1
|
Egan MS, de Macedo R, Zackular JP. Metals in the gut: microbial strategies to overcome nutritional immunity in the intestinal tract. Metallomics 2024; 16:mfae052. [PMID: 39577845 DOI: 10.1093/mtomcs/mfae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/20/2024] [Indexed: 11/24/2024]
Abstract
Trace metals are indispensable nutritional factors for all living organisms. During host-pathogen interactions, they serve as crucial resources that dictate infection outcomes. Accordingly, the host uses a defense strategy known as nutritional immunity, which relies on coordinated metal chelation to mitigate bacterial advances. In response, pathogens employ complex strategies to secure these resources at sites of infection. In the gastrointestinal (GI) tract, the microbiota must also acquire metals for survival, making metals a central line of competition in this complex ecosystem. In this minireview, we outline how bacteria secure iron, zinc, and manganese from the host with a focus on the GI tract. We also reflect on how host dietary changes impact disease outcomes and discuss therapeutic opportunities to target bacterial metal uptake systems. Ultimately, we find that recent discoveries on the dynamics of transition metals at the host-pathogen-microbiota interface have reshaped our understanding of enteric infections and provided insights into virulence strategies, microbial cooperation, and antibacterial strategies.
Collapse
Affiliation(s)
- Marisa S Egan
- Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Biology, Swarthmore College, Swarthmore, PA 19081, USA
| | - Raquel de Macedo
- Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Microbiology, Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, SP 01224-001, Brazil
| | - Joseph P Zackular
- Division of Protective Immunity, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- The Center for Microbial Medicine, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| |
Collapse
|
2
|
Carter H, Clark J, Carlin LG, Vaughan E, Rajan A, Olvera A, Yu X, Zeng XL, Kambal A, Holder M, Qin X, Gibbs RA, Petrosino JF, Muzny DM, Doddapaneni H, Menon VK, Hoffman KL, Meng Q, Ross MC, Javornik Cregeen SJ, Metcalf G, Jenq R, Blutt S, Estes MK, Maresso A, Okhuysen PC. Functional Genomics of Gastrointestinal Escherichia coli Isolated from Patients with Cancer and Diarrhea. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.31.543115. [PMID: 37398483 PMCID: PMC10312547 DOI: 10.1101/2023.05.31.543115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
We describe the epidemiology and clinical characteristics of 29 patients with cancer and diarrhea in whom Enteroaggregative Escherichia coli (EAEC) was initially identified by GI BioFire panel multiplex. E. coli strains were successfully isolated from fecal cultures in 14 of 29 patients. Six of the 14 strains were identified as EAEC and 8 belonged to other diverse E. coli groups of unknown pathogenesis. We investigated these strains by their adherence to human intestinal organoids, cytotoxic responses, antibiotic resistance profile, full sequencing of their genomes, and annotation of their functional virulome. Interestingly, we discovered novel and enhanced adherence and aggregative patterns for several diarrheagenic pathotypes that were not previously seen when co-cultured with immortalized cell lines. EAEC isolates displayed exceptional adherence and aggregation to human colonoids compared not only to diverse GI E. coli , but also compared to prototype strains of other diarrheagenic E. coli . Some of the diverse E. coli strains that could not be classified as a conventional pathotype also showed an enhanced aggregative and cytotoxic response. Notably, we found a high carriage rate of antibiotic resistance genes in both EAEC strains and diverse GI E. coli isolates and observed a positive correlation between adherence to colonoids and the number of metal acquisition genes carried in both EAEC and the diverse E. coli strains. This work indicates that E. coli from cancer patients constitute strains of remarkable pathotypic and genomic divergence, including strains of unknown disease etiology with unique virulomes. Future studies will allow for the opportunity to re-define E. coli pathotypes with greater diagnostic accuracy and into more clinically relevant groupings.
Collapse
|
3
|
Ramis G, Murciano F, Orengo J, González-Guijarro B, Cuellar-Flores A, Serrano D, Muñoz Luna A, Sánchez-Uribe P, Martínez-Alarcón L. Is Oral Vaccination against Escherichia coli Influenced by Zinc Oxide? Animals (Basel) 2023; 13:1754. [PMID: 37889667 PMCID: PMC10252008 DOI: 10.3390/ani13111754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/27/2023] [Accepted: 05/22/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND Although zinc oxide has been banned at therapeutic doses in the EU, its use is still legal in most countries with industrial pig farming. This compound has been shown to be very effective in preventing E. coli-related diseases. However, another strategy used to control this pathogen is vaccination, administered parenterally or orally. Oral vaccines contain live strains, with F4 and F18 binding factors. Since zinc oxide prevents E. coli adhesion, it is hypothesised that its presence at therapeutic doses (2500 ppm) may alter the immune response and the protection of intestinal integrity derived from the vaccination of animals. METHODS A group of piglets were orally vaccinated at weaning and divided into two subgroups; one group was fed a feed containing 2500 ppm zinc oxide (V + ZnO) for the first 15 days post-vaccination (dpv) and the other was not (V). Faeces were sampled from the animals at 6, 8, 11, 13, and 15 dpv. Unvaccinated animals without ZnO in their feed (Neg) were sampled simultaneously and, on day 15 post-vaccination, were also compared with a group of unvaccinated animals with ZnO in their feed (ZnO). RESULTS Differences were found in E. coli excretion, with less quantification in the V + ZnO group, and a significant increase in secretory IgA in the V group at 8 dpv, which later equalised with that of the V + ZnO group. There was also some difference in IFNα, IFNγ, IL1α, ILβ, and TNFα gene expression when comparing both vaccinated groups (p < 0.05). However, there was no difference in gene expression for the tight junction (TJ) proteins responsible for intestinal integrity. CONCLUSIONS Although some differences in the excretion of the vaccine strain were found when comparing both vaccinated groups, there are no remarkable differences in immune stimulation or soluble IgA production when comparing animals orally vaccinated against E. coli in combination with the presence or absence of ZnO in their feed. We can conclude that the immune response produced is very similar in both groups.
Collapse
Affiliation(s)
- Guillermo Ramis
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de Murcia, 30100 Murcia, Spain; (G.R.); (F.M.); (B.G.-G.)
- Instituto Murciano de Investigación en Biomédicina (IMIB), 30120 Murcia, Spain
| | - Francisco Murciano
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de Murcia, 30100 Murcia, Spain; (G.R.); (F.M.); (B.G.-G.)
| | - Juan Orengo
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de Murcia, 30100 Murcia, Spain; (G.R.); (F.M.); (B.G.-G.)
| | - Belén González-Guijarro
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de Murcia, 30100 Murcia, Spain; (G.R.); (F.M.); (B.G.-G.)
| | - Amanda Cuellar-Flores
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de Murcia, 30100 Murcia, Spain; (G.R.); (F.M.); (B.G.-G.)
| | - Daniel Serrano
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad de Murcia, 30100 Murcia, Spain
| | - Antonio Muñoz Luna
- Departamento de Producción Animal, Facultad de Veterinaria, Universidad de Murcia, 30100 Murcia, Spain; (G.R.); (F.M.); (B.G.-G.)
- Instituto Murciano de Investigación en Biomédicina (IMIB), 30120 Murcia, Spain
| | | | - Laura Martínez-Alarcón
- Instituto Murciano de Investigación en Biomédicina (IMIB), 30120 Murcia, Spain
- Unidad para Docencia, Investigación y Calidad (UDICA), Hospital Clínico Universitario Virgen de la Arrixaca, 30120 Murcia, Spain
| |
Collapse
|
4
|
Zinc Laurate Protects against Intestinal Barrier Dysfunction and Inflammation Induced by ETEC in a Mice Model. Nutrients 2022; 15:nu15010054. [PMID: 36615713 PMCID: PMC9824434 DOI: 10.3390/nu15010054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) infection is one of the most common bacterial causes of diarrhea in children and young farm animals. Medium-chain fatty acids (MCFAs) have been widely used for their antibacterial and immune functions. However, there is limited information regarding the role of MCFAs chelated with Zn in diarrhea induced by ETEC infection. Here, zinc laurate (ZnLa) was used to evaluate its protective effect in a mice diarrhea model induced by ETEC. A total of 45 ICR-weaned female mice were randomly assigned to marginal zinc deficiency (dZn), dZn, and ETEC infection groups (dZn+ETEC); ETEC infection was co-treated with a low, middle, or high dose of ZnLa (ZnLa LOW+ETEC, ZnLa MID+ETEC, and ZnLa HIGH+ETEC), respectively, to explore the effect and its mechanism of ZnLa on diarrhea and intestinal health of mice challenged with ETEC. To further compare the antibacterial efficiency of ZnLa and ZnSO4 in mice with ETEC infection, a total of 36 ICR-weaned female mice were randomly divided into ZnLa, ZnLa+ETEC, ZnSO4, and ZnSO4 and ETEC infection groups (ZnSO4+ETEC); moreover, the growth curve of ETEC also compared ZnLa and ZnSO4 in vitro. Mice pretreated with ZnLa were effectively guarded against body weight losses and increases in diarrhea scores induced by ETEC. ZnLa pretreatment also prevented intestinal barrier damage and ion transport in mice challenged with ETEC, as evidenced by the fact that the intestinal villus height and the ratio of villus height and crypt depth, tight junction protein, and Na+ absorption were higher, whereas intestinal permeability and anion secretion were lower in mice pretreated with ZnLa. In addition, ZnLa conferred effective protection against ETEC-induced intestinal inflammatory responses, as the increases in protein and mRNAs of proinflammatory cytokines were prevented in serum and jejunum, which was likely associated with the TLR4/MYD88/NF-κB signaling pathway. The increase in ETEC shedding and virulence-related gene expression was prevented in mice with ZnLa pretreatment. Finally, the growth of ETEC and virulence-related gene expression were lower in the ZnLa group than in ZnSO4 with an equal concentration of zinc. These findings suggest that ZnLa is a promising prevention strategy to remedy ETEC infection.
