
Abstract
Molting is an essential developmental process in nematodes during which the epidermal apical extracellular matrix, the cuticle, is remodeled to accommodate further growth. Using genetic approaches, we identified a requirement for three conserved ankyrin repeat-rich proteins, MLT-2/ANKS6, MLT-3/ANKS3, and MLT-4/INVS, in Caenorhabditis elegans molting. Loss of mlt function resulted in severe defects in the ability of larvae to shed old cuticle and led to developmental arrest. Genetic analyses demonstrated that MLT proteins functionally cooperate with the conserved NIMA kinase family members NEKL-2/NEK8 and NEKL-3/NEK6/NEK7 to promote cuticle shedding. MLT and NEKL proteins were specifically required within the hyp7 epidermal syncytium, and fluorescently tagged mlt and nekl alleles were expressed in puncta within this tissue. Expression studies further showed that NEKL-2-MLT-2-MLT-4 and NEKL-3-MLT-3 colocalize within largely distinct assemblies of apical foci. MLT-2 and MLT-4 were required for the normal accumulation of NEKL-2 at the hyp7-seam cell boundary, and loss of mlt-2 caused abnormal nuclear accumulation of NEKL-2 Correspondingly, MLT-3, which bound directly to NEKL-3, prevented NEKL-3 nuclear localization, supporting the model that MLT proteins may serve as molecular scaffolds for NEKL kinases. Our studies additionally showed that the NEKL-MLT network regulates early steps in clathrin-mediated endocytosis at the apical surface of hyp7, which may in part account for molting defects observed in nekl and mlt mutants. This study has thus identified a conserved NEKL-MLT protein network that regulates remodeling of the apical extracellular matrix and intracellular trafficking, functions that may be conserved across species.
Collapse
Affiliation(s)
- Vladimir Lažetić
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, Wyoming 82071
| | - David S Fay
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, Wyoming 82071
| |
Collapse
|
9
|
Czedik-Eysenberg A, Arrivault S, Lohse MA, Feil R, Krohn N, Encke B, Nunes-Nesi A, Fernie AR, Lunn JE, Sulpice R, Stitt M. The Interplay between Carbon Availability and Growth in Different Zones of the Growing Maize Leaf. PLANT PHYSIOLOGY 2016; 172:943-967. [PMID: 27582314 PMCID: PMC5047066 DOI: 10.1104/pp.16.00994] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/26/2016] [Indexed: 05/18/2023]
Abstract
Plants assimilate carbon in their photosynthetic tissues in the light. However, carbon is required during the night and in nonphotosynthetic organs. It is therefore essential that plants manage their carbon resources spatially and temporally and coordinate growth with carbon availability. In growing maize (Zea mays) leaf blades, a defined developmental gradient facilitates analyses in the cell division, elongation, and mature zones. We investigated the responses of the metabolome and transcriptome and polysome loading, as a qualitative proxy for protein synthesis, at dusk, dawn, and 6, 14, and 24 h into an extended night, and tracked whole-leaf elongation over this time course. Starch and sugars are depleted by dawn in the mature zone, but only after an extension of the night in the elongation and division zones. Sucrose (Suc) recovers partially between 14 and 24 h into the extended night in the growth zones, but not the mature zone. The global metabolome and transcriptome track these zone-specific changes in Suc. Leaf elongation and polysome loading in the growth zones also remain high at dawn, decrease between 6 and 14 h into the extended night, and then partially recover, indicating that growth processes are determined by local carbon status. The level of Suc-signaling metabolite trehalose-6-phosphate, and the trehalose-6-phosphate:Suc ratio are much higher in growth than mature zones at dusk and dawn but fall in the extended night. Candidate genes were identified by searching for transcripts that show characteristic temporal response patterns or contrasting responses to carbon starvation in growth and mature zones.
