1
|
Lindberg S, Premkumar A. Ion Changes and Signaling under Salt Stress in Wheat and Other Important Crops. PLANTS (BASEL, SWITZERLAND) 2023; 13:46. [PMID: 38202354 PMCID: PMC10780558 DOI: 10.3390/plants13010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/14/2023] [Accepted: 12/16/2023] [Indexed: 01/12/2024]
Abstract
High concentrations of sodium (Na+), chloride (Cl-), calcium (Ca2+), and sulphate (SO42-) are frequently found in saline soils. Crop plants cannot successfully develop and produce because salt stress impairs the uptake of Ca2+, potassium (K+), and water into plant cells. Different intracellular and extracellular ionic concentrations change with salinity, including those of Ca2+, K+, and protons. These cations serve as stress signaling molecules in addition to being essential for ionic homeostasis and nutrition. Maintaining an appropriate K+:Na+ ratio is one crucial plant mechanism for salt tolerance, which is a complicated trait. Another important mechanism is the ability for fast extrusion of Na+ from the cytosol. Ca2+ is established as a ubiquitous secondary messenger, which transmits various stress signals into metabolic alterations that cause adaptive responses. When plants are under stress, the cytosolic-free Ca2+ concentration can rise to 10 times or more from its resting level of 50-100 nanomolar. Reactive oxygen species (ROS) are linked to the Ca2+ alterations and are produced by stress. Depending on the type, frequency, and intensity of the stress, the cytosolic Ca2+ signals oscillate, are transient, or persist for a longer period and exhibit specific "signatures". Both the influx and efflux of Ca2+ affect the length and amplitude of the signal. According to several reports, under stress Ca2+ alterations can occur not only in the cytoplasm of the cell but also in the cell walls, nucleus, and other cell organelles and the Ca2+ waves propagate through the whole plant. Here, we will focus on how wheat and other important crops absorb Na+, K+, and Cl- when plants are under salt stress, as well as how Ca2+, K+, and pH cause intracellular signaling and homeostasis. Similar mechanisms in the model plant Arabidopsis will also be considered. Knowledge of these processes is important for understanding how plants react to salinity stress and for the development of tolerant crops.
Collapse
Affiliation(s)
- Sylvia Lindberg
- Department of Ecology, Environment and Plant Sciences, Stockholm University, SE-114 18 Stockholm, Sweden
| | - Albert Premkumar
- Bharathiyar Group of Institutes, Guduvanchery 603202, Tamilnadu, India;
| |
Collapse
|
2
|
De Rosa A, McGaughey S, Magrath I, Byrt C. Molecular membrane separation: plants inspire new technologies. THE NEW PHYTOLOGIST 2023; 238:33-54. [PMID: 36683439 DOI: 10.1111/nph.18762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Plants draw up their surrounding soil solution to gain water and nutrients required for growth, development and reproduction. Obtaining adequate water and nutrients involves taking up both desired and undesired elements from the soil solution and separating resources from waste. Desirable and undesirable elements in the soil solution can share similar chemical properties, such as size and charge. Plants use membrane separation mechanisms to distinguish between different molecules that have similar chemical properties. Membrane separation enables distribution or retention of resources and efflux or compartmentation of waste. Plants use specialised membrane separation mechanisms to adapt to challenging soil solution compositions and distinguish between resources and waste. Coordination and regulation of these mechanisms between different tissues, cell types and subcellular membranes supports plant nutrition, environmental stress tolerance and energy management. This review considers membrane separation mechanisms in plants that contribute to specialised separation processes and highlights mechanisms of interest for engineering plants with enhanced performance in challenging conditions and for inspiring the development of novel industrial membrane separation technologies. Knowledge gained from studying plant membrane separation mechanisms can be applied to developing precision separation technologies. Separation technologies are needed for harvesting resources from industrial wastes and transitioning to a circular green economy.
