1
|
Tian C, Rehman A, Wang X, Wang Z, Li H, Ma J, Du X, Peng Z, He S. Late embryogenesis abundant gene GhLEA-5 of semi-wild cotton positively regulates salinity tolerance in upland cotton. Gene 2025; 949:149372. [PMID: 40023341 DOI: 10.1016/j.gene.2025.149372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 02/23/2025] [Accepted: 02/26/2025] [Indexed: 03/04/2025]
Abstract
The productivity and quality of cotton are significantly compromised by salt stress. In this study, the full length of encoding region and genomic DNA sequences of GhLEA_5A/D (Gh_A10G166600 and Gh_D10G188300), which belong to the late embryogenesis abundant gene family in allotetraploid upland cotton (Gossypium hirsutum L.) and semi-wild cotton (Gossypium purpurascens), were isolated and their salt tolerance was experimentally confirmed. Analysis of sequence alignments and phylogenetic trees indicated a significant level of homology between GhLEA-5A and GhLEA-5D. Additionally, a conserved protein motif was consistently identified across these sequences. The transcriptome data analysis showed that the expression level of GhLEA-5A/D was substantially enhanced in the leaves of salt-tolerant G. purpurascens accessions compared to salt-sensitive materials. In the real-time quantitative reverse transcription PCR (qRT-PCR) assays, notable expression levels of the GhLEA-5D gene were detected in salt-tolerant upland cotton materials following exposure to salt stress at 3 and 12-hour time points. The suppression of GhLEA-5A/D transcription via Virus-induced Gene Silencing (VIGS) technology significantly exacerbates salt sensitivity in cotton. This is evidenced by the nearly 50 % increase in malondialdehyde (MDA) content alongside a 60 % reduction in peroxidase (POD) levels in salt-treated plants when compared to the control group. The overexpression of the GhLEA-5A/D gene conferred enhanced salt tolerance in Arabidopsis, resulting in a 25 % increase in root length, a 30 % improvement in survival rate, a 15 % increase in water retention, and a 15 % boost in photosynthetic efficiency. The chlorophyll fluorescence parameters, enzyme activities, diaminobenzine, and nitroblue tetrazolium staining suggested that GhLEA-5A/D likely exhibited a positive regulatory role for cotton responding to salt stress. Furthermore, we identified 76 candidate proteins that potentially interact with GhLEA-5 in the yeast two-hybrid screening library. These results provide a theoretical basis for studying the mechanism of cotton salt tolerance and offer new resources for improving cotton salt tolerance genes.
Collapse
Affiliation(s)
- Chunyan Tian
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Abdul Rehman
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoyang Wang
- State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan 455000, China
| | - Zhenzhen Wang
- Research Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Hongge Li
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan 455000, China
| | - Jun Ma
- Research Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China
| | - Xiongming Du
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan 455000, China
| | - Zhen Peng
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan 455000, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China.
| | - Shoupu He
- Zhengzhou Research Base, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences (ICR, CAAS), Anyang, Henan 455000, China; Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji 831100, China.
| |
Collapse
|
2
|
López D, Sáez PL, Cavieres LA, Beveridge FC, Saavedra‐Mella F, Bravo LA. Morpho-Physiological Traits and Dehydration Tolerance of High-Altitude Andean Wetland Vegetation in the Chilean Atacama Region. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2025; 6:e70038. [PMID: 40176881 PMCID: PMC11962054 DOI: 10.1002/pei3.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 04/05/2025]
Abstract
High-altitude wetlands of the Andes (HAWA) are unique ecosystems influenced by substrate conditions and reliant on consistent water supply from precipitation, runoff, groundwater, and glacial melting. Considering the diverse ecosystem services provided by HAWAs and the increasing threat these ecosystems face from natural and anthropogenic factors, such as drought, land-use change, and climate change, it is crucial to conduct a comprehensive assessment of their vulnerability. In this study, we characterized the functional trait spectrum of dominant plant species within the Salar de Pedernales, Quebrada Leoncito (Leoncito) and Río Negro HAWAs and explored the relationships between these traits and key environmental variables. Our results revealed significant variation in plant species based on traits such as leaf dry matter content (LDMC), specific leaf area (SLA), relative water content (%RWC), and leaf thickness. Species were primarily differentiated by LDMC and SLA. Plants from Salar de Pedernales had higher δ13C values, indicating higher water-use efficiency (WUE) compared to those in tributaries like Leoncito and Río Negro. A positive correlation between stomatal conductance and CO2 assimilation was found, with the Salar de Pedernales plants showing high WUE despite these plants exhibiting similar photosynthetic rates. Foliar nitrogen percentage and δ15N values indicated nitrogen availability could be influenced by microbial activity and salinity levels. Higher salinity in the Salar de Pedernales may inhibit microbial activity, resulting in higher δ15N values. At the community level, decreased SLA correlated with higher δ13C values, suggesting less carbon discrimination and higher WUE in the Salar de Pedernales plants. While HAWA plant species have adapted to their environment, their limited dehydration tolerance makes them vulnerable to future hydrological changes. Understanding these responses forms a basis to develop effective conservation and management strategies for HAWAs.
Collapse
Affiliation(s)
- Dariel López
- Laboratorio de Fisiología y Biología Molecular Vegetal, Departamento de Ciencias Agronómicas y Recursos Naturales. Facultad de Ciencias Agropecuarias y MedioambienteUniversidad de La FronteraTemucoChile
| | - Patricia L. Sáez
- Laboratorio de Fisiología y Biología Molecular Vegetal, Departamento de Ciencias Agronómicas y Recursos Naturales. Facultad de Ciencias Agropecuarias y MedioambienteUniversidad de La FronteraTemucoChile
- Instituto de Ecología y Biodiversidad (IEB)ConcepciónChile
| | - Lohengrin A. Cavieres
- Instituto de Ecología y Biodiversidad (IEB)ConcepciónChile
- Departamento de Botánica, Facultad de Ciencias Naturales y OceanográficasUniversidad de ConcepciónConcepciónChile
| | - Fernanda C. Beveridge
- Sustainable Minerals Institute, International Centre of ExcellenceThe University of QueenslandSantiagoChile
| | - Felipe Saavedra‐Mella
- Sustainable Minerals Institute, International Centre of ExcellenceThe University of QueenslandSantiagoChile
| | - León A. Bravo
- Laboratorio de Fisiología y Biología Molecular Vegetal, Departamento de Ciencias Agronómicas y Recursos Naturales. Facultad de Ciencias Agropecuarias y MedioambienteUniversidad de La FronteraTemucoChile
| |
Collapse
|
3
|
Kandalgaonkar KN, Barvkar VT. Intricate phytohormonal orchestration mediates mycorrhizal symbiosis and stress tolerance. MYCORRHIZA 2025; 35:13. [PMID: 39998668 DOI: 10.1007/s00572-025-01189-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/11/2025] [Indexed: 02/27/2025]
Abstract
Arbuscular mycorrhizal fungi (AMF) are an essential symbiotic partner colonizing more than 70% of land plants. In exchange for carbon sources, mycorrhizal association ameliorates plants' growth and yield and enhances stress tolerance and/or resistance. To achieve this symbiosis, plants mediate a series of biomolecular changes, including the regulation of phytohormones. This review focuses on the role of each phytohormone in establishing symbiosis. It encases phytohormone modulation, exogenous application of the hormones, and mutant studies. The review also comments on the plausible phytohormone cross-talk essential for maintaining balanced mycorrhization and preventing fungal parasitism. Finally, we briefly discuss AMF-mediated stress regulation and contribution of phytohormone modulation in plants. We must examine their interplay to understand how phytohormones act species-specific or concentration-dependent manner. The review summarizes the gaps in these studies to improve our understanding of processes underlying plant-AMF symbiosis.
Collapse
Affiliation(s)
| | - Vitthal T Barvkar
- Department of Botany, Savitribai Phule Pune University, Pune - 411007, Maharashtra, India.
| |
Collapse
|
4
|
Ma H, Guo J, Lu S, Zhang L, Chen S, Lin J, Zheng T, Zhuang F, Li H, Zhong M. Overexpression of Suaeda salsa SsDHN Gene Enhances Salt Resistance in Tobacco by Improving Photosynthetic Characteristics and Antioxidant Activity. Int J Mol Sci 2025; 26:1185. [PMID: 39940953 PMCID: PMC11818756 DOI: 10.3390/ijms26031185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/21/2025] [Accepted: 01/28/2025] [Indexed: 02/16/2025] Open
Abstract
Salt stress is a major abiotic stress that interferes with plant growth and affects crop production. Dehydrin (DHN), a member of the late embryogenesis abundant (LEA) protein family, was considered to be a stress protein involved in the protective reaction of plant dehydration. Our previous research has shown that overexpression of the Suaeda salsa SsDHN gene enhances tolerance to salt stress in tobacco. However, the research on its protection in photosynthesis under salt stress remains unclear. In this study, gene overexpression (SsDHN-OE) tobacco plants were utilized to study the effect of the SsDHN gene on plant photosynthesis under salt stress. Our findings showed that overexpression of SsDHN increased the biomass, leaf area, root length, and root surface area in tobacco seedlings under salt stress conditions. The transgenic tobacco with overexpression of SsDHN had obvious stomatal closure, which effectively alleviated the adverse effects of salt stress on photosynthetic efficiency. Overexpression of the SsDHN gene in tobacco can effectively reduce the degree of photoinhibition and chloroplast damage caused by salt stress. Moreover, the SsDHN-overexpressing transgenic tobacco plants exhibited a decrease in oxidative damage and protected membrane structures related to photosynthesis by increasing antioxidant enzyme activity and antioxidant substance content. It was further found that the expression levels of photosynthetic and antioxidant-related genes Rubisco, SBPase, POD7, CAT3, APX2, and SOD3 were significantly up-regulated by overexpressing the SsDHN gene in tobacco seedlings under salt stress. In conclusion, the SsDHN gene might improve the salt stress resistance of tobacco seedlings and be involved in regulating photosynthesis and antioxidant activity under salt stress.
Collapse
Affiliation(s)
- Hui Ma
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; (H.M.)
- Liaoning Panjin Wetland Ecosystem National Observation and Research Station, Panjin 124221, China
| | - Jiangmei Guo
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; (H.M.)
| | - Sijia Lu
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; (H.M.)
| | - Li Zhang
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; (H.M.)
| | - Shuisen Chen
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; (H.M.)
| | - Jinwei Lin
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; (H.M.)
| | - Tianqi Zheng
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; (H.M.)
| | - Fengming Zhuang
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; (H.M.)
| | - Hui Li
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; (H.M.)
| | - Ming Zhong
- Key Laboratory of Agricultural Biotechnology of Liaoning Province, College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang 110866, China; (H.M.)
| |
Collapse
|
5
|
Moine A, Chitarra W, Nerva L, Agliassa C, Gambino G, Secchi F, Pagliarani C, Boccacci P. Grafting with non-suckering rootstock increases drought tolerance in Corylus avellana L. through physiological and biochemical adjustments. PHYSIOLOGIA PLANTARUM 2024; 176:e70003. [PMID: 39658794 PMCID: PMC11632140 DOI: 10.1111/ppl.70003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 12/12/2024]
Abstract
Physiological and molecular mechanisms underpinning plant water stress responses still need deeper investigation. Particularly, the analysis of rootstock-mediated signals represents a complex research field, offering potential applicative perspectives for improving the adaptation of fruit crops to environmental stresses. Nonetheless, fundamental knowledge on this subject needs to be widened, especially in some woody species, including European hazelnut (Corylus avellana L). To fill these gaps, we inspected dynamic changes in gas exchanges and stem water potential of two hazelnut genotypes, the 'San Giovanni' cultivar (SG), the non-suckering rootstock 'Dundee' (D), and their heterograft (SG/D), during a drought stress treatment followed by recovery. Biometric and anatomical traits were measured at the beginning and end of water stress imposition. Additionally, differences in abscisic acid and proline contents were analysed in leaves and roots taken from well-irrigated, stressed and recovered plants, in combination with expression profiles of candidate genes. Grafting with 'Dundee' rootstock positively affected the ability of 'San Giovanni' plants to endure drought by increasing their intrinsic water use efficiency and facilitating post-rehydration recovery. Although anatomical adjustments occurred, we showed that the improved stress adaptation of grafted plants rather depended on biochemical modifications, resulting in increased root proline concentrations and leaf ABA accumulation both during water stress and recovery. We also proved that those metabolic changes were controlled by a differential reprogramming of genes involved in hormone metabolism and stress defence. Grafting with non-suckering rootstocks could therefore represent a promising and environmentally-friendly strategy for improving the adaptability of hazelnut to water deficit.
Collapse
Affiliation(s)
- Amedeo Moine
- Institute for Sustainable Plant Protection – National Research Council (CNR‐IPSP)TorinoItaly
| | - Walter Chitarra
- Institute for Sustainable Plant Protection – National Research Council (CNR‐IPSP)TorinoItaly
- Research Centre for Viticulture and Enology – Council for Agricultural Research and Economics (CREA‐VE)Conegliano (TV)Italy
| | - Luca Nerva
- Institute for Sustainable Plant Protection – National Research Council (CNR‐IPSP)TorinoItaly
- Research Centre for Viticulture and Enology – Council for Agricultural Research and Economics (CREA‐VE)Conegliano (TV)Italy
| | - Chiara Agliassa
- Department of AgriculturalForest and Food Sciences – University of Torino (DISAFA‐UNITO)Grugliasco (TO)Italy
- Present address:
Green Has Italia S.p.A.Canale (CN)Italy
| | - Giorgio Gambino
- Institute for Sustainable Plant Protection – National Research Council (CNR‐IPSP)TorinoItaly
| | - Francesca Secchi
- Department of AgriculturalForest and Food Sciences – University of Torino (DISAFA‐UNITO)Grugliasco (TO)Italy
| | - Chiara Pagliarani
- Institute for Sustainable Plant Protection – National Research Council (CNR‐IPSP)TorinoItaly
| | - Paolo Boccacci
- Institute for Sustainable Plant Protection – National Research Council (CNR‐IPSP)TorinoItaly
| |
Collapse
|
6
|
Liu Q, Liu W, Niu Y, Wang T, Dong J. Liquid-liquid phase separation in plants: Advances and perspectives from model species to crops. PLANT COMMUNICATIONS 2024; 5:100663. [PMID: 37496271 PMCID: PMC10811348 DOI: 10.1016/j.xplc.2023.100663] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/23/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
Membraneless biomolecular condensates play important roles in both normal biological activities and responses to environmental stimuli in living organisms. Liquid‒liquid phase separation (LLPS) is an organizational mechanism that has emerged in recent years to explain the formation of biomolecular condensates. In the past decade, advances in LLPS research have contributed to breakthroughs in disease fields. By contrast, although LLPS research in plants has progressed over the past 5 years, it has been concentrated on the model plant Arabidopsis, which has limited relevance to agricultural production. In this review, we provide an overview of recently reported advances in LLPS in plants, with a particular focus on photomorphogenesis, flowering, and abiotic and biotic stress responses. We propose that many potential LLPS proteins also exist in crops and may affect crop growth, development, and stress resistance. This possibility presents a great challenge as well as an opportunity for rigorous scientific research on the biological functions and applications of LLPS in crops.
