1
|
Donadeu L, Jouve T, Bin S, Hartzell S, Crespo E, Torija A, Jarque M, Kervella D, Zúñiga J, Zhang W, Sun Z, Verlato A, Martínez-Gallo M, Font-Miñarro C, Meneghini M, Toapanta N, Torres IB, Sellarés J, Perelló M, Kaminski H, Couzi L, Loupy A, La Manna G, Moreso F, Cravedi P, Bestard O. High-dimensional mass cytometry identified circulating natural killer T-cell subsets associated with protection from cytomegalovirus infection in kidney transplant recipients. Kidney Int 2024; 106:482-495. [PMID: 38685562 DOI: 10.1016/j.kint.2024.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/08/2024] [Accepted: 03/12/2024] [Indexed: 05/02/2024]
Abstract
Cytomegalovirus (CMV) infection is associated with poor kidney transplant outcomes. While innate and adaptive immune cells have been implicated in its prevention, an in-depth characterization of the in vivo kinetics of multiple cell subsets and their role in protecting against CMV infection has not been achieved. Here, we performed high-dimensional immune phenotyping by mass cytometry, and functional assays, on 112 serially collected samples from CMV seropositive kidney transplant recipients. Advanced unsupervised deep learning analysis was used to assess immune cell populations that significantly correlated with prevention against CMV infection and anti-viral immune function. Prior to infection, kidney transplant recipients who developed CMV infection showed significantly lower CMV-specific cell-mediated immune (CMI) frequencies than those that did not. A broad diversity of circulating cell subsets within innate and adaptive immune compartments were associated with CMV infection or protective CMV-specific CMI. While percentages of CMV (tetramer-stained)-specific T cells associated with high CMI responses and clinical protection, circulating CD3+CD8midCD56+ NK-T cells overall strongly associated with low CMI and subsequent infection. However, three NK-T cell subsets sharing the CD11b surface marker associated with CMV protection and correlated with strong anti-viral CMI frequencies in vitro. These data were validated in two external independent cohorts of kidney transplant recipients. Thus, we newly describe the kinetics of a novel NK-T cell subset that may have a protective role in post-transplantation CMV infection. Our findings pave the way to more mechanistic studies aimed at understanding the function of these cells in protection against CMV infection.
Collapse
Affiliation(s)
- Laura Donadeu
- Laboratory of Nephrology and Transplantation, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain; Vall d'Hebron for Solid Organ Transplantation Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Thomas Jouve
- Laboratory of Nephrology and Transplantation, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain; University Grenoble Alpes, Centre Hospitalier Universitaire Grenoble Alpes, Inserm 1209, Centre national de la recherche scientifique 5309, Institute for Advanced Biosciences, Grenoble, France
| | - Sofia Bin
- Translational Transplant Research Center (TTRC), Icahn School of Medicine at Mount Sinai, New York, New York, USA; Nephrology, Dialysis and Renal Transplant Unit, Istituto di Ricovero e Cura a Carattere Scientifico-Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Susan Hartzell
- Translational Transplant Research Center (TTRC), Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Elena Crespo
- Laboratory of Nephrology and Transplantation, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain; Vall d'Hebron for Solid Organ Transplantation Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alba Torija
- Laboratory of Nephrology and Transplantation, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain; Vall d'Hebron for Solid Organ Transplantation Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Marta Jarque
- Laboratory of Nephrology and Transplantation, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Delphine Kervella
- Laboratory of Nephrology and Transplantation, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain; Vall d'Hebron for Solid Organ Transplantation Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - José Zúñiga
- Laboratory of Nephrology and Transplantation, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain; Vall d'Hebron for Solid Organ Transplantation Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain; Kidney Transplant Unit, Nephrology Department, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Weijia Zhang
- Translational Transplant Research Center (TTRC), Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Zeguo Sun
- Translational Transplant Research Center (TTRC), Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Alberto Verlato
- Translational Transplant Research Center (TTRC), Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Mónica Martínez-Gallo
- Immunology Department, Vall d'Hebron Hospital Universitari, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Cristina Font-Miñarro
- Laboratory of Nephrology and Transplantation, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain; Vall d'Hebron for Solid Organ Transplantation Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Maria Meneghini
- Laboratory of Nephrology and Transplantation, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain; Vall d'Hebron for Solid Organ Transplantation Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain; Kidney Transplant Unit, Nephrology Department, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Nestor Toapanta
- Vall d'Hebron for Solid Organ Transplantation Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain; Kidney Transplant Unit, Nephrology Department, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Irina B Torres
- Laboratory of Nephrology and Transplantation, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain; Vall d'Hebron for Solid Organ Transplantation Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain; Kidney Transplant Unit, Nephrology Department, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Joana Sellarés
- Laboratory of Nephrology and Transplantation, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain; Vall d'Hebron for Solid Organ Transplantation Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain; Kidney Transplant Unit, Nephrology Department, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Manel Perelló
- Vall d'Hebron for Solid Organ Transplantation Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain; Kidney Transplant Unit, Nephrology Department, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Hannah Kaminski
- Department of Nephrology, Transplantation, Dialysis and Apheresis, Centre Hospitalier Universitaire Bordeaux, Bordeaux, France; Unité Mixte de Recherche 5164-ImmunoConcEpT, University of Bordeaux, Centre national de la recherche scientifique, Bordeaux University, Bordeaux, France
| | - Lionel Couzi
- Department of Nephrology, Transplantation, Dialysis and Apheresis, Centre Hospitalier Universitaire Bordeaux, Bordeaux, France; Unité Mixte de Recherche 5164-ImmunoConcEpT, University of Bordeaux, Centre national de la recherche scientifique, Bordeaux University, Bordeaux, France
| | - Alexandre Loupy
- Paris Translational Research Center for Organ Transplantation, Institut National de la Santé et de la Recherche Médicale Unité Mixte de Recherche-S970, Université de Paris, Paris, France
| | - Gaetano La Manna
- Nephrology, Dialysis and Renal Transplant Unit, Istituto di Ricovero e Cura a Carattere Scientifico-Azienda Ospedaliero-Universitaria di Bologna, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Francesc Moreso
- Laboratory of Nephrology and Transplantation, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain; Vall d'Hebron for Solid Organ Transplantation Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain; Kidney Transplant Unit, Nephrology Department, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Paolo Cravedi
- Translational Transplant Research Center (TTRC), Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| | - Oriol Bestard
- Laboratory of Nephrology and Transplantation, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain; Vall d'Hebron for Solid Organ Transplantation Research Group, Vall d'Hebron Institut de Recerca (VHIR), Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain; Kidney Transplant Unit, Nephrology Department, Vall d'Hebron University Hospital, Vall d'Hebron Barcelona Hospital Campus, Universitat Autònoma de Barcelona, Barcelona, Spain.