Collapse
Affiliation(s)
- Annamaria De Rosa
- Division of Plant Science, Research School of Biology, Australian National University, 2601, ACT, Acton, Australia
| | - Samantha McGaughey
- Division of Plant Science, Research School of Biology, Australian National University, 2601, ACT, Acton, Australia
| | - Isobel Magrath
- Division of Plant Science, Research School of Biology, Australian National University, 2601, ACT, Acton, Australia
| | - Caitlin Byrt
- Division of Plant Science, Research School of Biology, Australian National University, 2601, ACT, Acton, Australia
| |
Collapse
|
3
|
Haque US, Elias SM, Jahan I, Seraj ZI. Functional genomic analysis of K + related salt-responsive transporters in tolerant and sensitive genotypes of rice. FRONTIERS IN PLANT SCIENCE 2023; 13:1089109. [PMID: 36743539 PMCID: PMC9893783 DOI: 10.3389/fpls.2022.1089109] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/19/2022] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Salinity is a complex environmental stress that affects the growth and production of rice worldwide. But there are some rice landraces in coastal regions that can survive in presence of highly saline conditions. An understanding of the molecular attributes contributing to the salinity tolerance of these genotypes is important for developing salt-tolerant high yielding modern genotypes to ensure food security. Therefore, we investigated the role and functional differences of two K+ salt-responsive transporters. These are OsTPKa or Vacuolar two-pore potassium channel and OsHAK_like or a hypothetical protein of the HAK family. These transporters were selected from previously identified QTLs from the tolerant rice landrace genotype (Horkuch) and sensitive genotype (IR29). METHODS In silico comparative sequence analysis of the promoter sequences of two these genes between Horkuch and IR29 was done. Real-Time expression of the selected genes in leaves and roots of IR29 (salt-sensitive), I-14 and I-71 (Recombinant Inbred Lines of IR29(♀)× Horkuch), Horkuch and Pokkali (salt-tolerant) under salt-stress at different time points was analyzed. For further insight, OsTPKa and OsHAK_like were chosen for loss-of-function genomic analysis in Horkuch using the CRISPR/Cas9 tool. Furthermore, OsTPKa was chosen for cloning into a sensitive variety by Gateway technology to observe the effect of gain-of-function. RESULTS The promoter sequences of the OsTPKa and OsHAK_like genes showed some significant differences in promoter sequences which may give a survival advantage to Horkuch under salt-stress. These two genes were also found to be overexpressed in tolerant varieties (Horkuch and Pokkali). Moreover, a coordinated expression pattern between these two genes was observed in tolerant Horkuch under salt-stress. Independently transformed plants where the expression of these genes was significantly lowered, performed poorly in physiological tests for salinity tolerance. On the other hand, positively transformed T0 plants with the OsTPKa gene from Horkuch consistently showed growth advantage under both control and salt stress. DISCUSSION The poor performance of the transgenic plants with the down-regulated genes OsTPKa and OsHAK_like under salt stress supports the assumption that OsTPKa and OsHAK_like play important roles in defending the rice landrace Horkuch against salt stress, minimizing salt injury, and maintaining plant growth. Moreover, the growth advantage provided by overexpression of the vacuolar OsTPKa K+ transporter, particularly under salt stress reconfirms its important role in providing salt tolerance. The QTL locus from Horkuch containing these two transporters maybe bred into commercial rice to produce high-yielding salt tolerant rice.
Collapse
Affiliation(s)
- Umme Sabrina Haque
- Plant Biotechnology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Sabrina M. Elias
- Department of Life Sciences, Independent University Bangladesh, Dhaka, Bangladesh
| | - Israt Jahan
- Plant Biotechnology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Zeba I. Seraj
- Plant Biotechnology Laboratory, Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
4
|
Dabravolski SA, Isayenkov SV. Recent updates on the physiology and evolution of plant TPK/KCO channels. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:17-28. [PMID: 36220140 DOI: 10.1071/fp22117] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Plant vacuoles are the main cellular reservoirs to store K+ . The vacuolar K+ channels play a pivotal role in K+ exchange between cytosol and vacuolar sap. Among vacuolar K+ transporters, the Two Pore Potassium Channels (TPKs) are highly selective K+ channels present in most or all plant vacuoles and could be involved in various plant stress responses and developmental processes. Although the majority of TPK members have a vacuolar specialisation, some TPKs display different membrane localisation including the plasma membrane, tonoplast of protein storage vacuoles and probably chloroplast membranes. The functional properties as well as physiological roles of TPKs remains largely unexplored. In this review, we have collected recent data about the physiology, structure, functionality and evolution of TPK/KCO3 channels. We also critically evaluate the latest findings on the biological role, physiological functions, and regulation of TPK/KCO3 channels in relation to their structure and phylogenetic position. The possible role of TPK/KCO3 channels in plant tolerance to various abiotic stresses is summarised, and the future priority directions for TPK/KCO3 studies are addressed.
