1
|
Hurtado-Monzón EG, Valencia-Mayoral P, Silva-Olivares A, Bañuelos C, Velázquez-Guadarrama N, Betanzos A. The Helicobacter pylori infection alters the intercellular junctions on the pancreas of gerbils (Meriones unguiculatus). World J Microbiol Biotechnol 2024; 40:273. [PMID: 39030443 PMCID: PMC11271430 DOI: 10.1007/s11274-024-04081-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
Helicobacter pylori is a common resident in the stomach of at least half of the world's population and recent evidence suggest its emergence in other organs such as the pancreas. In this organ, the presence of H. pylori DNA has been reported in cats, although the functional implications remain unknown. In this work, we determined distinct features related to the H. pylori manifestation in pancreas in a rodent model, in order to analyse its functional and structural effect. Gerbils inoculated with H. pylori exhibited the presence of this bacterium, as revealed by the expression of some virulence factors, as CagA and OMPs in stomach and pancreas, and confirmed by urease activity, bacterial culture, PCR and immunofluorescence assays. Non-apparent morphological changes were observed in pancreatic tissue of infected animals; however, delocalization of intercellular junction proteins (claudin-1, claudin-4, occludin, ZO-1, E-cadherin, β-catenin, desmoglein-2 and desmoplakin I/II) and rearrangement of the actin-cytoskeleton were exhibited. This structural damage was consistent with alterations in the distribution of insulin and glucagon, and a systemic inflammation, event demonstrated by elevated IL-8 levels. Overall, these findings indicate that H. pylori can reach the pancreas, possibly affecting its function and contributing to the development of pancreatic diseases.
Collapse
Affiliation(s)
- Edgar G Hurtado-Monzón
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico, México
| | - Pedro Valencia-Mayoral
- Departamento de Patología Clínica y Experimental del Hospital Infantil de México Federico Gómez, Ciudad de Mexico, México
| | - Angélica Silva-Olivares
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico, México
| | - Cecilia Bañuelos
- Programa de Doctorado Transdisciplinario en Desarrollo Científico y Tecnológico Para La Sociedad, CINVESTAV-IPN, Ciudad de Mexico, México
| | - Norma Velázquez-Guadarrama
- Laboratorio de Investigación en Enfermedades Infecciosas, Área de Genética Bacteriana del Hospital Infantil de México Federico Gómez, Ciudad de Mexico, México.
| | - Abigail Betanzos
- Departamento de Infectómica y Patogénesis Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico, México.
| |
Collapse
|
2
|
Yang Z, Li S, Zhao C, Zhao Z, Tan J, Zhang L, Huang Y. X-Box binding protein 1 downregulates SIRT6 to promote injury in pancreatic ductal epithelial cells. Immun Inflamm Dis 2024; 12:e1301. [PMID: 38967361 PMCID: PMC11225082 DOI: 10.1002/iid3.1301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 04/19/2024] [Accepted: 05/19/2024] [Indexed: 07/06/2024] Open
Abstract
OBJECTIVE Acute pancreatitis (AP) stands as a frequent cause for clinical emergency hospital admissions. The X-box binding protein 1 (XBP1) was found to be implicated in pancreatic acinar cell apoptosis. The objective is to unveil the potential mechanisms governed by XBP1 and SIRT6 in the context of AP. METHODS Caerulein-treated human pancreatic duct epithelial (HPDE) cells to establish an in vitro research model. The levels and regulatory role of SIRT6 in the treated cells were evaluated, including its effects on inflammatory responses, oxidative stress, apoptosis, and endoplasmic reticulum stress. The relationship between XBP1 and SIRT6 was explored by luciferase and ChIP experiments. Furthermore, the effect of XBP1 overexpression on the regulatory function of SIRT6 on cells was evaluated. RESULTS Caerulein promoted the decrease of SIRT6 and the increase of XBP1 in HPDE cells. Overexpression of SIRT6 slowed down the secretion of inflammatory factors, oxidative stress, apoptosis level, and endoplasmic reticulum stress in HPDE cells. However, XBP1 negatively regulated SIRT6, and XBP1 overexpression partially reversed the regulation of SIRT6 on the above aspects. CONCLUSION Our study illuminates the role of XBP1 in downregulating SIRT6 in HPDE cells, thereby promoting cellular injury. Inhibiting XBP1 or augmenting SIRT6 levels holds promise in preserving cell function and represents a potential therapeutic avenue in the management of AP.
Collapse
Affiliation(s)
- Zhuo Yang
- Intensive Care Unit, Bazhong Hospital of Traditional Chinese MedicineBazhongSichuanChina
| | - Shaojun Li
- Acupuncture and Rehabilitation DepartmentBazhong Hospital of Traditional Chinese MedicineBazhongSichuanChina
| | - Chuan Zhao
- Intensive Care Unit, Bazhong Hospital of Traditional Chinese MedicineBazhongSichuanChina
| | - Zongzheng Zhao
- Intensive Care Unit, Bazhong Hospital of Traditional Chinese MedicineBazhongSichuanChina
| | - Juan Tan
- Intensive Care Unit, Bazhong Hospital of Traditional Chinese MedicineBazhongSichuanChina
| | - Lu Zhang
- Acupuncture and Rehabilitation DepartmentBazhong Hospital of Traditional Chinese MedicineBazhongSichuanChina
| | - Yuanqing Huang
- Intensive Care Unit, Bazhong Hospital of Traditional Chinese MedicineBazhongSichuanChina
| |
Collapse
|
3
|
Konno T, Kohno T, Kikuchi S, Kura A, Saito K, Okada T, Shimada H, Yamazaki Y, Sugiyama T, Matsuura M, Ohsaki Y, Saito T, Kojima T. The interplay between the epithelial permeability barrier, cell migration and mitochondrial metabolism of growth factors and their inhibitors in a human endometrial carcinoma cell line. Tissue Barriers 2024:2304443. [PMID: 38225862 DOI: 10.1080/21688370.2024.2304443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/28/2023] [Indexed: 01/17/2024] Open
Abstract
It is known that there are abnormalities of tight junction functions, cell migration and mitochondrial metabolism in human endometriosis and endometrial carcinoma. In this study, we investigated the effects of growth factors and their inhibitors on the epithelial permeability barrier, cell migration and mitochondrial metabolism in 2D and 2.5D cultures of human endometrioid endometrial carcinoma Sawano cells. We also investigated the changes of bicellular and tricellular tight junction molecules and ciliogenesis induced by these inhibitors. The growth factors TGF-β and EGF affected the epithelial permeability barrier, cell migration and expression of bicellular and tricellular tight junction molecules in 2D and 2.5D cultures of Sawano cells. EW-7197 (a TGF-β receptor inhibitor), AG1478 (an EGFR inhibitor) and SP600125 (a JNK inhibitor) affected the epithelial permeability barrier, cell migration and mitochondrial metabolism and prevented the changes induced by TGF-β and EGF in 2D and 2.5D cultures. EW-7197 and AG1478 induced ciliogenesis in 2.5D cultures. In conclusion, TGF-β and EGF promoted the malignancy of endometrial cancer via interplay among the epithelial permeability barrier, cell migration and mitochondrial metabolism. EW-7197 and AG1478 may be useful as novel therapeutic treatments options for endometrial cancer.