Collapse
|
5
|
Marginal Zinc Deficiency Aggravated Intestinal Barrier Dysfunction and Inflammation through ETEC Virulence Factors in a Mouse Model of Diarrhea. Vet Sci 2022; 9:vetsci9090507. [PMID: 36136723 PMCID: PMC9503546 DOI: 10.3390/vetsci9090507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/13/2022] [Accepted: 09/13/2022] [Indexed: 11/21/2022] Open
Abstract
Simple Summary Enterotoxigenic Escherichia coli (ETEC) is one of the most common bacterial causes of diarrhea in children and farm animals. Zinc has received widespread attention for its roles in the prevention and treatment of diarrhea. However, zinc is also essential for the pathogenesis of ETEC. This study aimed to explore the accurate effect and mechanisms of marginal zinc deficiency on ETEC k88 infection and host intestinal health. Using the newly developed marginal zinc deficiency and ETEC k88 infection mouse model, we found that marginal zinc deficiency aggravated growth impairment, diarrhea, intestinal morphology, intestinal permeability, and inflammation induced by ETEC k88 infection. Consistently, intestinal ETEC k88 shedding was also higher in mice with marginal zinc deficiency. However, marginal zinc deficiency failed to affect host zinc levels and correspondingly the zinc-receptor GPR39 expression in the jejunum. In addition, marginal zinc deficiency upregulated the relative expression of virulence genes involved in heat-labile and heat-stable enterotoxins, motility, cellular adhesion, and biofilm formation in the cecum content of mice with ETEC infection. These findings provide a new explanation for zinc treatment of ETEC infection. Abstract Zinc is both essential and inhibitory for the pathogenesis of enterotoxigenic Escherichia coli (ETEC). However, the accurate effects and underlying mechanism of marginal zinc deficiency on ETEC infection are not fully understood. Here, a marginal zinc-deficient mouse model was established by feeding mice with a marginal zinc-deficient diet, and ETEC k88 was further administrated to mice after antibiotic disruption of the normal microbiota. Marginal zinc deficiency aggravated growth impairment, diarrhea, intestinal morphology, intestinal permeability, and inflammation induced by ETEC k88 infection. In line with the above observations, marginal zinc deficiency also increased the intestinal ETEC shedding, though the concentration of ETEC in the intestinal content was not different or even decreased in the stool. Moreover, marginal zinc deficiency failed to change the host’s zinc levels, as evidenced by the fact that the serum zinc levels and zinc-receptor GPR39 expression in jejunum were not significantly different in mice with ETEC challenge. Finally, marginal zinc deficiency upregulated the relative expression of virulence genes involved in heat-labile and heat-stable enterotoxins, motility, cellular adhesion, and biofilm formation in the cecum content of mice with ETEC infection. These findings demonstrated that marginal zinc deficiency likely regulates ETEC infection through the virulence factors, whereas it is not correlated with host zinc levels.
Collapse
|
6
|
Michael H, Amimo JO, Rajashekara G, Saif LJ, Vlasova AN. Mechanisms of Kwashiorkor-Associated Immune Suppression: Insights From Human, Mouse, and Pig Studies. Front Immunol 2022; 13:826268. [PMID: 35585989 PMCID: PMC9108366 DOI: 10.3389/fimmu.2022.826268] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/31/2022] [Indexed: 12/11/2022] Open
Abstract
Malnutrition refers to inadequate energy and/or nutrient intake. Malnutrition exhibits a bidirectional relationship with infections whereby malnutrition increases risk of infections that further aggravates malnutrition. Severe malnutrition (SM) is the main cause of secondary immune deficiency and mortality among children in developing countries. SM can manifest as marasmus (non-edematous), observed most often (68.6% of all malnutrition cases), kwashiorkor (edematous), detected in 23.8% of cases, and marasmic kwashiorkor, identified in ~7.6% of SM cases. Marasmus and kwashiorkor occur due to calorie-energy and protein-calorie deficiency (PCD), respectively. Kwashiorkor and marasmic kwashiorkor present with reduced protein levels, protein catabolism rates, and altered levels of micronutrients leading to uncontrolled oxidative stress, exhaustion of anaerobic commensals, and proliferation of pathobionts. Due to these alterations, kwashiorkor children present with profoundly impaired immune function, compromised intestinal barrier, and secondary micronutrient deficiencies. Kwashiorkor-induced alterations contribute to growth stunting and reduced efficacy of oral vaccines. SM is treated with antibiotics and ready-to-use therapeutic foods with variable efficacy. Kwashiorkor has been extensively investigated in gnotobiotic (Gn) mice and piglet models to understand its multiple immediate and long-term effects on children health. Due to numerous physiological and immunological similarities between pigs and humans, pig represents a highly relevant model to study kwashiorkor pathophysiology and immunology. Here we summarize the impact of kwashiorkor on children's health, immunity, and gut functions and review the relevant findings from human and animal studies. We also discuss the reciprocal interactions between PCD and rotavirus-a highly prevalent enteric childhood pathogen due to which pathogenesis and immunity are affected by childhood SM.
Collapse
Affiliation(s)
- Husheem Michael
- Center for Food Animal Health, Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| | - Joshua O. Amimo
- Center for Food Animal Health, Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
- Department of Animal Production, Faculty of Veterinary Medicine, University of Nairobi, Nairobi, Kenya
| | - Gireesh Rajashekara
- Center for Food Animal Health, Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| | - Linda J. Saif
- Center for Food Animal Health, Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| | - Anastasia N. Vlasova
- Center for Food Animal Health, Department of Animal Sciences, Ohio Agricultural Research and Development Center, The Ohio State University, Wooster, OH, United States
| |
Collapse
|
7
|
Strain R, Stanton C, Ross RP. Effect of diet on pathogen performance in the microbiome. MICROBIOME RESEARCH REPORTS 2022; 1:13. [PMID: 38045644 PMCID: PMC10688830 DOI: 10.20517/mrr.2021.10] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/17/2022] [Accepted: 02/23/2022] [Indexed: 12/05/2023]
Abstract
Intricate interactions among commensal bacteria, dietary substrates and immune responses are central to defining microbiome community composition, which plays a key role in preventing enteric pathogen infection, a dynamic phenomenon referred to as colonisation resistance. However, the impact of diet on sculpting microbiota membership, and ultimately colonisation resistance has been overlooked. Furthermore, pathogens have evolved strategies to evade colonisation resistance and outcompete commensal microbiota by using unique nutrient utilisation pathways, by exploiting microbial metabolites as nutrient sources or by environmental cues to induce virulence gene expression. In this review, we will discuss the interplay between diet, microbiota and their associated metabolites, and how these can contribute to or preclude pathogen survival.
Collapse
Affiliation(s)
- Ronan Strain
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61 C996, Ireland
| | - Catherine Stanton
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland
- Teagasc Food Research Centre, Moorepark, Fermoy, Co. Cork P61 C996, Ireland
| | - R. Paul Ross
- APC Microbiome Ireland, Biosciences Institute, University College Cork, Cork T12 YT20, Ireland
- School of Microbiology, University College Cork, College Road, Cork T12 K8AF, Ireland
| |
Collapse
|
8
|
Ferreira AF, Braga RLL, Andrade MF, Rosa ACDP, Pereira-Manfro WF. SYNERGISTIC IMMUNOMODULATORY ACTIVITY OF PROBIOTICS BIFIDOBACTERIUM ANIMALIS AND LACTOBACILLUS CASEI IN ENTEROAGGREGATIVE ESCHERICHIA COLI (EAEC)-INFECTED CACO-2 CELLS. ARQUIVOS DE GASTROENTEROLOGIA 2021; 58:433-438. [PMID: 34909846 DOI: 10.1590/s0004-2803.202100000-79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 05/03/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Enteroaggregative Escherichia coli (EAEC) is an E. coli pathotype that presents aggregative adhesion patterns on in vitro cultivated cells, mainly related to persistent diarrhea cases in children. EAEC virulence factors are important for host colonization and pathogeni-city. Intestinal epithelial cells (IECs) recognize pathogen-associated molecular patterns (PAMPs) and initiate an immune response. Several studies using in vivo and in vitro models emphasize the probiotic activity and immunomodulatory capacity of Lactobacillus and Bifidobacterium species. OBJECTIVE To evaluate the modulation of cytokine production by probiotics Bifidobacterium animalis and Lactobacillus casei in human intestinal Caco-2 cells exposed to different strains of EAEC. METHODS Caco-2 cells were incubated with EAEC strains in the presence or absence of probiotics. The production of cytokines IL-8, TNF-α, IL-1β and IL-10 was evaluated in the supernatants by a sandwich enzyme-linked immunosorbent assay (ELISA). RESULTS Cytokine production did not change when uninfected and EAEC-infected Caco-2 cells were exposed to probiotics separately. All EAEC induced a significant increase in IL-8 production by Caco-2 cells, but the probiotics, even together, could not reduce its production. On the other hand, the synergic activity of probiotic strains significantly increased TNF-α production but decreased the basal production of IL-1ß. Also, probiotics induced a significant increase in the production of the anti-inflammatory cytokine IL-10 during EAEC infection. CONCLUSION Our results reinforce the synergistic immunomodulatory activity of probiotics during EAEC infection.