Collapse
Affiliation(s)
- Siarhei A Dabravolski
- Department of Biotechnology Engineering, ORT Braude College, Snunit 51, P.O. Box 78, Karmiel 2161002, Israel
| | - Stanislav V Isayenkov
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China; and Department of Plant Food Products and Biofortification, Institute of Food Biotechnology and Genomics NAS of Ukraine, Kyiv, Ukraine
| |
Collapse
|
5
|
Dabravolski SA, Isayenkov SV. New Insights into Plant TPK Ion Channel Evolution. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10112328. [PMID: 34834689 PMCID: PMC8619664 DOI: 10.3390/plants10112328] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/27/2021] [Accepted: 10/27/2021] [Indexed: 05/14/2023]
Abstract
Potassium (K) is a crucial element of plant nutrition, involved in many physiological and molecular processes. K+ membrane transporters are playing a pivotal role in K+ transport and tissue distribution as well as in various plant stress responses and developmental processes. Two-pore K+-channels (TPKs) are essential to maintain plant K+ homeostasis and are mainly involved in potassium transport from the vacuoles to the cytosol. Besides vacuolar specialization, some TPK members display different membrane localization including plasma membrane, protein storage vacuole membrane, and probably the organelles. In this manuscript, we elucidate the evolution of the voltage-independent TPK (two-pore K+-channels) family, which could be represented in some species by one pore, K+-inward rectifier (Kir)-like channels. A comprehensive investigation of existing databases and application of modern bioinformatic tools allowed us to make a detailed phylogenetic inventory of TPK/KCO3 (KCO: potassium channel, outward rectifying) channels through many taxa and gain insight into the evolutionary origin of TPK family proteins. Our results reveal the fundamental evolutional difference between the first and second pores, traced throughout multiple taxa variations in the ion selection filter motif, presence of thansposon, and methylation site in the proximity of some KCO members and suggest virus-mediated horizontal transfer of a KCO3-like ancestor by viruses. Additionally, we suggest several interconnected hypotheses to explain the obtained results and provide a theoretical background for future experimental validation.
Collapse
Affiliation(s)
- Siarhei A. Dabravolski
- Department of Clinical Diagnostics, Vitebsk State Academy of Veterinary Medicine [UO VGAVM], 21002 Vitebsk, Belarus;
| | - Stanislav V. Isayenkov
- International Research Center for Environmental Membrane Biology, Foshan University, Foshan 528000, China
- Department of Plant Food Products and Biofortification, Institute of Food Biotechnology and Genomics NAS of Ukraine, 04123 Kyiv, Ukraine
- Correspondence:
| |
Collapse
|
6
|
Nestrerenko EO, Krasnoperova OE, Isayenkov SV. Potassium Transport Systems and Their Role in Stress Response, Plant Growth, and Development. CYTOL GENET+ 2021. [DOI: 10.3103/s0095452721010126] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Favreau B, Denis M, Ployet R, Mounet F, Peireira da Silva H, Franceschini L, Laclau JP, Labate C, Carrer H. Distinct leaf transcriptomic response of water deficient Eucalyptus grandis submitted to potassium and sodium fertilization. PLoS One 2019; 14:e0218528. [PMID: 31220144 PMCID: PMC6586347 DOI: 10.1371/journal.pone.0218528] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 06/04/2019] [Indexed: 01/06/2023] Open
Abstract
While potassium fertilization increases growth yield in Brazilian eucalyptus plantations, it could also increase water requirements, making trees more vulnerable to drought. Sodium fertilization, which has been shown to promote eucalyptus growth compared to K-deficient trees, could partially mitigate this adverse effect of potassium. However, little is known about the influence of K and Na fertilization on the tree metabolic response to water deficit. The aim of the present study was thus to analyze the transcriptome of leaves sampled from Eucalyptus grandis trees subjected to 37% rainfall reduction, and fertilized with potassium (K), sodium (Na), compared to control trees (C). The multifactorial experiment was set up in a field with a throughfall exclusion system. Transcriptomic analysis was performed on leaves from two-year-old trees, and data analyzed using multifactorial statistical analysis and weighted gene co-expression network analysis (WGCNA). Significant sets of genes were seen to respond to rainfall reduction, in interaction with K or Na fertilization, or to fertilization only (regardless of the water supply regime). The genes were involved in stress signaling, primary and secondary metabolism, secondary cell wall formation and photosynthetic activity. Our focus on key genes related to cation transporters and aquaporins highlighted specific regulation of ion homeostasis, and plant adjustment to water deficit. While water availability significantly affects the transcriptomic response of eucalyptus species, this study points out that the transcriptomic response is highly dependent on the fertilization regime. Our study is based on the first large-scale field trial in a tropical region, specifically designed to study the interaction between water availability and nutrition in eucalyptus. To our knowledge, this is the first global transcriptomic analysis to compare the influence of K and Na fertilization on tree adaptive traits in water deficit conditions.