| |
Collapse
|
2
|
Espinar-Buitrago MS, Vazquez-Alejo E, Magro-Lopez E, Tarancon-Diez L, Leal M, Muñoz-Fernandez MA. Immune modulation via dendritic cells by the effect of Thymosin-alpha-1 on immune synapse in HCMV infection. Int Immunopharmacol 2023; 125:111103. [PMID: 38149577 DOI: 10.1016/j.intimp.2023.111103] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/18/2023] [Accepted: 10/18/2023] [Indexed: 12/28/2023]
Abstract
Tα1 (Thymosin-alpha-1) is a thymus-derived hormone that has been demonstrated to be effective on diverse immune cell subsets. The objective of this study was to determine the in vitro immunomodulatory effect of Tα1 in human cytomegalovirus (HCMV) infection. Dendritic cells (DCs) were isolated from peripheral blood mononuclear cells (PBMCs) by negative selection and cultured in the presence or absence of Tα1. The immunophenotyping of DCs was characterised by multiparametric flow cytometry assessing CD40, CD80, TIM-3 and PDL-1 markers, as well as intracellular TNFα production. Then, autologous CD4+ or CD8+ T-Lymphocytes (TLs) isolated by negative selection from PBMCs were co-cultured with DCs previously treated with Tα1 in the presence or absence of HCMV. Intracellular TNFα, IFNγ, IL-2 production, CD40-L and PD-1 expression were assessed through immunophenotyping, and polyfunctionality in total TLs and memory subsets were evaluated. The results showed that Tα1 increased CD40, CD80, TIM-3 and TNFα intracellular production while decreasing PDL-1 expression, particularly on plasmacytoid dendritic cells (pDCs). Therefore, Tα1 modulated the production of TNFα, IFNγ and IL-2 in both total and memory subsets of CD4+ and CD8+ TLs by upregulating CD40/CD40-L and downregulating PDL-1/PD-1 expression. Our study concludes that Tα1 enhances antigen-presenting capacity of DCs, improves TLs responses to HCMV infection, and enhances the polyfunctionality of CD8+ TLs. Consequently, Tα1 could be an alternative adjuvant for use in therapeutic cell therapy for immunocompromised patients.
Collapse
Affiliation(s)
- M S Espinar-Buitrago
- Sección de Inmunología, Laboratorio Inmuno-Biología Molecular (LIBM), Hospital General Universitario Gregorio Marañón (HGUGM), Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28009 Madrid, Spain; Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanotecnología (CIBER-BBN), Madrid, Spain
| | - E Vazquez-Alejo
- Sección de Inmunología, Laboratorio Inmuno-Biología Molecular (LIBM), Hospital General Universitario Gregorio Marañón (HGUGM), Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28009 Madrid, Spain; Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanotecnología (CIBER-BBN), Madrid, Spain
| | - E Magro-Lopez
- Sección de Inmunología, Laboratorio Inmuno-Biología Molecular (LIBM), Hospital General Universitario Gregorio Marañón (HGUGM), Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28009 Madrid, Spain; Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanotecnología (CIBER-BBN), Madrid, Spain
| | - L Tarancon-Diez
- Sección de Inmunología, Laboratorio Inmuno-Biología Molecular (LIBM), Hospital General Universitario Gregorio Marañón (HGUGM), Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28009 Madrid, Spain; Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanotecnología (CIBER-BBN), Madrid, Spain
| | - M Leal
- Departamento de Medicina Interna, Hospital Viamed Santa Ángela de la Cruz, 41014 Sevilla, Spain; Hogar Residencia de la Santa Caridad, 41001 Sevilla, Spain
| | - M A Muñoz-Fernandez
- Sección de Inmunología, Laboratorio Inmuno-Biología Molecular (LIBM), Hospital General Universitario Gregorio Marañón (HGUGM), Instituto de Investigación Sanitaria Gregorio Marañón (IiSGM), 28009 Madrid, Spain; Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanotecnología (CIBER-BBN), Madrid, Spain.
| |
Collapse
|
3
|
McMahon‑Cole H, Johnson A, Sadat Aghamiri S, Helikar T, Crawford LB. Modeling and Remodeling the Cell: How Digital Twins and HCMV Can Elucidate the Complex Interactions of Viral Latency, Epigenetic Regulation, and Immune Responses. CURRENT CLINICAL MICROBIOLOGY REPORTS 2023; 10:141-151. [PMID: 37901689 PMCID: PMC10601359 DOI: 10.1007/s40588-023-00201-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2023] [Indexed: 10/31/2023]
Abstract
Purpose of Review Human cytomegalovirus (HCMV), while asymptomatic in most, causes significant complications during fetal development, following transplant or in immunosuppressed individuals. The host-virus interactions regulating viral latency and reactivation and viral control of the cellular environment (immune regulation, differentiation, epigenetics) are highly complex. Understanding these processes is essential to controlling infection and can be leveraged as a novel approach for understanding basic cell biology. Recent Findings Immune digital twins (IDTs) are digital simulations integrating knowledge of human immunology, physiology, and patient-specific clinical data to predict individualized immune responses and targeted treatments. Recent studies used IDTs to elucidate mechanisms of T cells, dendritic cells, and epigenetic control-all key to HCMV biology. Summary Here, we discuss how leveraging the unique biology of HCMV and IDTs will clarify immune response dynamics, host-virus interactions, and viral latency and reactivation and serve as a powerful IDT-validation platform for individualized and holistic health management.
Collapse
Affiliation(s)
- Hana McMahon‑Cole
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Alicia Johnson
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Sara Sadat Aghamiri
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Tomáš Helikar
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Lindsey B. Crawford
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
- Nebraska Center for Virology, Lincoln, NE, USA
- Nebraska Center for Integrated Biomolecular Communication, Lincoln, NE, USA
| |
Collapse
|
4
|
El Baba R, Herbein G. Immune Landscape of CMV Infection in Cancer Patients: From "Canonical" Diseases Toward Virus-Elicited Oncomodulation. Front Immunol 2021; 12:730765. [PMID: 34566995 PMCID: PMC8456041 DOI: 10.3389/fimmu.2021.730765] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Human Cytomegalovirus (HCMV) is an immensely pervasive herpesvirus, persistently infecting high percentages of the world population. Despite the apparent robust host immune responses, HCMV is capable of replicating, evading host defenses, and establishing latency throughout life by developing multiple immune-modulatory strategies. HCMV has coexisted with humans mounting various mechanisms to evade immune cells and effectively win the HCMV-immune system battle mainly through maintaining its viral genome, impairing HLA Class I and II molecule expression, evading from natural killer (NK) cell-mediated cytotoxicity, interfering with cellular signaling, inhibiting apoptosis, escaping complement attack, and stimulating immunosuppressive cytokines (immune tolerance). HCMV expresses several gene products that modulate the host immune response and promote modifications in non-coding RNA and regulatory proteins. These changes are linked to several complications, such as immunosenescence and malignant phenotypes leading to immunosuppressive tumor microenvironment (TME) and oncomodulation. Hence, tumor survival is promoted by affecting cellular proliferation and survival, invasion, immune evasion, immunosuppression, and giving rise to angiogenic factors. Viewing HCMV-induced evasion mechanisms will play a principal role in developing novel adapted therapeutic approaches against HCMV, especially since immunotherapy has revolutionized cancer therapeutic strategies. Since tumors acquire immune evasion strategies, anti-tumor immunity could be prominently triggered by multimodal strategies to induce, on one side, immunogenic tumor apoptosis and to actively oppose the immune suppressive microenvironment, on the other side.