Collapse
Affiliation(s)
- Qianwen Liu
- College of Biological Sciences, China Agricultural University, Beijing 100193, China; College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Wenxuan Liu
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| | - Yiding Niu
- Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010021, China
| | - Tao Wang
- College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jiangli Dong
- College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
7
|
Al-Quraan NA, Samarah NH, Tanash AA. Effect of drought stress on wheat ( Triticum durum) growth and metabolism: insight from GABA shunt, reactive oxygen species and dehydrin genes expression. FUNCTIONAL PLANT BIOLOGY : FPB 2024; 51:NULL. [PMID: 36346967 DOI: 10.1071/fp22177] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Activation of γ-aminobutyric acid (GABA) shunt pathway and upregulation of dehydrins are involved in metabolic homeostasis and protective mechanisms against drought stress. Seed germination percentage, seedling growth, levels of GABA, alanine, glutamate, malondialdehyde (MDA), and the expression of glutamate decarboxylase (GAD ) and dehydrin (dhn and wcor ) genes were examined in post-germination and seedlings of four durum wheat (Triticum durum L.) cultivars in response to water holding capacity levels (80%, 50%, and 20%). Data showed a significant decrease in seed germination percentage, seedling length, fresh and dry weight, and water content as water holding capacity level was decreased. Levels of GABA, alanine, glutamate, and MDA were significantly increased with a negative correlation in post-germination and seedling stages as water holding capacity level was decreased. Prolonged exposure to drought stress increased the GAD expression that activated GABA shunt pathway especially at seedlings growth stage to maintain carbon/nitrogen balance, amino acids and carbohydrates metabolism, and plant growth regulation under drought stress. The mRNA transcripts of dhn and wcor significantly increased as water availability decreased in all wheat cultivars during the post-germination stage presumably to enhance plant tolerance to drought stress by cell membrane protection, cryoprotection of enzymes, and prevention of reactive oxygen species (ROS) accumulation. This study showed that the four durum wheat cultivars responded differently to drought stress especially during the seedling growth stage which might be connected with ROS scavenging systems and the activation of antioxidant enzymes that were associated with activation of GABA shunt pathway and the production of GABA in durum seedlings.
Collapse
Affiliation(s)
- Nisreen A Al-Quraan
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Nezar H Samarah
- Department of Plant Production, Faculty of Agriculture, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Ayah A Tanash
- Department of Biotechnology and Genetic Engineering, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid 22110, Jordan
| |
Collapse
|
8
|
Lloyd MK, Stein RA, Ibarra DE, Barclay RS, Wing SL, Stahle DW, Dawson TE, Stolper DA. Isotopic clumping in wood as a proxy for photorespiration in trees. Proc Natl Acad Sci U S A 2023; 120:e2306736120. [PMID: 37931112 PMCID: PMC10655223 DOI: 10.1073/pnas.2306736120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/22/2023] [Indexed: 11/08/2023] Open
Abstract
Photorespiration can limit gross primary productivity in terrestrial plants. The rate of photorespiration relative to carbon fixation increases with temperature and decreases with atmospheric [CO2]. However, the extent to which this rate varies in the environment is unclear. Here, we introduce a proxy for relative photorespiration rate based on the clumped isotopic composition of methoxyl groups (R-O-CH3) in wood. Most methoxyl C-H bonds are formed either during photorespiration or the Calvin cycle and thus their isotopic composition may be sensitive to the mixing ratio of these pathways. In water-replete growing conditions, we find that the abundance of the clumped isotopologue 13CH2D correlates with temperature (18-28 °C) and atmospheric [CO2] (280-1000 ppm), consistent with a common dependence on relative photorespiration rate. When applied to a global dataset of wood, we observe global trends of isotopic clumping with climate and water availability. Clumped isotopic compositions are similar across environments with temperatures below ~18 °C. Above ~18 °C, clumped isotopic compositions in water-limited and water-replete trees increasingly diverge. We propose that trees from hotter climates photorespire substantially more than trees from cooler climates. How increased photorespiration is managed depends on water availability: water-replete trees export more photorespiratory metabolites to lignin whereas water-limited trees either export fewer overall or direct more to other sinks that mitigate water stress. These disparate trends indicate contrasting responses of photorespiration rate (and thus gross primary productivity) to a future high-[CO2] world. This work enables reconstructing photorespiration rates in the geologic past using fossil wood.
Collapse
Affiliation(s)
- Max K. Lloyd
- Department of Earth and Planetary Science, University of California, Berkeley, CA94720
- Department of Geosciences, The Pennsylvania State University, University Park, PA16802
| | - Rebekah A. Stein
- Department of Earth and Planetary Science, University of California, Berkeley, CA94720
- Department of Chemistry and Physical Sciences, Quinnipiac University, Hamden, CT06518
| | - Daniel E. Ibarra
- Department of Earth and Planetary Science, University of California, Berkeley, CA94720
- Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, RI02912
| | - Richard S. Barclay
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC20560
| | - Scott L. Wing
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC20560
| | - David W. Stahle
- Department of Geosciences, University of Arkansas, Fayetteville, AR72701
| | - Todd E. Dawson
- Department of Integrative Biology, University of California, Berkeley, CA94720
| | - Daniel A. Stolper
- Department of Earth and Planetary Science, University of California, Berkeley, CA94720
| |
Collapse
|
9
|
Favreau B, Gaal C, Pereira de Lima I, Droc G, Roques S, Sotillo A, Guérard F, Cantonny V, Gakière B, Leclercq J, Lafarge T, de Raissac M. A multi-level approach reveals key physiological and molecular traits in the response of two rice genotypes subjected to water deficit at the reproductive stage. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2023; 4:229-257. [PMID: 37822730 PMCID: PMC10564380 DOI: 10.1002/pei3.10121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/20/2023] [Accepted: 07/31/2023] [Indexed: 10/13/2023]
Abstract
Rice is more vulnerable to drought than maize, wheat, and sorghum because its water requirements remain high throughout the rice life cycle. The effects of drought vary depending on the timing, intensity, and duration of the events, as well as on the rice genotype and developmental stage. It can affect all levels of organization, from genes to the cells, tissues, and/or organs. In this study, a moderate water deficit was applied to two contrasting rice genotypes, IAC 25 and CIRAD 409, during their reproductive stage. Multi-level transcriptomic, metabolomic, physiological, and morphological analyses were performed to investigate the complex traits involved in their response to drought. Weighted gene network correlation analysis was used to identify the specific molecular mechanisms regulated by each genotype, and the correlations between gene networks and phenotypic traits. A holistic analysis of all the data provided a deeper understanding of the specific mechanisms regulated by each genotype, and enabled the identification of gene markers. Under non-limiting water conditions, CIRAD 409 had a denser shoot, but shoot growth was slower despite better photosynthetic performance. Under water deficit, CIRAD 409 was weakly affected regardless of the plant level analyzed. In contrast, IAC 25 had reduced growth and reproductive development. It regulated transcriptomic and metabolic activities at a high level, and activated a complex gene regulatory network involved in growth-limiting processes. By comparing two contrasting genotypes, the present study identified the regulation of some fundamental processes and gene markers, that drive rice development, and influence its response to water deficit, in particular, the importance of the biosynthetic and regulatory pathways for cell wall metabolism. These key processes determine the biological and mechanical properties of the cell wall and thus influence plant development, organ expansion, and turgor maintenance under water deficit. Our results also question the genericity of the antagonism between morphogenesis and organogenesis observed in the two genotypes.
Collapse
Affiliation(s)
- Bénédicte Favreau
- CIRAD, UMR AGAP InstitutMontpellierFrance
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut AgroMontpellierFrance
| | - Camille Gaal
- CIRAD, UMR AGAP InstitutMontpellierFrance
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut AgroMontpellierFrance
| | | | - Gaétan Droc
- CIRAD, UMR AGAP InstitutMontpellierFrance
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut AgroMontpellierFrance
| | - Sandrine Roques
- CIRAD, UMR AGAP InstitutMontpellierFrance
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut AgroMontpellierFrance
| | - Armel Sotillo
- CIRAD, UMR AGAP InstitutMontpellierFrance
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut AgroMontpellierFrance
| | - Florence Guérard
- Plateforme Métabolisme‐MétabolomeInstitute of Plant Sciences Paris‐Saclay (IPS2), Université Paris‐Saclay, National Committee of Scientific Research (CNRS), National Institute for Research for Agriculture, Food and Environment (INRAE), Université d'Evry, Université de ParisGif‐sur‐YvetteFrance
| | - Valérie Cantonny
- Plateforme Métabolisme‐MétabolomeInstitute of Plant Sciences Paris‐Saclay (IPS2), Université Paris‐Saclay, National Committee of Scientific Research (CNRS), National Institute for Research for Agriculture, Food and Environment (INRAE), Université d'Evry, Université de ParisGif‐sur‐YvetteFrance
| | - Bertrand Gakière
- Plateforme Métabolisme‐MétabolomeInstitute of Plant Sciences Paris‐Saclay (IPS2), Université Paris‐Saclay, National Committee of Scientific Research (CNRS), National Institute for Research for Agriculture, Food and Environment (INRAE), Université d'Evry, Université de ParisGif‐sur‐YvetteFrance
| | - Julie Leclercq
- CIRAD, UMR AGAP InstitutMontpellierFrance
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut AgroMontpellierFrance
| | - Tanguy Lafarge
- CIRAD, UMR AGAP InstitutMontpellierFrance
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut AgroMontpellierFrance
| | - Marcel de Raissac
- CIRAD, UMR AGAP InstitutMontpellierFrance
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut AgroMontpellierFrance
| |
Collapse
|
10
|
Ghanmi S, Smith MA, Zaidi I, Drira M, Graether SP, Hanin M. Isolation and molecular characterization of an FSK 2-type dehydrin from Atriplex halimus. PHYTOCHEMISTRY 2023:113783. [PMID: 37406790 DOI: 10.1016/j.phytochem.2023.113783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
Dehydrins form the group II LEA protein family and are known to play multiple roles in plant stress tolerance and enzyme protection. They harbor a variable number of conserved lysine rich motifs (K-segments) and may also contain three additional conserved motifs (Y-, F- and S-segments). In this work, we report the isolation and characterization of an FSK2-type dehydrin from the halophytic species Atriplex halimus, which we designate as AhDHN1. In silico analysis of the protein sequence revealed that AhDHN1 contains large number of hydrophilic residues, and is predicted to be intrinsically disordered. In addition, it has an FSK2 architecture with one F-segment, one S-segment, and two K-segments. The expression analysis showed that the AhDHN1 transcript is induced by salt and water stress treatments in the leaves of Atriplex seedlings. Moreover, circular dichroism spectrum performed on recombinant AhDHN1 showed that the dehydrin lacks any secondary structure, confirming its intrinsic disorder nature. However, there is a gain of α-helicity in the presence of membrane-like SDS micelles. In vitro assays revealed that AhDHN1 is able to effectively protect enzymatic activity of the lactate dehydrogenase against cold, heat and dehydration stresses. Our findings strongly suggest that AhDHN1 can be involved in the adaptation mechanisms of halophytes to adverse environments.
Collapse
Affiliation(s)
- Siwar Ghanmi
- Plant Physiology & Functional Genomics Research Unit, Institute of Biotechnology, University of Sfax, 3038 Sfax, Tunisia
| | - Margaret A Smith
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Ikram Zaidi
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, BP "1177", University of Sfax, 3018 Sfax, Tunisia
| | - Marwa Drira
- Laboratory of Biotechnology and Plant Improvement, Center of Biotechnology of Sfax, BP "1177", University of Sfax, 3018 Sfax, Tunisia
| | - Steffen P Graether
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Moez Hanin
- Plant Physiology & Functional Genomics Research Unit, Institute of Biotechnology, University of Sfax, 3038 Sfax, Tunisia.
| |
Collapse
|
11
|
Mohanan MV, Pushpanathan A, Jayanarayanan AN, Selvarajan D, Ramalingam S, Govind H, Chinnaswamy A. Isolation of 5' regulatory region of COLD1 gene and its functional characterization through transient expression analysis in tobacco and sugarcane. 3 Biotech 2023; 13:228. [PMID: 37304407 PMCID: PMC10256666 DOI: 10.1007/s13205-023-03650-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/23/2023] [Indexed: 06/13/2023] Open
Abstract
Chilling Tolerant Divergence 1 (COLD1) gene consists of Golgi pH Receptor (GPHR) as well as Abscisic Acid-linked G Protein-Coupled Receptor (ABA_GPCR), which are the major transmembrane proteins in plants. This gene expression has been found to be differentially regulated, under various stress conditions, in wild Saccharum-related genera, Erianthus arundinaceus, compared to commercial sugarcane variety. In this study, Rapid Amplification of Genomic Ends (RAGE) technique was employed to isolate the 5' upstream region of COLD1 gene to gain knowledge about the underlying stress regulatory mechanism. The current study established the cis-acting elements, main promoter regions, and Transcriptional Start Site (TSS) present within the isolated 5' upstream region (Cold1P) of COLD1, with the help of specific bioinformatics techniques. Phylogenetic analysis results revealed that the isolated Cold1P promoter is closely related to the species, Sorghum bicolor. Cold1P promoter-GUS gene construct was generated in pCAMBIA 1305.1 vector that displayed a constitutive expression of the GUS reporter gene in both monocot as well as dicot plants. The histochemical GUS assay outcomes confirmed that Cold1P can drive expression in both monocot as well as dicot plants. Cold1P's activities under several abiotic stresses such as cold, heat, salt, and drought, revealed its differential expression profile in commercial sugarcane variety. The highest activity of the GUS gene was found after 24 h of cold stress, driven by the isolated Cold1P promoter. The outcomes from GUS fluorimetric assay correlated with that of the GUS expression findings. This is the first report on Cold1P isolated from the species, E. arundinaceus. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03650-8.
Collapse
Affiliation(s)
| | | | | | - Dharshini Selvarajan
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007 India
| | | | - Hemaprabha Govind
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007 India
| | - Appunu Chinnaswamy
- Division of Crop Improvement, ICAR-Sugarcane Breeding Institute, Coimbatore, Tamil Nadu 641007 India
| |
Collapse
|
12
|
Charfeddine M, Chiab N, Charfeddine S, Ferjani A, Gargouri-Bouzid R. Heat, drought, and combined stress effect on transgenic potato plants overexpressing the StERF94 transcription factor. JOURNAL OF PLANT RESEARCH 2023; 136:549-562. [PMID: 36988761 DOI: 10.1007/s10265-023-01454-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/17/2023] [Indexed: 06/09/2023]
Abstract
Despite their economic importance worldwide, potato plants are sensitive to various abiotic constraints, such as drought and high temperatures, which cause significant losses in yields and tuber quality. Moreover, because of the climate change phenomenon, plants are frequently subjected to combined stresses, mainly high temperatures and drought. In this context, breeding for tolerant varieties should consider not only plant response to drought or high temperature but also to combined stresses. In the current study, we studied transgenic potato plants overexpressing an ethylene response transcription factor (TF; StERF94) involved in abiotic stress response signaling pathways. Our previous results showed that these transgenic plants display tolerance to salt stress more than wildtype (WT). In this work, we aimed to investigate the effects of drought, heat, and combined stresses on transgenic potato plants overexpressing StERF94 TF under in vitro culture conditions. The obtained results revealed that StERF94 overexpression improved the tolerance of the transgenic plants to drought, heat, and combined stresses through better control of the leaf water and chlorophyll contents, activation of antioxidant enzymes, and an accumulation of proline, especially in the leaves. Indeed, the expression level of antioxidant enzyme-encoding genes (CuZnSOD, FeSOD, CAT1, and CAT2) was significantly induced by the different stress conditions in the transgenic potato plants compared with the WT plants. This study further confirms that StERF94 TF may be implicated in regulating the expression of target genes encoding antioxidant enzymes.