Collapse
Affiliation(s)
- Bénédicte Favreau
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Marie Denis
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Raphael Ployet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Fabien Mounet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPS, Castanet-Tolosan, France
| | - Hana Peireira da Silva
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, São Paulo, Brazil
| | - Livia Franceschini
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, São Paulo, Brazil
| | | | - Carlos Labate
- Department of Genetics, Luiz de Queiroz College of Agriculture, University of São Paulo, São Paulo, Brazil
| | - Helaine Carrer
- Department of Biological Sciences, Luiz de Queiroz College of Agriculture, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
8
|
Ijaz B, Formentin E, Ronci B, Locato V, Barizza E, Hyder MZ, Lo Schiavo F, Yasmin T. Salt tolerance in indica rice cell cultures depends on a fine tuning of ROS signalling and homeostasis. PLoS One 2019; 14:e0213986. [PMID: 31039145 PMCID: PMC6490951 DOI: 10.1371/journal.pone.0213986] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 03/05/2019] [Indexed: 11/18/2022] Open
Abstract
Among cereal crops, salinity tolerance is rare and complex. Multiple genes control numerous pathways, which constitute plant's response to salinity. Cell cultures act as model system and are useful to investigate the salinity response which can possibly mimic a plant's response to stress. In the present study two indica rice varieties, KS-282 and Super Basmati which exhibited contrasting sodium chloride (NaCl) stress response were used to establish cell cultures. The cell cultures showed a contrasting response to salt stress at 100 mM NaCl. High level of intracellular hydrogen peroxide (H2O2) and nitric oxide (NO) were observed in sensitive cell culture for prolonged period as compared to the tolerant cells in which an extracellular H2O2 burst along with controlled intracellular H2O2 and NO signal was seen. To evaluate the role of NO in inducing cell death under salt stress, cell death percentage (CDP) was measured after 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO) pre-treatment. CDP was reduced significantly in both tolerant and sensitive cell cultures emphasizing NO's possible role in programmed cell death. Expression analysis of apoplastic NADPH oxidase, i.e. OsRbohA and recently characterised OSCA family members i.e. OsOSCA 1.2 and OsOSCA 3.1 was done. Intracellular H2O2/NO levels displayed an interplay between Ca2+ influx and ROS/RNS signal. Detoxifying enzyme (i.e. ascorbate peroxidase and catalase) activity was considerably higher in tolerant KS-282 while the activity of superoxide dismutase was significantly prominent in the sensitive cells triggering greater oxidative damage owing to the prolonged presence of intracellular H2O2. Salt stress and ROS responsive TFs i.e. OsSERF1 and OsDREB2A were expressed exclusively in the tolerant cells. Similarly, the expression of genes involved in maintaining high [K+]/[Na+] ratio was considerably higher and earlier in the tolerant variety. Overall, we suggest that a control over ROS production, and an increase in the expression of genes important for potassium homeostasis play a dynamic role in salinity tolerance in rice cell cultures.