Collapse
Affiliation(s)
- Ranim El Baba
- Department Pathogens & Inflammation-EPILAB EA4266, University of Franche-Comté UBFC, Besançon, France
| | - Georges Herbein
- Department Pathogens & Inflammation-EPILAB EA4266, University of Franche-Comté UBFC, Besançon, France
- Department of Virology, Centre hospitalier régional universitaire de Besançon (CHRU) Besançon, Besancon, France
| |
Collapse
|
5
|
Human Immunodeficiency Virus (HIV) and Human Cytomegalovirus (HCMV) Coinfection of Infant Tonsil Epithelium May Synergistically Promote both HIV-1 and HCMV Spread and Infection. J Virol 2021; 95:e0092121. [PMID: 34232730 DOI: 10.1128/jvi.00921-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mother-to-child transmission (MTCT) of human immunodeficiency virus type 1 (HIV-1) and human cytomegalovirus (HCMV) may occur during pregnancy, labor, or breastfeeding. These viruses from amniotic fluid, cervicovaginal secretions, and breast milk may simultaneously interact with oropharyngeal and tonsil epithelia; however, the molecular mechanism of HIV-1 and HCMV cotransmission through the oral mucosa and its role in MTCT are poorly understood. To study the molecular mechanism of HIV-1 and HCMV MTCT via oral epithelium, we established polarized infant tonsil epithelial cells and polarized-oriented ex vivo tonsil tissue explants. Using these models, we showed that cell-free HIV-1 and its proteins gp120 and tat induce the disruption of tonsil epithelial tight junctions and increase paracellular permeability, which facilitates HCMV spread within the tonsil mucosa. Inhibition of HIV-1 gp120-induced upregulation of mitogen-activated protein kinase (MAPK) and NF-κB signaling in tonsil epithelial cells, reduces HCMV infection, indicating that HIV-1-activated MAPK and NF-κB signaling may play a critical role in HCMV infection of tonsil epithelium. HCMV infection of tonsil epithelial cells also leads to the disruption of tight junctions and increases paracellular permeability, facilitating HIV-1 paracellular spread into tonsil mucosa. HCMV-promoted paracellular spread of HIV-1 increases its accessibility to tonsil CD4 T lymphocytes, macrophages, and dendritic cells. HIV-1-enhanced HCMV paracellular spread and infection of epithelial cells subsequently leads to the spread of HCMV to tonsil macrophages and dendritic cells. Our findings revealed that HIV-1- and HCMV-induced disruption of infant tonsil epithelial tight junctions promotes MTCT of these viruses through tonsil mucosal epithelium, and therapeutic intervention for both HIV-1 and HCMV infection may substantially reduce their MTCT. IMPORTANCE Most HIV-1 and HCMV MTCT occurs in infancy, and the cotransmission of these viruses may occur via infant oropharyngeal and tonsil epithelia, which are the first biological barriers for viral pathogens. We have shown that HIV-1 and HCMV disrupt epithelial junctions, reducing the barrier functions of epithelia and thus allowing paracellular penetration of both viruses via mucosal epithelia. Subsequently, HCMV infects epithelial cells, macrophages, and dendritic cells, and HIV-1 infects CD4+ lymphocytes, macrophages, and dendritic cells. Infection of these cells in HCMV- and HIV-1-coinfected tonsil tissues is much higher than that by HCMV or HIV-1 infection alone, promoting their MTCT at its initial stages via infant oropharyngeal and tonsil epithelia.
Collapse
|
6
|
Bing N, Zhou H, Chen X, Hirose T, Kochi Y, Tsuchida Y, Ishigaki K, Sumitomo S, Fujio K, Zhang B, Valdez H, Vincent MS, Martin D, Clark JD. Contribution of a European-Prevalent Variant near CD83 and an East Asian-Prevalent Variant near IL17RB to Herpes Zoster Risk in Tofacitinib Treatment: Results of Genome-Wide Association Study Meta-Analyses. Arthritis Rheumatol 2021; 73:1155-1166. [PMID: 33455090 PMCID: PMC8361995 DOI: 10.1002/art.41655] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/12/2021] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Tofacitinib is an oral JAK inhibitor for the treatment of rheumatoid arthritis (RA), psoriatic arthritis, and ulcerative colitis, and has been previously investigated for psoriasis (PsO). This meta-analysis of genome-wide association studies (GWAS) was performed to identify genetic factors associated with increased risk/faster onset of herpes zoster (HZ) in subjects with RA or PsO receiving tofacitinib treatment, and to determine potential mechanisms that could be attributed to the varying rates of HZ across ethnicities. METHODS In an ethnicity/indication-specific, trans-ethnic, trans-population meta-analysis of GWAS in subjects with RA or PsO from phase II, phase III, and long-term extension studies of tofacitinib, 8 million genetic variants were evaluated for their potential association with time to an HZ event and incidence of an HZ event (case versus control) with tofacitinib treatment, using Cox proportional hazard and logistic regression analyses, respectively. RESULTS In total, 5,246 subjects were included (3,168 with RA and 2,078 with PsO). After adjustment for age, baseline absolute lymphocyte count, genetically defined ethnicity, and concomitant methotrexate use (in RA subjects only), 4 loci were significantly associated with faster onset of HZ in European subjects (P < 5 × 10-8 ), including a single-nucleotide polymorphism (SNP) near CD83 (frequency of risk allele ~2% in European subjects versus ~0.1% in East Asian subjects). In the trans-ethnic, trans-population meta-analysis, the CD83 SNP remained significant. Four additional significant loci were identified in the meta-analysis, among which a SNP near IL17RB was associated with faster onset of HZ (meta-analysis hazard ratio 3.6 [95% confidence interval 2.40-5.44], P = 7.6 × 10-10 ; frequency of risk allele ~12% in East Asian subjects versus <0.2% in European subjects). CONCLUSION Genetic analysis of tofacitinib-treated subjects with RA or PsO identified multiple loci associated with increased HZ risk. Prevalent variants near the immune-relevant genes CD83 and IL17RB in European and East Asian populations, respectively, may contribute to risk of HZ in tofacitinib-treated subjects.