Collapse
Affiliation(s)
- Mariam Charfeddine
- Plant Amelioration and Valorization of Agri-resource Laboratory, National School of Engineers of Sfax (ENIS), Sfax, Tunisia
| | - Nour Chiab
- Plant Amelioration and Valorization of Agri-resource Laboratory, National School of Engineers of Sfax (ENIS), Sfax, Tunisia.
| | - Safa Charfeddine
- Plant Amelioration and Valorization of Agri-resource Laboratory, National School of Engineers of Sfax (ENIS), Sfax, Tunisia
| | - Aziza Ferjani
- Plant Amelioration and Valorization of Agri-resource Laboratory, National School of Engineers of Sfax (ENIS), Sfax, Tunisia
| | - Radhia Gargouri-Bouzid
- Plant Amelioration and Valorization of Agri-resource Laboratory, National School of Engineers of Sfax (ENIS), Sfax, Tunisia
| |
Collapse
|
13
|
Musallam A, Abu-Romman S, Sadder MT. Molecular Characterization of Dehydrin in Azraq Saltbush among Related Atriplex Species. BIOTECH 2023; 12:biotech12020027. [PMID: 37092471 PMCID: PMC10123722 DOI: 10.3390/biotech12020027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/02/2023] [Accepted: 04/05/2023] [Indexed: 04/25/2023] Open
Abstract
Atriplex spp. (saltbush) is known to survive extremely harsh environmental stresses such as salinity and drought. It mitigates such conditions based on specialized physiological and biochemical characteristics. Dehydrin genes (DHNs) are considered major players in this adaptation. In this study, a novel DHN gene from Azrak (Jordan) saltbush was characterized along with other Atriplex species from diverse habitats. Intronless DHN-expressed sequence tags (495-761 bp) were successfully cloned and sequenced. Saltbush dehydrins contain one S-segment followed by three K-segments: an arrangement called SK3-type. Two substantial insertions were detected including three copies of the K2-segemnet in A. canescens. New motif variants other than the six-serine standard were evident in the S-segment. AhaDHN1 (A. halimus) has a cysteine residue (SSCSSS), while AgaDHN1 (A. gardneri var. utahensis) has an isoleucine residue (SISSSS). In contrast to the conserved K1-segment, both the K2- and K3-segment showed several substitutions, particularly in AnuDHN1 (A. nummularia). In addition, a parsimony phylogenetic tree based on homologs from related genera was constructed. The phylogenetic tree resolved DHNs for all of the investigated Atriplex species in a superclade with an 85% bootstrap value. Nonetheless, the DHN isolated from Azraq saltbush was uniquely subclustred with a related genera Halimione portulacoides. The characterized DHNs revealed tremendous diversification among the Atriplex species, which opens a new venue for their functional analysis.
Collapse
Affiliation(s)
- Anas Musallam
- Biotechnology Research Directorate, National Agricultural Research Center, Baq'a 19381, Jordan
| | - Saeid Abu-Romman
- Department of Biotechnology, Faculty of Agricultural Technology, Al-Balqa Applied University, Al-Salt 19117, Jordan
| | - Monther T Sadder
- Plant Biotechnology Lab, Department of Horticulture and Crop Science, School of Agriculture, University of Jordan, Amman 11942, Jordan
| |
Collapse
|
14
|
Jan N, Rather AMUD, John R, Chaturvedi P, Ghatak A, Weckwerth W, Zargar SM, Mir RA, Khan MA, Mir RR. Proteomics for abiotic stresses in legumes: present status and future directions. Crit Rev Biotechnol 2023; 43:171-190. [PMID: 35109728 DOI: 10.1080/07388551.2021.2025033] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Legumes are the most important crop plants in agriculture, contributing 27% of the world's primary food production. However, productivity and production of Legumes is reduced due to increasing environmental stress. Hence, there is a pressing need to understand the molecular mechanism involved in stress response and legumes adaptation. Proteomics provides an important molecular approach to investigate proteins involved in stress response. Both the gel-based and gel-free-based techniques have significantly contributed to understanding the proteome regulatory network in leguminous plants. In the present review, we have discussed the role of different proteomic approaches (2-DE, 2 D-DIGE, ICAT, iTRAQ, etc.) in the identification of various stress-responsive proteins in important leguminous crops, including soybean, chickpea, cowpea, pigeon pea, groundnut, and common bean under variable abiotic stresses including heat, drought, salinity, waterlogging, frost, chilling and metal toxicity. The proteomic analysis has revealed that most of the identified differentially expressed proteins in legumes are involved in photosynthesis, carbohydrate metabolism, signal transduction, protein metabolism, defense, and stress adaptation. The proteomic approaches provide insights in understanding the molecular mechanism of stress tolerance in legumes and have resulted in the identification of candidate genes used for the genetic improvement of plants against various environmental stresses. Identifying novel proteins and determining their expression under different stress conditions provide the basis for effective engineering strategies to improve stress tolerance in crop plants through marker-assisted breeding.
Collapse
Affiliation(s)
- Nelofer Jan
- Division of Genetics & Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Kashmir, India
| | | | - Riffat John
- Plant Molecular Biology Laboratory, Department of Botany, University of Kashmir, Srinagar, India
| | - Palak Chaturvedi
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Arindam Ghatak
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Vienna, Austria
| | - Wolfram Weckwerth
- Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, University of Vienna, Vienna, Austria.,Vienna Metabolomics Center, University of Vienna, Vienna, Austria
| | - Sajad Majeed Zargar
- Division of Plant Biotechnology, Faculty of Horticulture, SKUAST-Kashmir, Srinagar, India
| | - Rakeeb Ahmad Mir
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Jammu, India
| | - Mohd Anwar Khan
- Division of Genetics & Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Kashmir, India
| | - Reyazul Rouf Mir
- Division of Genetics & Plant Breeding, Faculty of Agriculture, SKUAST-Kashmir, Kashmir, India
| |
Collapse
|
15
|
Vera Hernández PF, Mendoza Onofre LE, Rosas Cárdenas FDF. Responses of sorghum to cold stress: A review focused on molecular breeding. FRONTIERS IN PLANT SCIENCE 2023; 14:1124335. [PMID: 36909409 PMCID: PMC9996117 DOI: 10.3389/fpls.2023.1124335] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Climate change has led to the search for strategies to acclimatize plants to various abiotic stressors to ensure the production and quality of crops of commercial interest. Sorghum is the fifth most important cereal crop, providing several uses including human food, animal feed, bioenergy, or industrial applications. The crop has an excellent adaptation potential to different types of abiotic stresses, such as drought, high salinity, and high temperatures. However, it is susceptible to low temperatures compared with other monocotyledonous species. Here, we have reviewed and discussed some of the research results and advances that focused on the physiological, metabolic, and molecular mechanisms that determine sorghum cold tolerance to improve our understanding of the nature of such trait. Questions and opportunities for a comprehensive approach to clarify sorghum cold tolerance or susceptibility are also discussed.
Collapse
Affiliation(s)
- Pedro Fernando Vera Hernández
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla, Tlaxcala, Mexico
| | | | - Flor de Fátima Rosas Cárdenas
- Instituto Politécnico Nacional, Centro de Investigación en Biotecnología Aplicada, Ex-Hacienda San Juan Molino Carretera Estatal Tecuexcomac-Tepetitla, Tlaxcala, Mexico
| |
Collapse
|
16
|
Chen N, Fan X, Wang C, Jiao P, Jiang Z, Ma Y, Guan S, Liu S. Overexpression of ZmDHN15 Enhances Cold Tolerance in Yeast and Arabidopsis. Int J Mol Sci 2022; 24:480. [PMID: 36613921 PMCID: PMC9820458 DOI: 10.3390/ijms24010480] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/12/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Maize (Zea mays L.) originates from the subtropical region and is a warm-loving crop affected by low-temperature stress. Dehydrin (DHN) protein, a member of the Group 2 LEA (late embryogenesis abundant proteins) family, plays an important role in plant abiotic stress. In this study, five maize DHN genes were screened based on the previous transcriptome sequencing data in our laboratory, and we performed sequence analysis and promoter analysis on these five DHN genes. The results showed that the promoter region has many cis-acting elements related to cold stress. The significantly upregulated ZmDHN15 gene has been further screened by expression pattern analysis. The subcellular localization results show that ZmDHN15 fusion protein is localized in the cytoplasm. To verify the role of ZmDHN15 in cold stress, we overexpressed ZmDHN15 in yeast and Arabidopsis. We found that the expression of ZmDHN15 can significantly improve the cold resistance of yeast. Under cold stress, ZmDHN15-overexpressing Arabidopsis showed lower MDA content, lower relative electrolyte leakage, and less ROS (reactive oxygen species) when compared to wild-type plants, as well as higher seed germination rate, seedling survival rate, and chlorophyll content. Furthermore, analysis of the expression patterns of ROS-associated marker genes and cold-response-related genes indicated that ZmDHN15 genes play an important role in the expression of these genes. In conclusion, the overexpression of the ZmDHN15 gene can effectively improve the tolerance to cold stress in yeast and Arabidopsis. This study is important for maize germplasm innovation and the genetic improvement of crops.
Collapse
Affiliation(s)
- Nannan Chen
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Xuhong Fan
- Jilin Academy of Agricultural Sciences, Changchun 130118, China
| | - Chunlai Wang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Peng Jiao
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Zhenzhong Jiang
- College of Life Sciences, Jilin Agricultural University, Changchun 130118, China
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
| | - Yiyong Ma
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Shuyan Guan
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| | - Siyan Liu
- Joint International Research Laboratory of Modern Agricultural Technology, Ministry of Education, Jilin Agricultural University, Changchun 130118, China
- College of Agronomy, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
17
|
Vuosku J, Martz F, Hallikainen V, Rautio P. Changing winter climate and snow conditions induce various transcriptional stress responses in Scots pine seedlings. FRONTIERS IN PLANT SCIENCE 2022; 13:1050903. [PMID: 36570907 PMCID: PMC9780549 DOI: 10.3389/fpls.2022.1050903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
In northern boreal forests the warming winter climate leads to more frequent snowmelt, rain-on-snow events and freeze-thaw cycles. This may be harmful or even lethal for tree seedlings that spend even a half of the year under snow. We conducted a snow cover manipulation experiment in a natural forest to find out how changing snow conditions affect young Scots pine (Pinus sylvestris L.) seedlings. The ice encasement (IE), absence of snow (NoSNOW) and snow compaction (COMP) treatments affected ground level temperature, ground frost and subnivean gas concentrations compared to the ambient snow cover (AMB) and led to the increased physical damage and mortality of seedlings. The expression responses of 28 genes related to circadian clock, aerobic and anaerobic energy metabolism, carbohydrate metabolism and stress protection revealed that seedlings were exposed to different stresses in a complex way depending on the thickness and quality of the snow cover. The IE treatment caused hypoxic stress and probably affected roots which resulted in reduced water uptake in the beginning of the growing season. Without protective snowpack in NoSNOW seedlings suffered from cold and drought stresses. The combination of hypoxic and cold stresses in COMP evoked unique transcriptional responses including oxidative stress. Snow cover manipulation induced changes in the expression of several circadian clock related genes suggested that photoreceptors and the circadian clock system play an essential role in the adaptation of Scots pine seedlings to stresses under different snow conditions. Our findings show that warming winter climate alters snow conditions and consequently causes Scots pine seedlings various abiotic stresses, whose effects extend from overwintering to the following growing season.
Collapse
Affiliation(s)
- Jaana Vuosku
- Natural Resources Unit, Natural Resources Institute Finland, Rovaniemi, Finland
- Ecology and Genetics Research Unit, University of Oulu, Oulu, Finland
| | - Françoise Martz
- Natural Resources Unit, Natural Resources Institute Finland, Rovaniemi, Finland
| | - Ville Hallikainen
- Natural Resources Unit, Natural Resources Institute Finland, Rovaniemi, Finland
| | - Pasi Rautio
- Natural Resources Unit, Natural Resources Institute Finland, Rovaniemi, Finland
| |
Collapse
|
18
|
Asati R, Tripathi MK, Tiwari S, Yadav RK, Tripathi N. Molecular Breeding and Drought Tolerance in Chickpea. Life (Basel) 2022; 12:1846. [PMID: 36430981 PMCID: PMC9698494 DOI: 10.3390/life12111846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/05/2022] [Accepted: 11/07/2022] [Indexed: 11/16/2022] Open
Abstract
Cicer arietinum L. is the third greatest widely planted imperative pulse crop worldwide, and it belongs to the Leguminosae family. Drought is the utmost common abiotic factor on plants, distressing their water status and limiting their growth and development. Chickpea genotypes have the natural ability to fight drought stress using certain strategies viz., escape, avoidance and tolerance. Assorted breeding methods, including hybridization, mutation, and marker-aided breeding, genome sequencing along with omics approaches, could be used to improve the chickpea germplasm lines(s) against drought stress. Root features, for instance depth and root biomass, have been recognized as the greatest beneficial morphological factors for managing terminal drought tolerance in the chickpea. Marker-aided selection, for example, is a genomics-assisted breeding (GAB) strategy that can considerably increase crop breeding accuracy and competence. These breeding technologies, notably marker-assisted breeding, omics, and plant physiology knowledge, underlined the importance of chickpea breeding and can be used in future crop improvement programmes to generate drought-tolerant cultivars(s).
Collapse
Affiliation(s)
- Ruchi Asati
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Manoj Kumar Tripathi
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
- Department of Plant Molecular Biology & Biotechnology, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Sushma Tiwari
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
- Department of Plant Molecular Biology & Biotechnology, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Rakesh Kumar Yadav
- Department of Genetics & Plant Breeding, College of Agriculture, Rajmata Vijayaraje Scindia Krishi Vishwa Vidyalaya, Gwalior 474002, India
| | - Niraj Tripathi
- Directorate of Research Services, Jawaharlal Nehru Agricultural University, Jabalpur 482004, India
| |
Collapse
|
19
|
Niemeyer PW, Irisarri I, Scholz P, Schmitt K, Valerius O, Braus GH, Herrfurth C, Feussner I, Sharma S, Carlsson AS, de Vries J, Hofvander P, Ischebeck T. A seed-like proteome in oil-rich tubers. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:518-534. [PMID: 36050843 DOI: 10.1111/tpj.15964] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 08/09/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
There are numerous examples of plant organs or developmental stages that are desiccation-tolerant and can withstand extended periods of severe water loss. One prime example are seeds and pollen of many spermatophytes. However, in some plants, also vegetative organs can be desiccation-tolerant. One example are the tubers of yellow nutsedge (Cyperus esculentus), which also store large amounts of lipids similar to seeds. Interestingly, the closest known relative, purple nutsedge (Cyperus rotundus), generates tubers that do not accumulate oil and are not desiccation-tolerant. We generated nanoLC-MS/MS-based proteomes of yellow nutsedge in five replicates of four stages of tuber development and compared them to the proteomes of roots and leaves, yielding 2257 distinct protein groups. Our data reveal a striking upregulation of hallmark proteins of seeds in the tubers. A deeper comparison to the tuber proteome of the close relative purple nutsedge (C. rotundus) and a previously published proteome of Arabidopsis seeds and seedlings indicates that indeed a seed-like proteome was found in yellow but not purple nutsedge. This was further supported by an analysis of the proteome of a lipid droplet-enriched fraction of yellow nutsedge, which also displayed seed-like characteristics. One reason for the differences between the two nutsedge species might be the expression of certain transcription factors homologous to ABSCISIC ACID INSENSITIVE3, WRINKLED1, and LEAFY COTYLEDON1 that drive gene expression in Arabidopsis seed embryos.