Collapse
Affiliation(s)
- Andréa Fonseca Ferreira
- Universidade do Estado do Rio de Janeiro, Faculdade de Ciências Médicas, Departamento de Microbiologia, Imunologia e Parasitologia, Rio de Janeiro, RJ, Brasil
| | - Ricardo Luís Lopes Braga
- Universidade do Estado do Rio de Janeiro, Faculdade de Ciências Médicas, Departamento de Microbiologia, Imunologia e Parasitologia, Rio de Janeiro, RJ, Brasil
| | - Maysa Ferreira Andrade
- Universidade do Estado do Rio de Janeiro, Faculdade de Ciências Médicas, Departamento de Microbiologia, Imunologia e Parasitologia, Rio de Janeiro, RJ, Brasil
| | - Ana Claudia de Paula Rosa
- Universidade do Estado do Rio de Janeiro, Faculdade de Ciências Médicas, Departamento de Microbiologia, Imunologia e Parasitologia, Rio de Janeiro, RJ, Brasil
| | - Wânia Ferraz Pereira-Manfro
- Universidade do Estado do Rio de Janeiro, Faculdade de Ciências Médicas, Departamento de Microbiologia, Imunologia e Parasitologia, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
9
|
Liu H, Meng L, Dong L, Zhang Y, Wang J, Zheng N. Prevalence, Antimicrobial Susceptibility, and Molecular Characterization of Escherichia coli Isolated From Raw Milk in Dairy Herds in Northern China. Front Microbiol 2021; 12:730656. [PMID: 34630355 PMCID: PMC8500479 DOI: 10.3389/fmicb.2021.730656] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/26/2021] [Indexed: 11/13/2022] Open
Abstract
Escherichia coli is a common bacterium in the intestines of animals, and it is also the major important cause of toxic mastitis, which is an acute or peracute disease that causes a higher incidence of death and culling of cattle. The purpose of this study was to investigate E. coli strains isolated from the raw milk of dairy cattle in Northern China, and the antibacterial susceptibility of these strains and essential virulence genes. From May to September 2015, 195 raw milk samples were collected from 195 dairy farms located in Northern China. Among the samples, 67 (34.4%) samples were positive for E. coli. About 67 E. coli strains were isolated from these 67 samples. The prevalence of Shiga toxin-producing E. coli (STEC), enterotoxigenic E. coli (ETEC), enteropathogenic E. coli (EPEC), and enteroinvasive E. coli (EIEC) were 9, 6, 4.5, and 1.5%, respectively. Among the virulence genes detected, stx1 was the most prevalent (6/67, 9%) gene, followed by eae (3/67, 4.5%), and estB (2/67, 3%). Moreover, the strains exhibited different resistance levels to ampicillin (46.3%), amoxicillin-clavulanic acid (16.4%), trimethoprim-sulfamethoxazole (13.4%), tetracycline (13.4%), cefoxitin (11.9%), chloramphenicol (7.5%), kanamycin (7.5%), streptomycin (6.0%), tobramycin (4.5%), azithromycin (4.5%), and ciprofloxacin (1.5%). All of the E. coli isolates were susceptible to gentamicin. The prevalence of β-lactamase-encoding genes was 34.3% in 67 E. coli isolates and 45% in 40 β-lactam-resistance E. coli isolates. The overall prevalence of bla SHV, bla TEM, bla CMY, and bla CTX-M genes were 1.5, 20.9, 10.4, and 1.5%, respectively. Nine non-pathogenic E. coli isolates also carried β-lactamase resistance genes, which may transfer to other pathogenic E. coli and pose a threat to the farm's mastitis management projects. Our results showed that most of E. coli were multidrug resistant and possessed multiple virulence genes, which may have a huge potential hazard with public health, and antibiotic resistance of E. coli was prevalent in dairy herds in Northern China, and ampicillin should be used cautiously for mastitis caused by E. coli in Northern China.
Collapse
Affiliation(s)
- Huimin Liu
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lu Meng
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Dong
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yangdong Zhang
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jiaqi Wang
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Nan Zheng
- Laboratory of Quality and Safety Risk Assessment for Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Quality & Safety Control for Milk and Dairy Products of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
10
|
Fei K, Chao HJ, Hu Y, Francis MS, Chen S. CpxR regulates the Rcs phosphorelay system in controlling the Ysc-Yop type III secretion system in Yersinia pseudotuberculosis. MICROBIOLOGY-SGM 2021; 167. [PMID: 33295859 DOI: 10.1099/mic.0.000998] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The CpxRA two-component regulatory system and the Rcs phosphorelay system are both employed by the Enterobacteriaceae family to preserve bacterial envelope integrity and function when growing under stress. Although both systems regulate several overlapping physiological processes, evidence demonstrating a molecular connection between Cpx and Rcs signalling outputs is scarce. Here, we show that CpxR negatively regulates the transcription of the rcsB gene in the Rcs phosphorelay system in Yersinia pseudotuberculosis. Interestingly, transcription of rcsB is under the control of three promoters, which were all repressed by CpxR. Critically, synthetic activation of Cpx signalling through mislocalization of the NlpE lipoprotein to the inner membrane resulted in an active form of CpxR that repressed activity of rcsB promoters. On the other hand, a site-directed mutation of the phosphorylation site at residue 51 in CpxR generated an inactive non-phosphorylated variant that was unable to regulate output from these rcsB promoters. Importantly, CpxR-mediated inhibition of rcsB transcription in turn restricted activation of the Ysc-Yop type III secretion system (T3SS). Moreover, active CpxR blocks zinc-mediated activation of Rcs signalling and the subsequent activation of lcrF transcription. Our results demonstrate a novel regulatory cascade linking CpxR-RcsB-LcrF to control production of the Ysc-Yop T3SS.
Collapse
Affiliation(s)
- Keke Fei
- University of Chinese Academy of Sciences, Beijing, PR China.,Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, PR China
| | - Hong-Jun Chao
- Present address: School of Biological & pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, PR China.,Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, PR China
| | - Yangbo Hu
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, PR China
| | - Matthew S Francis
- Department of Molecular Biology, Umeå University, Umeå, Sweden; Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Shiyun Chen
- Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, PR China
| |
Collapse
|
11
|
Guerrant RL, Bolick DT, Swann JR. Modeling Enteropathy or Diarrhea with the Top Bacterial and Protozoal Pathogens: Differential Determinants of Outcomes. ACS Infect Dis 2021; 7:1020-1031. [PMID: 33901398 PMCID: PMC8154416 DOI: 10.1021/acsinfecdis.0c00831] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Developing effective
therapeutics or preventive interventions for
important health threats is greatly enhanced whenever accessible models
can enable the assessment of clinically important outcomes. While
no non-human model is ever perfect, inexpensive in vivo small animal models in such as mice are often of great help in assessing
the relevant efficacy of potential interventions. In addition to acute
diarrhea, the long-term growth and developmental effects of enteric
infections, with or without overt diarrhea, are increasingly recognized.
To address these diverse effects, inexpensive animal models are proving
to be very helpful. Herein, we review the major clinical concerns
with enteric parasitic and bacterial infections that are extremely
common worldwide, especially in vulnerable young children living in
impoverished areas, and the recently published murine models of these
infections and their outcomes. We find that common dietary deficiencies
seen in children in developing areas have striking effects on diarrhea
and enteropathy outcomes in mice. However, these effects differ with
different pathogens. Specifically, the effects of protein or zinc
deficiency differ considerably with different major protozoal and
bacterial pathogens, suggesting different pathogenetic pathways and
intervention effects. The pathogens reviewed are the seven top parasitic
and bacterial pathogens seen in children, namely, Cryptosporidium, Giardia, Campylobacter, Shigella, enterotoxigenic Escherichia coli (ETEC), enteroaggregative E. coli (EAEC), and enteropathogenic E. coli (EPEC).
Collapse
Affiliation(s)
- Richard L. Guerrant
- Center for Global Health Equity, Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
| | - David T. Bolick
- Center for Global Health Equity, Division of Infectious Diseases and International Health, University of Virginia School of Medicine, Charlottesville, Virginia 22908, United States
| | - Jonathan R. Swann
- School of Human Development and Health, Faculty of Medicine, University of Southampton, Southampton SO16 6YD, United Kingdom
- Department of Metabolism, Digestion, and Reproduction, Faculty of Medicine, Imperial College London, London SW7 2AZ, United Kingdom
| |
Collapse
|
12
|
Botta A, Barra NG, Lam NH, Chow S, Pantopoulos K, Schertzer JD, Sweeney G. Iron Reshapes the Gut Microbiome and Host Metabolism. J Lipid Atheroscler 2021; 10:160-183. [PMID: 34095010 PMCID: PMC8159756 DOI: 10.12997/jla.2021.10.2.160] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/12/2021] [Accepted: 02/21/2021] [Indexed: 12/12/2022] Open
Abstract
Compelling studies have established that the gut microbiome is a modifier of metabolic health. Changes in the composition of the gut microbiome are influenced by genetics and the environment, including diet. Iron is a potential node of crosstalk between the host-microbe relationship and metabolic disease. Although iron is well characterized as a frequent traveling companion of metabolic disease, the role of iron is underappreciated because the mechanisms of iron's influence on host metabolism are poorly characterized. Both iron deficiency and excessive amounts leading to iron overload can have detrimental effects on cardiometabolic health. Optimal iron homeostasis is critical for regulation of host immunity and metabolism in addition to regulation of commensal and pathogenic enteric bacteria. In this article we review evidence to support the notion that altering composition of the gut microbiome may be an important route via which iron impacts cardiometabolic health. We discuss reshaping of the microbiome by iron, the physiological significance and the potential for therapeutic interventions.