Collapse
Affiliation(s)
| | | | | | | | - Yuta Kochi
- Center for Integrative Medical Sciences, RIKEN, Yokohama, Japan, and Medical Research Institute, Tokyo Medical and Dental UniversityTokyoJapan
| | - Yumi Tsuchida
- University of Tokyo Graduate School of MedicineTokyoJapan
| | | | - Shuji Sumitomo
- University of Tokyo Graduate School of MedicineTokyoJapan
| | - Keishi Fujio
- University of Tokyo Graduate School of MedicineTokyoJapan
| | | | | | | | | | | |
Collapse
|
7
|
Schaenman JM, Rossetti M, Liang EC, Lum E, Abdalla B, Bunnapradist S, Pham PT, Danovitch G, Reed EF, Cole SW. Leukocyte transcriptome indicators of development of infection in kidney transplant recipients. Clin Transplant 2021; 35:e14252. [PMID: 33570750 DOI: 10.1111/ctr.14252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/18/2021] [Accepted: 01/31/2021] [Indexed: 12/01/2022]
Abstract
After kidney transplantation, infection and death are important clinical complications, especially for the growing numbers of older patients with limited resilience to withstand adverse events. Evaluation of changes in gene expression in immune cells can reveal the underlying mechanisms behind vulnerability to infection. A cohort of 60 kidney transplant recipients was evaluated. Gene expression in peripheral blood mononuclear cells 3 months after kidney transplantation was analyzed to compare differences between patients with infection and those who were infection-free in the first-year post-transplant. Pro-inflammatory genes such as IL1B, CCL4, and TNF were found to be downregulated in post-transplant PBMC from patients who developed infection. In contrast, genes involved in metabolism, HLA genes, and transcripts involved in type I interferon innate antiviral responses were found to be upregulated. Promoter-based bioinformatic analyses implicated increased activity of interferon regulatory factors, erythroid nuclear factor (E2), and CCAAT-enhancer-binding protein (C/EBP) in patients who developed infections. Differential patterns of gene expression were observed in patients who developed infection after kidney transplantation, with patterns distinct from changes associated with patient age, suggesting possible mechanisms behind vulnerability to infection. Assessment of gene expression in blood may offer an approach for patient risk stratification and monitoring after transplantation.
Collapse
Affiliation(s)
- Joanna M Schaenman
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Maura Rossetti
- Department of Pathology and Laboratory Medicine, UCLA Immunogenetics Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Emily C Liang
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Erik Lum
- Division of Nephrology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Basmah Abdalla
- Division of Nephrology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Suphamai Bunnapradist
- Division of Nephrology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Phuong Thu Pham
- Division of Nephrology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Gabriel Danovitch
- Division of Nephrology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Elaine F Reed
- Department of Pathology and Laboratory Medicine, UCLA Immunogenetics Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Steve W Cole
- Department of Medicine, Division of Hematology-Oncology, Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| |
Collapse
|
8
|
Xu X, Estekizadeh A, Davoudi B, Varani S, Malmström V, Rahbar A, Söderberg-Nauclér C. Detection of human cytomegalovirus in synovial neutrophils obtained from patients with rheumatoid arthritis. Scand J Rheumatol 2020; 50:183-188. [PMID: 33243069 DOI: 10.1080/03009742.2020.1825798] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Objectives: To examine whether signs of an active human cytomegalovirus (HCMV) infection are present in affected joints of patients with rheumatoid arthritis (RA).Method: Polymorphonuclear leucocytes (PMNLs) were obtained from synovial fluid (SF) of 17 RA patients and were analysed for HCMV-pp65 and HCMV-immediate early (IE) proteins using the antigenemia assay. Peripheral blood (PB) and SF obtained from these 17 patients and from 17 additional RA patients (n = 34) were tested for HCMV-IE and pp150 DNA with Taqman polymerase chain reaction. Plasma samples from the patients were analysed for HCMV-immunoglobulin M (IgM) and immunoglobulin G (IgG) by enzyme-linked immunosorbent assay and compared to 71 healthy gender-matched blood donors.Results: HCMV-pp65 protein was detected in 65% of synovial PMNL samples, but in only 18% of PMNLs from PB. In contrast, HCMV IE protein was not found in any of the analysed PMNL samples. On the DNA level, HCMV-IE and pp150 DNA was detected in SF of 13/32 (41%) and 14/23 (61%) of RA patients, respectively. HCMV-IE and pp150 DNA was also found in 24/33 (73%) and in 16/24 (67%) of PB samples obtained from RA patients, respectively. HCMV IgG seroprevalence was 76% in RA patients as well as in healthy controls, while only one RA patient was positive for specific IgM.Conclusions: HCMV pp65 antigen was found in PMNLs from SF of RA patients, indicating an active infection in the affected joint. Future studies are needed to determine whether HCMV infection can aggravate the inflammatory process in these patients.
Collapse
Affiliation(s)
- X Xu
- Department of Medicine, Solna, Microbial Pathogenesis Unit, BioClinicum, Karolinska Institutet, Stockholm, Sweden.,Division of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden.,Division of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - A Estekizadeh
- Department of Laboratory Medicine, Virology Division, University of Washington, Seattle, USA
| | - B Davoudi
- Department of Medicine, Solna, Microbial Pathogenesis Unit, BioClinicum, Karolinska Institutet, Stockholm, Sweden.,Division of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - S Varani
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - V Malmström
- Division of Rheumatology, Department of Medicine, Center for Molecular Medicine, Karolinska Institutet and Karolinska University Hospital, Solna, Sweden
| | - A Rahbar
- Department of Medicine, Solna, Microbial Pathogenesis Unit, BioClinicum, Karolinska Institutet, Stockholm, Sweden.,Division of Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - C Söderberg-Nauclér
- Department of Medicine, Solna, Microbial Pathogenesis Unit, BioClinicum, Karolinska Institutet, Stockholm, Sweden.,Division of Neurology, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
9
|
Seelbinder B, Wallstabe J, Marischen L, Weiss E, Wurster S, Page L, Löffler C, Bussemer L, Schmitt AL, Wolf T, Linde J, Cicin-Sain L, Becker J, Kalinke U, Vogel J, Panagiotou G, Einsele H, Westermann AJ, Schäuble S, Loeffler J. Triple RNA-Seq Reveals Synergy in a Human Virus-Fungus Co-infection Model. Cell Rep 2020; 33:108389. [PMID: 33207195 DOI: 10.1016/j.celrep.2020.108389] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/30/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
High-throughput RNA sequencing (RNA-seq) is routinely applied to study diverse biological processes; however, when performed separately on interacting organisms, systemic noise intrinsic to RNA extraction, library preparation, and sequencing hampers the identification of cross-species interaction nodes. Here, we develop triple RNA-seq to simultaneously detect transcriptomes of monocyte-derived dendritic cells (moDCs) infected with the frequently co-occurring pulmonary pathogens Aspergillus fumigatus and human cytomegalovirus (CMV). Comparing expression patterns after co-infection with those after single infections, our data reveal synergistic effects and mutual interferences between host responses to the two pathogens. For example, CMV attenuates the fungus-mediated activation of pro-inflammatory cytokines through NF-κB (nuclear factor κB) and NFAT (nuclear factor of activated T cells) cascades, while A. fumigatus impairs viral clearance by counteracting viral nucleic acid-induced activation of type I interferon signaling. Together, the analytical power of triple RNA-seq proposes molecular hubs in the differential moDC response to fungal/viral single infection or co-infection that contribute to our understanding of the etiology and, potentially, clearance of post-transplant infections.