Collapse
Affiliation(s)
- Philipp William Niemeyer
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077, Göttingen, Germany
| | - Iker Irisarri
- Department of Applied Bioinformatics, Göttingen Center for Molecular Biosciences (GZMB) and Campus Institute Data Science (CIDAS), Institute for Microbiology and Genetics, University of Göttingen, 37077, Göttingen, Germany
| | - Patricia Scholz
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077, Göttingen, Germany
| | - Kerstin Schmitt
- Department for Molecular Microbiology and Genetics, Genetics and Göttingen Center for Molecular Biosciences (GZMB) and Service Unit LCMS Protein Analytics, Institute for Microbiology, University of Göttingen, 37077, Göttingen, Germany
| | - Oliver Valerius
- Department for Molecular Microbiology and Genetics, Genetics and Göttingen Center for Molecular Biosciences (GZMB) and Service Unit LCMS Protein Analytics, Institute for Microbiology, University of Göttingen, 37077, Göttingen, Germany
| | - Gerhard H Braus
- Department for Molecular Microbiology and Genetics, Genetics and Göttingen Center for Molecular Biosciences (GZMB) and Service Unit LCMS Protein Analytics, Institute for Microbiology, University of Göttingen, 37077, Göttingen, Germany
| | - Cornelia Herrfurth
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077, Göttingen, Germany
- Department of Plant Biochemistry, Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077, Göttingen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077, Göttingen, Germany
- Department of Plant Biochemistry, Service Unit for Metabolomics and Lipidomics, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077, Göttingen, Germany
| | - Shrikant Sharma
- Department of Plant Breeding, SLU Alnarp, Swedish University of Agricultural Sciences, Box 190, SE-234 22, Lomma, Sweden
| | - Anders S Carlsson
- Department of Plant Breeding, SLU Alnarp, Swedish University of Agricultural Sciences, Box 190, SE-234 22, Lomma, Sweden
| | - Jan de Vries
- Department of Applied Bioinformatics, Göttingen Center for Molecular Biosciences (GZMB) and Campus Institute Data Science (CIDAS), Institute for Microbiology and Genetics, University of Göttingen, 37077, Göttingen, Germany
| | - Per Hofvander
- Department of Plant Breeding, SLU Alnarp, Swedish University of Agricultural Sciences, Box 190, SE-234 22, Lomma, Sweden
| | - Till Ischebeck
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, 37077, Göttingen, Germany
- Green Biotechnology, Institute of Plant Biology and Biotechnology (IBBP), University of Münster, 48143, Münster, Germany
| |
Collapse
|
20
|
Chen Y, Wang J, Yao L, Li B, Ma X, Si E, Yang K, Li C, Shang X, Meng Y, Wang H. Combined Proteomic and Metabolomic Analysis of the Molecular Mechanism Underlying the Response to Salt Stress during Seed Germination in Barley. Int J Mol Sci 2022; 23:ijms231810515. [PMID: 36142428 PMCID: PMC9499682 DOI: 10.3390/ijms231810515] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 11/18/2022] Open
Abstract
Salt stress is a major abiotic stress factor affecting crop production, and understanding of the response mechanisms of seed germination to salt stress can help to improve crop tolerance and yield. The differences in regulatory pathways during germination in different salt-tolerant barley seeds are not clear. Therefore, this study investigated the responses of different salt-tolerant barley seeds during germination to salt stress at the proteomic and metabolic levels. To do so, the proteomics and metabolomics of two barley seeds with different salt tolerances were comprehensively examined. Through comparative proteomic analysis, 778 differentially expressed proteins were identified, of which 335 were upregulated and 443 were downregulated. These proteins, were mainly involved in signal transduction, propanoate metabolism, phenylpropanoid biosynthesis, plant hormones and cell wall stress. In addition, a total of 187 salt-regulated metabolites were identified in this research, which were mainly related to ABC transporters, amino acid metabolism, carbohydrate metabolism and lipid metabolism; 72 were increased and 112 were decreased. Compared with salt-sensitive materials, salt-tolerant materials responded more positively to salt stress at the protein and metabolic levels. Taken together, these results suggest that salt-tolerant germplasm may enhance resilience by repairing intracellular structures, promoting lipid metabolism and increasing osmotic metabolites. These data not only provide new ideas for how seeds respond to salt stress but also provide new directions for studying the molecular mechanisms and the metabolic homeostasis of seeds in the early stages of germination under abiotic stresses.
Collapse
Affiliation(s)
- Yiyou Chen
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
| | - Juncheng Wang
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
| | - Lirong Yao
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
| | - Baochun Li
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
- Department of Botany, College of Life Sciences and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiaole Ma
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
| | - Erjing Si
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
| | - Ke Yang
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
| | - Chengdao Li
- Western Barley Genetics Alliance, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA 6150, Australia
| | - Xunwu Shang
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yaxiong Meng
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
- Correspondence: (Y.M.); (H.W.)
| | - Huajun Wang
- Department of Crop Genetics and Breeding, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
- State Key Lab of Aridland Crop Science/Gansu Key Lab of Crop Improvement and Germplasm Enhancement, Lanzhou 730070, China
- Correspondence: (Y.M.); (H.W.)
| |
Collapse
|
21
|
Drira M, Ghanmi S, Zaidi I, Brini F, Miled N, Hanin M. The heat stable protein fraction from
Opuntia ficus indica
seeds exhibits an enzyme protective effect against thermal denaturation and an antibacterial activity. Biotechnol Appl Biochem 2022; 70:593-602. [PMID: 35789501 DOI: 10.1002/bab.2382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 06/30/2022] [Indexed: 11/09/2022]
Abstract
Desiccation tolerance in developing seeds occurs through several mechanisms among which, a common group of proteins named dehydrins has received considerable attention. So far, there is no information dealing with the accumulation of dehydrins in seeds of Opuntia ficus-indica. We have initiated here an extraction protocol based on two critical steps: heat and acid treatments, and the purity of this fraction was analyzed by FTIR spectroscopy. Western blot analysis of the heat-stable protein fraction (HSF) revealed two main bands of approximately 45 and 44 kDa, while three others of ∼40, 32, and 31 kDa were faintly visible, which were recognized by anti-dehydrin antibodies. This fraction exhibited a Cu2+ -dependent resistance to protease treatments. Next, we performed a series of assays to compare the functional properties of the HSF with those of the previously characterized wheat dehydrin (DHN-5). Antibacterial assays revealed that HSF exhibits only moderate antibacterial activities against gram-negative and gram-positive bacteria, with a minimum inhibition concentration ranging from 0.25 to 1 mg/ml. However, in vitro assays revealed that compared to DHN-5, HSF exhibits higher protective activities of the lactate dehydrogenase (LDH) when exposed to heat, freezing, and dehydration stresses. The protective role of HSF seems to be linked to its best ability to minimize protein aggregation.
Collapse
Affiliation(s)
- Marwa Drira
- Laboratory of Plant Biotechnology Applied to the Improvement of Cultures Faculty of Sciences of Sfax University of Sfax B.P. 1171, 3000 Sfax 3029 Tunisia
| | - Siwar Ghanmi
- Plant Physiology and Functional Genomics Research Unit Institute of Biotechnology. University of Sfax BP “1175” Sfax 3038 Tunisia
| | - Ikram Zaidi
- Biotechnology and Plant Improvement Laboratory Center of Biotechnology of Sfax (CBS)‐University of Sfax Sfax 3018 Tunisia
| | - Faiçal Brini
- Biotechnology and Plant Improvement Laboratory Center of Biotechnology of Sfax (CBS)‐University of Sfax Sfax 3018 Tunisia
| | - Nabil Miled
- Plant Physiology and Functional Genomics Research Unit Institute of Biotechnology. University of Sfax BP “1175” Sfax 3038 Tunisia
- Department of Biological Sciences College of Science. University of Jeddah Asfan Road Saudi Arabia
| | - Moez Hanin
- Plant Physiology and Functional Genomics Research Unit Institute of Biotechnology. University of Sfax BP “1175” Sfax 3038 Tunisia
| |
Collapse
|
22
|
Drought and UV Radiation Stress Tolerance in Rice Is Improved by Overaccumulation of Non-Enzymatic Antioxidant Flavonoids. Antioxidants (Basel) 2022; 11:antiox11050917. [PMID: 35624781 PMCID: PMC9137601 DOI: 10.3390/antiox11050917] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 05/01/2022] [Accepted: 05/04/2022] [Indexed: 02/04/2023] Open
Abstract
Drought and ultraviolet radiation (UV radiation) are the coexisting environmental factors that negatively affect plant growth and development via oxidative damage. Flavonoids are reactive, scavenging oxygen species (ROS) and UV radiation-absorbing compounds generated under stress conditions. We investigated the biosynthesis of kaempferol and quercetin in wild and flavanone 3-hydroxylase (F3H) overexpresser rice plants when drought and UV radiation stress were imposed individually and together. Phenotypic variation indicated that both kinds of stress highly reduced rice plant growth parameters in wild plants as compared to transgenic plants. When combined, the stressors adversely affected rice plant growth parameters more than when they were imposed individually. Overaccumulation of kaempferol and quercetin in transgenic plants demonstrated that both flavonoids were crucial for enhanced tolerance to such stresses. Oxidative activity assays showed that kaempferol and quercetin overaccumulation with strong non-enzymatic antioxidant activity mitigated the accumulation of ROS under drought and UV radiation stress. Lower contents of salicylic acid (SA) in transgenic plants indicated that flavonoid accumulation reduced stress, which led to the accumulation of low levels of SA. Transcriptional regulation of the dehydrin (DHN) and ultraviolet-B resistance 8 (UVR8) genes showed significant increases in transgenic plants compared to wild plants under stress. Taken together, these results confirm the usefulness of kaempferol and quercetin in enhancing tolerance to both drought and UV radiation stress.
Collapse
|
23
|
Investigating the Functional Role of the Cysteine Residue in Dehydrin from the Arctic Mouse-Ear Chickweed Cerastium arcticum. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27092934. [PMID: 35566285 PMCID: PMC9102250 DOI: 10.3390/molecules27092934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/03/2022] [Accepted: 05/03/2022] [Indexed: 11/23/2022]
Abstract
The stress-responsive, SK5 subclass, dehydrin gene, CaDHN, has been identified from the Arctic mouse-ear chickweed Cerastium arcticum. CaDHN contains an unusual single cysteine residue (Cys143), which can form intermolecular disulfide bonds. Mutational analysis and a redox experiment confirmed that the dimerization of CaDHN was the result of an intermolecular disulfide bond between the cysteine residues. The biochemical and physiological functions of the mutant C143A were also investigated by in vitro and in vivo assays using yeast cells, where it enhanced the scavenging of reactive oxygen species (ROS) by neutralizing hydrogen peroxide. Our results show that the cysteine residue in CaDHN helps to enhance C. arcticum tolerance to abiotic stress by regulating the dimerization of the intrinsically disordered CaDHN protein, which acts as a defense mechanism against extreme polar environments.
Collapse
|
24
|
Suresh BV, Choudhary P, Aggarwal PR, Rana S, Singh RK, Ravikesavan R, Prasad M, Muthamilarasan M. De novo transcriptome analysis identifies key genes involved in dehydration stress response in kodo millet (Paspalum scrobiculatum L.). Genomics 2022; 114:110347. [PMID: 35337948 DOI: 10.1016/j.ygeno.2022.110347] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 02/08/2022] [Accepted: 03/18/2022] [Indexed: 01/14/2023]
Abstract
Kodo millet (Paspalum scrobiculatum L.) is a small millet species known for its excellent nutritional and climate-resilient traits. To understand the genes and pathways underlying dehydration stress tolerance of kodo millet, the transcriptome of cultivar 'CO3' subjected to dehydration stress (0 h, 3 h, and 6 h) was sequenced. The study generated 239.1 million clean reads that identified 9201, 9814, and 2346 differentially expressed genes (DEGs) in 0 h vs. 3 h, 0 h vs. 6 h, and 3 h vs. 6 h libraries, respectively. The DEGs were found to be associated with vital molecular pathways, including hormone metabolism and signaling, antioxidant scavenging, photosynthesis, and cellular metabolism, and were validated using qRT-PCR. Also, a higher abundance of uncharacterized genes expressed during stress warrants further studies to characterize this class of genes to understand their role in dehydration stress response. Altogether, the study provides insights into the transcriptomic response of kodo millet during dehydration stress.
Collapse
Affiliation(s)
- Bonthala Venkata Suresh
- Quantitative Genetics and Genomics of Plants, Heinrich Heine University, Düsseldorf 40225, Germany.
| | - Pooja Choudhary
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Pooja Rani Aggarwal
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India
| | - Sumi Rana
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India.
| | | | - Rajasekaran Ravikesavan
- Department of Millets, Centre for Plant Breeding and Genetics, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, India.
| | - Manoj Prasad
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India; National Institute of Plant Genome Research, New Delhi 110067, India.
| | - Mehanathan Muthamilarasan
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, Telangana, India.
| |
Collapse
|
25
|
Fradera-Soler M, Grace OM, Jørgensen B, Mravec J. Elastic and collapsible: current understanding of cell walls in succulent plants. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2290-2307. [PMID: 35167681 PMCID: PMC9015807 DOI: 10.1093/jxb/erac054] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/11/2022] [Indexed: 05/11/2023]
Abstract
Succulent plants represent a large functional group of drought-resistant plants that store water in specialized tissues. Several co-adaptive traits accompany this water-storage capacity to constitute the succulent syndrome. A widely reported anatomical adaptation of cell walls in succulent tissues allows them to fold in a regular fashion during extended drought, thus preventing irreversible damage and permitting reversible volume changes. Although ongoing research on crop and model species continuously reports the importance of cell walls and their dynamics in drought resistance, the cell walls of succulent plants have received relatively little attention to date, despite the potential of succulents as natural capital to mitigate the effects of climate change. In this review, we summarize current knowledge of cell walls in drought-avoiding succulents and their effects on tissue biomechanics, water relations, and photosynthesis. We also highlight the existing knowledge gaps and propose a hypothetical model for regulated cell wall folding in succulent tissues upon dehydration. Future perspectives of methodological development in succulent cell wall characterization, including the latest technological advances in molecular and imaging techniques, are also presented.