Collapse
Affiliation(s)
- Angelika Czedik-Eysenberg
- Gregor-Mendel-Institute of Molecular Plant Biology, 1030 Vienna, Austria (A.C.-E.);Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany (S.A., R.F., N.K., B.E., A.R.F., J.E.L., M.S.);Targenomix GmbH, 14476 Potsdam, Germany (M.A.L.);Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais State, Brasil (A.N.-N.); andPlant Systems Biology Lab, Plant AgriBiosciences, C314 Aras de Brun, National University of Ireland, Galway, Ireland (R.S.)
| | - Stéphanie Arrivault
- Gregor-Mendel-Institute of Molecular Plant Biology, 1030 Vienna, Austria (A.C.-E.);Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany (S.A., R.F., N.K., B.E., A.R.F., J.E.L., M.S.);Targenomix GmbH, 14476 Potsdam, Germany (M.A.L.);Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais State, Brasil (A.N.-N.); andPlant Systems Biology Lab, Plant AgriBiosciences, C314 Aras de Brun, National University of Ireland, Galway, Ireland (R.S.)
| | - Marc A Lohse
- Gregor-Mendel-Institute of Molecular Plant Biology, 1030 Vienna, Austria (A.C.-E.);Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany (S.A., R.F., N.K., B.E., A.R.F., J.E.L., M.S.);Targenomix GmbH, 14476 Potsdam, Germany (M.A.L.);Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais State, Brasil (A.N.-N.); andPlant Systems Biology Lab, Plant AgriBiosciences, C314 Aras de Brun, National University of Ireland, Galway, Ireland (R.S.)
| | - Regina Feil
- Gregor-Mendel-Institute of Molecular Plant Biology, 1030 Vienna, Austria (A.C.-E.);Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany (S.A., R.F., N.K., B.E., A.R.F., J.E.L., M.S.);Targenomix GmbH, 14476 Potsdam, Germany (M.A.L.);Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais State, Brasil (A.N.-N.); andPlant Systems Biology Lab, Plant AgriBiosciences, C314 Aras de Brun, National University of Ireland, Galway, Ireland (R.S.)
| | - Nicole Krohn
- Gregor-Mendel-Institute of Molecular Plant Biology, 1030 Vienna, Austria (A.C.-E.);Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany (S.A., R.F., N.K., B.E., A.R.F., J.E.L., M.S.);Targenomix GmbH, 14476 Potsdam, Germany (M.A.L.);Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais State, Brasil (A.N.-N.); andPlant Systems Biology Lab, Plant AgriBiosciences, C314 Aras de Brun, National University of Ireland, Galway, Ireland (R.S.)
| | - Beatrice Encke
- Gregor-Mendel-Institute of Molecular Plant Biology, 1030 Vienna, Austria (A.C.-E.);Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany (S.A., R.F., N.K., B.E., A.R.F., J.E.L., M.S.);Targenomix GmbH, 14476 Potsdam, Germany (M.A.L.);Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais State, Brasil (A.N.-N.); andPlant Systems Biology Lab, Plant AgriBiosciences, C314 Aras de Brun, National University of Ireland, Galway, Ireland (R.S.)
| | - Adriano Nunes-Nesi
- Gregor-Mendel-Institute of Molecular Plant Biology, 1030 Vienna, Austria (A.C.-E.);Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany (S.A., R.F., N.K., B.E., A.R.F., J.E.L., M.S.);Targenomix GmbH, 14476 Potsdam, Germany (M.A.L.);Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais State, Brasil (A.N.-N.); andPlant Systems Biology Lab, Plant AgriBiosciences, C314 Aras de Brun, National University of Ireland, Galway, Ireland (R.S.)
| | - Alisdair R Fernie
- Gregor-Mendel-Institute of Molecular Plant Biology, 1030 Vienna, Austria (A.C.-E.);Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany (S.A., R.F., N.K., B.E., A.R.F., J.E.L., M.S.);Targenomix GmbH, 14476 Potsdam, Germany (M.A.L.);Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais State, Brasil (A.N.-N.); andPlant Systems Biology Lab, Plant AgriBiosciences, C314 Aras de Brun, National University of Ireland, Galway, Ireland (R.S.)