Collapse
Affiliation(s)
- Bushra Ijaz
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | | | - Beatrice Ronci
- Department of Scienze biochimiche e della nutrizione, University Campus Bio-Medico Rome, Italy
| | - Vittoria Locato
- Department of Scienze biochimiche e della nutrizione, University Campus Bio-Medico Rome, Italy
| | | | | | | | - Tayyaba Yasmin
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| |
Collapse
|
9
|
Formentin E, Sudiro C, Perin G, Riccadonna S, Barizza E, Baldoni E, Lavezzo E, Stevanato P, Sacchi GA, Fontana P, Toppo S, Morosinotto T, Zottini M, Lo Schiavo F. Transcriptome and Cell Physiological Analyses in Different Rice Cultivars Provide New Insights Into Adaptive and Salinity Stress Responses. FRONTIERS IN PLANT SCIENCE 2018; 9:204. [PMID: 29556243 PMCID: PMC5844958 DOI: 10.3389/fpls.2018.00204] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 02/02/2018] [Indexed: 05/20/2023]
Abstract
Salinity tolerance has been extensively investigated in recent years due to its agricultural importance. Several features, such as the regulation of ionic transporters and metabolic adjustments, have been identified as salt tolerance hallmarks. Nevertheless, due to the complexity of the trait, the results achieved to date have met with limited success in improving the salt tolerance of rice plants when tested in the field, thus suggesting that a better understanding of the tolerance mechanisms is still required. In this work, differences between two varieties of rice with contrasting salt sensitivities were revealed by the imaging of photosynthetic parameters, ion content analysis and a transcriptomic approach. The transcriptomic analysis conducted on tolerant plants supported the setting up of an adaptive program consisting of sodium distribution preferentially limited to the roots and older leaves, and in the activation of regulatory mechanisms of photosynthesis in the new leaves. As a result, plants resumed grow even under prolonged saline stress. In contrast, in the sensitive variety, RNA-seq analysis revealed a misleading response, ending in senescence and cell death. The physiological response at the cellular level was investigated by measuring the intracellular profile of H2O2 in the roots, using a fluorescent probe. In the roots of tolerant plants, a quick response was observed with an increase in H2O2 production within 5 min after salt treatment. The expression analysis of some of the genes involved in perception, signal transduction and salt stress response confirmed their early induction in the roots of tolerant plants compared to sensitive ones. By inhibiting the synthesis of apoplastic H2O2, a reduction in the expression of these genes was detected. Our results indicate that quick H2O2 signaling in the roots is part of a coordinated response that leads to adaptation instead of senescence in salt-treated rice plants.
Collapse
Affiliation(s)
- Elide Formentin
- Department of Biology, University of Padova, Padova, Italy
- *Correspondence: Elide Formentin,
| | | | - Giorgio Perin
- Department of Biology, University of Padova, Padova, Italy
| | - Samantha Riccadonna
- Research and Innovation Centre, Edmund Mach Foundation, San Michele all’Adige, Italy
| | | | - Elena Baldoni
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, University of Milan, Milan, Italy
| | - Enrico Lavezzo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | - Piergiorgio Stevanato
- Department of Agronomy, Food, Natural Resources, Animals and the Environment, University of Padova, Padova, Italy
| | - Gian Attilio Sacchi
- Department of Agricultural and Environmental Sciences - Production, Landscape, Agroenergy, University of Milan, Milan, Italy
| | - Paolo Fontana
- Research and Innovation Centre, Edmund Mach Foundation, San Michele all’Adige, Italy
| | - Stefano Toppo
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | | | | |
Collapse
|
10
|
Formentin E, Sudiro C, Ronci MB, Locato V, Barizza E, Stevanato P, Ijaz B, Zottini M, De Gara L, Lo Schiavo F. H 2O 2 Signature and Innate Antioxidative Profile Make the Difference Between Sensitivity and Tolerance to Salt in Rice Cells. FRONTIERS IN PLANT SCIENCE 2018; 9:1549. [PMID: 30405678 PMCID: PMC6206305 DOI: 10.3389/fpls.2018.01549] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 10/03/2018] [Indexed: 05/07/2023]
Abstract
Salt tolerance is a complex trait that varies between and within species. H2O2 profiles as well as antioxidative systems have been investigated in the cultured cells of rice obtained from Italian rice varieties with different salt tolerance. Salt stress highlighted differences in extracellular and intracellular H2O2 profiles in the two cell cultures. The tolerant variety had innate reactive oxygen species (ROS) scavenging systems that enabled ROS, in particular H2O2, to act as a signal molecule rather than a damaging one. Different intracellular H2O2 profiles were also observed: in tolerant cells, an early and narrow peak was detected at 5 min; while in sensitive cells, a large peak was associated with cell death. Likewise, the transcription factor salt-responsive ethylene responsive factor 1 (TF SERF1), which is known for being regulated by H2O2, showed a different expression profile in the two cell lines. Notably, similar H2O2 profiles and cell fates were also obtained when exogenous H2O2 was produced by glucose/glucose oxidase (GOX) treatment. Under salt stress, the tolerant variety also exhibited rapid upregulation of K+ transporter genes in order to deal with K+/Na+ impairment. This upregulation was not detected in the presence of oxidative stress alone. The importance of the innate antioxidative profile was confirmed by the protective effect of experimentally increased glutathione in salt-treated sensitive cells. Overall, these results underline the importance of specific H2O2 signatures and innate antioxidative systems in modulating ionic and redox homeostasis for salt stress tolerance.