Collapse
Affiliation(s)
- Bastian Seelbinder
- Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), 07745 Jena, Germany
| | - Julia Wallstabe
- University Hospital Würzburg, Medical Hospital II, WÜ4i, 97080 Würzburg, Germany
| | - Lothar Marischen
- University Hospital Würzburg, Medical Hospital II, WÜ4i, 97080 Würzburg, Germany
| | - Esther Weiss
- University Hospital Würzburg, Medical Hospital II, WÜ4i, 97080 Würzburg, Germany
| | - Sebastian Wurster
- University Hospital Würzburg, Medical Hospital II, WÜ4i, 97080 Würzburg, Germany; The University of Texas MD Anderson Cancer Center, Department of Infectious Diseases, Infection Control and Employee Health, Houston, TX 77030, USA
| | - Lukas Page
- University Hospital Würzburg, Medical Hospital II, WÜ4i, 97080 Würzburg, Germany
| | - Claudia Löffler
- University Hospital Würzburg, Medical Hospital II, WÜ4i, 97080 Würzburg, Germany
| | - Lydia Bussemer
- University Hospital Würzburg, Medical Hospital II, WÜ4i, 97080 Würzburg, Germany
| | - Anna-Lena Schmitt
- University Hospital Würzburg, Medical Hospital II, WÜ4i, 97080 Würzburg, Germany
| | - Thomas Wolf
- Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), 07745 Jena, Germany
| | - Jörg Linde
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Institute of Bacterial Infections and Zoonoses, 07743 Jena, Germany
| | - Luka Cicin-Sain
- Department of Vaccinology and Applied Microbiology, Helmholtz Centre for Infection Research, Hannover-Braunschweig Site, 38124 Braunschweig, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School (MHH) Braunschweig, 38124 Braunschweig, Germany
| | - Jennifer Becker
- Institute for Experimental Infection Research, TWINCORE-Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Cluster of Excellence RESIST (EXC 2155), Hannover Medical School (MHH), 30625 Hannover, Germany
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE-Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Cluster of Excellence RESIST (EXC 2155), Hannover Medical School (MHH), 30625 Hannover, Germany
| | - Jörg Vogel
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, 97080 Würzburg, Germany; Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Gianni Panagiotou
- Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), 07745 Jena, Germany; Department of Medicine and State Key Laboratory of Pharmaceutical Biotechnology, University of Hong Kong, Hong Kong S.A.R., China
| | - Hermann Einsele
- University Hospital Würzburg, Medical Hospital II, WÜ4i, 97080 Würzburg, Germany
| | - Alexander J Westermann
- Institute of Molecular Infection Biology (IMIB), University of Würzburg, 97080 Würzburg, Germany; Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Sascha Schäuble
- Systems Biology and Bioinformatics, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute (HKI), 07745 Jena, Germany
| | - Juergen Loeffler
- University Hospital Würzburg, Medical Hospital II, WÜ4i, 97080 Würzburg, Germany.
| |
Collapse
|
10
|
Lloyd MG, Smith NA, Tighe M, Travis KL, Liu D, Upadhyaya PK, Kinchington PR, Chan GC, Moffat JF. A Novel Human Skin Tissue Model To Study Varicella-Zoster Virus and Human Cytomegalovirus. J Virol 2020; 94:e01082-20. [PMID: 32878893 PMCID: PMC7592229 DOI: 10.1128/jvi.01082-20] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/27/2020] [Indexed: 12/26/2022] Open
Abstract
The herpesviruses varicella-zoster virus (VZV) and human cytomegalovirus (HCMV) are endemic to humans. VZV causes varicella (chicken pox) and herpes zoster (shingles), while HCMV causes serious disease in immunocompromised patients and neonates. More effective, less toxic antivirals are needed, necessitating better models to study these viruses and evaluate antivirals. Previously, VZV and HCMV models used fetal tissue; here, we developed an adult human skin model to study VZV and HCMV in culture and in vivo While VZV is known to grow in skin, it was unknown whether skin could support an HCMV infection. We used TB40/E HCMV and POka VZV strains to evaluate virus tropism in skin organ culture (SOC) and skin xenograft mouse models. Adult human skin from reduction mammoplasties was prepared for culture on NetWells or mouse implantation. In SOC, VZV infected the epidermis and HCMV infected the dermis. Specifically, HCMV infected fibroblasts, endothelial cells, and hematopoietic cells, with some infected cells able to transfer infection. VZV and HCMV mouse models were developed by subcutaneous transplantation of skin into SCID/beige or athymic nude mice at 2 independent sites. Viruses were inoculated directly into one xenograft, and widespread infection was observed for VZV and HCMV. Notably, we detected VZV- and HCMV-infected cells in the contralateral, uninoculated xenografts, suggesting dissemination from infected xenografts occurred. For the first time, we showed HCMV successfully grows in adult human skin, as does VZV. Thus, this novel system may provide a much-needed preclinical small-animal model for HCMV and VZV and, potentially, other human-restricted viruses.IMPORTANCE Varicella-zoster virus and human cytomegalovirus infect a majority of the global population. While they often cause mild disease, serious illness and complications can arise. Unfortunately, there are few effective drugs to treat these viruses, and many are toxic. To complicate this, these viruses are restricted to replication in human cells and tissues, making them difficult to study in traditional animal models. Current models rely heavily on fetal tissues, can be prohibitively expensive, and are often complicated to generate. While fetal tissue models provide helpful insights, it is necessary to study human viruses in human tissue systems to fully understand these viruses and adequately evaluate novel antivirals. Adult human skin is an appropriate model for these viruses because many target cells are present, including basal keratinocytes, fibroblasts, dendritic cells, and lymphocytes. Skin models, in culture and xenografts in immunodeficient mice, have potential for research on viral pathogenesis, tissue tropism, dissemination, and therapy.