Collapse
Affiliation(s)
- Amy Botta
- Department of Biology, York University, Toronto, ON, Canada
| | - Nicole G. Barra
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
| | - Nhat Hung Lam
- Department of Biology, York University, Toronto, ON, Canada
| | - Samantha Chow
- Department of Biology, York University, Toronto, ON, Canada
| | - Kostas Pantopoulos
- Lady Davis Institute for Medical Research, Jewish General Hospital and Department of Medicine, McGill University, Montreal, QC, Canada
| | - Jonathan D. Schertzer
- Department of Biochemistry and Biomedical Sciences, Farncombe Family Digestive Health Research Institute, Centre for Metabolism, Obesity and Diabetes Research, McMaster University, Hamilton, ON, Canada
| | - Gary Sweeney
- Department of Biology, York University, Toronto, ON, Canada
| |
Collapse
|
13
|
Cuajungco MP, Ramirez MS, Tolmasky ME. Zinc: Multidimensional Effects on Living Organisms. Biomedicines 2021; 9:biomedicines9020208. [PMID: 33671781 PMCID: PMC7926802 DOI: 10.3390/biomedicines9020208] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/03/2021] [Accepted: 02/09/2021] [Indexed: 12/28/2022] Open
Abstract
Zinc is a redox-inert trace element that is second only to iron in abundance in biological systems. In cells, zinc is typically buffered and bound to metalloproteins, but it may also exist in a labile or chelatable (free ion) form. Zinc plays a critical role in prokaryotes and eukaryotes, ranging from structural to catalytic to replication to demise. This review discusses the influential properties of zinc on various mechanisms of bacterial proliferation and synergistic action as an antimicrobial element. We also touch upon the significance of zinc among eukaryotic cells and how it may modulate their survival and death through its inhibitory or modulatory effect on certain receptors, enzymes, and signaling proteins. A brief discussion on zinc chelators is also presented, and chelating agents may be used with or against zinc to affect therapeutics against human diseases. Overall, the multidimensional effects of zinc in cells attest to the growing number of scientific research that reveal the consequential prominence of this remarkable transition metal in human health and disease.
Collapse
|
14
|
Name JJ, Souza ACR, Vasconcelos AR, Prado PS, Pereira CPM. Zinc, Vitamin D and Vitamin C: Perspectives for COVID-19 With a Focus on Physical Tissue Barrier Integrity. Front Nutr 2020; 7:606398. [PMID: 33365326 PMCID: PMC7750357 DOI: 10.3389/fnut.2020.606398] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/16/2020] [Indexed: 12/15/2022] Open
Abstract
Some nutrients play key roles in maintaining the integrity and function of the immune system, presenting synergistic actions in steps determinant for the immune response. Among these elements, zinc and vitamins C and D stand out for having immunomodulatory functions and for playing roles in preserving physical tissue barriers. Considering the COVID-19 pandemic, nutrients that can optimize the immune system to prevent or lower the risk of severe progression and prognosis of this viral infection become relevant. Thus, the present review aims to provide a comprehensive overview of the roles of zinc and vitamins C and D in the immune response to viral infections, focusing on the synergistic action of these nutrients in the maintenance of physical tissue barriers, such as the skin and mucous membranes. The evidence found in the literature shows that deficiency of one or more of these three elements compromises the immune response, making an individual more vulnerable to viral infections and to a worse disease prognosis. Thus, during the COVID-19 pandemic, the adequate intake of zinc and vitamins C and D may represent a promising pharmacological tool due to the high demand for these nutrients in the case of contact with the virus and onset of the inflammatory process. Ongoing clinical trials will help to clarify the role of these nutrients for COVID-19 management.
Collapse
Affiliation(s)
- José João Name
- Kilyos Consultoria, Assessoria, Cursos e Palestras, São Paulo, Brazil
| | | | | | | | | |
Collapse
|
15
|
Anti-Adhesive Effect of ZnO Nanoparticles Against Uropathogenic Escherichia coli in Bladder Epithelial Cell Cultures and on fimH Gene Expression. Jundishapur J Microbiol 2019. [DOI: 10.5812/jjm.86885] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
16
|
DeBoer MD, Guerrant RL. Ongoing Challenges to Understanding and Interrupting Environmental Enteric Dysfunction. J Pediatr 2019; 210:8-9. [PMID: 30926153 DOI: 10.1016/j.jpeds.2019.02.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 02/27/2019] [Indexed: 11/20/2022]
Affiliation(s)
- Mark D DeBoer
- Pediatric Endocrinology, Department of Pediatrics, University of Virginia, Charlottesville, Virginia
| | - Richard L Guerrant
- Infectious Diseases and International Health, Department of Medicine and, Center for Global Health, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
17
|
Alanyl-glutamine Protects Against Damage Induced by Enteroaggregative Escherichia coli Strains in Intestinal Cells. J Pediatr Gastroenterol Nutr 2019; 68:190-198. [PMID: 30247422 DOI: 10.1097/mpg.0000000000002152] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
BACKGROUND Enteroaggregative Escherichia coli (EAEC) is an important pathogen causing enteric infections worldwide. This pathotype is linked to malnutrition in children from developing countries. Alanyl-glutamine (Ala-Gln) is an immune modulator nutrient that acts during intestinal damage and/or inflammation. This study investigated the effect of EAEC infection and Ala-Gln on cell viability, cell death, and inflammation of intestinal epithelium cells (IEC-6). METHODS Cells were infected with an EAEC prototype 042 strain, an EAEC wild-type strain isolated from a Brazilian malnourished child, and a commensal E coli HS. Gene transcription and protein levels of caspases-3, -8, and -9 and cytokine-induced neutrophil chemoattractant 1 (CINC-1/CXCL1) were evaluated using RT-qPCR, western blot analysis, and ELISA. RESULTS Infections with both EAEC strains decreased cell viability and induced apoptosis and necrosis after 24 hours. Ala-Gln supplementation increased cell proliferation and reduced cell death in infected cells. Likewise, EAEC strain 042 significantly increased the transcript levels of caspases-3, -8, and -9 when compared to the control group, and Ala-Gln treatment reversed this effect. Furthermore, EAEC induced CXCL1 protein levels, which were also reduced by Ala-Gln supplementation. CONCLUSION These findings suggest that EAEC infection promotes apoptosis, necrosis, and intestinal inflammation with involvement of caspases. Supplementation of Ala-Gln inhibits cell death, increases cell proliferation, attenuates mediators associated with cell death, and inflammatory pathways in infected cells.
Collapse
|
18
|
Bartelt LA, Bolick DT, Guerrant RL. Disentangling Microbial Mediators of Malnutrition: Modeling Environmental Enteric Dysfunction. Cell Mol Gastroenterol Hepatol 2019; 7:692-707. [PMID: 30630118 PMCID: PMC6477186 DOI: 10.1016/j.jcmgh.2018.12.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 12/12/2018] [Accepted: 12/13/2018] [Indexed: 12/12/2022]
Abstract
Environmental enteric dysfunction (EED) (also referred to as environmental enteropathy) is a subclinical chronic intestinal disorder that is an emerging contributor to early childhood malnutrition. EED is common in resource-limited settings, and is postulated to consist of small intestinal injury, dysfunctional nutrient absorption, and chronic inflammation that results in impaired early child growth attainment. Although there is emerging interest in the hypothetical potential for chemical toxins in the environmental exposome to contribute to EED, the propensity of published data, and hence the focus of this review, implicates a critical role of environmental microbes. Early childhood malnutrition and EED are most prevalent in resource-limited settings where food is limited, and inadequate access to clean water and sanitation results in frequent gastrointestinal pathogen exposures. Even as overt diarrhea rates in these settings decline, silent enteric infections and faltering growth persist. Furthermore, beyond restricted physical growth, EED and/or enteric pathogens also associate with impaired oral vaccine responses, impaired cognitive development, and may even accelerate metabolic syndrome and its cardiovascular consequences. As these potentially costly long-term consequences of early childhood enteric infections increasingly are appreciated, novel therapeutic strategies that reverse damage resulting from nutritional deficiencies and microbial insults in the developing small intestine are needed. Given the inherent limitations in investigating how specific intestinal pathogens directly injure the small intestine in children, animal models provide an affordable and controlled opportunity to elucidate causal sequelae of specific enteric infections, to differentiate consequences of defined nutrient deprivation alone from co-incident enteropathogen insults, and to correlate the resulting gut pathologies with their functional impact during vulnerable early life windows.