Collapse
Affiliation(s)
- Takumi Konno
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takayuki Kohno
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shin Kikuchi
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Arisa Kura
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kimihito Saito
- Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tadahi Okada
- Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Shimada
- Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuya Yamazaki
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tomoki Sugiyama
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Motoki Matsuura
- Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Yuki Ohsaki
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tsuyoshi Saito
- Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takashi Kojima
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
4
|
Buddington KK, Pierzynowski SG, Holmes WE, Buddington RK. Selective and Concentrative Enteropancreatic Recirculation of Antibiotics by Pigs. Antibiotics (Basel) 2023; 13:12. [PMID: 38275322 PMCID: PMC10812520 DOI: 10.3390/antibiotics13010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/13/2023] [Accepted: 12/16/2023] [Indexed: 01/27/2024] Open
Abstract
Antibiotics that are efficacious for infectious pancreatitis are present in pancreatic exocrine secretion (PES) after intravenous administration and above minimal inhibitory concentrations. We measured concentrations of four antibiotics by tandem liquid chromatography-mass spectroscopy in plasma and PES after enteral administration to juvenile pigs with jugular catheters and re-entrant pancreatic-duodenal catheters. Nystatin, which is not absorbed by the intestine nor used for infectious pancreatitis (negative control), was not detected in plasma or PES. Concentrations of amoxicillin increased in plasma after administration (p = 0.035), but not in PES (p = 0.51). Metronidazole and enrofloxacin that are used for infectious pancreatitis increased in plasma after enteral administration and even more so in PES, with concentrations in PES averaging 3.1 (±0.5)- and 2.3 (±0.6)-fold higher than in plasma, respectively (p's < 0.001). The increase in enrofloxacin in PES relative to plasma was lower after intramuscular administration (1.8 ± 0.5; p = 0.001). The present results demonstrate the presence of a selective and concentrative enteropancreatic pathway of secretion for some antibiotics. Unlike the regulated secretion of bile, the constitutive secretion of PES and intestinal reabsorption may provide a continuous exposure of pancreas tissue and the small intestine to recirculated antibiotics and potentially other therapeutic molecules. There is a need to better understand the enteropancreatic recirculation of antibiotics and the associated mechanisms.
Collapse
Affiliation(s)
| | - Stefan G. Pierzynowski
- Department of Biology, Lund University, Sölvegatan 35, 22362 Lund, Sweden;
- Department of Medical Biology, IMW, Jaczewskiego 2, 20-950 Lublin, Poland
| | - William E. Holmes
- Department of Chemical Engineering, University of Louisiana, Lafayette, LA 70503, USA;
| | - Randal K. Buddington
- Department of Health Sciences, University of Memphis, Memphis, TN 38152, USA
- Stonewall Research Facility, LSU Health Sciences, Stonewall, LA 71078, USA
| |
Collapse
|
5
|
Bohuslavova R, Fabriciova V, Smolik O, Lebrón-Mora L, Abaffy P, Benesova S, Zucha D, Valihrach L, Berkova Z, Saudek F, Pavlinkova G. NEUROD1 reinforces endocrine cell fate acquisition in pancreatic development. Nat Commun 2023; 14:5554. [PMID: 37689751 PMCID: PMC10492842 DOI: 10.1038/s41467-023-41306-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 08/30/2023] [Indexed: 09/11/2023] Open
Abstract
NEUROD1 is a transcription factor that helps maintain a mature phenotype of pancreatic β cells. Disruption of Neurod1 during pancreatic development causes severe neonatal diabetes; however, the exact role of NEUROD1 in the differentiation programs of endocrine cells is unknown. Here, we report a crucial role of the NEUROD1 regulatory network in endocrine lineage commitment and differentiation. Mechanistically, transcriptome and chromatin landscape analyses demonstrate that Neurod1 inactivation triggers a downregulation of endocrine differentiation transcription factors and upregulation of non-endocrine genes within the Neurod1-deficient endocrine cell population, disturbing endocrine identity acquisition. Neurod1 deficiency altered the H3K27me3 histone modification pattern in promoter regions of differentially expressed genes, which resulted in gene regulatory network changes in the differentiation pathway of endocrine cells, compromising endocrine cell potential, differentiation, and functional properties.
Collapse
Affiliation(s)
- Romana Bohuslavova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Valeria Fabriciova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Ondrej Smolik
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Laura Lebrón-Mora
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Pavel Abaffy
- Laboratory of Gene Expression, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Sarka Benesova
- Laboratory of Gene Expression, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Daniel Zucha
- Laboratory of Gene Expression, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Lukas Valihrach
- Laboratory of Gene Expression, Institute of Biotechnology CAS, 25250, Vestec, Czechia
| | - Zuzana Berkova
- Diabetes Centre, Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, 14021, Prague, Czechia
| | - Frantisek Saudek
- Diabetes Centre, Experimental Medicine Centre, Institute for Clinical and Experimental Medicine, 14021, Prague, Czechia
| | - Gabriela Pavlinkova
- Laboratory of Molecular Pathogenetics, Institute of Biotechnology CAS, 25250, Vestec, Czechia.