| | - John E Lunn
- Gregor-Mendel-Institute of Molecular Plant Biology, 1030 Vienna, Austria (A.C.-E.);Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany (S.A., R.F., N.K., B.E., A.R.F., J.E.L., M.S.);Targenomix GmbH, 14476 Potsdam, Germany (M.A.L.);Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais State, Brasil (A.N.-N.); andPlant Systems Biology Lab, Plant AgriBiosciences, C314 Aras de Brun, National University of Ireland, Galway, Ireland (R.S.)
| | - Ronan Sulpice
- Gregor-Mendel-Institute of Molecular Plant Biology, 1030 Vienna, Austria (A.C.-E.);Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany (S.A., R.F., N.K., B.E., A.R.F., J.E.L., M.S.);Targenomix GmbH, 14476 Potsdam, Germany (M.A.L.);Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais State, Brasil (A.N.-N.); andPlant Systems Biology Lab, Plant AgriBiosciences, C314 Aras de Brun, National University of Ireland, Galway, Ireland (R.S.)
| | - Mark Stitt
- Gregor-Mendel-Institute of Molecular Plant Biology, 1030 Vienna, Austria (A.C.-E.);Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany (S.A., R.F., N.K., B.E., A.R.F., J.E.L., M.S.);Targenomix GmbH, 14476 Potsdam, Germany (M.A.L.);Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, Minas Gerais State, Brasil (A.N.-N.); andPlant Systems Biology Lab, Plant AgriBiosciences, C314 Aras de Brun, National University of Ireland, Galway, Ireland (R.S.)
| |
Collapse
|
10
|
Takatani S, Otani K, Kanazawa M, Takahashi T, Motose H. Structure, function, and evolution of plant NIMA-related kinases: implication for phosphorylation-dependent microtubule regulation. JOURNAL OF PLANT RESEARCH 2015; 128:875-91. [PMID: 26354760 DOI: 10.1007/s10265-015-0751-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 08/20/2015] [Indexed: 05/25/2023]
Abstract
Microtubules are highly dynamic structures that control the spatiotemporal pattern of cell growth and division. Microtubule dynamics are regulated by reversible protein phosphorylation involving both protein kinases and phosphatases. Never in mitosis A (NIMA)-related kinases (NEKs) are a family of serine/threonine kinases that regulate microtubule-related mitotic events in fungi and animal cells (e.g. centrosome separation and spindle formation). Although plants contain multiple members of the NEK family, their functions remain elusive. Recent studies revealed that NEK6 of Arabidopsis thaliana regulates cell expansion and morphogenesis through β-tubulin phosphorylation and microtubule destabilization. In addition, plant NEK members participate in organ development and stress responses. The present phylogenetic analysis indicates that plant NEK genes are diverged from a single NEK6-like gene, which may share a common ancestor with other kinases involved in the control of microtubule organization. On the contrary, another mitotic kinase, polo-like kinase, might have been lost during the evolution of land plants. We propose that plant NEK members have acquired novel functions to regulate cell growth, microtubule organization, and stress responses.
Collapse
Affiliation(s)
- Shogo Takatani
- Division of Bioscience, Graduate School of Natural Science and Technology, Okayama University, Tsushimanaka 3-1-1, Okayama, 700-8530, Japan
| | - Kento Otani
- Division of Bioscience, Graduate School of Natural Science and Technology, Okayama University, Tsushimanaka 3-1-1, Okayama, 700-8530, Japan
| | - Mai Kanazawa
- Department of Biology, Faculty of Science, Okayama University, Tsushimanaka 3-1-1, Okayama, 700-8530, Japan
| | - Taku Takahashi
- Division of Bioscience, Graduate School of Natural Science and Technology, Okayama University, Tsushimanaka 3-1-1, Okayama, 700-8530, Japan
- Department of Biology, Faculty of Science, Okayama University, Tsushimanaka 3-1-1, Okayama, 700-8530, Japan
| | - Hiroyasu Motose
- Division of Bioscience, Graduate School of Natural Science and Technology, Okayama University, Tsushimanaka 3-1-1, Okayama, 700-8530, Japan.