Collapse
Affiliation(s)
- Luther A Bartelt
- Division of Infectious Diseases, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Center for Gastrointestinal Biology and Disease, Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| | - David T Bolick
- Center for Global Health, Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia
| | - Richard L Guerrant
- Center for Global Health, Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia
| |
Collapse
|
19
|
Braga RLL, Pereira ACM, Ferreira AF, Rosa ACDP, Pereira-Manfro WF. INTRACELLULAR PERSISTENCE OF ENTEROAGGREGATIVE ESCHERICHIA COLI INDUCES A PROINFLAMMATORY CYTOKINES SECRETION IN INTESTINAL EPITHELIAL T84 CELLS. ARQUIVOS DE GASTROENTEROLOGIA 2018; 55:133-137. [PMID: 30043861 DOI: 10.1590/s0004-2803.201800000-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 02/07/2018] [Indexed: 11/22/2022]
Abstract
BACKGROUND The competence of enteroaggregative Escherichia coli (EAEC) to adhere to the intestinal epithelium of the host is a key role to the colonization and disease development. The virulence genes are crucial for EAEC pathogenicity during adherence, internalization and persistence in the host. The overwhelming majority of antigen encounters in a host occurs on the intestine surface, which is considered a part of innate mucosal immunity. Intestinal epithelial cells (IECs) can be activated by microorganisms and induce an immune response. OBJECTIVE The present study investigated the interaction of invasive EAEC strains with T84 intestinal epithelial cell line in respect to bacterial invasiveness, persistence and cytokines production. METHODS We evaluated intracellular persistence of invasive EAEC strains (H92/3, I49/3 and the prototype 042) and production of cytokines by sandwich ELISA in T84 cells upon 24 hours of infection. RESULTS The survival rates of the prototype 042 was 0.5x103 CFU/mL while survival of I49/3 and H92/3 reached 3.2x103 CFU/mL and 1.4x103 CFU/mL, respectively. Infection with all EAEC strains tested induced significant amounts of IL-8, IL-6 and TNF-α compared to uninfected T84 cells. CONCLUSION These data showed that infection by invasive EAEC induce a proinflammatory immune response in intestinal epithelial T84 cells.
Collapse
Affiliation(s)
- Ricardo Luís Lopes Braga
- Universidade do Estado do Rio de Janeiro, Faculdade de Ciências Médicas, Departamento de Microbiologia, Imunologia e Parasitologia, Rio de Janeiro, RJ, Brasil
| | - Ana Claudia Machado Pereira
- Universidade do Estado do Rio de Janeiro, Faculdade de Ciências Médicas, Departamento de Microbiologia, Imunologia e Parasitologia, Rio de Janeiro, RJ, Brasil
| | - Andréa Fonseca Ferreira
- Universidade do Estado do Rio de Janeiro, Faculdade de Ciências Médicas, Departamento de Microbiologia, Imunologia e Parasitologia, Rio de Janeiro, RJ, Brasil
| | - Ana Cláudia de Paula Rosa
- Universidade do Estado do Rio de Janeiro, Faculdade de Ciências Médicas, Departamento de Microbiologia, Imunologia e Parasitologia, Rio de Janeiro, RJ, Brasil
| | - Wânia Ferraz Pereira-Manfro
- Universidade do Estado do Rio de Janeiro, Faculdade de Ciências Médicas, Departamento de Microbiologia, Imunologia e Parasitologia, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
20
|
Critical Role of Zinc in a New Murine Model of Enterotoxigenic Escherichia coli Diarrhea. Infect Immun 2018; 86:IAI.00183-18. [PMID: 29661930 PMCID: PMC6013668 DOI: 10.1128/iai.00183-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 04/11/2018] [Indexed: 12/11/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a major cause of traveler's diarrhea as well as of endemic diarrhea and stunting in children in developing areas. However, a small-mammal model has been badly needed to better understand and assess mechanisms, vaccines, and interventions. We report a murine model of ETEC diarrhea, weight loss, and enteropathy and investigate the role of zinc in the outcomes. ETEC strains producing heat-labile toxins (LT) and heat-stable toxins (ST) that were given to weaned C57BL/6 mice after antibiotic disruption of normal microbiota caused growth impairment, watery diarrhea, heavy stool shedding, and mild to moderate intestinal inflammation, the latter being worse with zinc deficiency. Zinc treatment promoted growth in zinc-deficient infected mice, and subinhibitory levels of zinc reduced expression of ETEC virulence genes cfa1, cexE, sta2, and degP but not of eltA in vitro Zinc supplementation increased shedding and the ileal burden of wild-type (WT) ETEC but decreased shedding and the tissue burden of LT knockout (LTKO) ETEC. LTKO ETEC-infected mice had delayed disease onset and also had less inflammation by fecal myeloperoxidase (MPO) assessment. These findings provide a new murine model of ETEC infection that can help elucidate mechanisms of growth, diarrhea, and inflammatory responses as well as potential vaccines and interventions.
Collapse
|
21
|
Abstract
Transition metals are required cofactors for many proteins that are critical for life, and their concentration within cells is carefully maintained to avoid both deficiency and toxicity. To defend against bacterial pathogens, vertebrate immune proteins sequester metals, in particular zinc, iron, and manganese, as a strategy to limit bacterial acquisition of these necessary nutrients in a process termed "nutritional immunity." In response, bacteria have evolved elegant strategies to access metals and counteract this host defense. In mammals, metal abundance can drastically shift due to changes in dietary intake or absorption from the intestinal tract, disrupting the balance between host and pathogen in the fight for metals and altering susceptibility to disease. This review describes the current understanding of how dietary metals modulate host-microbe interactions and the subsequent impact on the outcome of disease.
Collapse
Affiliation(s)
- Christopher A Lopez
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA; Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
22
|
Giallourou N, Medlock GL, Bolick DT, Medeiros PHQS, Ledwaba SE, Kolling GL, Tung K, Guerry P, Swann JR, Guerrant RL. A novel mouse model of Campylobacter jejuni enteropathy and diarrhea. PLoS Pathog 2018; 14:e1007083. [PMID: 29791507 PMCID: PMC5988333 DOI: 10.1371/journal.ppat.1007083] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 06/05/2018] [Accepted: 05/09/2018] [Indexed: 01/31/2023] Open
Abstract
Campylobacter infections are among the leading bacterial causes of diarrhea and of 'environmental enteropathy' (EE) and growth failure worldwide. However, the lack of an inexpensive small animal model of enteric disease with Campylobacter has been a major limitation for understanding its pathogenesis, interventions or vaccine development. We describe a robust standard mouse model that can exhibit reproducible bloody diarrhea or growth failure, depending on the zinc or protein deficient diet and on antibiotic alteration of normal microbiota prior to infection. Zinc deficiency and the use of antibiotics create a niche for Campylobacter infection to establish by narrowing the metabolic flexibility of these mice for pathogen clearance and by promoting intestinal and systemic inflammation. Several biomarkers and intestinal pathology in this model also mimic those seen in human disease. This model provides a novel tool to test specific hypotheses regarding disease pathogenesis as well as vaccine development that is currently in progress.
Collapse
Affiliation(s)
- Natasa Giallourou
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College, London, United Kingdom
| | - Gregory L. Medlock
- Department of Biomedical Engineering, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - David T. Bolick
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Pedro HQS Medeiros
- Institute of Biomedicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Solanka E. Ledwaba
- Department of Microbiology, University of Venda, Thohoyandou, Limpopo, South Africa
| | - Glynis L. Kolling
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Kenneth Tung
- Department of Pathology, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| | - Patricia Guerry
- Enteric Diseases Department, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Jonathan R. Swann
- Division of Computational and Systems Medicine, Department of Surgery and Cancer, Imperial College, London, United Kingdom
| | - Richard L. Guerrant
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia School of Medicine, Charlottesville, VA, United States of America
| |
Collapse
|
23
|
Abstract
The global impact of childhood malnutrition is staggering. The synergism between malnutrition and infection contributes substantially to childhood morbidity and mortality. Anthropometric indicators of malnutrition are associated with the increased risk and severity of infections caused by many pathogens, including viruses, bacteria, protozoa, and helminths. Since childhood malnutrition commonly involves the inadequate intake of protein and calories, with superimposed micronutrient deficiencies, the causal factors involved in impaired host defense are usually not defined. This review focuses on literature related to impaired host defense and the risk of infection in primary childhood malnutrition. Particular attention is given to longitudinal and prospective cohort human studies and studies of experimental animal models that address causal, mechanistic relationships between malnutrition and host defense. Protein and micronutrient deficiencies impact the hematopoietic and lymphoid organs and compromise both innate and adaptive immune functions. Malnutrition-related changes in intestinal microbiota contribute to growth faltering and dysregulated inflammation and immune function. Although substantial progress has been made in understanding the malnutrition-infection synergism, critical gaps in our understanding remain. We highlight the need for mechanistic studies that can lead to targeted interventions to improve host defense and reduce the morbidity and mortality of infectious diseases in this vulnerable population.