| |
Collapse
|
6
|
Patel HR, Diaz Almanzar VM, LaComb JF, Ju J, Bialkowska AB. The Role of MicroRNAs in Pancreatitis Development and Progression. Int J Mol Sci 2023; 24:1057. [PMID: 36674571 PMCID: PMC9862468 DOI: 10.3390/ijms24021057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/13/2022] [Accepted: 12/16/2022] [Indexed: 01/06/2023] Open
Abstract
Pancreatitis (acute and chronic) is an inflammatory disease associated with significant morbidity, including a high rate of hospitalization and mortality. MicroRNAs (miRs) are essential post-transcriptional modulators of gene expression. They are crucial in many diseases' development and progression. Recent studies have demonstrated aberrant miRs expression patterns in pancreatic tissues obtained from patients experiencing acute and chronic pancreatitis compared to tissues from unaffected individuals. Increasing evidence showed that miRs regulate multiple aspects of pancreatic acinar biology, such as autophagy, mitophagy, and migration, impact local and systemic inflammation and, thus, are involved in the disease development and progression. Notably, multiple miRs act on pancreatic acinar cells and regulate the transduction of signals between pancreatic acinar cells, pancreatic stellate cells, and immune cells, and provide a complex interaction network between these cells. Importantly, recent studies from various animal models and patients' data combined with advanced detection techniques support their importance in diagnosing and treating pancreatitis. In this review, we plan to provide an up-to-date summary of the role of miRs in the development and progression of pancreatitis.
Collapse
Affiliation(s)
- Hetvi R. Patel
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Vanessa M. Diaz Almanzar
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Joseph F. LaComb
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Jingfang Ju
- Department of Pathology, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| | - Agnieszka B. Bialkowska
- Department of Medicine, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
7
|
Cao K, Gong Q, Hong Y, Wan L. A unified computational framework for single-cell data integration with optimal transport. Nat Commun 2022; 13:7419. [PMID: 36456571 PMCID: PMC9715710 DOI: 10.1038/s41467-022-35094-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 11/18/2022] [Indexed: 12/05/2022] Open
Abstract
Single-cell data integration can provide a comprehensive molecular view of cells. However, how to integrate heterogeneous single-cell multi-omics as well as spatially resolved transcriptomic data remains a major challenge. Here we introduce uniPort, a unified single-cell data integration framework that combines a coupled variational autoencoder (coupled-VAE) and minibatch unbalanced optimal transport (Minibatch-UOT). It leverages both highly variable common and dataset-specific genes for integration to handle the heterogeneity across datasets, and it is scalable to large-scale datasets. uniPort jointly embeds heterogeneous single-cell multi-omics datasets into a shared latent space. It can further construct a reference atlas for gene imputation across datasets. Meanwhile, uniPort provides a flexible label transfer framework to deconvolute heterogeneous spatial transcriptomic data using an optimal transport plan, instead of embedding latent space. We demonstrate the capability of uniPort by applying it to integrate a variety of datasets, including single-cell transcriptomics, chromatin accessibility, and spatially resolved transcriptomic data.
Collapse
Affiliation(s)
- Kai Cao
- grid.484479.2LSC, NCMIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Qiyu Gong
- grid.16821.3c0000 0004 0368 8293Shanghai Institute of Immunology, Faculty of Basic Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiguang Hong
- grid.24516.340000000123704535Department of Control Science and Engineering, Tongji University, Shanghai, China
| | - Lin Wan
- grid.484479.2LSC, NCMIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China ,grid.410726.60000 0004 1797 8419School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Nakano M, Ohwada K, Shindo Y, Konno T, Kohno T, Kikuchi S, Tsujiwaki M, Ishii D, Nishida S, Kakuki T, Obata K, Miyata R, Kurose M, Kondoh A, Takano K, Kojima T. Inhibition of HDAC and Signal Transduction Pathways Induces Tight Junctions and Promotes Differentiation in p63-Positive Salivary Duct Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14112584. [PMID: 35681564 PMCID: PMC9179926 DOI: 10.3390/cancers14112584] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/26/2022] [Accepted: 05/11/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary The p53 family p63 gene is essential for the proliferation and differentiation of various epithelial cells, and it is overexpressed in some salivary gland neoplasia. Histone deacetylases (HDACs) are thought to play a crucial role in carcinogenesis, and HDAC inhibitors downregulate p63 expression in cancers. p63 is not only a diagnostic marker of salivary gland neoplasia, but it also promotes the malignancy. Inhibition of HDAC and signal transduction pathways inhibited cell proliferation and migration, induced tight junctions, and promoted differentiation in p63-positive salivary duct adenocarcinoma (SDC). It is, therefore, useful in therapy for p63-positive SDC cells. Abstract Background: The p53 family p63 is essential for the proliferation and differentiation of various epithelial basal cells. It is overexpressed in several cancers, including salivary gland neoplasia. Histone deacetylases (HDACs) are thought to play a crucial role in carcinogenesis, and HDAC inhibitors downregulate p63 expression in cancers. Methods: In the present study, to investigate the roles and regulation of p63 in salivary duct adenocarcinoma (SDC), human SDC cell line A253 was transfected with siRNA-p63 or treated with the HDAC inhibitors trichostatin A (TSA) and quisinostat (JNJ-26481585). Results: In a DNA array, the knockdown of p63 markedly induced mRNAs of the tight junction (TJ) proteins cingulin (CGN) and zonula occuludin-3 (ZO-3). The knockdown of p63 resulted in the recruitment of the TJ proteins, the angulin-1/lipolysis-stimulated lipoprotein receptor (LSR), occludin (OCLN), CGN, and ZO-3 at the membranes, preventing cell proliferation, and leading to increased cell metabolism. Treatment with HDAC inhibitors downregulated the expression of p63, induced TJ structures, recruited the TJ proteins, increased the epithelial barrier function, and prevented cell proliferation and migration. Conclusions: p63 is not only a diagnostic marker of salivary gland neoplasia, but it also promotes the malignancy. Inhibition of HDAC and signal transduction pathways is, therefore, useful in therapy for p63-positive SDC cells.
Collapse
Affiliation(s)
- Masaya Nakano
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (M.N.); (K.O.); (Y.S.); (T.K.); (T.K.); (D.I.); (S.N.)
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (T.K.); (K.O.); (R.M.); (M.K.); (A.K.); (K.T.)
| | - Kizuku Ohwada
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (M.N.); (K.O.); (Y.S.); (T.K.); (T.K.); (D.I.); (S.N.)
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (T.K.); (K.O.); (R.M.); (M.K.); (A.K.); (K.T.)
| | - Yuma Shindo
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (M.N.); (K.O.); (Y.S.); (T.K.); (T.K.); (D.I.); (S.N.)