Collapse
Affiliation(s)
| | | | - Maria Beatrice Ronci
- Unit of Food Science and Human Nutrition, Campus Bio-Medico University of Rome, Rome, Italy
| | - Vittoria Locato
- Unit of Food Science and Human Nutrition, Campus Bio-Medico University of Rome, Rome, Italy
| | | | - Piergiorgio Stevanato
- Department of Agronomy, Food, Natural Resources, Animal and Environment, DAFNAE, University of Padova, Padova, Italy
| | - Bushra Ijaz
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | | | - Laura De Gara
- Unit of Food Science and Human Nutrition, Campus Bio-Medico University of Rome, Rome, Italy
- *Correspondence: Laura De Gara,
| | | |
Collapse
|
11
|
Pérez Koldenkova V, Hatsugai N. Vacuolar convolution: possible mechanisms and role of phosphatidylinositol 3,5-bisphosphate. FUNCTIONAL PLANT BIOLOGY : FPB 2017; 44:751-760. [PMID: 32480604 DOI: 10.1071/fp16443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2016] [Accepted: 05/19/2017] [Indexed: 06/11/2023]
Abstract
The central or lytic vacuole is the largest intracellular organelle in plant cells, but we know unacceptably little about the mechanisms regulating its function in vivo. The underlying reasons are related to difficulties in accessing this organelle without disrupting the cellular integrity and to the dynamic morphology of the vacuole, which lacks a defined structure. Among such morphological changes, vacuolar convolution is probably the most commonly observed event, reflected in the (reversible) transformation of a large central vacuole into a structure consisting of interconnected bubbles of a smaller size. Such behaviour is observed in plant cells subjected to hyperosmotic stress but also takes place in physiological conditions (e.g. during stomatal closure). Although vacuolar convolution is a relatively common phenomenon in plants, studies aimed at elucidating its execution mechanisms are rather scarce. In the present review, we analyse the available evidence on the participation of the cellular cytoskeleton and ion transporters in vacuolar morphology dynamics, putting special emphasis on the available evidence of the role played by phosphatidylinositol 3,5-bisphosphate in this process.