Collapse
Affiliation(s)
- Marc Fradera-Soler
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
- Royal Botanic Gardens, Kew, Richmond, Surrey, UK
- Correspondence: or
| | | | | | - Jozef Mravec
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg, Denmark
- Correspondence: or
| |
Collapse
|
26
|
Kansman JT, Basu S, Casteel CL, Crowder DW, Lee BW, Nihranz CT, Finke DL. Plant Water Stress Reduces Aphid Performance: Exploring Mechanisms Driven by Water Stress Intensity. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.846908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Drought alters plant traits in ways that affect herbivore performance. However, we lack a comprehensive understanding of the plant-derived mechanisms that mediate insect responses to drought. Water stress occurs along gradients of intensity, and the impacts of drought intensity on plant-insect interactions is understudied. Here, we assessed aphid performance on wheat plants exposed to a gradient of water stress and measured plant nutrients and phytohormones that may mediate aphid response to drought. We show that water stress reduced aphid performance, and the negative effect grew stronger as the magnitude of water stress increased. The plant response to water limitation was not consistent across the stress gradient and was reliant on the trait measured. Water limitation did not affect whole-plant nitrogen; however, water limitation did reduce amino acid concentration and increase sugars, but only under high stress intensity. The phytohormones abscisic acid (ABA), jasmonic acid (JA), and salicylic acid (SA), and the expression of their associated gene transcripts, were also differentially affected by water stress intensity. In well-watered conditions, aphid feeding increased concentrations of the defense-related hormones SA and JA over time; however, any amount of water limitation prevented aphid induction of JA. Although aphids may experience a reprieve from JA-related defenses in stressed conditions, SA levels remain high in response to aphid feeding, indicating aphids are still vulnerable to SA-related defenses. Any level of water stress also increased the expression of a callose-associated gene transcript, a physical defense that impairs feeding. Thus, poor aphid performance on mildly-stressed plants was correlated with increased plant defenses, whereas poor performance on highly-stressed plants was correlated with stronger plant defense induction and reduced plant nutritional quality. Understanding the mechanisms driving aphid and plant performance under water stress conditions can improve our ability to predict how aphid populations will respond to climate change.
Collapse
|
27
|
Yadav C, Bahuguna RN, Dhankher OP, Singla-Pareek SL, Pareek A. Physiological and molecular signatures reveal differential response of rice genotypes to drought and drought combination with heat and salinity stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:899-910. [PMID: 35592483 PMCID: PMC9110620 DOI: 10.1007/s12298-022-01162-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 03/02/2022] [Accepted: 03/02/2022] [Indexed: 05/26/2023]
Abstract
UNLABELLED Rice is the staple food for more than 3.5 billion people worldwide. The sensitivity of rice to heat, drought, and salinity is well documented. However, rice response to combinations of these stresses is not well understood. A contrasting set of rice genotypes for heat (N22, Gharib), drought (Moroberekan, Pusa 1121) and salinity (Pokkali, IR64) were selected to characterize their response under drought, and combination of drought with heat and salinity at the sensitive seedling stage. Sensitive genotypes (IR64, Pusa 1121, Gharib) recorded higher reactive oxygen species accumulation (20-40%), membrane damage (8-65%) and reduction in photosynthetic efficiency (10-23%) across the stress and stress combinations as compared to stress tolerant checks. On the contrary, N22 and Pokkali performed best under drought + heat, and drought + salinity combination, respectively. Moreover, gene expression pattern revealed the highest expression of catalase (CAT), ascorbate peroxidase (APX) and GATA28a in N22 under heat + drought, whereas the highest expression of CAT, APX, superoxide dismutase (SOD), DEHYDRIN, GATA28a and GATA28b in Pokkali under drought + salinity. Interestingly, the phenotypic variation and expression level of genes highlighted the role of different set of physiological traits and genes under drought and drought combination with heat and salinity stress. This study reveals that rice response to stress combinations was unique with rapid readjustment at physiological and molecular levels. Moreover, phenotypic changes under stress combinations showed substantial adaptive plasticity in rice, which warrant further investigations at molecular level. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s12298-022-01162-y.
Collapse
Affiliation(s)
- Chhaya Yadav
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Rajeev Nayan Bahuguna
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003 USA
| | - Sneh L. Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
- National Agri-Food Biotechnology Institute, Mohali, Punjab 140306 India
| |
Collapse
|
28
|
Pantelić A, Stevanović S, Komić SM, Kilibarda N, Vidović M. In Silico Characterisation of the Late Embryogenesis Abundant (LEA) Protein Families and Their Role in Desiccation Tolerance in Ramonda serbica Panc. Int J Mol Sci 2022; 23:3547. [PMID: 35408906 PMCID: PMC8998581 DOI: 10.3390/ijms23073547] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/11/2022] [Accepted: 03/22/2022] [Indexed: 02/03/2023] Open
Abstract
Ramonda serbica Panc. is an ancient resurrection plant able to survive a long desiccation period and recover metabolic functions upon watering. The accumulation of protective late embryogenesis abundant proteins (LEAPs) is a desiccation tolerance hallmark. To propose their role in R. serbica desiccation tolerance, we structurally characterised LEAPs and evaluated LEA gene expression levels in hydrated and desiccated leaves. By integrating de novo transcriptomics and homologues LEAP domains, 318 R. serbica LEAPs were identified and classified according to their conserved motifs and phylogeny. The in silico analysis revealed that hydrophilic LEA4 proteins exhibited an exceptionally high tendency to form amphipathic α-helices. The most abundant, atypical LEA2 group contained more hydrophobic proteins predicted to fold into the defined globular domains. Within the desiccation-upregulated LEA genes, the majority encoded highly disordered DEH1, LEA1, LEA4.2, and LEA4.3 proteins, while the greatest portion of downregulated genes encoded LEA2.3 and LEA2.5 proteins. While dehydrins might chelate metals and bind DNA under water deficit, other intrinsically disordered LEAPs might participate in forming intracellular proteinaceous condensates or adopt amphipathic α-helical conformation, enabling them to stabilise desiccation-sensitive proteins and membranes. This comprehensive LEAPs structural characterisation is essential to understanding their function and regulation during desiccation aiming at crop drought tolerance improvement.
Collapse
Affiliation(s)
- Ana Pantelić
- Laboratory for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (A.P.); (S.S.)
| | - Strahinja Stevanović
- Laboratory for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (A.P.); (S.S.)
| | - Sonja Milić Komić
- Department of Life Science, Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11000 Belgrade, Serbia;
| | - Nataša Kilibarda
- Department of Pharmacy, Singidunum University, Danijelova 32, 11000 Belgrade, Serbia;
| | - Marija Vidović
- Laboratory for Plant Molecular Biology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Vojvode Stepe 444a, 11042 Belgrade, Serbia; (A.P.); (S.S.)
| |
Collapse
|
29
|
Singh CM, Kumar M, Pratap A, Tripathi A, Singh S, Mishra A, Kumar H, Nair RM, Singh NP. Genome-Wide Analysis of Late Embryogenesis Abundant Protein Gene Family in Vigna Species and Expression of VrLEA Encoding Genes in Vigna glabrescens Reveal Its Role in Heat Tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:843107. [PMID: 35392521 PMCID: PMC8981728 DOI: 10.3389/fpls.2022.843107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 02/02/2022] [Indexed: 06/12/2023]
Abstract
Late embryogenesis abundant (LEA) proteins are identified in many crops for their response and role in adaptation to various abiotic stresses, such as drought, salinity, and temperature. The LEA genes have been studied systematically in several crops but not in Vigna crops. In this study, we reported the first comprehensive analysis of the LEA gene family in three legume species, namely, mung bean (Vigna radiata), adzuki bean (Vigna angularis), and cowpea (Vigna unguiculata), and the cross-species expression of VrLEA genes in a wild tetraploid species, Vigna glabrescens. A total of 201 LEA genes from three Vigna crops were identified harboring the LEA conserved motif. Among these 55, 64, and 82 LEA genes were identified in mung bean, adzuki bean, and cowpea genomes, respectively. These LEA genes were grouped into eight different classes. Our analysis revealed that the cowpea genome comprised all eight classes of LEA genes, whereas the LEA-6 class was absent in the mung bean genome. Similarly, LEA-5 and LEA-6 were absent in the adzuki bean genome. The analysis of LEA genes provides an insight into their structural and functional diversity in the Vigna genome. The genes, such as VrLEA-2, VrLEA-40, VrLEA-47, and VrLEA-55, were significantly upregulated in the heat-tolerant genotype under stress conditions indicating the basis of heat tolerance. The successful amplification and expression of VrLEA genes in V. glabrescens indicated the utility of the developed markers in mung bean improvement. The results of this study increase our understanding of LEA genes and provide robust candidate genes for future functional investigations and a basis for improving heat stress tolerance in Vigna crops.
Collapse
Affiliation(s)
- Chandra Mohan Singh
- Department of Genetics and Plant Breeding, Banda University of Agriculture and Technology, Banda, India
| | - Mukul Kumar
- Department of Genetics and Plant Breeding, Banda University of Agriculture and Technology, Banda, India
| | - Aditya Pratap
- ICAR-Indian Institute of Pulses Research, Kanpur, India
| | - Anupam Tripathi
- Department of Genetics and Plant Breeding, Banda University of Agriculture and Technology, Banda, India
| | - Smita Singh
- Department of Genetics and Plant Breeding, Banda University of Agriculture and Technology, Banda, India
| | - Anuj Mishra
- Department of Genetics and Plant Breeding, Banda University of Agriculture and Technology, Banda, India
| | - Hitesh Kumar
- Department of Genetics and Plant Breeding, Banda University of Agriculture and Technology, Banda, India
| | | | - Narendra Pratap Singh
- Department of Genetics and Plant Breeding, Banda University of Agriculture and Technology, Banda, India
| |
Collapse
|
30
|
Riyazuddin R, Nisha N, Singh K, Verma R, Gupta R. Involvement of dehydrin proteins in mitigating the negative effects of drought stress in plants. PLANT CELL REPORTS 2022; 41:519-533. [PMID: 34057589 DOI: 10.1007/s00299-021-02720-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Drought stress-induced crop loss has been considerably increased in recent years because of global warming and changing rainfall pattern. Natural drought-tolerant plants entail the recruitment of a variety of metabolites and low molecular weight proteins to negate the detrimental effects of drought stress. Dehydrin (DHN) proteins are one such class of proteins that accumulate in plants during drought and associated stress conditions. These proteins are highly hydrophilic and perform multifaceted roles in the protection of plant cells during drought stress conditions. Evidence gathered over the years suggests that DHN proteins impart drought stress tolerance by enhancing the water retention capacity, elevating chlorophyll content, maintaining photosynthetic machinery, activating ROS detoxification, and promoting the accumulation of compatible solutes, among others. Overexpression studies have indicated that these proteins can be effectively targeted to mitigate the negative effects of drought stress and for the development of drought stress-tolerant crops to feed the ever-growing population in the near future. In this review, we describe the mechanism of DHNs mediated drought stress tolerance in plants and their interaction with several phytohormones to provide an in-depth understanding of DHNs function.
Collapse
Affiliation(s)
- Riyazuddin Riyazuddin
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, 6726, Szeged, Hungary
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Nisha Nisha
- Department of Integrated Plant Protection, Faculty of Horticultural Sciences, Szent István University, Gödöllő, Hungary
| | - Kalpita Singh
- School of Biotechnology, Gautam Buddha University, Greater Noida, Uttar Pradesh, 201312, India
| | - Radhika Verma
- Department of Biotechnology, Visva-Bharati Central University, Santiniketan, West Bengal, 731235, India
| | - Ravi Gupta
- Department of Botany, School of Chemical and Life Sciences, Jamia Hamdard, Hamdard Nagar, New Delhi, 110062, India.
| |
Collapse
|
31
|
Sharma AD, Rakhra G, Vyas D. Expression analysis and molecular modelling of hydrophilin LEA-2-like gene from wheat. PLANT PHYSIOLOGY REPORTS 2022; 27:160-170. [PMID: 0 DOI: 10.1007/s40502-021-00615-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 08/27/2021] [Indexed: 05/26/2023]
|
32
|
The Halophyte Dehydrin Sequence Landscape. Biomolecules 2022; 12:biom12020330. [PMID: 35204830 PMCID: PMC8869203 DOI: 10.3390/biom12020330] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 12/04/2022] Open
Abstract
Dehydrins (DHNs) belong to the LEA (late embryogenesis abundant) family group II, that comprise four conserved motifs (the Y-, S-, F-, and K-segments) and are known to play a multifunctional role in plant stress tolerance. Based on the presence and order of these segments, dehydrins are divided into six subclasses: YnSKn, FnSKn, YnKn, SKn, Kn, and KnS. DHNs are rarely studied in halophytes, and their contribution to the mechanisms developed by these plants to survive in extreme conditions remains unknown. In this work, we carried out multiple genomic analyses of the conservation of halophytic DHN sequences to discover new segments, and examine their architectures, while comparing them with their orthologs in glycophytic plants. We performed an in silico analysis on 86 DHN sequences from 10 halophytic genomes. The phylogenetic tree showed that there are different distributions of the architectures among the different species, and that FSKn is the only architecture present in every plant studied. It was found that K-, F-, Y-, and S-segments are highly conserved in halophytes and glycophytes with a few modifications, mainly involving charged amino acids. Finally, expression data collected for three halophytic species (Puccinillia tenuiflora, Eutrema salsugenium, and Hordeum marinum) revealed that many DHNs are upregulated by salt stress, and the intensity of this upregulation depends on the DHN architecture.
Collapse
|
33
|
Additional Blue LED during Cultivation Induces Cold Tolerance in Tomato Fruit but Only to an Optimum. BIOLOGY 2022; 11:biology11010101. [PMID: 35053099 PMCID: PMC8773245 DOI: 10.3390/biology11010101] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/04/2022] [Accepted: 01/06/2022] [Indexed: 12/26/2022]
Abstract
Simple Summary LED lighting is increasingly applied to increase yield and quality of greenhouse produced crops, especially tomatoes. Tomatoes cannot be stored at cold temperatures due to chilling injury that manifests as quick quality deterioration during shelf life. The aim of this study is to investigate whether additional blue LED lighting can mitigate the negative effects of cold storage for ‘Foundation’ tomatoes. We applied three treatments, 0, 12 or 24% additional blue light during cultivation, and investigated quality attributes at harvest, after cold storage and subsequent shelf-life. We observed that red harvested tomatoes cultivated with 12% additional blue light acquired cold tolerance. Interestingly, these tomatoes were slightly less red colored at harvest and showed a faster loss of red color during cold storage. The measured red color is closely related to the lycopene concentration. We hypothesize that lycopene, a known antioxidant, present in 12% additional blue cultivated tomatoes mitigates chilling injury. Other antioxidants present in tomatoes were only affected by the ripeness at harvest and were therefore not involved in the acquired cold tolerance. The cultivation of tomatoes using additional blue LED is an attractive way to produce tomatoes that can withstand long transport at cold temperatures at the expense of a slightly less red tomato at the consumer. Abstract Tomato is a chilling-sensitive fruit. The aim of this study is to examine the role of preharvest blue LED lighting (BL) to induce cold tolerance in ‘Foundation’ tomatoes. Blue and red supplemental LED light was applied to achieve either 0, 12 or 24% additional BL (0B, 12B and 24B). Mature green (MG) or red (R) tomatoes were harvested and cold stored at 4 °C for 0, 5, 10, 15 and 20 d, and then stored for 20 d at 20 °C (shelf life). Chilling injury (CI) indices, color and firmness, hydrogen peroxide, malondialdehyde, ascorbic acid and catalase activity were characterized. At harvest, R tomatoes cultivated at 12B were firmer and showed less coloration compared to fruit of other treatments. These fruits also showed higher loss of red color during cold storage and lower CI symptoms during shelf-life. MG tomatoes cultivated at 12B showed delayed coloring (non-chilled) and decreased weight loss (long cold stored) during shelf life compared to fruit in the other treatments. No effects of light treatments, both for MG and R tomatoes, were observed for the selected antioxidant capacity indicators. Improved cold tolerance for R tomatoes cultivated at 12B points to lycopene having higher scavenging activity at lower concentrations to mitigate chilling injury.