- Department of Thoracic Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Takumi Konno
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (M.N.); (K.O.); (Y.S.); (T.K.); (T.K.); (D.I.); (S.N.)
| | - Takayuki Kohno
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (M.N.); (K.O.); (Y.S.); (T.K.); (T.K.); (D.I.); (S.N.)
| | - Shin Kikuchi
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan;
| | - Mitsuhiro Tsujiwaki
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan;
| | - Daichi Ishii
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (M.N.); (K.O.); (Y.S.); (T.K.); (T.K.); (D.I.); (S.N.)
- Department of Thoracic Surgery, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan
| | - Soshi Nishida
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (M.N.); (K.O.); (Y.S.); (T.K.); (T.K.); (D.I.); (S.N.)
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (T.K.); (K.O.); (R.M.); (M.K.); (A.K.); (K.T.)
| | - Takuya Kakuki
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (T.K.); (K.O.); (R.M.); (M.K.); (A.K.); (K.T.)
| | - Kazufumi Obata
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (T.K.); (K.O.); (R.M.); (M.K.); (A.K.); (K.T.)
| | - Ryo Miyata
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (T.K.); (K.O.); (R.M.); (M.K.); (A.K.); (K.T.)
| | - Makoto Kurose
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (T.K.); (K.O.); (R.M.); (M.K.); (A.K.); (K.T.)
| | - Atsushi Kondoh
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (T.K.); (K.O.); (R.M.); (M.K.); (A.K.); (K.T.)
| | - Kenichi Takano
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (T.K.); (K.O.); (R.M.); (M.K.); (A.K.); (K.T.)
| | - Takashi Kojima
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo 060-8556, Japan; (M.N.); (K.O.); (Y.S.); (T.K.); (T.K.); (D.I.); (S.N.)
- Correspondence:
| |
Collapse
|
9
|
Yang HY, Liang ZH, Xie JL, Wu Q, Qin YY, Zhang SY, Tang GD. Gelsolin impairs barrier function in pancreatic ductal epithelial cells by actin filament depolymerization in hypertriglyceridemia‑induced pancreatitis in vitro. Exp Ther Med 2022; 23:290. [PMID: 35317441 PMCID: PMC8908475 DOI: 10.3892/etm.2022.11219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/25/2022] [Indexed: 11/23/2022] Open
Abstract
Gelsolin (GSN) is a calcium-regulated actin-binding protein that can sever actin filaments. Notably, actin dynamics affect the structure and function of epithelial barriers. The present study investigated the role of GSN in the barrier function of pancreatic ductal epithelial cells (PDECs) in hypertriglyceridemia-induced pancreatitis (HTGP). The human PDEC cell line HPDE6-C7 underwent GSN knockdown and was treated with caerulein (CAE) + triglycerides (TG). Intracellular calcium levels and the actin filament network were analyzed under a fluorescence microscope. The expression levels of GSN, E-cadherin, nectin-2, ZO-1 and occludin were evaluated by reverse transcription-quantitative polymerase chain reaction and western blotting. Ultrastructural changes in tight junctions were observed by transmission electron microscopy. Furthermore, the permeability of PDECs was analyzed by fluorescein isothiocyanate-dextran fluorescence. The results revealed that CAE + TG increased intracellular calcium levels, actin filament depolymerization and GSN expression, and increased PDEC permeability by decreasing the expression levels of E-cadherin, nectin-2, ZO-1 and occludin compared with the control. Moreover, changes in these markers, with the exception of intracellular calcium levels, were reversed by silencing GSN. In conclusion, GSN may disrupt barrier function in PDECs by causing actin filament depolymerization in HTGP in vitro.
Collapse
Affiliation(s)
- Hui-Ying Yang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Zhi-Hai Liang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jin-Lian Xie
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Qing Wu
- Department of Gastroenterology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530007, P.R. China
| | - Ying-Ying Qin
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Shi-Yu Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Guo-Du Tang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
10
|
Massironi S, Facciotti F, Cavalcoli F, Amoroso C, Rausa E, Centonze G, Cribiù FM, Invernizzi P, Milione M. Intratumor Microbiome in Neuroendocrine Neoplasms: A New Partner of Tumor Microenvironment? A Pilot Study. Cells 2022; 11:cells11040692. [PMID: 35203339 PMCID: PMC8870382 DOI: 10.3390/cells11040692] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 02/05/2023] Open
Abstract
Neuroendocrine neoplasms (NENs) are rare neoplasms with heterogeneous clinical behavior. Alteration in human microbiota was reported in association with carcinogenesis in different solid tumors. However, few studies addressed the role of microbiota in NEN. We here aimed at evaluating the presence of bacterial infiltration in neuroendocrine tumoral tissue. To assess the presence of bacteria, 20 specimens from pancreatic NEN (pan-NEN) and 20 from intestinal NEN (I-NEN) were evaluated through Fluorescent In situ Hybridization and confocal microscopy. Demographic data, pre-operative investigations, operative findings, pathological diagnosis, follow-up, and survival data were evaluated. Among I-NEN, bacteria were detected in 15/20 (75%) specimens, with high variability in microbial distribution. In eight patients, a high infiltration of microorganisms was observed. Among pan-NEN, 18/20 (90%) showed microorganisms’ infiltration, with a homogeneous microbial distribution. Bacterial localization in pan-NEN was observed in the proximity of blood vessels. A higher bacterial infiltration in the tumoral specimen as compared with non-tumoral tissue was reported in 10/20 pan-NEN (50%). No significant differences were observed in mean bacterial count according to age, sex, ki67%, site, tumor stage. Mean bacterial count did not result to be a predictor of disease-specific survival. This preliminary study demonstrates the presence of a significant microbiota in the NEN microenvironment. Further research is needed to investigate the potential etiological or clinical role of microbiota in NEN.