- Department of Biology, Faculty of Science, Okayama University, Tsushimanaka 3-1-1, Okayama, 700-8530, Japan.
| |
Collapse
|
11
|
Lin H, Zhang Z, Guo S, Chen F, Kessler JM, Wang YM, Dutcher SK. A NIMA-Related Kinase Suppresses the Flagellar Instability Associated with the Loss of Multiple Axonemal Structures. PLoS Genet 2015; 11:e1005508. [PMID: 26348919 PMCID: PMC4562644 DOI: 10.1371/journal.pgen.1005508] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 08/17/2015] [Indexed: 11/18/2022] Open
Abstract
CCDC39 and CCDC40 were first identified as causative mutations in primary ciliary dyskinesia patients; cilia from patients show disorganized microtubules, and they are missing both N-DRC and inner dynein arms proteins. In Chlamydomonas, we used immunoblots and microtubule sliding assays to show that mutants in CCDC40 (PF7) and CCDC39 (PF8) fail to assemble N-DRC, several inner dynein arms, tektin, and CCDC39. Enrichment screens for suppression of pf7; pf8 cells led to the isolation of five independent extragenic suppressors defined by four different mutations in a NIMA-related kinase, CNK11. These alleles partially rescue the flagellar length defect, but not the motility defect. The suppressor does not restore the missing N-DRC and inner dynein arm proteins. In addition, the cnk11 mutations partially suppress the short flagella phenotype of N-DRC and axonemal dynein mutants, but do not suppress the motility defects. The tpg1 mutation in TTLL9, a tubulin polyglutamylase, partially suppresses the length phenotype in the same axonemal dynein mutants. In contrast to cnk11, tpg1 does not suppress the short flagella phenotype of pf7. The polyglutamylated tubulin in the proximal region that remains in the tpg1 mutant is reduced further in the pf7; tpg1 double mutant by immunofluorescence. CCDC40, which is needed for docking multiple other axonemal complexes, is needed for tubulin polyglutamylation in the proximal end of the flagella. The CCDC39 and CCDC40 proteins are likely to be involved in recruiting another tubulin glutamylase(s) to the flagella. Another difference between cnk11-1 and tpg1 mutants is that cnk11-1 cells show a faster turnover rate of tubulin at the flagellar tip than in wild-type flagella and tpg1 flagella show a slower rate. The double mutant shows a turnover rate similar to tpg1, which suggests the faster turnover rate in cnk11-1 flagella requires polyglutamylation. Thus, we hypothesize that many short flagella mutants in Chlamydomonas have increased instability of axonemal microtubules. Both CNK11 and tubulin polyglutamylation play roles in regulating the stability of axonemal microtubules.