Collapse
Affiliation(s)
- Megan G Lloyd
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Nicholas A Smith
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York, USA
| | | | | | - Dongmei Liu
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York, USA
| | | | - Paul R Kinchington
- Departments of Ophthalmology and Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Gary C Chan
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Jennifer F Moffat
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, New York, USA
| |
Collapse
|
11
|
A disclosure of hidden secrets in human cytomegalovirus: An in-silico study of identification of novel genes and their analysis for vaccine development. Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
12
|
Nouwen LV, Everts B. Pathogens MenTORing Macrophages and Dendritic Cells: Manipulation of mTOR and Cellular Metabolism to Promote Immune Escape. Cells 2020; 9:cells9010161. [PMID: 31936570 PMCID: PMC7017145 DOI: 10.3390/cells9010161] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/01/2020] [Accepted: 01/07/2020] [Indexed: 02/06/2023] Open
Abstract
Myeloid cells, including macrophages and dendritic cells, represent an important first line of defense against infections. Upon recognition of pathogens, these cells undergo a metabolic reprogramming that supports their activation and ability to respond to the invading pathogens. An important metabolic regulator of these cells is mammalian target of rapamycin (mTOR). During infection, pathogens use host metabolic pathways to scavenge host nutrients, as well as target metabolic pathways for subversion of the host immune response that together facilitate pathogen survival. Given the pivotal role of mTOR in controlling metabolism and DC and macrophage function, pathogens have evolved strategies to target this pathway to manipulate these cells. This review seeks to discuss the most recent insights into how pathogens target DC and macrophage metabolism to subvert potential deleterious immune responses against them, by focusing on the metabolic pathways that are known to regulate and to be regulated by mTOR signaling including amino acid, lipid and carbohydrate metabolism, and autophagy.
Collapse
|
13
|
Abstract
The human betaherpesviruses, human cytomegalovirus (HCMV; species Human betaherpesvirus 5) and human herpesviruses 6A, 6B, and 7 (HHV-6A, -6B, and -7; species Human betaherpesviruses 6A, 6B, and 7) are highly prevalent and can cause severe disease in immune-compromised and immune-naive populations in well- and under-developed communities. Herpesvirus virion assembly is an intricate process that requires viral orchestration of host systems. In this review, we describe recent advances in some of the many cellular events relevant to assembly and egress of betaherpesvirus virions. These include modifications of host metabolic, immune, and autophagic/recycling systems. In addition, we discuss unique aspects of betaherpesvirus virion structure, virion assembly, and the cellular pathways employed during virion egress.
Collapse
|
14
|
Munro M, Yadavalli T, Fonteh C, Arfeen S, Lobo-Chan AM. Cytomegalovirus Retinitis in HIV and Non-HIV Individuals. Microorganisms 2019; 8:microorganisms8010055. [PMID: 31905656 PMCID: PMC7022607 DOI: 10.3390/microorganisms8010055] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/18/2019] [Accepted: 12/25/2019] [Indexed: 02/07/2023] Open
Abstract
Cytomegalovirus retinitis (CMVR) is a severe, vision-threatening disease that primarily affects immunosuppressed patients. CMVR is the most common ocular opportunistic infection in human immunodeficiency virus (HIV) infected patients and is the leading cause of blindness in this group; however, the incidence of CMVR in HIV patients has dramatically decreased with antiretroviral therapy. Other causes of immunosuppression, including organ transplantation, hematologic malignancies, and iatrogenic immunosuppression, can also lead to the development of CMVR. Herein, we describe the pathogenesis of CMVR and compare clinical features, epidemiology, and risk factors in HIV and non-HIV infected individuals with CMVR.
Collapse
Affiliation(s)
- Monique Munro
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Tejabhiram Yadavalli
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Cheryl Fonteh
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Safa Arfeen
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ann-Marie Lobo-Chan
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
- Correspondence:
| |
Collapse
|
15
|
Patro ARK. Subversion of Immune Response by Human Cytomegalovirus. Front Immunol 2019; 10:1155. [PMID: 31244824 PMCID: PMC6575140 DOI: 10.3389/fimmu.2019.01155] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 05/07/2019] [Indexed: 12/14/2022] Open
Abstract
Human cytomegalovirus (HCMV) is the most common cause of congenital infections and is an important pathogen in immunocompromised individuals. Despite a robust host immune system, HCMV able to replicate, evade host defenses, establish latency for life. A significant portion of HCMV genome dedicated to encode gene products for modulation of host immune response. Growing number of HCMV gene products are being recognized to play role in immune evasion. Information on viral immune evasion mechanisms by which HCMV persists in host will be useful in devising antiviral intervention strategies and development of new vaccines. This minireview provides a brief overview of immune evasion strategy adapted by HCMV by utilizing its gene products in modulation of host immune response.
Collapse
Affiliation(s)
- A Raj Kumar Patro
- Infectious Disease Biology Group, Institute of Life Sciences (ILS), Bhubaneswar, India
| |
Collapse
|
16
|
Zou F, Lu ZT, Wang S, Wu S, Wu YY, Sun ZR. Human cytomegalovirus UL141 protein interacts with CELF5 and affects viral DNA replication. Mol Med Rep 2018; 17:4657-4664. [PMID: 29328469 DOI: 10.3892/mmr.2018.8419] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 01/05/2018] [Indexed: 11/06/2022] Open
Abstract
Human cytomegalovirus (HCMV) infection is the primary viral cause of congenital abnormalities and mental retardation in newborns. The HCMV UL141‑encoded glycoprotein has been previously revealed to inhibit the cell‑surface expression of cluster of differentiation (CD)155, CD122, tumor necrosis factor‑related apoptosis‑inducing ligand death (TRAIL)‑receptor 1 (R1) and TRAIL‑receptor 2 (R2), thus protecting virally‑infected cells by allowing them to escape natural killer cell‑mediated cytotoxicity. The present study investigated the interaction between HCMV UL141 and human fetal brain cDNA to elucidate the possible effects of UL141 on the nervous system. The findings of the current study demonstrate that the HCMV UL141 protein directly interacts with the human protein CUGBP Elav‑like family member 5 (CELF5) via yeast two‑hybrid screening, this interaction was confirmed by glutathione S‑transferase pull‑down and co‑immunoprecipitation assays. Additionally, the present study demonstrated that the UL141 protein co‑localizes with CELF5 in the cytoplasm of 293 cells using fluorescence confocal microscopy. CELF5 overexpression in a stably‑expressing cell line significantly increased viral DNA copy number and titer in HCMV‑infected U373MG cells. However, reducing CELF5 expression via specific small interfering RNAs did not affect viral DNA copy number or titer in HCMV‑infected cells. The current findings suggest that the interaction between UL141 and CELF5 may be involved in modulating viral DNA synthesis and progeny production. Therefore, CELF5 may represent a possible mechanism for regulation of HCMV genomic DNA synthesis, which is a key step during HCMV infection leading to neurological disease.