Collapse
Affiliation(s)
- Sara Massironi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Ospedale San Gerardo, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
- Correspondence: ; Tel.: +39-039-2332317; Fax: +39-039-2300129
| | - Federica Facciotti
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, 20126 Milan, Italy;
| | - Federica Cavalcoli
- Diagnostic and Therapeutic Endoscopy Unit, Fondazione IRCCS Istituto Nazionale Tumori, 20133 Milan, Italy;
| | - Chiara Amoroso
- Department of Experimental Oncology, European Institute of Oncology IRCCS, 20141 Milan, Italy;
| | - Emanuele Rausa
- General, Emergency and Trauma Surgery Department, Papa Giovanni XXIII Hospital, 24121 Bergamo, Italy;
| | - Giovanni Centonze
- First Pathology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (G.C.); (M.M.)
| | - Fulvia Milena Cribiù
- Division of Pathology, Fondazione IRCCS Cá Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Pietro Invernizzi
- Division of Gastroenterology, Center for Autoimmune Liver Diseases, Ospedale San Gerardo, Department of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy;
| | - Massimo Milione
- First Pathology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy; (G.C.); (M.M.)
| |
Collapse
|
11
|
Schepis T, De Lucia SS, Nista EC, Manilla V, Pignataro G, Ojetti V, Piccioni A, Gasbarrini A, Franceschi F, Candelli M. Microbiota in Pancreatic Diseases: A Review of the Literature. J Clin Med 2021; 10:jcm10245920. [PMID: 34945216 PMCID: PMC8704740 DOI: 10.3390/jcm10245920] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 02/05/2023] Open
Abstract
The gut microbiota is a critical element in the balance between human health and disease. Its impairment, defined as dysbiosis, is associated with gastroenterological and systemic diseases. Pancreatic secretions are involved in the composition and changes of the gut microbiota, and the gut microbiota may colonize the pancreatic parenchyma and be associated with the occurrence of diseases. The gut microbiota and the pancreas influence each other, resulting in a "gut microbiota-pancreas axis". Moreover, the gut microbiota may be involved in pancreatic diseases, both through direct bacterial colonization and an indirect effect of small molecules and toxins derived from dysbiosis. Pancreatic diseases such as acute pancreatitis, chronic pancreatitis, autoimmune pancreatitis, and pancreatic cancer are common gastroenterological diseases associated with high morbidity and mortality. The involvement of the microbiota in pancreatic diseases is increasingly recognized. Therefore, modifying the intestinal bacterial flora could have important therapeutic implications on these pathologies. The aim of this study is to review the literature to evaluate the alterations of the gut microbiota in pancreatic diseases, and the role of the microbiota in the treatment of these diseases.
Collapse
Affiliation(s)
- Tommaso Schepis
- Medical and Surgical Science Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, Università Cattolica del Sacro Cuore di Roma, 00168 Roma, Italy; (T.S.); (S.S.D.L.); (E.C.N.); (V.M.); (A.G.)
| | - Sara S. De Lucia
- Medical and Surgical Science Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, Università Cattolica del Sacro Cuore di Roma, 00168 Roma, Italy; (T.S.); (S.S.D.L.); (E.C.N.); (V.M.); (A.G.)
| | - Enrico C. Nista
- Medical and Surgical Science Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, Università Cattolica del Sacro Cuore di Roma, 00168 Roma, Italy; (T.S.); (S.S.D.L.); (E.C.N.); (V.M.); (A.G.)
| | - Vittoria Manilla
- Medical and Surgical Science Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, Università Cattolica del Sacro Cuore di Roma, 00168 Roma, Italy; (T.S.); (S.S.D.L.); (E.C.N.); (V.M.); (A.G.)
| | - Giulia Pignataro
- Emergency Medicine Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, Università Cattolica del Sacro Cuore di Roma, 00168 Roma, Italy; (G.P.); (V.O.); (A.P.); (F.F.)
| | - Veronica Ojetti
- Emergency Medicine Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, Università Cattolica del Sacro Cuore di Roma, 00168 Roma, Italy; (G.P.); (V.O.); (A.P.); (F.F.)
| | - Andrea Piccioni
- Emergency Medicine Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, Università Cattolica del Sacro Cuore di Roma, 00168 Roma, Italy; (G.P.); (V.O.); (A.P.); (F.F.)
| | - Antonio Gasbarrini
- Medical and Surgical Science Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, Università Cattolica del Sacro Cuore di Roma, 00168 Roma, Italy; (T.S.); (S.S.D.L.); (E.C.N.); (V.M.); (A.G.)
| | - Francesco Franceschi
- Emergency Medicine Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, Università Cattolica del Sacro Cuore di Roma, 00168 Roma, Italy; (G.P.); (V.O.); (A.P.); (F.F.)
| | - Marcello Candelli
- Emergency Medicine Department, Fondazione Policlinico Universitario Agostino Gemelli—IRCCS, Università Cattolica del Sacro Cuore di Roma, 00168 Roma, Italy; (G.P.); (V.O.); (A.P.); (F.F.)
- Correspondence: ; Tel.: +39-063-0153-188
| |
Collapse
|
12
|
Akhmedov VA, Gaus OV. [Inflammatory diseases of the pancreas: what new do we know about the mechanisms of their development in the 21st century?]. TERAPEVT ARKH 2021; 93:66-70. [PMID: 33720628 DOI: 10.26442/00403660.2021.01.200595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 02/25/2021] [Indexed: 11/22/2022]
Abstract
Inflammatory diseases of the pancreas can range from acute to acute recurrent and chronic pancreatitis. With the improvement of laboratory diagnostics in the 21st century, the mechanisms of the pro-inflammatory and anti-inflammatory role of tight junctions, in particular the transmembrane proteins occludin, claudine and JAMs, cytoplasmic Zo-proteins, and adherens junctions, in particular -catenin, -catenin, E-cadherin, selectins and ICAMs in the pathogenesis of acute and chronic pancreatitis have become more clear. The study of genetic factors in the development of acute and chronic pancreatitis showed the role of mutations in the genes SPINK1 N34S, PRSS1, CEL-HYB in the progression of the disease.
Collapse
|
13
|
Thomas RM, Jobin C. Microbiota in pancreatic health and disease: the next frontier in microbiome research. Nat Rev Gastroenterol Hepatol 2020; 17:53-64. [PMID: 31811279 DOI: 10.1038/s41575-019-0242-7] [Citation(s) in RCA: 172] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/11/2019] [Indexed: 12/12/2022]
Abstract
Diseases intrinsic to the pancreas such as pancreatitis, pancreatic cancer and type 1 diabetes mellitus impart substantial health and financial burdens on society but identification of novel mechanisms contributing to these pathologies are slow to emerge. A novel area of research suggests that pancreatic-specific disorders might be modulated by the gut microbiota, either through a local (direct pancreatic influence) or in a remote (nonpancreatic) fashion. In this Perspectives, we examine literature implicating microorganisms in diseases of the pancreas, specifically pancreatitis, type 1 diabetes mellitus and pancreatic ductal adenocarcinoma. We also discuss evidence of an inherent pancreatic microbiota and the influence of the intestinal microbiota as it relates to disease association and development. In doing so, we address pitfalls in the current literature and areas of investigation that are needed to advance a developing field of research that has clinical potential to reduce the societal burden of pancreatic diseases.