Collapse
|
34
|
Niedziela A, Domżalska L, Dynkowska WM, Pernisová M, Rybka K. Aluminum Stress Induces Irreversible Proteomic Changes in the Roots of the Sensitive but Not the Tolerant Genotype of Triticale Seedlings. PLANTS 2022; 11:plants11020165. [PMID: 35050053 PMCID: PMC8781804 DOI: 10.3390/plants11020165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 11/16/2022]
Abstract
Triticale is a wheat–rye hybrid with a higher abiotic stress tolerance than wheat and is better adapted for cultivation in light-type soils, where aluminum ions are present as Al-complexes that are harmful to plants. The roots are the first plant organs to contact these ions and the inhibition of root growth is one of the first plant reactions. The proteomes of the root apices in Al-tolerant and -sensitive plants were investigated to compare their regeneration effects following stress. The materials used in this study consisted of seedlings of three triticale lines differing in Al3+ tolerance, first subjected to aluminum ion stress and then recovered. Two-dimensional electrophoresis (2-DE) was used for seedling root protein separation followed by differential spot analysis using liquid chromatography coupled to tandem mass spectrometry (LC-MS-MS/MS). The plants’ tolerance to the stress was evaluated based on biometric screening of seedling root regrowth upon regeneration. Our results suggest that the Al-tolerant genotype can recover, without differentiation of proteome profiles, after stress relief, contrary to Al-sensitive genotypes that maintain the proteome modifications caused by unfavorable environments.
Collapse
Affiliation(s)
- Agnieszka Niedziela
- Department of Biochemistry and Biotechnology, Plant Breeding and Acclimatization Institute-National Research Institute in Radzików, 05-870 Blonie, Poland;
- Correspondence: (A.N.); (K.R.); Tel.: +48-227-334-535 (A.N.); +48-227-334-537 (K.R.)
| | - Lucyna Domżalska
- Center for Biological Diversity Conservation in Powsin, Polish Academy of Sciences Botanical Garden, Prawdziwka 2, 02-973 Warsaw, Poland;
| | - Wioletta M. Dynkowska
- Department of Biochemistry and Biotechnology, Plant Breeding and Acclimatization Institute-National Research Institute in Radzików, 05-870 Blonie, Poland;
| | - Markéta Pernisová
- Plant Sciences Core Facility, Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, 62500 Brno, Czech Republic;
- Laboratory of Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, 62500 Brno, Czech Republic
| | - Krystyna Rybka
- Department of Biochemistry and Biotechnology, Plant Breeding and Acclimatization Institute-National Research Institute in Radzików, 05-870 Blonie, Poland;
- Correspondence: (A.N.); (K.R.); Tel.: +48-227-334-535 (A.N.); +48-227-334-537 (K.R.)
| |
Collapse
|
35
|
Yang Z, Mu Y, Wang Y, He F, Shi L, Fang Z, Zhang J, Zhang Q, Geng G, Zhang S. Characterization of a Novel TtLEA2 Gene From Tritipyrum and Its Transformation in Wheat to Enhance Salt Tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:830848. [PMID: 35444677 PMCID: PMC9014267 DOI: 10.3389/fpls.2022.830848] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/11/2022] [Indexed: 05/12/2023]
Abstract
Late embryogenesis-abundant (LEA) proteins are critical in helping plants cope with salt stress. "Y1805" is a salt-tolerant Tritipyrum. We identified a "Y1805"-specific LEA gene that was expressed highly and sensitively under salt stress using transcriptome analysis. The novel group 2 LEA gene (TtLEA2-1) was cloned from "Y1805." TtLEA2-1 contained a 453 bp open reading frame encoding an 151-amino-acid protein that showed maximum sequence identity (77.00%) with Thinopyrum elongatum by phylogenetic analysis. It was mainly found to be expressed highly in the roots by qRT-PCR analysis and was located in the whole cell. Forty-eight candidate proteins believed to interact with TtLEA2-1 were confirmed by yeast two-hybrid analysis. These interacting proteins were mainly enriched in "environmental information processing," "glycan biosynthesis and metabolism," and "carbohydrate metabolism." Protein-protein interaction analysis indicated that the translation-related 40S ribosomal protein SA was the central node. An efficient wheat transformation system has been established. A coleoptile length of 2 cm, an Agrobacteria cell density of 0.55-0.60 OD600, and 15 KPa vacuum pressure were ideal for common wheat transformation, with an efficiency of up to 43.15%. Overexpression of TaLEA2-1 in wheat "1718" led to greater height, stronger roots, and higher catalase activity than in wild type seedlings. TaLEA2-1 conferred enhanced salt tolerance in transgenic wheat and may be a valuable gene for genetic modification in crops.
Collapse
Affiliation(s)
- Zhifen Yang
- College of Agriculture, Guizhou University, Guiyang, China
| | - Yuanhang Mu
- College of Agriculture, Guizhou University, Guiyang, China
| | - Yiqin Wang
- College of Agriculture, Guizhou University, Guiyang, China
| | - Fang He
- College of Agriculture, Guizhou University, Guiyang, China
- Guizhou Subcenter of National Wheat Improvement Center, Guiyang, China
| | - Luxi Shi
- College of Agriculture, Guizhou University, Guiyang, China
| | - Zhongming Fang
- College of Agriculture, Guizhou University, Guiyang, China
| | - Jun Zhang
- College of Agriculture, Guizhou University, Guiyang, China
| | - Qingqin Zhang
- College of Agriculture, Guizhou University, Guiyang, China
| | - Guangdong Geng
- College of Agriculture, Guizhou University, Guiyang, China
- *Correspondence: Guangdong Geng,
| | - Suqin Zhang
- College of Agriculture, Guizhou University, Guiyang, China
- Guizhou Subcenter of National Wheat Improvement Center, Guiyang, China
- Suqin Zhang,
| |
Collapse
|
36
|
Shazadee H, Khan N, Wang L, Wang X. GhHAI2, GhAHG3, and GhABI2 Negatively Regulate Osmotic Stress Tolerance via ABA-Dependent Pathway in Cotton ( Gossypium hirsutum L.). FRONTIERS IN PLANT SCIENCE 2022; 13:905181. [PMID: 35665139 PMCID: PMC9161169 DOI: 10.3389/fpls.2022.905181] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 04/26/2022] [Indexed: 05/20/2023]
Abstract
The type 2C protein phosphatases (PP2Cs) are well known for their vital roles in plant drought stress responses, but their molecular mechanisms in cotton (Gossypium hirsutum L.) remain largely unknown. Here, we investigated the role of three clade A PP2C genes, namely, GhHAI2, GhAHG3, and GhABI2, in regulating the osmotic stress tolerance in cotton. The transcript levels of GhHAI2, GhAHG3, and GhABI2 were rapidly induced by exogenous abscisic acid (ABA) and polyethylene glycol (PEG) treatment. Silencing of GhHAI2, GhAHG3, and GhABI2 via virus-induced gene silencing (VIGS) improved osmotic tolerance in cotton due to decreased water loss, increase in both relative water content (RWC) and photosynthetic gas exchange, higher antioxidant enzyme activity, and lower malondialdehyde (MDA) content. The root analysis further showed that GhHAI2, GhAHG3, and GhABI2-silenced plants were more responsive to osmotic stress. Yeast two-hybrid (Y2H) and luciferase complementation imaging (LCI) assays further substantiated that GhHAI2, GhAHG3, and GhABI2 interact with the core receptors of ABA signaling, GhPYLs. The expression of several ABA-dependent stress-responsive genes was significantly upregulated in GhHAI2-, GhAHG3-, and GhABI2-silenced plants. Our findings suggest that GhHAI2, GhAHG3, and GhABI2 act as negative regulators in the osmotic stress response in cotton through ABA-mediated signaling.
Collapse
Affiliation(s)
- Hamna Shazadee
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, Canada
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Nadeem Khan
- Agriculture and Agri-Food Canada, Ottawa Research and Development Centre, Ottawa, ON, Canada
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Lu Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xinyu Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Xinyu Wang,
| |
Collapse
|
37
|
Adhikary D, Mehta D, Uhrig RG, Rahman H, Kav NNV. A Proteome-Level Investigation Into Plasmodiophora brassicae Resistance in Brassica napus Canola. FRONTIERS IN PLANT SCIENCE 2022; 13:860393. [PMID: 35401597 PMCID: PMC8988049 DOI: 10.3389/fpls.2022.860393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 02/21/2022] [Indexed: 05/07/2023]
Abstract
Clubroot of Brassicaceae, an economically important soil borne disease, is caused by Plasmodiophora brassicae Woronin, an obligate, biotrophic protist. This disease poses a serious threat to canola and related crops in Canada and around the globe causing significant losses. The pathogen is continuously evolving and new pathotypes are emerging, which necessitates the development of novel resistant canola cultivars to manage the disease. Proteins play a crucial role in many biological functions and the identification of differentially abundant proteins (DAP) using proteomics is a suitable approach to understand plant-pathogen interactions to assist in the development of gene specific markers for developing clubroot resistant (CR) cultivars. In this study, P. brassicae pathotype 3 (P3H) was used to challenge CR and clubroot susceptible (CS) canola lines. Root samples were collected at three distinct stages of pathogenesis, 7-, 14-, and 21-days post inoculation (DPI), protein samples were isolated, digested with trypsin and subjected to liquid chromatography with tandem mass spectrometry (LC-MS/MS) analysis. A total of 937 proteins demonstrated a significant (q-value < 0.05) change in abundance in at least in one of the time points when compared between control and inoculated CR-parent, CR-progeny, CS-parent, CS-progeny and 784 proteins were significantly (q < 0.05) changed in abundance in at least in one of the time points when compared between the inoculated- CR and CS root proteomes of parent and progeny across the three time points tested. Functional annotation of differentially abundant proteins (DAPs) revealed several proteins related to calcium dependent signaling pathways. In addition, proteins related to reactive oxygen species (ROS) biochemistry, dehydrins, lignin, thaumatin, and phytohormones were identified. Among the DAPs, 73 putative proteins orthologous to CR proteins and quantitative trait loci (QTL) associated with eight CR loci in different chromosomes including chromosomes A3 and A8 were identified. Proteins including BnaA02T0335400WE, BnaA03T0374600WE, BnaA03T0262200WE, and BnaA03T0464700WE are orthologous to identified CR loci with possible roles in mediating clubroot responses. In conclusion, these results have contributed to an improved understanding of the mechanisms involved in mediating response to P. brassicae in canola at the protein level.
Collapse
Affiliation(s)
- Dinesh Adhikary
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Devang Mehta
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - R. Glen Uhrig
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Habibur Rahman
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Nat N. V. Kav
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
- *Correspondence: Nat N. V. Kav,
| |
Collapse
|
38
|
Matsuo N, Goda N, Tenno T, Hiroaki H. Cryoprotective activities of FK20, a human genome-derived intrinsically disordered peptide against cryosensitive enzymes without a stereospecific molecular interaction. PEERJ PHYSICAL CHEMISTRY 2021. [DOI: 10.7717/peerj-pchem.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Background
Intrinsically disordered proteins (IDPs) have been shown to exhibit cryoprotective activity toward other cellular enzymes without any obvious conserved sequence motifs. This study investigated relationships between the physical properties of several human genome-derived IDPs and their cryoprotective activities.
Methods
Cryoprotective activity of three human-genome derived IDPs and their truncated peptides toward lactate dehydrogenase (LDH) and glutathione S-transferase (GST) was examined. After the shortest cryoprotective peptide was defined (named FK20), cryoprotective activity of all-D-enantiomeric isoform of FK20 (FK20-D) as well as a racemic mixture of FK20 and FK20-D was examined. In order to examine the lack of increase of thermal stability of the target enzyme, the CD spectra of GST and LDH in the presence of a racemic mixture of FK20 and FK20-D at varying temperatures were measured and used to estimate Tm.
Results
Cryoprotective activity of IDPs longer than 20 amino acids was nearly independent of the amino acid length. The shortest IDP-derived 20 amino acid length peptide with sufficient cryoprotective activity was developed from a series of TNFRSF11B fragments (named FK20). FK20, FK20-D, and an equimolar mixture of FK20 and FK20-D also showed similar cryoprotective activity toward LDH and GST. Tm of GST in the presence and absence of an equimolar mixture of FK20 and FK20-D are similar, suggesting that IDPs’ cryoprotection mechanism seems partly from a molecular shielding effect rather than a direct interaction with the target enzymes.
Collapse
Affiliation(s)
- Naoki Matsuo
- Graduate School of Pharmaceutical Sciences, Laboratory of Structural and Molecular Pharmacology, Nagoya University, Nagoya, AICHI, JAPAN
| | - Natsuko Goda
- Graduate School of Pharmaceutical Sciences, Laboratory of Structural and Molecular Pharmacology, Nagoya University, Nagoya, AICHI, JAPAN
| | - Takeshi Tenno
- Graduate School of Pharmaceutical Sciences, Laboratory of Structural and Molecular Pharmacology, Nagoya University, Nagoya, AICHI, JAPAN
- BeCellBar, LLC., Nagoya, Aichi, Japan
| | - Hidekazu Hiroaki
- Graduate School of Pharmaceutical Sciences, Laboratory of Structural and Molecular Pharmacology, Nagoya University, Nagoya, AICHI, JAPAN
- BeCellBar, LLC., Nagoya, Aichi, Japan
| |
Collapse
|
39
|
Decena MA, Gálvez-Rojas S, Agostini F, Sancho R, Contreras-Moreira B, Des Marais DL, Hernandez P, Catalán P. Comparative Genomics, Evolution, and Drought-Induced Expression of Dehydrin Genes in Model Brachypodium Grasses. PLANTS (BASEL, SWITZERLAND) 2021; 10:2664. [PMID: 34961135 PMCID: PMC8709310 DOI: 10.3390/plants10122664] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/25/2021] [Accepted: 11/27/2021] [Indexed: 06/14/2023]
Abstract
Dehydration proteins (dehydrins, DHNs) confer tolerance to water-stress deficit in plants. We performed a comparative genomics and evolutionary study of DHN genes in four model Brachypodium grass species. Due to limited knowledge on dehydrin expression under water deprivation stress in Brachypodium, we also performed a drought-induced gene expression analysis in 32 ecotypes of the genus' flagship species B. distachyon showing different hydric requirements. Genomic sequence analysis detected 10 types of dehydrin genes (Bdhn) across the Brachypodium species. Domain and conserved motif contents of peptides encoded by Bdhn genes revealed eight protein architectures. Bdhn genes were spread across several chromosomes. Selection analysis indicated that all the Bdhn genes were constrained by purifying selection. Three upstream cis-regulatory motifs (BES1, MYB124, ZAT) were detected in several Bdhn genes. Gene expression analysis demonstrated that only four Bdhn1-Bdhn2, Bdhn3, and Bdhn7 genes, orthologs of wheat, barley, rice, sorghum, and maize genes, were expressed in mature leaves of B. distachyon and that all of them were more highly expressed in plants under drought conditions. Brachypodium dehydrin expression was significantly correlated with drought-response phenotypic traits (plant biomass, leaf carbon and proline contents and water use efficiency increases, and leaf water and nitrogen content decreases) being more pronounced in drought-tolerant ecotypes. Our results indicate that dehydrin type and regulation could be a key factor determining the acquisition of water-stress tolerance in grasses.