Collapse
Affiliation(s)
- Huawen Lin
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Zhengyan Zhang
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Suyang Guo
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Fan Chen
- Department of Physics, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Jonathan M. Kessler
- Department of Physics, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Yan Mei Wang
- Department of Physics, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Susan K. Dutcher
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
12
|
Abscisic acid induces ectopic outgrowth in epidermal cells through cortical microtubule reorganization in Arabidopsis thaliana. Sci Rep 2015; 5:11364. [PMID: 26068445 PMCID: PMC4464343 DOI: 10.1038/srep11364] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Accepted: 05/22/2015] [Indexed: 11/28/2022] Open
Abstract
Abscisic acid (ABA) regulates seed maturation, germination and various stress responses in plants. The roles of ABA in cellular growth and morphogenesis, however, remain to be explored. Here, we report that ABA induces the ectopic outgrowth of epidermal cells in Arabidopsis thaliana. Seedlings of A. thaliana germinated and grown in the presence of ABA developed ectopic protrusions in the epidermal cells of hypocotyls, petioles and cotyledons. One protrusion was formed in the middle of each epidermal cell. In the hypocotyl epidermis, two types of cell files are arranged alternately into non-stoma cell files and stoma cell files, ectopic protrusions being restricted to the non-stoma cell files. This suggests the presence of a difference in the degree of sensitivity to ABA or in the capacity of cells to form protrusions between the two cell files. The ectopic outgrowth was suppressed in ABA insensitive mutants, whereas it was enhanced in ABA hypersensitive mutants. Interestingly, ABA-induced ectopic outgrowth was also suppressed in mutants in which microtubule organization was compromised. Furthermore, cortical microtubules were disorganized and depolymerized by the ABA treatment. These results suggest that ABA signaling induces ectopic outgrowth in epidermal cells through microtubule reorganization.
Collapse
|
13
|
Yochem J, Lažetić V, Bell L, Chen L, Fay D. C. elegans NIMA-related kinases NEKL-2 and NEKL-3 are required for the completion of molting. Dev Biol 2015; 398:255-66. [PMID: 25523392 PMCID: PMC4314388 DOI: 10.1016/j.ydbio.2014.12.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 11/29/2014] [Accepted: 12/04/2014] [Indexed: 12/20/2022]
Abstract
Caenorhabditis elegans molting is a process during which the apical extracellular matrix of the epidermis, the cuticle, is remodeled through a process of degradation and re-synthesis. Using a genetic approach, we identified nekl-3 as essential for the completion of molting. NEKL-3 is highly similar to the mammalian NEK kinase family members NEK6 and NEK7. Animals homozygous for a hypomorphic mutation in nekl-3, sv3, had a novel molting defect in which the central body region, but not the head or tail, was unable to shed the old cuticle. In contrast, a null mutation in nekl-3, gk506, led to complete enclosure within the old cuticle. nekl-2, which is most similar to mammalian NEK8, was also essential for molting. Mosaic analyses demonstrated that NEKL-2 and NEKL-3 were specifically required within the large epidermal syncytium, hyp7, to facilitate molting. Consistent with this, NEKL-2 and NEKL-3 were expressed at the apical surface of hyp7 where they localized to small spheres or tubular structures. Inhibition of nekl-2, but not nekl-3, led to the mislocalization of LRP-1/megalin, a cell surface receptor for low-density lipoprotein (LDL)-binding proteins. In addition, nekl-2 inhibition led to the mislocalization of several other endosome-associated proteins. Notably, LRP-1 acts within hyp7 to facilitate completion of molting, suggesting at least one mechanism by which NEKL-2 may influence molting. Notably, our studies failed to reveal a requirement for NEKL-2 or NEKL-3 in cell division, a function reported for several mammalian NEKs including NEK6 and NEK7. Our findings provide the first genetic and in vivo evidence for a role of NEK family members in endocytosis, which may be evolutionarily conserved.
Collapse
Affiliation(s)
- John Yochem
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY 82071, United States; Department of Genetics, Cell Biology, and Development and the Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, United States
| | - Vladimir Lažetić
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY 82071, United States
| | - Leslie Bell
- Department of Genetics, Cell Biology, and Development and the Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, United States
| | - Lihsia Chen
- Department of Genetics, Cell Biology, and Development and the Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, United States
| | - David Fay
- Department of Molecular Biology, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY 82071, United States.
| |
Collapse
|
14
|
Abstract
Plant kinases are one of the largest protein families in Arabidopsis. There are almost 600 membrane-located receptor kinases and almost 400 soluble kinases with distinct functions in signal transduction. In this minireview we discuss phylogeny and functional context of prominent members from major protein kinase subfamilies in plants.