Collapse
Affiliation(s)
- Ryan M Thomas
- Department of Surgery, University of Florida College of Medicine, Gainesville, FL, USA.,Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL, USA
| | - Christian Jobin
- Department of Medicine, Division of Gastroenterology, University of Florida College of Medicine, Gainesville, FL, USA.
| |
Collapse
|
14
|
Xia WX, Zhang LH, Liu YW. Weighted Gene Co-Expression Network Analysis Reveals Six Hub Genes Involved in and Tight Junction Function in Pancreatic Adenocarcinoma and their Potential Use in Prognosis. Genet Test Mol Biomarkers 2019; 23:829-836. [PMID: 31821092 DOI: 10.1089/gtmb.2019.0122] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Background: Pancreatic adenocarcinoma (PAAD) is an aggressive and invasive tumor with poor prognosis. Identifying prognostic biomarkers of PAAD will provide crucial information for developing treatment plans. Methods: In this analysis, a gene-expression dataset, containing RNA-sequencing data recalculated into transcripts per million, was obtained from the UCSC Xena platform. Three thousand nine hundred and seventy six differentially expressed genes were obtained with analysis of variance. Using these data a co-expression network was constructed using weighted gene co-expression network analysis, from which we obtained eight modules. Results: The blue module included 497 genes and demonstrated significant negative correlation with overall survival. Furthermore, pathway analyses demonstrated the involvement of many of these genes in the tight junction pathway, which plays a critical role in PAAD. In addition, we identified six genes in common (i.e., ANXA2 [annexin A2], EPHA2 [erythropoietin-producing hepatocellular class A2], ITGB4 [integrin beta 4], KRT19 [keratin type I cytoskeletal 19], LGALS3 [galectin-3], and S100A14 [S100 calcium binding protein A14]) between the protein-protein interaction and gene co-expression networks that may have critical functions in PAAD. These hub genes were not only highly expressed at the RNA level but also exhibited high expression in the immunohistological data in the Human Protein Atlas Database. Conclusion: Thus, this research clarified the framework of co-expressed gene modules in PAAD and highlighted potential prognostic biomarkers for the clinical diagnosis of PAAD.
Collapse
Affiliation(s)
- Wang-Xiao Xia
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic Translational Medicine, Xi'an Medical University, Xi'an, China
| | - Lin-Heng Zhang
- Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yao-Wen Liu
- Shaanxi Key Laboratory of Brain Disorders, Institute of Basic Translational Medicine, Xi'an Medical University, Xi'an, China
- College of Veterinary Medicine, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
15
|
Konno T, Kohno T, Kikuchi S, Shimada H, Satohisa S, Saito T, Kondoh M, Kojima T. Epithelial barrier dysfunction and cell migration induction via JNK/cofilin/actin by angubindin-1. Tissue Barriers 2019; 8:1695475. [PMID: 31782346 DOI: 10.1080/21688370.2019.1695475] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Angulin-1/LSR is a tricellular tight junction molecule, that plays an important role in maintaining the epithelial and endothelial barriers. The actin cytoskeleton at tricellular contacts also contributes to the maintenance of the epithelial barrier. Loss of angulin-1/LSR enhances the migration of various cancer cells. Angubindin-1 is a novel binder to angulin-1/LSR and angulin-3. It is a peptide generated from the angulin-1 binding site of Clostridium perfringens iota toxin, which affects the actin cytoskeleton and decreases the epithelial and endothelial barrier functions. However, its regulatory mechanisms are not well understood. To investigate the regulatory mechanisms of the epithelial barrier dysfunction and cell migration induction by angubindin-1, we used human endometrial cancer cell line Sawano, which has high LSR expression and the epithelial barrier function. Angubindin-1 decreased LSR expression and the epithelial barrier function and increased cell migration. It inhibited the recovery of the epithelial barrier function in a Ca-switch model. At tricellular contacts, sinking of the membrane and an increase of actin fibers near the junctions were caused by angubindin-1. It dynamically changed F-actin from lines to dot-like structures at tricellular contacts. Angubindin-1 transiently increased the phosphorylation of cofilin and JNK, which are involved in the regulation of the intracellular actin cytoskeleton. Furthermore, knockdown of JNK and the JNK inhibitor SP600125 prevented the decrease of the epithelial barrier function and the increase of cell migration induced by angubindin-1. These findings suggest that angubindin-1 might reversibly regulate the epithelial barrier and cell migration at tricellular contacts via JNK/cofilin/actin cytoskeleton dynamics.
Collapse
Affiliation(s)
- Takumi Konno
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takayuki Kohno
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shin Kikuchi
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Shimada
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Seiro Satohisa
- Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tsuyoshi Saito
- Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Masuo Kondoh
- Drug discovery Center, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | - Takashi Kojima
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
16
|
Abstract
Acute and chronic pancreatitises are gastrointestinal inflammatory diseases, the incidence of which is increasing worldwide. Most (~ 80%) acute pancreatitis (AP) patients have mild disease, and about 20% have severe disease, which causes multiple organ failure and has a high mortality rate. Chronic pancreatitis (CP) is characterized by chronic inflammation and destruction of normal pancreatic parenchyma, which leads to loss of exocrine and endocrine tissues. Patients with CP also have a higher incidence of pancreatic ductal adenocarcinoma. Although a number of factors are associated with the development and progression of AP and CP, the underlying mechanism is unclear. Adhesion molecules play important roles in cell migration, proliferation, and signal transduction, as well as in development and tissue repair. Loosening of cell-cell adhesion between pancreatic acinar cells and/or endothelial cells increases solute permeability, resulting in interstitial edema, which promotes inflammatory cell migration and disrupts tissue structure. Oxidative stress, which is one of the important pathogenesis of pancreatitis, leads to upregulation of adhesion molecules. Soluble adhesion molecules are reportedly involved in AP. In this review, we focus on the roles of tight junctions (occludin, tricellulin, claudin, junctional adhesion molecule, and zonula occludin), adherens junctions (E-cadherin and p120-, α-, and β-catenin), and other adhesion molecules (selectin and intercellular adhesion molecules) in the progression of AP and CP. Maintaining the normal function of adhesion molecules and preventing their abnormal activation maintain the structure of the pancreas and prevent the development of pancreatitis.