Collapse
Affiliation(s)
- Vadim Pérez Koldenkova
- Laboratorio Nacional de Microscopía Avanzada, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Av. Cuauhtémoc, 330, Col. Doctores, Del. Cuauhtémoc. 06720, México D.F., Mexico
| | - Noriyuki Hatsugai
- Department of Plant Biology, Microbial and Plant Genomics Institute, University of Minnesota St Paul, MN 55108, USA
| |
Collapse
|
12
|
S. V. I. PHENOTYPIC ANALYSIS OF OsTPKb LOSS OF FUNCTION MUTANT RICE LINES. BIOTECHNOLOGIA ACTA 2015. [DOI: 10.15407/biotech8.04.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
13
|
Isayenkov SV, Sekan AS, Sorochinsky BV, Blume YB. Molecular aspects of endosomal cellular transport. CYTOL GENET+ 2015. [DOI: 10.3103/s009545271503007x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Isayenkov SV, Maathuis FJM. The expression of rice vacuolar TPK channels genes restores potassium uptake in E. coli mutant strain LB2003. CYTOL GENET+ 2015. [DOI: 10.3103/s0095452715010053] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
K₂p channels in plants and animals. Pflugers Arch 2014; 467:1091-104. [PMID: 25369776 DOI: 10.1007/s00424-014-1638-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 10/18/2014] [Accepted: 10/21/2014] [Indexed: 10/24/2022]
Abstract
Two-pore domain potassium (K2P) channels are membrane proteins widely identified in mammals, plants, and other organisms. A functional channel is a dimer with each subunit comprising two pore-forming loops and four transmembrane domains. The genome of the model plant Arabidopsis thaliana harbors five genes coding for K2P channels. Homologs of Arabidopsis K2P channels have been found in all higher plants sequenced so far. As with the K2P channels in mammals, plant K2P channels are targets of external and internal stimuli, which fine-tune the electrical properties of the membrane for specialized transport and/or signaling tasks. Plant K2P channels are modulated by signaling molecules such as intracellular H(+) and calcium and physical factors like temperature and pressure. In this review, we ask the following: What are the similarities and differences between K2P channels in plants and animals in terms of their physiology? What is the nature of the last common ancestor (LCA) of these two groups of proteins? To answer these questions, we present physiological, structural, and phylogenetic evidence that discards the hypothesis proposing that the duplication and fusion that gave rise to the K2P channels occurred in a prokaryote LCA. Conversely, we argue that the K2P LCA was most likely a eukaryote organism. Consideration of plant and animal K2P channels in the same study is novel and likely to stimulate further exchange of ideas between students of these fields.
Collapse
|
16
|
Isayenkov SV. Plant vacuoles: Physiological roles and mechanisms of vacuolar sorting and vesicular trafficking. CYTOL GENET+ 2014. [DOI: 10.3103/s0095452714020042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Shitan N, Yazaki K. New insights into the transport mechanisms in plant vacuoles. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 305:383-433. [PMID: 23890387 DOI: 10.1016/b978-0-12-407695-2.00009-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The vacuole is the largest compartment in plant cells, often occupying more than 80% of the total cell volume. This organelle accumulates a large variety of endogenous ions, metabolites, and xenobiotics. The compartmentation of divergent substances is relevant for a wide range of biological processes, such as the regulation of stomata movement, defense mechanisms against herbivores, flower coloration, etc. Progress in molecular and cellular biology has revealed that a large number of transporters and channels exist at the tonoplast. In recent years, various biochemical and physiological functions of these proteins have been characterized in detail. Some are involved in maintaining the homeostasis of ions and metabolites, whereas others are related to defense mechanisms against biotic and abiotic stresses. In this review, we provide an updated inventory of vacuolar transport mechanisms and a comprehensive summary of their physiological functions.
Collapse
Affiliation(s)
- Nobukazu Shitan
- Laboratory of Natural Medicinal Chemistry, Kobe Pharmaceutical University, Kobe, Japan.
| | | |
Collapse
|
18
|
Sharma T, Dreyer I, Riedelsberger J. The role of K(+) channels in uptake and redistribution of potassium in the model plant Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2013; 4:224. [PMID: 23818893 PMCID: PMC3694395 DOI: 10.3389/fpls.2013.00224] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 06/09/2013] [Indexed: 05/17/2023]
Abstract
Potassium (K(+)) is inevitable for plant growth and development. It plays a crucial role in the regulation of enzyme activities, in adjusting the electrical membrane potential and the cellular turgor, in regulating cellular homeostasis and in the stabilization of protein synthesis. Uptake of K(+) from the soil and its transport to growing organs is essential for a healthy plant development. Uptake and allocation of K(+) are performed by K(+) channels and transporters belonging to different protein families. In this review we summarize the knowledge on the versatile physiological roles of plant K(+) channels and their behavior under stress conditions in the model plant Arabidopsis thaliana.