Collapse
Affiliation(s)
- Fei Zou
- Department of BioBank, Affiliated Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Zhi-Tao Lu
- Department of Pediatrics, Zhangjiagang First People's Hospital, Zhangjiagang, Jiangsu 215600, P.R. China
| | - Shuang Wang
- Department of BioBank, Affiliated Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Si Wu
- Department of BioBank, Affiliated Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Ying-Ying Wu
- Department of BioBank, Affiliated Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Zheng-Rong Sun
- Department of BioBank, Affiliated Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| |
Collapse
|
17
|
Karimi MH, Shariat A, Yaghobi R, Mokhtariazad T, Moazzeni SM. Role of cytomegalovirus on the maturation and function of monocyte derived dendritic cells of liver transplant patients. World J Transplant 2016; 6:336-346. [PMID: 27358779 PMCID: PMC4919738 DOI: 10.5500/wjt.v6.i2.336] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/24/2016] [Accepted: 04/22/2016] [Indexed: 02/05/2023] Open
Abstract
AIM: To study the impact of association between cytomegalovirus (CMV) pathogenesis with dendritic cell (DC) maturation and function was evaluated in CMV reactivated liver transplanted patients in comparing with non-reactivated ones, and healthy controls.
METHODS: Monocyte derived dendritic cells (MoDCs) was generated from collected ethylenediaminetetraacetic acid-treated blood samples from patient groups and controls. In these groups, expression rates and mean fluorescent intensity of DC markers were evaluated using flowcytometry technique. Secretion of cytokines including: interleukin (IL)-6, IL-12 and IL-23 were determined using enzyme-linked immunosorbent assay methods. The gene expression of toll-like receptor 2 (TLR2), TLR4 and IL-23 were analyzed using in-house real-time polymerase chain reaction protocols.
RESULTS: Results have been shown significant decreases in: Expression rates of MoDC markers including CD83, CD1a and human leukocyte antigen DR (HLA-DR), the mean fluorescence intensitys for CD1a and HLA-DR, and secretion of IL-12 in CMV reactivated compared with non-reactivated liver transplanted patients. On the other hand, significant increases have been shown in the secretions of IL-6 and IL-23 and gene expression levels of TLR2, TLR4 and IL-23 from MoDCs in CMV reactivated compared with non-reactivated liver transplanted recipients.
CONCLUSION: DC functional defects in CMV reactivated recipients, such as decrease in expression of DC maturation markers, increase in secretion of proinflammatory cytokines, and TLRs can emphasize on the importance of CMV infectivity in development of liver rejection in transplanted patients.
Collapse
|
18
|
Bernal CE, Zorro MM, Sierra J, Gilchrist K, Botero JH, Baena A, Ramirez-Pineda JR. Encephalitozoon intestinalis Inhibits Dendritic Cell Differentiation through an IL-6-Dependent Mechanism. Front Cell Infect Microbiol 2016; 6:4. [PMID: 26870700 PMCID: PMC4735406 DOI: 10.3389/fcimb.2016.00004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 01/12/2016] [Indexed: 01/03/2023] Open
Abstract
Microsporidia are a group of intracellular pathogens causing self-limited and severe diseases in immunocompetent and immunocompromised individuals, respectively. A cellular type 1 adaptive response, mediated by IL-12, IFNγ, CD4+, and CD8+ T cells has been shown to be essential for host resistance, and dendritic cells (DC) play a key role at eliciting anti-microsporidial immunity. We investigated the in vitro response of DC and DC precursors/progenitors to infection with Encephalitozoon intestinalis (Ei), a common agent of human microsporidosis. Ei-exposed DC cultures up-regulated the surface expression of MHC class II and the costimulatory molecules CD86 and CD40, only when high loads of spores were used. A vigorous secretion of IL-6 but not of IL-1β or IL-12p70 was also observed in these cultures. Ei-exposed DC cultures consisted of immature infected and mature bystander DC, as assessed by MHC class II and costimulatory molecules expression, suggesting that intracellular Ei spores deliver inhibitory signals in DC. Moreover, Ei selectively inhibited the secretion of IL-12p70 in LPS-stimulated DC. Whereas Ei-exposed DC promoted allogeneic naïve T cell proliferation and IL-2 and IFNγ secretion in DC-CD4+ T cell co-cultures, separated co-cultures with bystander or infected DCs showed stimulation or inhibition of IFNγ secretion, respectively. When DC precursors/progenitors were exposed to Ei spores, a significant inhibition of DC differentiation was observed without shifting the development toward cells phenotypically or functionally compatible with myeloid-derived suppressor cells. Neutralization experiments demonstrated that this inhibitory effect is IL-6-dependent. Altogether this investigation reveals a novel potential mechanism of immune escape of microsporidian parasites through the modulation of DC differentiation and maturation.
Collapse
Affiliation(s)
- Carmen E Bernal
- Grupo Inmunomodulación, Universidad de AntioquiaMedellín, Colombia; Grupo de Parasitología, Universidad de AntioquiaMedellín, Colombia
| | - Maria M Zorro
- Grupo Inmunomodulación, Universidad de Antioquia Medellín, Colombia
| | - Jelver Sierra
- Grupo Inmunomodulación, Universidad de Antioquia Medellín, Colombia
| | | | - Jorge H Botero
- Grupo de Parasitología, Universidad de Antioquia Medellín, Colombia
| | - Andres Baena
- Grupo de Inmunología Celular e Inmunogenética, Universidad de AntioquiaMedellín, Colombia; Departamento de Microbiología y Parasitología, Universidad de AntioquiaMedellín, Colombia
| | - Jose R Ramirez-Pineda
- Grupo Inmunomodulación, Universidad de AntioquiaMedellín, Colombia; Corporación Académica para el Estudio de Patologías Tropicales, Facultad de Medicina, Universidad de AntioquiaMedellín, Colombia
| |
Collapse
|
19
|
Gabaev I, Elbasani E, Ameres S, Steinbrück L, Stanton R, Döring M, Lenac Rovis T, Kalinke U, Jonjic S, Moosmann A, Messerle M. Expression of the human cytomegalovirus UL11 glycoprotein in viral infection and evaluation of its effect on virus-specific CD8 T cells. J Virol 2014; 88:14326-39. [PMID: 25275132 PMCID: PMC4249143 DOI: 10.1128/jvi.01691-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 09/25/2014] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The human cytomegalovirus (CMV) UL11 open reading frame (ORF) encodes a putative type I transmembrane glycoprotein which displays remarkable amino acid sequence variability among different CMV isolates, suggesting that it represents an important virulence factor. In a previous study, we have shown that UL11 can interact with the cellular receptor tyrosine phosphatase CD45, which has a central role for signal transduction in T cells, and treatment of T cells with large amounts of a soluble UL11 protein inhibited their proliferation. In order to analyze UL11 expression in CMV-infected cells, we constructed CMV recombinants whose genomes either encode tagged UL11 versions or carry a stop mutation in the UL11 ORF. Moreover, we examined whether UL11 affects the function of virus-specific cytotoxic T lymphocytes (CTLs). We found that the UL11 ORF gives rise to several proteins due to both posttranslational modification and alternative translation initiation sites. Biotin labeling of surface proteins on infected cells indicated that only highly glycosylated UL11 forms are present at the plasma membrane, whereas less glycosylated UL11 forms were found in the endoplasmic reticulum. We did not find evidence of UL11 cleavage or secretion of a soluble UL11 version. Cocultivation of CTLs recognizing different CMV epitopes with fibroblasts infected with a UL11 deletion mutant or the parental strain revealed that under the conditions applied UL11 did not influence the activation of CMV-specific CD8 T cells. For further studies, we propose to investigate the interaction of UL11 with CD45 and the functional consequences in other immune cells expressing CD45. IMPORTANCE Human cytomegalovirus (CMV) belongs to those viruses that extensively interfere with the host immune response, yet the precise function of many putative immunomodulatory CMV proteins remains elusive. Previously, we have shown that the CMV UL11 protein interacts with the leukocyte common antigen CD45, a cellular receptor tyrosine phosphatase with a central role for signal transduction in T cells. Here, we examined the proteins expressed by the UL11 gene in CMV-infected cells and found that at least one form of UL11 is present at the cell surface, enabling it to interact with CD45 on immune cells. Surprisingly, CMV-expressed UL11 did not affect the activity of virus-specific CD8 T cells. This finding warrants investigation of the impact of UL11 on CD45 functions in other leukocyte subpopulations.