Collapse
Affiliation(s)
- Takeshi Sato
- 0000 0001 1033 6139grid.268441.dDepartment of Gastroenterology, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ku, Yokohama, Kanagawa 236-0004 Japan
| | - Wataru Shibata
- 0000 0001 1033 6139grid.268441.dDepartment of Gastroenterology, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ku, Yokohama, Kanagawa 236-0004 Japan ,0000 0001 1033 6139grid.268441.dDivision of Translational Research, Advanced Medical Research Center, Yokohama City University, Fukuura 3-9, Kanazawa-ku, Yokohama, Kanagawa 236-0004 Japan
| | - Shin Maeda
- 0000 0001 1033 6139grid.268441.dDepartment of Gastroenterology, Yokohama City University Graduate School of Medicine, Fukuura 3-9, Kanazawa-ku, Yokohama, Kanagawa 236-0004 Japan
| |
Collapse
|
17
|
Tikiyani V, Li L, Sharma P, Liu H, Hu Z, Babu K. Wnt Secretion Is Regulated by the Tetraspan Protein HIC-1 through Its Interaction with Neurabin/NAB-1. Cell Rep 2018; 25:1856-1871.e6. [PMID: 30428353 PMCID: PMC6258899 DOI: 10.1016/j.celrep.2018.10.053] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/25/2018] [Accepted: 10/11/2018] [Indexed: 12/22/2022] Open
Abstract
The aberrant regulation of Wnt secretion is implicated in various neurological diseases. However, the mechanisms of Wnt release are still largely unknown. Here we describe the role of a C. elegans tetraspan protein, HIC-1, in maintaining normal Wnt release. We show that HIC-1 is expressed in cholinergic synapses and that mutants in hic-1 show increased levels of the acetylcholine receptor AChR/ACR-16. Our results suggest that HIC-1 maintains normal AChR/ACR-16 levels by regulating normal Wnt release from presynaptic neurons, as hic-1 mutants show an increase in secreted Wnt from cholinergic neurons. We further show that HIC-1 affects Wnt secretion by modulating the actin cytoskeleton through its interaction with the actin-binding protein NAB-1. In summary, we describe a protein, HIC-1, that functions as a neuromodulator by affecting postsynaptic AChR/ACR-16 levels by regulating presynaptic Wnt release from cholinergic motor neurons.
Collapse
Affiliation(s)
- Vina Tikiyani
- Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Manauli PO 140306, Punjab, India
| | - Lei Li
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research (CJCADR), University of Queensland, Upland Road 79, St. Lucia, QLD 4072, Australia
| | - Pallavi Sharma
- Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Manauli PO 140306, Punjab, India
| | - Haowen Liu
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research (CJCADR), University of Queensland, Upland Road 79, St. Lucia, QLD 4072, Australia
| | - Zhitao Hu
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research (CJCADR), University of Queensland, Upland Road 79, St. Lucia, QLD 4072, Australia
| | - Kavita Babu
- Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, SAS Nagar, Manauli PO 140306, Punjab, India.
| |
Collapse
|
18
|
Kowalska M, Rupik W. Development of the duct system during exocrine pancreas differentiation in the grass snakeNatrix natrix(Lepidosauria, Serpentes). J Morphol 2018; 279:724-746. [DOI: 10.1002/jmor.20806] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/25/2018] [Accepted: 02/06/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Magdalena Kowalska
- Department of Animal Histology and Embryology; University of Silesia; Katowice Poland
| | - Weronika Rupik
- Department of Animal Histology and Embryology; University of Silesia; Katowice Poland
| |
Collapse
|
19
|
Lin Z, Zhang YG, Xia Y, Xu X, Jiao X, Sun J. Salmonella enteritidis Effector AvrA Stabilizes Intestinal Tight Junctions via the JNK Pathway. J Biol Chem 2016; 291:26837-26849. [PMID: 27875307 DOI: 10.1074/jbc.m116.757393] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/07/2016] [Indexed: 01/27/2023] Open
Abstract
Salmonella pathogenesis studies to date have focused on Salmonella typhimurium, and the pathogenesis of a second major serotype, Salmonella enteritidis, is poorly understood. Salmonella spp. possess effector proteins that display biochemical activities and modulate host functions. Here, we generated a deletion mutant of the effector AvrA, S.E-AvrA-, and a plasmid-mediated complementary strain, S.E-AvrA-/pAvrA+ (S.E-AvrA+), in S. Enteritidis. Using in vitro and in vivo infection models, we showed that AvrA stabilizes epithelial tight junction (TJ) proteins, such as ZO-1, in human intestinal epithelial cells. Transepithelial electrical resistance was significantly higher in cells infected with S.E-AvrA+ than in cells infected with S.E-AvrA- Inhibition of the JNK pathway suppresses the disassembly of TJ proteins; we found that enteritidis AvrA inhibited JNK activity in cells infected with wild type or S.E-AvrA+ strains. Therefore, Enteritidis AvrA-induced ZO-1 stability is achieved via suppression of the JNK pathway. Furthermore, the S.E-AvrA- strain led to enhanced bacterial invasion, both in vitro and in vivo Taken together, our data reveal a novel role for AvrA in S. Enteritidis: Enteritidis AvrA stabilizes intestinal TJs and attenuates bacterial invasion. The manipulation of JNK activity and TJs in microbial-epithelial interactions may be a novel therapeutic approach for the treatment of infectious diseases.
Collapse
Affiliation(s)
- Zhijie Lin
- From the Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis and.,the Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, and
| | - Yong-Guo Zhang
- the Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, and
| | - Yinglin Xia
- the Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, and
| | - Xiulong Xu
- From the Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis and.,the Center for Comparative Medicine, Animal Infectious Disease Laboratory, College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, Jiangsu Province, China.,the Department of Anatomy and Cell Biology, Rush University Medical Center, Chicago, Illinois 60612
| | - Xinan Jiao
- From the Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis and
| | - Jun Sun
- From the Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonosis and .,the Division of Gastroenterology and Hepatology, Department of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612, and
| |
Collapse
|
20
|
Deng WS, Zhang J, Ju H, Zheng HM, Wang J, Wang S, Zhang DL. Arpin contributes to bacterial translocation and development of severe acute pancreatitis. World J Gastroenterol 2015; 21:4293-4301. [PMID: 25892881 PMCID: PMC4394092 DOI: 10.3748/wjg.v21.i14.4293] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2014] [Revised: 01/11/2015] [Accepted: 02/05/2015] [Indexed: 02/07/2023] Open
Abstract
AIM: To assess the impact of Arpin protein and tight junction (TJ) proteins in the intestinal mucosa on bacterial translocation in patients with severe acute pancreatitis (SAP).