Collapse
|
24
|
Abstract
Antibiotics are undoubtedly a pillar of modern medicine; their discovery in 1929 revolutionized the fight against infectious disease, instigating a worldwide decline in infection-associated mortality. Throughout the 1930s, 1940s, and 1950s the golden age of antibiotic discovery was underway with numerous new classes of antibiotics identified and brought to market. By 1962 all of our currently known families of antibiotics had been discovered, and it was a widely held belief, that humanity had conquered infectious disease. Despite varying bacterial cellular targets, most antibiotics targeted exponentially multiplying bacteria by interfering with integral processes such as peptidoglycan synthesis or ribosomal activity. The very nature of this targeted approach has driven the emergence of antibiotic-resistant bacteria.Methods of antibiotic identification relied solely on scientific observation, and while chemical analogues such as amoxicillin, derived from penicillin, continued to be developed, they retained the same mechanisms of action and hence the same bacterial targets. This article describes and discusses some of the emerging novel targets for antimicrobial treatments, highlighting pivotal research on which our ability to continue to successfully treat bacterial infection relies.
Collapse
|
25
|
Nyanga PL, Onyuka J, Webale MK, Were T, Budambula V. Escherichia coli pathotypes and Shigella sero-groups in diarrheic children in Nairobi city, Kenya. GASTROENTEROLOGY AND HEPATOLOGY FROM BED TO BENCH 2017; 10:220-228. [PMID: 29118939 PMCID: PMC5660273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
AIM In the present study, we investigated the prevalence of E. coli pathotypes and Shigella sero-groups and their antimicrobial profiles among diarrheic children in Nairobi city, Kenya. BACKGROUND Although diarrheagenic E. coli pathotypes and Shigella sero-groups are leading causes of diarrhea in children under five years in developing countries, their distribution and antimicrobial resistance vary from place to place and over time in a given region. METHODS In a cross-sectional study, we enrolled diarrheic children (n=354) under five years seeking treatment at Mbagathi Hospital, Nairobi city, Kenya,. Stool samples were collected from all children for bacterial culture. Bacterial isolation and identification was performed by conventional microbiological methods. Polymerase chain amplification was used to detect aspU, aggR, andpcvd432 for EAEC, est and elt for ETEC, eae for EPEC, stx for EHEC, and ipaH for EIEC and Shigella species. Antimicrobial profile was determined by disk diffusion method. RESULTS The prevalence of EAEC, ETEC, EPEC (eae), EIEC (ipaH) was 21.2%, 10.5%, 4.5%, and 0.6%, respectively, while that of mixed infection was 0.6%for ETEC/EAEC and 0.3%for EAEC/EPEC/ETEC. No EHEC strain was isolated. Pathogenetic analysis for EAEC showed that5.9% carried aspU,8.2% possessed both aspU and aggR and 7.1% had a combination of aspU, aggR andpcvd432 while that of ETEC was 2.3% for elt, 6.5% for both elt and est and 1.7% for est. The combination of aspU with aggR, elt and est, and pcvd432 with aggR, aspU and est was 0.3% for each case of ETEC/EAEC mixed infection. The aspU gene co-existed with aggR, pcvd432, eae and elt in the EAEC/EPEC/ETEC mixed infection. The prevalence of S. boydii, S. dysenteriae, S. flexneriand,S. sonnei was 0.8%, 0.6%, 1.7%, and 0.8%, respectively. No E. coli pathotype and shigella co-infection was detected. In addition, both E. coli pathotypes and Shigella species were resistant to ampicillin, trimethoprim/sulfamethoxazole, streptomycin, chloramphenicol and tetracycline while gentamycin and kanamycin resistance occurred in diarrheagenic E. coli. CONCLUSION E. coli pathotypes and Shigella sero-groups harboring virulent genes are important causes of diarrhea in children in Kenya. The increasing spectrum of antibiotic resistance in diarrheagenic E. coli and Shigella species necessitates the development of antimicrobial stewardship education-programs to influence prescribing behavior as well as optimizing the use of effective antimicrobials in Kenya.
Collapse
Affiliation(s)
- Peter Lokamar Nyanga
- Disease Surveillance and Response Unit, Ministry of Health, Nairobi, Kenya.,Department of Medical Laboratory Sciences, Mount Kenya University, Thika, Kenya.
| | - Jackson Onyuka
- School of Health Sciences, Kirinyaga University, Kirinyaga, Kenya.
| | - Mark Kilongosi Webale
- Department of Medical Laboratory Sciences, Masinde Muliro University of Science and Technology, Kakamega, Kenya.
| | - Tom Were
- Department of Environmental Health Sciences, Technical University of Mombasa, Mombasa, Kenya.
| | - Valentine Budambula
- Department of Medical Laboratory Sciences, Mount Kenya University, Thika, Kenya
| |
Collapse
|
26
|
Bartelt LA, Bolick DT, Kolling GL, Roche JK, Zaenker EI, Lara AM, Noronha FJ, Cowardin CA, Moore JH, Turner JR, Warren CA, Buck GA, Guerrant RL. Cryptosporidium Priming Is More Effective than Vaccine for Protection against Cryptosporidiosis in a Murine Protein Malnutrition Model. PLoS Negl Trop Dis 2016; 10:e0004820. [PMID: 27467505 PMCID: PMC4965189 DOI: 10.1371/journal.pntd.0004820] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/11/2016] [Indexed: 01/21/2023] Open
Abstract
Cryptosporidium is a major cause of severe diarrhea, especially in malnourished children. Using a murine model of C. parvum oocyst challenge that recapitulates clinical features of severe cryptosporidiosis during malnutrition, we interrogated the effect of protein malnutrition (PM) on primary and secondary responses to C. parvum challenge, and tested the differential ability of mucosal priming strategies to overcome the PM-induced susceptibility. We determined that while PM fundamentally alters systemic and mucosal primary immune responses to Cryptosporidium, priming with C. parvum (106 oocysts) provides robust protective immunity against re-challenge despite ongoing PM. C. parvum priming restores mucosal Th1-type effectors (CD3+CD8+CD103+ T-cells) and cytokines (IFNγ, and IL12p40) that otherwise decrease with ongoing PM. Vaccination strategies with Cryptosporidium antigens expressed in the S. Typhi vector 908htr, however, do not enhance Th1-type responses to C. parvum challenge during PM, even though vaccination strongly boosts immunity in challenged fully nourished hosts. Remote non-specific exposures to the attenuated S. Typhi vector alone or the TLR9 agonist CpG ODN-1668 can partially attenuate C. parvum severity during PM, but neither as effectively as viable C. parvum priming. We conclude that although PM interferes with basal and vaccine-boosted immune responses to C. parvum, sustained reductions in disease severity are possible through mucosal activators of host defenses, and specifically C. parvum priming can elicit impressively robust Th1-type protective immunity despite ongoing protein malnutrition. These findings add insight into potential correlates of Cryptosporidium immunity and future vaccine strategies in malnourished children. Cryptosporidium attributable morbidities in malnourished children are increasingly recognized. Exactly how malnutrition interferes with host mucosal immunity to diarrheal pathogens and mucosal vaccine responses remains unclear. Dissecting these interactions in an experimental model of cryptosporidiosis can uncover new insights into novel therapeutic approaches against a pathogen for which effective therapies and vaccines are currently unavailable. We demonstrate that although malnutrition diminishes baseline (primary) Th1-type mucosal immunity these deficits can be partially overcome via non-specific mucosal strategies (S. Typhi and CpG) and completely restored after a sub-clinical (low-dose) exposure to viable C. parvum. These results add insight into preventive strategies to help alleviate Cryptosporidium-specific diarrhea in children in low-resource settings and abrogate prolonged post-infection sequelae.
Collapse
Affiliation(s)
- Luther A. Bartelt
- Division of Infectious Diseases, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, United States of America
- * E-mail:
| | - David T. Bolick
- Division of Infectious Diseases and Center for Global Health, University of Virginia, Charlottesville, Virginia, United States of America
| | - Glynis L. Kolling
- Division of Infectious Diseases and Center for Global Health, University of Virginia, Charlottesville, Virginia, United States of America
| | - James K. Roche
- Division of Infectious Diseases and Center for Global Health, University of Virginia, Charlottesville, Virginia, United States of America
| | - Edna I. Zaenker
- Division of Infectious Diseases and Center for Global Health, University of Virginia, Charlottesville, Virginia, United States of America
| | - Ana M. Lara
- Molecular Biology and Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Francisco Jose Noronha
- Division of Infectious Diseases and Center for Global Health, University of Virginia, Charlottesville, Virginia, United States of America
| | - Carrie A. Cowardin
- Division of Infectious Diseases and Center for Global Health, University of Virginia, Charlottesville, Virginia, United States of America
| | - John H. Moore
- Division of Infectious Diseases and Center for Global Health, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jerrold R. Turner
- Department of Pathology, The University of Chicago, Chicago, Illinois, United States of America
- Departments of Pathology and Medicine—Gastroenterology, Brigham and Women’s Hospital, Boston, Massachusetts, United States of America
| | - Cirle A. Warren
- Division of Infectious Diseases and Center for Global Health, University of Virginia, Charlottesville, Virginia, United States of America
| | - Gregory A. Buck
- Molecular Biology and Genetics, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Richard L. Guerrant
- Division of Infectious Diseases and Center for Global Health, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
27
|
Rocha-Ramírez LM, Hernández-Chiñas U, Baños-Rojas D, Xicohtencatl-Cortés J, Chávez-Berrocal ME, Rico-Rosillo G, Kretschmer R, Eslava CA. Pet serine protease from enteroaggregative Escherichia coli stimulates the inflammatory response activating human macrophages. BMC Microbiol 2016; 16:158. [PMID: 27439312 PMCID: PMC4955197 DOI: 10.1186/s12866-016-0775-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 07/12/2016] [Indexed: 01/09/2023] Open
Abstract
Background Pet is a toxin from the family of Serine Protease Autotransporters of Enterobacteriaceae which was initially identified in Enteroaggregative Escherichia coli strains. This protease exhibits enterotoxin properties, damages the cell cytoskeleton and induces intestinal epithelium alterations, which are associated with a severe inflammatory process. An in-vitro study was conducted to evaluate the effect of Pet on the migration of human peripheral blood monocytes-derived macrophages and its participation in the activation of the early inflammatory response and cytokine expression. Results In the macrophage migration activation assay, Pet produced a similar effect to that induced by opsonized zymosan (ZAS). Regarding the cytokine expression, an increase of IL-8, TNF-α (pro-inflammatory) and IL-10 (anti-inflammatory) was identified. In addition to the above results, the nuclear translocation of NF-kB pp65 was also identified. These events are probably related to the inflammatory response identified in the histological examination of intestine rat samples inoculated with Pet during a ligated loop assay. Conclusion The results showed that Pet participates as an immunostimulant molecule for macrophages, which activates both their mobility and cytokine expression. These observations suggest that the toxin participates in the inflammatory process that is observed during the host infection by EAEC Pet producing.