Collapse
Affiliation(s)
- Maria Angeles Decena
- Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, Ctra. Cuarte km 1, 22071 Huesca, Spain; (M.A.D.); (R.S.)
| | - Sergio Gálvez-Rojas
- ETSI Informática, Universidad de Málaga, Blvr Louis Pasteur 35, 29071 Málaga, Spain; (S.G.-R.); (F.A.)
| | - Federico Agostini
- ETSI Informática, Universidad de Málaga, Blvr Louis Pasteur 35, 29071 Málaga, Spain; (S.G.-R.); (F.A.)
- Instituto de Botánica del Nordeste, UNNE-CONICET, Corrientes W3402, Argentina
| | - Ruben Sancho
- Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, Ctra. Cuarte km 1, 22071 Huesca, Spain; (M.A.D.); (R.S.)
- Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, 50018 Zaragoza, Spain;
| | - Bruno Contreras-Moreira
- Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, 50018 Zaragoza, Spain;
- Estación Experimental de Aula Dei-Consejo Superior de Investigaciones Científicas, Av. Montañana 1005, 50059 Zaragoza, Spain
| | - David L. Des Marais
- Civil and Environmental Engineering Department, Faculty of Environmental and Life Science, Massachusetts Institute of Technology, 15 Vassar Street, Cambridge, MA 02139, USA;
| | - Pilar Hernandez
- Instituto de Agricultura Sostenible, IAS-CSIC, Menendez Pidal Ave, 14004 Córdoba, Spain
| | - Pilar Catalán
- Escuela Politécnica Superior de Huesca, Universidad de Zaragoza, Ctra. Cuarte km 1, 22071 Huesca, Spain; (M.A.D.); (R.S.)
- Grupo de Bioquímica, Biofísica y Biología Computacional (BIFI, UNIZAR), Unidad Asociada al CSIC, 50018 Zaragoza, Spain;
- Departamento de Ciencias Agrarias y del Medio Natural, Tomsk State University, 36 Lenin Ave, 634050 Tomsk, Russia
| |
Collapse
|
40
|
Travassos-Lins J, de Oliveira Rocha CC, de Souza Rodrigues T, Alves-Ferreira M. Evaluation of the molecular and physiological response to dehydration of two accessions of the model plant Setaria viridis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 169:211-223. [PMID: 34808464 DOI: 10.1016/j.plaphy.2021.11.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Water deficits are responsible for countless agricultural losses. Among the affected crops, C4 plants are of special interest due to their high water and nitrogen use efficiency. Two accessions of Setaria viridis (Ast-1 and A10.1) with contrasting responses to water deficit were used in the current work to better understand the mechanisms behind drought tolerance in C4 species. Our results showed that although the A10.1 accession exhibited a reduced size and lower Rfd values in comparison to Ast-1, it had overall higher Fv/Fm and lower NPQ values in well-watered conditions. The water deficit induction was performed with PEG-8000 at the grain-filling stage using dehydration cycles. Analysis of physiological measurements showed the A10.1 accession as being more tolerant to multiple water deficit exposures. In addition, PCA identified a clear difference in the pattern of drought response of the accessions. Four drought marker genes previously described in the literature were chosen to evaluate the response at the molecular level: SvP5CS2, SvDHN1, SvNAC6, and SvWRKY1. Besides confirming that Ast-1 is a more sensitive accession, the expression analysis revealed that SvNAC1 might better monitor drought stress, while SvWRKY1 was able to differentiate the two accessions. Distinct evolutionary histories of each accession may be behind their differences in response to water deficits.
Collapse
Affiliation(s)
- João Travassos-Lins
- Laboratory of Plant Molecular Genetics and Biotechnology, Federal University of Rio de Janeiro, Biology Institute, Dept. of Genetics, Av. Carlos Chagas Filho, 373 - Ilha do Fundão, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Caio César de Oliveira Rocha
- Laboratory of Plant Molecular Genetics and Biotechnology, Federal University of Rio de Janeiro, Biology Institute, Dept. of Genetics, Av. Carlos Chagas Filho, 373 - Ilha do Fundão, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Tamires de Souza Rodrigues
- Laboratory of Plant Molecular Genetics and Biotechnology, Federal University of Rio de Janeiro, Biology Institute, Dept. of Genetics, Av. Carlos Chagas Filho, 373 - Ilha do Fundão, 21941-902, Rio de Janeiro, RJ, Brazil
| | - Marcio Alves-Ferreira
- Laboratory of Plant Molecular Genetics and Biotechnology, Federal University of Rio de Janeiro, Biology Institute, Dept. of Genetics, Av. Carlos Chagas Filho, 373 - Ilha do Fundão, 21941-902, Rio de Janeiro, RJ, Brazil.
| |
Collapse
|
41
|
Ding Y, Gardiner DM, Powell JJ, Colgrave ML, Park RF, Kazan K. Adaptive defence and sensing responses of host plant roots to fungal pathogen attack revealed by transcriptome and metabolome analyses. PLANT, CELL & ENVIRONMENT 2021; 44:3526-3544. [PMID: 34591319 DOI: 10.1111/pce.14195] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Plant root-produced constitutive and inducible defences inhibit pathogenic microorganisms within roots and in the rhizosphere. However, regulatory mechanisms underlying host responses during root-pathogen interactions are largely unexplored. Using the model species Brachypodium distachyon (Bd), we studied transcriptional and metabolic responses altered in Bd roots following challenge with Fusarium graminearum (Fg), a fungal pathogen that causes diseases in diverse organs of cereal crops. Shared gene expression patterns were found between Bd roots and spikes during Fg infection associated with the mycotoxin deoxynivalenol (DON). Overexpression of BdMYB78, an up-regulated transcription factor, significantly increased root resistance during Fg infection. We show that Bd roots recognize encroaching Fg prior to physical contact by altering transcription of genes associated with multiple cellular processes such as reactive oxygen species and cell development. These changes coincide with altered levels of secreted host metabolites detected by an untargeted metabolomic approach. The secretion of Bd metabolites was suppressed by Fg as enhanced levels of defence-associated metabolites were found in roots during pre-contact with a Fg mutant defective in host perception and the ability to cause disease. Our results help to understand root defence strategies employed by plants, with potential implications for improving the resistance of cereal crops to soil pathogens.
Collapse
Affiliation(s)
- Yi Ding
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, St Lucia, Queensland, Australia
- The Plant Breeding Institute, School of Life & Environmental Sciences, Faculty of Science, The University of Sydney, Cobbitty, New South Wales, Australia
| | - Donald M Gardiner
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, St Lucia, Queensland, Australia
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St Lucia, Queensland, Australia
| | - Jonathan J Powell
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, St Lucia, Queensland, Australia
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St Lucia, Queensland, Australia
| | - Michelle L Colgrave
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, St Lucia, Queensland, Australia
- Australian Research Council, Centre of Excellence for Innovations in Peptide and Protein Science, School of Science, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Robert F Park
- The Plant Breeding Institute, School of Life & Environmental Sciences, Faculty of Science, The University of Sydney, Cobbitty, New South Wales, Australia
| | - Kemal Kazan
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, St Lucia, Queensland, Australia
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
42
|
De La Torre AR, Sekhwal MK, Neale DB. Selective Sweeps and Polygenic Adaptation Drive Local Adaptation along Moisture and Temperature Gradients in Natural Populations of Coast Redwood and Giant Sequoia. Genes (Basel) 2021; 12:1826. [PMID: 34828432 PMCID: PMC8621000 DOI: 10.3390/genes12111826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 12/26/2022] Open
Abstract
Dissecting the genomic basis of local adaptation is a major goal in evolutionary biology and conservation science. Rapid changes in the climate pose significant challenges to the survival of natural populations, and the genomic basis of long-generation plant species is still poorly understood. Here, we investigated genome-wide climate adaptation in giant sequoia and coast redwood, two iconic and ecologically important tree species. We used a combination of univariate and multivariate genotype-environment association methods and a selective sweep analysis using non-overlapping sliding windows. We identified genomic regions of potential adaptive importance, showing strong associations to moisture variables and mean annual temperature. Our results found a complex architecture of climate adaptation in the species, with genomic regions showing signatures of selective sweeps, polygenic adaptation, or a combination of both, suggesting recent or ongoing climate adaptation along moisture and temperature gradients in giant sequoia and coast redwood. The results of this study provide a first step toward identifying genomic regions of adaptive significance in the species and will provide information to guide management and conservation strategies that seek to maximize adaptive potential in the face of climate change.
Collapse
Affiliation(s)
- Amanda R. De La Torre
- School of Forestry, Northern Arizona University, 200 E. Pine Knoll, Flagstaff, AZ 86011, USA;
| | - Manoj K. Sekhwal
- School of Forestry, Northern Arizona University, 200 E. Pine Knoll, Flagstaff, AZ 86011, USA;
| | - David B. Neale
- Department of Plant Sciences, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
43
|
Abdul Aziz M, Sabeem M, Mullath SK, Brini F, Masmoudi K. Plant Group II LEA Proteins: Intrinsically Disordered Structure for Multiple Functions in Response to Environmental Stresses. Biomolecules 2021; 11:1662. [PMID: 34827660 PMCID: PMC8615533 DOI: 10.3390/biom11111662] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
In response to various environmental stresses, plants have evolved a wide range of defense mechanisms, resulting in the overexpression of a series of stress-responsive genes. Among them, there is certain set of genes that encode for intrinsically disordered proteins (IDPs) that repair and protect the plants from damage caused by environmental stresses. Group II LEA (late embryogenesis abundant) proteins compose the most abundant and characterized group of IDPs; they accumulate in the late stages of seed development and are expressed in response to dehydration, salinity, low temperature, or abscisic acid (ABA) treatment. The physiological and biochemical characterization of group II LEA proteins has been carried out in a number of investigations because of their vital roles in protecting the integrity of biomolecules by preventing the crystallization of cellular components prior to multiple stresses. This review describes the distribution, structural architecture, and genomic diversification of group II LEA proteins, with some recent investigations on their regulation and molecular expression under various abiotic stresses. Novel aspects of group II LEA proteins in Phoenix dactylifera and in orthodox seeds are also presented. Genome-wide association studies (GWAS) indicated a ubiquitous distribution and expression of group II LEA genes in different plant cells. In vitro experimental evidence from biochemical assays has suggested that group II LEA proteins perform heterogenous functions in response to extreme stresses. Various investigations have indicated the participation of group II LEA proteins in the plant stress tolerance mechanism, spotlighting the molecular aspects of group II LEA genes and their potential role in biotechnological strategies to increase plants' survival in adverse environments.
Collapse
Affiliation(s)
- Mughair Abdul Aziz
- Integrative Agriculture Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (M.A.A.); (M.S.)
| | - Miloofer Sabeem
- Integrative Agriculture Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (M.A.A.); (M.S.)
| | - Sangeeta Kutty Mullath
- Department of Vegetable Science, College of Agriculture, Kerala Agricultural University, Thrissur 680656, India;
| | - Faical Brini
- Biotechnology and Plant Improvement Laboratory, Centre of Biotechnology of Sfax (CBS), University of Sfax, B.P 1177, Sfax 3018, Tunisia;
| | - Khaled Masmoudi
- Integrative Agriculture Department, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain 15551, United Arab Emirates; (M.A.A.); (M.S.)
| |
Collapse
|
44
|
Lv A, Wen W, Fan N, Su L, Zhou P, An Y. Dehydrin MsDHN1 improves aluminum tolerance of alfalfa (Medicago sativa L.) by affecting oxalate exudation from root tips. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:441-458. [PMID: 34363255 DOI: 10.1111/tpj.15451] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 07/21/2021] [Accepted: 08/02/2021] [Indexed: 06/13/2023]
Abstract
A SK3 -type dehydrin MsDHN1 was cloned from alfalfa (Medicago sativa L.). Its function and gene regulatory pathways were studied via overexpression and suppression of MsDHN1 in alfalfa seedlings or hairy roots. The results showed that MsDHN1 is a typical intrinsically disordered protein that exists in the form of monomers and homodimers in alfalfa. The plant growth rates increased as a result of MsDHN1 overexpression (MsDHN1-OE) and decreased upon MsDHN1 suppression (MsDHN1-RNAi) in seedlings or hairy roots of alfalfa compared with the wild-type or the vector line under Al stress. MsDHN1 interacting with aquaporin (AQP) MsPIP2;1 and MsTIP1;1 positively affected oxalate secretion from root tips and Al accumulation in root tips. MsABF2 was proven to be an upstream transcription factor of MsDHN1 and activated MsDHN1 expression by binding to the ABRE element of the MsDHN1 promoter. The transcriptional regulation of MsABF2 on MsDHN1 was dependent on the abscisic acid signaling pathway. These results indicate that MsDHN1 can increase alfalfa tolerance to Al stress via increasing oxalate secretion from root tips, which may involve in the interaction of MsDHN1 with two AQP.
Collapse
Affiliation(s)
- Aimin Lv
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wuwu Wen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Nana Fan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Liantai Su
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Peng Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuan An
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture, Shanghai, 201101, China
| |
Collapse
|
45
|
Iwase A, Kondo Y, Laohavisit A, Takebayashi A, Ikeuchi M, Matsuoka K, Asahina M, Mitsuda N, Shirasu K, Fukuda H, Sugimoto K. WIND transcription factors orchestrate wound-induced callus formation, vascular reconnection and defense response in Arabidopsis. THE NEW PHYTOLOGIST 2021; 232:734-752. [PMID: 34375004 PMCID: PMC9291923 DOI: 10.1111/nph.17594] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/24/2021] [Indexed: 05/05/2023]
Abstract
Wounding triggers de novo organogenesis, vascular reconnection and defense response but how wound stress evoke such a diverse array of physiological responses remains unknown. We previously identified AP2/ERF transcription factors, WOUND INDUCED DEDIFFERENTIATION1 (WIND1) and its homologs, WIND2, WIND3 and WIND4, as key regulators of wound-induced cellular reprogramming in Arabidopsis. To understand how WIND transcription factors promote downstream events, we performed time-course transcriptome analyses after WIND1 induction. We observed a significant overlap between WIND1-induced genes and genes implicated in cellular reprogramming, vascular formation and pathogen response. We demonstrated that WIND transcription factors induce several reprogramming genes to promote callus formation at wound sites. We, in addition, showed that WIND transcription factors promote tracheary element formation, vascular reconnection and resistance to Pseudomonas syringae pv. tomato DC3000. These results indicate that WIND transcription factors function as key regulators of wound-induced responses by promoting dynamic transcriptional alterations. This study provides deeper mechanistic insights into how plants control multiple physiological responses after wounding.