METHODS: Fifty SAP patients were identified as study objects and then classified into two groups according to the presence of bacterial translocation (BT) in the blood [i.e., BT(+) and BT(-)]. Twenty healthy individuals were included in the control group. BT was analyzed by polymerase chain reaction, colonic mucosal tissue was obtained by endoscopy and the expression of TJ proteins and Arpin protein was determined using immunofluorescence and western blotting.
RESULTS: Bacterial DNA was detected in the peripheral blood of 62.0% of patients (31/50) with SAP. The expression of TJ proteins in SAP patients was lower than that in healthy controls. In contrast, Arpin protein expression in SAP patients was higher than in healthy controls (0.38 ± 0.19 vs 0.28 ± 0.16, P < 0.05). Among SAP patients, those positive for BT showed a higher level of claudin-2 expression (0.64 ± 0.27 vs 0.32 ± 0.21, P < 0.05) and a lower level of occludin (OC) (0.61 ± 0.28 vs 0.73 ± 0.32, P < 0.05) and zonula occludens-1 (0.42 ± 0.26 vs 0.58 ± 0.17, P = 0.038) expression in comparison with BT (-) patients. Moreover, the level of Arpin expression in BT (+) patients was higher than in BT (-) patients (0.61 ± 0.28 vs 0.31 ± 0.24, P < 0.05).
CONCLUSION: Arpin protein affects the expression of tight junction proteins and may have an impact on BT. These results contribute to a better understanding of the factors involved in bacterial translocation during acute pancreatitis.
Collapse
|
21
|
F-actin binding protein, anillin, regulates integrity of intercellular junctions in human epithelial cells. Cell Mol Life Sci 2015; 72:3185-3200. [PMID: 25809162 DOI: 10.1007/s00018-015-1890-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Revised: 02/26/2015] [Accepted: 03/19/2015] [Indexed: 01/01/2023]
Abstract
Tight junctions (TJ) and adherens junctions (AJ) are key morphological features of differentiated epithelial cells that regulate the integrity and permeability of tissue barriers. Structure and remodeling of epithelial junctions depends on their association with the underlying actomyosin cytoskeleton. Anillin is a unique scaffolding protein interacting with different cytoskeletal components, including actin filaments and myosin motors. Its role in the regulation of mammalian epithelial junctions remains unexplored. Downregulation of anillin expression in human prostate, colonic, and lung epithelial cells triggered AJ and TJ disassembly without altering the expression of junctional proteins. This junctional disassembly was accompanied by dramatic disorganization of the perijunctional actomyosin belt; while the general architecture of the actin cytoskeleton, and activation status of non-muscle myosin II, remained unchanged. Furthermore, loss of anillin disrupted the adducin-spectrin membrane skeleton at the areas of cell-cell contact, selectively decreased γ-adducin expression, and induced cytoplasmic aggregation of αII-spectrin. Anillin knockdown activated c-Jun N-terminal kinase (JNK), and JNK inhibition restored AJ and TJ integrity and cytoskeletal organization in anillin-depleted cells. These findings suggest a novel role for anillin in regulating intercellular adhesion in model human epithelia by mechanisms involving the suppression of JNK activity and controlling the assembly of the perijunctional cytoskeleton.
Collapse
|
22
|
Konno T, Ninomiya T, Kohno T, Kikuchi S, Sawada N, Kojima T. c-Jun N-terminal kinase inhibitor SP600125 enhances barrier function and elongation of human pancreatic cancer cell line HPAC in a Ca-switch model. Histochem Cell Biol 2014; 143:471-9. [PMID: 25511417 DOI: 10.1007/s00418-014-1300-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2014] [Indexed: 12/11/2022]
Abstract
c-Jun N-terminal kinase (JNK), known as a stress-activated protein kinase, regulates normal epithelial biological processes, including assembly of adherens and tight junctions, and it is involved in the development of several cancers. The JNK inhibitor SP600125 enhances epithelial barrier function through modulation of tight junction molecules in normal human pancreatic epithelial cells. Furthermore, this JNK inhibitor suppresses the growth of human pancreatic cancer cells. However, the effects of SP600125 on the epithelial barrier in human pancreatic cancer cells remain unknown. In the present study, the JNK inhibitor SP600125 markedly enhanced the barrier function and cell elongation of well-differentiated human pancreatic cancer cell line HPAC in a Ca-switch model. The epithelial barrier function induced by SP600125 was regulated by phosphorylated β-catenin without changes in the tight junction molecules. The cell elongation induced by SP600125 was closely related to the expression of the F-actin-binding protein DrebrinE. These findings suggest that JNK is involved in the regulation of the epithelial barrier function and cell shape during remodeling of pancreatic cancer cells. The JNK inhibitor SP600125 may have potential as a therapeutic drug for pancreatic cancer via induction of differentiation.
Collapse
Affiliation(s)
- Takumi Konno
- Department of Cell Science, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, S1. W17., Sapporo, 060-8556, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Ivanov AI. Tissue Barriers: Introducing an exciting new journal. Temperature (Austin) 2014; 1:151-3. [PMID: 27626042 PMCID: PMC5008708 DOI: 10.4161/23328940.2014.978716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 10/16/2014] [Accepted: 10/16/2014] [Indexed: 11/19/2022] Open
Abstract
This Editorial is written to introduce Tissue Barriers, a new Taylor & Francis journal, to the readers of Temperature. It describes the role of temperature in the regulation of different tissue barriers under normal and disease conditions. It also highlights the most interesting articles published in the first volume of Tissue Barriers.
Collapse
Affiliation(s)
- Andrei I Ivanov
- Department of Human and Molecular Genetics; Virginia Institute of Molecular Medicine; VCU Massey Cancer Center; Virginia Commonwealth University ; Richmond, VA USA
| |
Collapse
|
24
|
|