Collapse
Affiliation(s)
- L M Rocha-Ramírez
- Departamento de Infectología, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col Doctores, Delegación Cuauhtémoc, 06720, C. de México.
| | - U Hernández-Chiñas
- Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Escolar S/N, Ciudad Universitaria, Coyoacán, 04510, C. de México.,Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación, Hospital Infantil de México Federico Gómez/Facultad de Medicina UNAM, Dr. Márquez No. 162, Col Doctores, Delegación Cuauhtémoc, 06720, C. de México
| | - D Baños-Rojas
- Departamento de Infectología, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col Doctores, Delegación Cuauhtémoc, 06720, C. de México
| | - J Xicohtencatl-Cortés
- Laboratorio de Bacteriología Intestinal, Unidad de Hemato-Oncología e Investigación, Hospital Infantil de México Federico Gómez, Dr. Márquez No. 162, Col Doctores, Delegación Cuauhtémoc, 06720, C. de México
| | - M E Chávez-Berrocal
- Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Escolar S/N, Ciudad Universitaria, Coyoacán, 04510, C. de México.,Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación, Hospital Infantil de México Federico Gómez/Facultad de Medicina UNAM, Dr. Márquez No. 162, Col Doctores, Delegación Cuauhtémoc, 06720, C. de México
| | - G Rico-Rosillo
- Divisiòn de Investigación. Facultad de Medicina, UNAM. Circuito Escolar S/N, Ciudad Universitaria, Coyoacán, 04510, C. de México
| | - R Kretschmer
- Unidad de Investigación Médica en Inmunología, Hospital de Pediatría, CMN siglo XXI, IMSS, Av. Cuauhtémoc No. 330, Col Doctores, Delegación Cuauhtémoc, 06720, C. de México
| | - C A Eslava
- Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional Autónoma de México, Circuito Escolar S/N, Ciudad Universitaria, Coyoacán, 04510, C. de México. .,Laboratorio de Patogenicidad Bacteriana, Unidad de Hemato-Oncología e Investigación, Hospital Infantil de México Federico Gómez/Facultad de Medicina UNAM, Dr. Márquez No. 162, Col Doctores, Delegación Cuauhtémoc, 06720, C. de México.
| |
Collapse
|
28
|
Oriá RB, Murray-Kolb LE, Scharf RJ, Pendergast LL, Lang DR, Kolling GL, Guerrant RL. Early-life enteric infections: relation between chronic systemic inflammation and poor cognition in children. Nutr Rev 2016; 74:374-86. [PMID: 27142301 DOI: 10.1093/nutrit/nuw008] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The intestinal microbiota undergoes active remodeling in the first 6 to 18 months of life, during which time the characteristics of the adult microbiota are developed. This process is strongly influenced by the early diet and enteric pathogens. Enteric infections and malnutrition early in life may favor microbiota dysbiosis and small intestinal bacterial overgrowth, resulting in intestinal barrier dysfunction and translocation of intestinal bacterial products, ultimately leading to low-grade, chronic, subclinical systemic inflammation. The leaky gut-derived low-grade systemic inflammation may have profound consequences on the gut-liver-brain axis, compromising normal growth, metabolism, and cognitive development. This review examines recent data suggesting that early-life enteric infections that lead to intestinal barrier disruption may shift the intestinal microbiota toward chronic systemic inflammation and subsequent impaired cognitive development.
Collapse
Affiliation(s)
- Reinaldo B Oriá
- R.B. Oriá is with the Laboratory of Tissue Healing, Ontogeny and Nutrition, Institute of Biomedicine and Department of Morphology, Faculty of Medicine, Federal University of Ceará, Ceará, Fortaleza, Brazil. L.E. Murray-Kolb is with The Pennsylvania State University, University Park, Pennsylvania, USA. R.J. Scharf, G. Kolling, and R.L. Guerrant are with the Center for Global Health, Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA. L.L. Pendergast is with the School Psychology Program, Temple University, Philadelphia, Pennsylvania, USA. D.R. Lang is with the Foundation for the National Institutes of Health, Bethesda, Maryland, USA.
| | - Laura E Murray-Kolb
- R.B. Oriá is with the Laboratory of Tissue Healing, Ontogeny and Nutrition, Institute of Biomedicine and Department of Morphology, Faculty of Medicine, Federal University of Ceará, Ceará, Fortaleza, Brazil. L.E. Murray-Kolb is with The Pennsylvania State University, University Park, Pennsylvania, USA. R.J. Scharf, G. Kolling, and R.L. Guerrant are with the Center for Global Health, Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA. L.L. Pendergast is with the School Psychology Program, Temple University, Philadelphia, Pennsylvania, USA. D.R. Lang is with the Foundation for the National Institutes of Health, Bethesda, Maryland, USA
| | - Rebecca J Scharf
- R.B. Oriá is with the Laboratory of Tissue Healing, Ontogeny and Nutrition, Institute of Biomedicine and Department of Morphology, Faculty of Medicine, Federal University of Ceará, Ceará, Fortaleza, Brazil. L.E. Murray-Kolb is with The Pennsylvania State University, University Park, Pennsylvania, USA. R.J. Scharf, G. Kolling, and R.L. Guerrant are with the Center for Global Health, Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA. L.L. Pendergast is with the School Psychology Program, Temple University, Philadelphia, Pennsylvania, USA. D.R. Lang is with the Foundation for the National Institutes of Health, Bethesda, Maryland, USA
| | - Laura L Pendergast
- R.B. Oriá is with the Laboratory of Tissue Healing, Ontogeny and Nutrition, Institute of Biomedicine and Department of Morphology, Faculty of Medicine, Federal University of Ceará, Ceará, Fortaleza, Brazil. L.E. Murray-Kolb is with The Pennsylvania State University, University Park, Pennsylvania, USA. R.J. Scharf, G. Kolling, and R.L. Guerrant are with the Center for Global Health, Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA. L.L. Pendergast is with the School Psychology Program, Temple University, Philadelphia, Pennsylvania, USA. D.R. Lang is with the Foundation for the National Institutes of Health, Bethesda, Maryland, USA
| | - Dennis R Lang
- R.B. Oriá is with the Laboratory of Tissue Healing, Ontogeny and Nutrition, Institute of Biomedicine and Department of Morphology, Faculty of Medicine, Federal University of Ceará, Ceará, Fortaleza, Brazil. L.E. Murray-Kolb is with The Pennsylvania State University, University Park, Pennsylvania, USA. R.J. Scharf, G. Kolling, and R.L. Guerrant are with the Center for Global Health, Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA. L.L. Pendergast is with the School Psychology Program, Temple University, Philadelphia, Pennsylvania, USA. D.R. Lang is with the Foundation for the National Institutes of Health, Bethesda, Maryland, USA
| | - Glynis L Kolling
- R.B. Oriá is with the Laboratory of Tissue Healing, Ontogeny and Nutrition, Institute of Biomedicine and Department of Morphology, Faculty of Medicine, Federal University of Ceará, Ceará, Fortaleza, Brazil. L.E. Murray-Kolb is with The Pennsylvania State University, University Park, Pennsylvania, USA. R.J. Scharf, G. Kolling, and R.L. Guerrant are with the Center for Global Health, Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA. L.L. Pendergast is with the School Psychology Program, Temple University, Philadelphia, Pennsylvania, USA. D.R. Lang is with the Foundation for the National Institutes of Health, Bethesda, Maryland, USA
| | - Richard L Guerrant
- R.B. Oriá is with the Laboratory of Tissue Healing, Ontogeny and Nutrition, Institute of Biomedicine and Department of Morphology, Faculty of Medicine, Federal University of Ceará, Ceará, Fortaleza, Brazil. L.E. Murray-Kolb is with The Pennsylvania State University, University Park, Pennsylvania, USA. R.J. Scharf, G. Kolling, and R.L. Guerrant are with the Center for Global Health, Division of Infectious Diseases and International Health, Department of Medicine, University of Virginia, Charlottesville, Virginia, USA. L.L. Pendergast is with the School Psychology Program, Temple University, Philadelphia, Pennsylvania, USA. D.R. Lang is with the Foundation for the National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
29
|
Saadeh R, Klaunig J. Children's Inter-Individual Variability and Asthma Development. Int J Health Sci (Qassim) 2015; 9:456-467. [PMID: 26715926 PMCID: PMC4682601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023] Open
Abstract
Children of different ages vary in their response to environmental stressors due to their continuous development and changes in their bodies' anatomy, physiology, and biochemistry. Each age group of children has special biological features that distinguish their toxicokinetic and toxicodynamic characteristics from other age groups. The variability in responses extends to include children of the same age group. These intra- and inter-group differences in biological features explains the variability in responses to environmental exposures. Based on such differences in children's responses to exposures, adverse health outcomes and diseases develop differently in children. One of these diseases that are common in children is asthma. Asthma is a complex respiratory chronic disease that is multifactorial in origin. This paper discusses how variability in certain factors among children contributes to asthma occurrence or exacerbation, and links these factors to asthma in children of different ages. The importance of this review is to provide an insight on factors affecting asthma prevalence among children. These factors are usually overlooked in clinical or public health practice, which might significantly affect asthma management, and decrease the predictability of asthma detection measures. Therefore, keeping these factors into consideration can significantly improve asthma treatment and assist in asthma prevention amongst susceptible populations.