Collapse
Affiliation(s)
- Akira Iwase
- RIKEN Center for Sustainable Resource ScienceYokohama230‐0045Japan
- JST, PRESTOKawaguchi332‐0012Japan
| | - Yuki Kondo
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoBunkyo‐kuTokyo113‐0033Japan
- Department of BiologyGraduate School of ScienceKobe UniversityKobe657‐8501Japan
| | | | | | - Momoko Ikeuchi
- RIKEN Center for Sustainable Resource ScienceYokohama230‐0045Japan
- Department of BiologyFaculty of ScienceNiigata University8050 Ikarashi 2‐no‐cho, Nishi‐kuNiigataJapan
| | - Keita Matsuoka
- Department of BiosciencesTeikyo University1‐1 ToyosatodaiUtsunomiya320‐8551Japan
| | - Masashi Asahina
- Department of BiosciencesTeikyo University1‐1 ToyosatodaiUtsunomiya320‐8551Japan
- Advanced Instrumental Analysis CenterTeikyo University1‐1 ToyosatodaiUtsunomiya320‐8551Japan
| | - Nobutaka Mitsuda
- Bioproduction Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)Tsukuba305‐8566Japan
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource ScienceYokohama230‐0045Japan
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoBunkyo‐kuTokyo113‐0033Japan
| | - Hiroo Fukuda
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoBunkyo‐kuTokyo113‐0033Japan
| | - Keiko Sugimoto
- RIKEN Center for Sustainable Resource ScienceYokohama230‐0045Japan
- Department of Biological SciencesGraduate School of ScienceThe University of TokyoBunkyo‐kuTokyo113‐0033Japan
| |
Collapse
|
46
|
Tapia G, González M, Burgos J, Vega MV, Méndez J, Inostroza L. Early transcriptional responses in Solanum peruvianum and Solanum lycopersicum account for different acclimation processes during water scarcity events. Sci Rep 2021; 11:15961. [PMID: 34354211 PMCID: PMC8342453 DOI: 10.1038/s41598-021-95622-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/27/2021] [Indexed: 12/13/2022] Open
Abstract
Cultivated tomato Solanum lycopersicum (Slyc) is sensitive to water shortages, while its wild relative Solanum peruvianum L. (Sper), an herbaceous perennial small shrub, can grow under water scarcity and soil salinity environments. Plastic Sper modifies the plant architecture when suffering from drought, which is mediated by the replacement of leaf organs, among other changes. The early events that trigger acclimation and improve these morphological traits are unknown. In this study, a physiological and transcriptomic approach was used to understand the processes that differentiate the response in Slyc and Sper in the context of acclimation to stress and future consequences for plant architecture. In this regard, moderate (MD) and severe drought (SD) were imposed, mediating PEG treatments. The results showed a reduction in water and osmotic potential during stress, which correlated with the upregulation of sugar and proline metabolism-related genes. Additionally, the senescence-related genes FTSH6 protease and asparagine synthase were highly induced in both species. However, GO categories such as "protein ubiquitination" or "endopeptidase inhibitor activity" were differentially enriched in Sper and Slyc, respectively. Genes related to polyamine biosynthesis were induced, while several cyclins and kinetin were downregulated in Sper under drought treatments. Repression of photosynthesis-related genes was correlated with a higher reduction in the electron transport rate in Slyc than in Sper. Additionally, transcription factors from the ERF, WRKY and NAC families were commonly induced in Sper. Although some similar responses were induced in both species under drought stress, many important changes were detected to be differentially induced. This suggests that different pathways dictate the strategies to address the early response to drought and the consequent episodes in the acclimation process in both tomato species.
Collapse
Affiliation(s)
- G Tapia
- Unidad de Recursos Genéticos Vegetales, Instituto de Investigaciones Agropecuarias, INIA-Quilamapu, Avenida Vicente Mendez 515, Chillán, Chile.
| | - M González
- Laboratorio de Microbiología Aplicada, Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Raúl Bitrán 1305, La Serena, Chile
| | - J Burgos
- Unidad de Recursos Genéticos Vegetales, Instituto de Investigaciones Agropecuarias, INIA-Quilamapu, Avenida Vicente Mendez 515, Chillán, Chile
| | - M V Vega
- Unidad de Recursos Genéticos Vegetales, Instituto de Investigaciones Agropecuarias, INIA-Quilamapu, Avenida Vicente Mendez 515, Chillán, Chile
| | - J Méndez
- Unidad de Recursos Genéticos Vegetales, Instituto de Investigaciones Agropecuarias, INIA-Quilamapu, Avenida Vicente Mendez 515, Chillán, Chile
| | - L Inostroza
- Unidad de Recursos Genéticos Vegetales, Instituto de Investigaciones Agropecuarias, INIA-Quilamapu, Avenida Vicente Mendez 515, Chillán, Chile
| |
Collapse
|
47
|
Murvai N, Kalmar L, Szabo B, Schad E, Micsonai A, Kardos J, Buday L, Han KH, Tompa P, Tantos A. Cellular Chaperone Function of Intrinsically Disordered Dehydrin ERD14. Int J Mol Sci 2021; 22:6190. [PMID: 34201246 PMCID: PMC8230022 DOI: 10.3390/ijms22126190] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 12/04/2022] Open
Abstract
Disordered plant chaperones play key roles in helping plants survive in harsh conditions, and they are indispensable for seeds to remain viable. Aside from well-known and thoroughly characterized globular chaperone proteins, there are a number of intrinsically disordered proteins (IDPs) that can also serve as highly effective protecting agents in the cells. One of the largest groups of disordered chaperones is the group of dehydrins, proteins that are expressed at high levels under different abiotic stress conditions, such as drought, high temperature, or osmotic stress. Dehydrins are characterized by the presence of different conserved sequence motifs that also serve as the basis for their categorization. Despite their accepted importance, the exact role and relevance of the conserved regions have not yet been formally addressed. Here, we explored the involvement of each conserved segment in the protective function of the intrinsically disordered stress protein (IDSP) A. thaliana's Early Response to Dehydration (ERD14). We show that segments that are directly involved in partner binding, and others that are not, are equally necessary for proper function and that cellular protection emerges from the balanced interplay of different regions of ERD14.
Collapse
Grants
- G.0029.12 Research Foundation Flanders
- 2010-88343 Korea Research Council of Fundamental Science and Technology
- NTM2231712 National Research Council of Science and Technology
- K124670 National Research, Development and Innovation Office, Hungary
- K131702 National Research, Development and Innovation Office, Hungary
- K125340 National Research, Development and Innovation Office, Hungary
- K120391 National Research, Development and Innovation Office, Hungary
- KH125597 National Research, Development and Innovation Office, Hungary
- PD135510 National Research, Development and Innovation Office, Hungary
- Bolyai János Scholarship Hungarian Academy of Sciences
- 20171582 SOLEIL Synchrotron, France
- 20180805 SOLEIL Synchrotron, France
- 20181890 SOLEIL Synchrotron, France
- Lendület Grant Hungarian Academy of Sciences
Collapse
Affiliation(s)
- Nikoletta Murvai
- Research Centre for Natural Sciences, Institute of Enzymology, 1117 Budapest, Hungary; (N.M.); (L.K.); (B.S.); (E.S.); (L.B.); (P.T.)
- Department of Biochemistry, Institute of Biology, ELTE Eötvös Loránd University, 1117 Budapest, Hungary
| | - Lajos Kalmar
- Research Centre for Natural Sciences, Institute of Enzymology, 1117 Budapest, Hungary; (N.M.); (L.K.); (B.S.); (E.S.); (L.B.); (P.T.)
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK
| | - Beata Szabo
- Research Centre for Natural Sciences, Institute of Enzymology, 1117 Budapest, Hungary; (N.M.); (L.K.); (B.S.); (E.S.); (L.B.); (P.T.)
| | - Eva Schad
- Research Centre for Natural Sciences, Institute of Enzymology, 1117 Budapest, Hungary; (N.M.); (L.K.); (B.S.); (E.S.); (L.B.); (P.T.)
| | - András Micsonai
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary; (A.M.); (J.K.)
| | - József Kardos
- ELTE NAP Neuroimmunology Research Group, Department of Biochemistry, Institute of Biology, Eötvös Loránd University, 1117 Budapest, Hungary; (A.M.); (J.K.)
| | - László Buday
- Research Centre for Natural Sciences, Institute of Enzymology, 1117 Budapest, Hungary; (N.M.); (L.K.); (B.S.); (E.S.); (L.B.); (P.T.)
| | - Kyou-Hoon Han
- Biomedical Translational Research Center, Division of Convergent Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea;
- Gene Editing Research Center, Division of Convergent Biomedical Research, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Korea
| | - Peter Tompa
- Research Centre for Natural Sciences, Institute of Enzymology, 1117 Budapest, Hungary; (N.M.); (L.K.); (B.S.); (E.S.); (L.B.); (P.T.)
- VIB-VUB Center for Structural Biology (CSB), Vlaams Instituut voor Biotechnologie (VIB), 1050 Brussels, Belgium
- Structural Biology Brussels (SBB), Vrije Universiteit Brussel (VUB), 1050 Brussels, Belgium
| | - Agnes Tantos
- Research Centre for Natural Sciences, Institute of Enzymology, 1117 Budapest, Hungary; (N.M.); (L.K.); (B.S.); (E.S.); (L.B.); (P.T.)
| |
Collapse
|
48
|
Khan MIR, Palakolanu SR, Chopra P, Rajurkar AB, Gupta R, Iqbal N, Maheshwari C. Improving drought tolerance in rice: Ensuring food security through multi-dimensional approaches. PHYSIOLOGIA PLANTARUM 2021; 172:645-668. [PMID: 33006143 DOI: 10.1111/ppl.13223] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/11/2020] [Accepted: 09/29/2020] [Indexed: 05/27/2023]
Abstract
Drought has been highly prevalent around the world especially in Sub-Saharan Africa and South-East Asian countries. Consistent climatic instabilities and unpredictable rainfall patterns are further worsening the situation. Rice is a C3 staple cereal and an important food crop for the majority of the world's population and drought stress is one of the major growth retarding threats for rice that slashes down grain quality and yield. Drought deteriorates rice productivity and induces various acclimation responses that aids in stress mitigation. However, the complexity of traits associated with drought tolerance has made the understanding of drought stress-induced responses in rice a challenging process. An integrative understanding based on physiological adaptations, omics, transgenic and molecular breeding approaches successively backed up to developing drought stress-tolerant rice. The review represents a step forward to develop drought-resilient rice plants by exploiting the knowledge that collaborates with omics-based developments with integrative efforts to ensure the compilation of all the possible strategies undertaken to develop drought stress-tolerant rice.
Collapse
Affiliation(s)
| | - Sudhakar R Palakolanu
- Cell, Molecular Biology and Genetic Engineering Group, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | | | - Ashish B Rajurkar
- Institute for Genomic Biology, University of Illinois, Urbana-Champaign, Illinois, USA
| | - Ravi Gupta
- Department of Botany, Jamia Hamdard, New Delhi, India
| | | | - Chirag Maheshwari
- Agricultural Energy and Power Division, ICAR-Central Institute of Agricultural Engineering, Bhopal, India
| |
Collapse
|
49
|
Li J, West JB, Hart A, Wegrzyn JL, Smith MA, Domec JC, Loopstra CA, Casola C. Extensive Variation in Drought-Induced Gene Expression Changes Between Loblolly Pine Genotypes. Front Genet 2021; 12:661440. [PMID: 34140968 PMCID: PMC8203665 DOI: 10.3389/fgene.2021.661440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/07/2021] [Indexed: 01/22/2023] Open
Abstract
Drought response is coordinated through expression changes in a large suite of genes. Interspecific variation in this response is common and associated with drought-tolerant and -sensitive genotypes. The extent to which different genetic networks orchestrate the adjustments to water deficit in tolerant and sensitive genotypes has not been fully elucidated, particularly in non-model or woody plants. Differential expression analysis via RNA-seq was evaluated in root tissue exposed to simulated drought conditions in two loblolly pine (Pinus taeda L.) clones with contrasting tolerance to drought. Loblolly pine is the prevalent conifer in southeastern U.S. and a major commercial forestry species worldwide. Significant changes in gene expression levels were found in more than 4,000 transcripts [drought-related transcripts (DRTs)]. Genotype by environment (GxE) interactions were prevalent, suggesting that different cohorts of genes are influenced by drought conditions in the tolerant vs. sensitive genotypes. Functional annotation categories and metabolic pathways associated with DRTs showed higher levels of overlap between clones, with the notable exception of GO categories in upregulated DRTs. Conversely, both differentially expressed transcription factors (TFs) and TF families were largely different between clones. Our results indicate that the response of a drought-tolerant loblolly pine genotype vs. a sensitive genotype to water limitation is remarkably different on a gene-by-gene level, although it involves similar genetic networks. Upregulated transcripts under drought conditions represent the most diverging component between genotypes, which might depend on the activation and repression of substantially different groups of TFs.
Collapse
Affiliation(s)
- Jingjia Li
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, United States
| | - Jason B West
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, United States
| | - Alexander Hart
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, United States
| | - Jill L Wegrzyn
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, United States
| | - Matthew A Smith
- Department of Biological Sciences, Florida International University, Miami, FL, United States
| | - Jean-Christophe Domec
- Bordeaux Sciences Agro, UMR 1391 INRA ISPA, Gradignan, France.,Nicholas School of the Environment, Duke University, Durham, NC, United States
| | - Carol A Loopstra
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, United States
| | - Claudio Casola
- Department of Ecology and Conservation Biology, Texas A&M University, College Station, TX, United States
| |
Collapse
|
50
|
Rezaei Cherati S, Shanmugam S, Pandey K, Khodakovskaya MV. Whole-Transcriptome Responses to Environmental Stresses in Agricultural Crops Treated with Carbon-Based Nanomaterials. ACS APPLIED BIO MATERIALS 2021; 4:4292-4301. [DOI: 10.1021/acsabm.1c00108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Sajedeh Rezaei Cherati
- Department of Biology, University of Arkansas at Little Rock, Little Rock, Arkansas 72204, United States
| | - Sudha Shanmugam
- Department of Biology, University of Arkansas at Little Rock, Little Rock, Arkansas 72204, United States
| | - Kamal Pandey
- Department of Biology, University of Arkansas at Little Rock, Little Rock, Arkansas 72204, United States
- University of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, United States
| | - Mariya V. Khodakovskaya
- Department of Biology, University of Arkansas at Little Rock, Little Rock, Arkansas 72204, United States
| |
Collapse
|