Collapse
Affiliation(s)
- Monika Zulawski
- Max Planck Institute of molecular Plant Physiology, 14470, Potsdam, Germany
| | | |
Collapse
|
15
|
Zulawski M, Schulze G, Braginets R, Hartmann S, Schulze WX. The Arabidopsis Kinome: phylogeny and evolutionary insights into functional diversification. BMC Genomics 2014; 15:548. [PMID: 24984858 PMCID: PMC4112214 DOI: 10.1186/1471-2164-15-548] [Citation(s) in RCA: 85] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Accepted: 06/25/2014] [Indexed: 12/14/2022] Open
Abstract
Background Protein kinases constitute a particularly large protein family in Arabidopsis with important functions in cellular signal transduction networks. At the same time Arabidopsis is a model plant with high frequencies of gene duplications. Here, we have conducted a systematic analysis of the Arabidopsis kinase complement, the kinome, with particular focus on gene duplication events. We matched Arabidopsis proteins to a Hidden-Markov Model of eukaryotic kinases and computed a phylogeny of 942 Arabidopsis protein kinase domains and mapped their origin by gene duplication. Results The phylogeny showed two major clades of receptor kinases and soluble kinases, each of which was divided into functional subclades. Based on this phylogeny, association of yet uncharacterized kinases to families was possible which extended functional annotation of unknowns. Classification of gene duplications within these protein kinases revealed that representatives of cytosolic subfamilies showed a tendency to maintain segmentally duplicated genes, while some subfamilies of the receptor kinases were enriched for tandem duplicates. Although functional diversification is observed throughout most subfamilies, some instances of functional conservation among genes transposed from the same ancestor were observed. In general, a significant enrichment of essential genes was found among genes encoding for protein kinases. Conclusions The inferred phylogeny allowed classification and annotation of yet uncharacterized kinases. The prediction and analysis of syntenic blocks and duplication events within gene families of interest can be used to link functional biology to insights from an evolutionary viewpoint. The approach undertaken here can be applied to any gene family in any organism with an annotated genome. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-548) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | - Waltraud X Schulze
- Department of Plant Systems Biology, University of Hohenheim, Garbenstraße 30, Stuttgart 70599, Germany.
| |
Collapse
|
16
|
Hilton LK, Gunawardane K, Kim JW, Schwarz MC, Quarmby LM. The kinases LF4 and CNK2 control ciliary length by feedback regulation of assembly and disassembly rates. Curr Biol 2013; 23:2208-2214. [PMID: 24184104 DOI: 10.1016/j.cub.2013.09.038] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 09/12/2013] [Accepted: 09/12/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND Many of the diverse functions of cilia depend upon tight control of their length. Steady-state length reflects a balance between rates of ciliary assembly and disassembly, two parameters likely controlled by a length sensor of unknown identity or mechanism. RESULTS A null mutation in Chlamydomonas CNK2, a member of the evolutionarily conserved family of NIMA-related kinases, reveals feedback regulation of assembly and disassembly rates. cnk2-1 mutant cells have a mild long-flagella (lf) phenotype as a consequence of reduced rates of flagellar disassembly. This is in contrast to the strong lf mutant lf4-7, which exhibits an aberrantly high rate of assembly. Cells carrying both mutations have even longer flagella than lf4-7 single mutants do. In addition to their high rate of assembly, lf4-7 mutants have a CNK2-dependent increase in disassembly rate. Finally, cnk2-1 cells have a decreased rate of turnover of flagellar subunits at the tip of the flagellum, demonstrating that the effects on disassembly are compensated by a reduced rate of assembly. CONCLUSIONS We propose a model wherein CNK2 and LF4 modulate rates of disassembly and assembly respectively in a feedback loop that is activated when flagella exceed optimal length.
Collapse
Affiliation(s)
- Laura K Hilton
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Kavisha Gunawardane
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Joo Wan Kim
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Marianne C Schwarz
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - Lynne M Quarmby
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada.
| |
Collapse
|