Collapse
Affiliation(s)
- Ildar Gabaev
- Department of Virology, Hannover Medical School, Hannover, Germany
| | - Endrit Elbasani
- Department of Virology, Hannover Medical School, Hannover, Germany
| | - Stefanie Ameres
- Clinical Cooperation Group Immunooncology, Helmholtz Centre Munich, Munich, Germany
| | - Lars Steinbrück
- Department of Virology, Hannover Medical School, Hannover, Germany
| | - Richard Stanton
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - Marius Döring
- Centre for Experimental and Clinical Infection Research, Twincore, Hannover, Germany
| | - Tihana Lenac Rovis
- Department of Histology and Embryology and Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Ulrich Kalinke
- Centre for Experimental and Clinical Infection Research, Twincore, Hannover, Germany
| | - Stipan Jonjic
- Department of Histology and Embryology and Center for Proteomics, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Andreas Moosmann
- Clinical Cooperation Group Immunooncology, Helmholtz Centre Munich, Munich, Germany German Center for Infection Research (DZIF), partner sites, Hannover and Munich, Germany
| | - Martin Messerle
- Department of Virology, Hannover Medical School, Hannover, Germany German Center for Infection Research (DZIF), partner sites, Hannover and Munich, Germany
| |
Collapse
|
20
|
Hertel L. Human cytomegalovirus tropism for mucosal myeloid dendritic cells. Rev Med Virol 2014; 24:379-95. [PMID: 24888709 DOI: 10.1002/rmv.1797] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Revised: 05/01/2014] [Accepted: 05/07/2014] [Indexed: 02/01/2023]
Abstract
Human CMV infections are a serious source of morbidity and mortality for immunocompromised patients and for the developing fetus. Because of this, the development of new strategies to prevent CMV acquisition and transmission is a top priority. Myeloid dendritic cells (DC) residing in the oral and nasal mucosae are among the first immune cells to encounter CMV during entry and greatly contribute to virus dissemination, reactivation from latency, and horizontal spread. Albeit affected by the immunoevasive tactics of CMV, mucosal DC remain potent inducers of cellular and humoral immune responses against this virus. Their natural functions could thus be exploited to generate long-lasting protective immunity against CMV by vaccination via the oronasal mucosae. Although related, epithelial Langerhans-type DC and dermal monocyte-derived DC interact with CMV in dramatically different ways. Whereas immature monocyte-derived DC are fully permissive to infection, for instance, immature Langerhans-type DC are completely resistant. Understanding these differences is essential to design innovative vaccines and new antiviral compounds to protect these cells from CMV infection in vivo.
Collapse
Affiliation(s)
- Laura Hertel
- Center for Immunobiology and Vaccine Development, Children's Hospital Oakland Research Institute, Oakland, CA, 94609, USA
| |
Collapse
|
21
|
Alibek K, Baiken Y, Kakpenova A, Mussabekova A, Zhussupbekova S, Akan M, Sultankulov B. Implication of human herpesviruses in oncogenesis through immune evasion and supression. Infect Agent Cancer 2014; 9:3. [PMID: 24438207 PMCID: PMC3904197 DOI: 10.1186/1750-9378-9-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 01/07/2014] [Indexed: 12/20/2022] Open
Abstract
All human herpesviruses (HHVs) have been implicated in immune system evasion and suppression. Moreover, two HHV family members, i.e. EBV and KSHV, are recognised as oncogenic viruses. Our literature review summarises additional examples of possible oncogenic mechanisms that have been attributed to other HHVs. In general, HHVs affect almost every cancer-implicated branch of the immune system, namely tumour-promoting inflammation, immune evasion, and immunosuppression. Some HHVs accomplish these effects by inhibiting apoptotic pathways and by promoting proliferation. Mechanisms related to immunosupression and low grade chronic inflammation could eventually result in the initiation and progression of cancer. In this article we open a discussion on the members of Herpesviridae, their immune evasion and suppression mechanisms, and their possible role in cancer development. We conclude that discerning the mechanisms of interplay between HHV, immune system, and cancer is essential for the development of novel preventative and therapeutic approaches for cancer treatment and prophylaxis.
Collapse
Affiliation(s)
| | | | - Ainur Kakpenova
- Nazarbayev University, 53 Kabanbay Batyr Avenue, Astana 010000, Kazakhstan.
| | | | | | | | | |
Collapse
|
22
|
Subviral dense bodies of human cytomegalovirus stimulate maturation and activation of monocyte-derived immature dendritic cells. J Virol 2013; 87:11287-91. [PMID: 23926346 DOI: 10.1128/jvi.01429-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Dendritic cells play a central role in the immune control of human cytomegalovirus (HCMV) infection. This work aimed at investigating the impact of noninfectious, subviral dense bodies of HCMV on the maturation and activation of dendritic cells (DC). Treatment of immature DC with dense bodies led to the maturation of these cells and significantly increased their capacity for cytokine release and antigen presentation. Dense body-activated DC may thereby contribute to the development of antiviral immunity.
Collapse
|
23
|
|