Collapse
Affiliation(s)
- Tripti Sharma
- Molecular Biology, Institute for Biochemistry and Biology, University of PotsdamPotsdam, Germany
- IMPRS-PMPG, Max-Planck Institute of Molecular Plant PhysiologyPotsdam, Germany
| | - Ingo Dreyer
- Centro de Biotecnologia y Genomica de Plantas, Universidad Politécnica de MadridMadrid, Spain
- *Correspondence: Ingo Dreyer, Plant Biophysics, Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Campus de Montegancedo, Carretera M-40, km 37.7, Pozuelo de Alarcón, Madrid E-28223, Spain e-mail:
| | - Janin Riedelsberger
- Molecular Biology, Institute for Biochemistry and Biology, University of PotsdamPotsdam, Germany
- IMPRS-PMPG, Max-Planck Institute of Molecular Plant PhysiologyPotsdam, Germany
- Janin Riedelsberger, Molecular Biology, Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24/25, House 20, D-14476 Potsdam, Germany e-mail:
| |
Collapse
|
19
|
|
20
|
Gomez-Porras JL, Riaño-Pachón DM, Benito B, Haro R, Sklodowski K, Rodríguez-Navarro A, Dreyer I. Phylogenetic analysis of k(+) transporters in bryophytes, lycophytes, and flowering plants indicates a specialization of vascular plants. FRONTIERS IN PLANT SCIENCE 2012; 3:167. [PMID: 22876252 PMCID: PMC3410407 DOI: 10.3389/fpls.2012.00167] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 07/05/2012] [Indexed: 05/18/2023]
Abstract
As heritage from early evolution, potassium (K(+)) is absolutely necessary for all living cells. It plays significant roles as stabilizer in metabolism and is important for enzyme activation, stabilization of protein synthesis, and neutralization of negative charges on cellular molecules as proteins and nucleic acids. Land plants even enlarged this spectrum of K(+) utilization after having gone ashore, despite the fact that K(+) is far less available in their new oligotrophic habitats than in sea water. Inevitably, plant cells had to improve and to develop unique transport systems for K(+) accumulation and distribution. In the past two decades a manifold of K(+) transporters from flowering plants has been identified at the molecular level. The recently published genome of the fern ally Selaginella moellendorffii now helps in providing a better understanding on the molecular changes involved in the colonization of land and the development of the vasculature and the seeds. In this article we present an inventory of K(+) transporters of this lycophyte and pigeonhole them together with their relatives from the moss Physcomitrella patens, the monocotyledon Oryza sativa, and two dicotyledonous species, the herbaceous plant Arabidopsis thaliana, and the tree Populus trichocarpa. Interestingly, the transition of green plants from an aqueous to a dry environment coincides with a dramatic reduction in the diversity of voltage-gated potassium channels followed by a diversification on the basis of one surviving K(+) channel class. The first appearance of K(+) release (K(out)) channels in S. moellendorffii that were shown in Arabidopsis to be involved in xylem loading and guard cell closure coincides with the specialization of vascular plants and may indicate an important adaptive step.
Collapse
Affiliation(s)
| | - Diego Mauricio Riaño-Pachón
- Grupo de Biología Computacional y Evolutiva, Departamento de Ciencias Biológicas, Universidad de los AndesBogotá D.C., Colombia
| | - Begoña Benito
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de MadridMadrid, Spain
| | - Rosario Haro
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de MadridMadrid, Spain
| | - Kamil Sklodowski
- Institut für Biochemie und Biologie, Universität PotsdamPotsdam, Germany
- Max-Planck-Institute of Molecular Plant PhysiologyPotsdam-Golm, Germany
| | | | - Ingo Dreyer
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de MadridMadrid, Spain
- Institut für Biochemie und Biologie, Universität PotsdamPotsdam, Germany
- *Correspondence: Ingo Dreyer, Plant Biophysics, Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Campus de Montegancedo, Carretera M-40, km 37.7, E-28223-Pozuelo de Alarcón (Madrid), Spain. e-mail:
| |
Collapse
|
21
|
Abstract
Potassium (K(+) ) is the most abundant inorganic cation in plant cells. Unlike animals, plants lack sodium/potassium exchangers. Instead, plant cells have developed unique transport systems for K(+) accumulation and release. An essential role in potassium uptake and efflux is played by potassium channels. Since the first molecular characterization of K(+) channels from Arabidopsis thaliana in 1992, a large number of studies on plant potassium channels have been conducted. Potassium channels are considered to be one of the best characterized class of membrane proteins in plants. Nevertheless, knowledge on plant potassium channels is still incomplete. This minireview focuses on recent developments in the research of potassium transport in plants with a strong focus on voltage-gated potassium channels.
Collapse
Affiliation(s)
- Ingo Dreyer
- Centro de Biotecnologia y Genomica de Plantas, Universidad Politécnica de Madrid, Madrid, Spain.
| | | |
Collapse
|