Collapse
Affiliation(s)
- Rami Saadeh
- Department of Environmental Health, School of Public Health, Indiana University at Bloomington, Bloomington, Indiana, USA
| | - James Klaunig
- Department of Environmental Health, School of Public Health, Indiana University at Bloomington, Bloomington, Indiana, USA
| |
Collapse
|
30
|
Noto JM, Peek RM. Micronutrients: A double-edged sword in microbial-induced gastric carcinogenesis. Trends Cancer 2015; 1:136-144. [PMID: 26623443 DOI: 10.1016/j.trecan.2015.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 07/01/2015] [Accepted: 07/10/2015] [Indexed: 12/13/2022]
Abstract
Epidemiologic studies throughout the world have uniformly demonstrated significant relationships between the intake of dietary micronutrients and gastric cancer risk. An exciting concept that has gained considerable traction recently is that micronutrients modulate gene expression within Helicobacter pylori, the strongest identified risk factor for gastric carcinogenesis. We present evidence here that essential micronutrients have a direct effect on H. pylori virulence, which subsequently affects interactions at the host-pathogen interface, thereby facilitating the development of premalignant and malignant lesions in the stomach. Further, these fundamental concepts provide a framework for understanding mechanisms driving the development of other malignancies that arise from foci of gastrointestinal inflammation.
Collapse
Affiliation(s)
- Jennifer M Noto
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Avenue, MRB IV 1030C, Nashville, TN 37232-0252, , ,
| | - Richard M Peek
- Division of Gastroenterology, Department of Medicine, Vanderbilt University Medical Center, 2215 Garland Avenue MRB IV 1030C, Nashville, TN 37232-0252, , ,
| |
Collapse
|
31
|
The Human Antimicrobial Protein Calgranulin C Participates in Control of Helicobacter pylori Growth and Regulation of Virulence. Infect Immun 2015; 83:2944-56. [PMID: 25964473 DOI: 10.1128/iai.00544-15] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 04/30/2015] [Indexed: 12/18/2022] Open
Abstract
During infectious processes, antimicrobial proteins are produced by both epithelial cells and innate immune cells. Some of these antimicrobial molecules function by targeting transition metals and sequestering these metals in a process referred to as "nutritional immunity." This chelation strategy ultimately starves invading pathogens, limiting their growth within the vertebrate host. Recent evidence suggests that these metal-binding antimicrobial molecules have the capacity to affect bacterial virulence, including toxin secretion systems. Our previous work showed that the S100A8/S100A9 heterodimer (calprotectin, or calgranulin A/B) binds zinc and represses the elaboration of the H. pylori cag type IV secretion system (T4SS). However, there are several other S100 proteins that are produced in response to infection. We hypothesized that the zinc-binding protein S100A12 (calgranulin C) is induced in response to H. pylori infection and also plays a role in controlling H. pylori growth and virulence. To test this, we analyzed gastric biopsy specimens from H. pylori-positive and -negative patients for S100A12 expression. These assays showed that S100A12 is induced in response to H. pylori infection and inhibits bacterial growth and viability in vitro by binding nutrient zinc. Furthermore, the data establish that the zinc-binding activity of the S100A12 protein represses the activity of the cag T4SS, as evidenced by the gastric cell "hummingbird" phenotype, interleukin 8 (IL-8) secretion, and CagA translocation assays. In addition, high-resolution field emission gun scanning electron microscopy (FEG-SEM) was used to demonstrate that S100A12 represses biogenesis of the cag T4SS. Together with our previous work, these data reveal that multiple S100 proteins can repress the elaboration of an oncogenic bacterial surface organelle.
Collapse
|
32
|
Bolick DT, Kolling GL, Moore JH, de Oliveira LA, Tung K, Philipson C, Viladomiu M, Hontecillas R, Bassaganya-Riera J, Guerrant RL. Zinc deficiency alters host response and pathogen virulence in a mouse model of enteroaggregative Escherichia coli-induced diarrhea. Gut Microbes 2014; 5:618-27. [PMID: 25483331 PMCID: PMC4615194 DOI: 10.4161/19490976.2014.969642] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Enteroaggregative Escherichia coli (EAEC) is increasingly recognized as a major cause of diarrheal disease globally. In the current study, we investigated the impact of zinc deficiency on the host and pathogenesis of EAEC. Several outcomes of EAEC infection were investigated including weight loss, EAEC shedding and tissue burden, leukocyte recruitment, intestinal cytokine expression, and virulence expression of the pathogen in vivo. Mice fed a protein source defined zinc deficient diet (dZD) had an 80% reduction of serum zinc and a 50% reduction of zinc in luminal contents of the bowel compared to mice fed a protein source defined control diet (dC). When challenged with EAEC, dZD mice had significantly greater weight loss, stool shedding, mucus production, and, most notably, diarrhea compared to dC mice. Zinc deficient mice had reduced infiltration of leukocytes into the ileum in response to infection suggesting an impaired immune response. Interestingly, expression of several EAEC virulence factors were increased in luminal contents of dZD mice. These data show a dual effect of dietary zinc in benefitting the host while impairing virulence of the pathogen. The study demonstrates the critical importance of zinc and may help elucidate the benefits of zinc supplementation in cases of childhood diarrhea and malnutrition.
Collapse
Affiliation(s)
- David T Bolick
- Center for Global Health; Division of Infectious Diseases and International Health; School of Medicine; University of Virginia; Charlottesville, VA USA
| | - Glynis L Kolling
- Center for Global Health; Division of Infectious Diseases and International Health; School of Medicine; University of Virginia; Charlottesville, VA USA
| | - John H Moore
- Center for Global Health; Division of Infectious Diseases and International Health; School of Medicine; University of Virginia; Charlottesville, VA USA
| | | | - Kenneth Tung
- Department of Immunology; School of Medicine; University of Virginia; Charlottesville, VA USA
| | - Casandra Philipson
- Center for Modeling Immunity to Enteric Pathogens; Virginia Bioinformatics Institute; Virginia Tech; Blacksburg, VA USA
| | - Monica Viladomiu
- Center for Modeling Immunity to Enteric Pathogens; Virginia Bioinformatics Institute; Virginia Tech; Blacksburg, VA USA
| | - Raquel Hontecillas
- Center for Modeling Immunity to Enteric Pathogens; Virginia Bioinformatics Institute; Virginia Tech; Blacksburg, VA USA
| | - Josep Bassaganya-Riera
- Center for Modeling Immunity to Enteric Pathogens; Virginia Bioinformatics Institute; Virginia Tech; Blacksburg, VA USA
| | - Richard L Guerrant
- Center for Global Health; Division of Infectious Diseases and International Health; School of Medicine; University of Virginia; Charlottesville, VA USA,Correspondence to: Richard L Guerrant;
| |
Collapse
|
33
|
Landes Highlights. Gut Microbes 2014. [PMCID: PMC3928154 DOI: 10.4161/gmic.26991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
34
|
Gaddy JA, Radin JN, Loh JT, Piazuelo MB, Kehl-Fie TE, Delgado AG, Ilca FT, Peek RM, Cover TL, Chazin WJ, Skaar EP, Scott Algood HM. The host protein calprotectin modulates the Helicobacter pylori cag type IV secretion system via zinc sequestration. PLoS Pathog 2014; 10:e1004450. [PMID: 25330071 PMCID: PMC4199781 DOI: 10.1371/journal.ppat.1004450] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 09/04/2014] [Indexed: 12/11/2022] Open
Abstract
Transition metals are necessary for all forms of life including microorganisms, evidenced by the fact that 30% of all proteins are predicted to interact with a metal cofactor. Through a process termed nutritional immunity, the host actively sequesters essential nutrient metals away from invading pathogenic bacteria. Neutrophils participate in this process by producing several metal chelating proteins, including lactoferrin and calprotectin (CP). As neutrophils are an important component of the inflammatory response directed against the bacterium Helicobacter pylori, a major risk factor for gastric cancer, it was hypothesized that CP plays a role in the host response to H. pylori. Utilizing a murine model of H. pylori infection and gastric epithelial cell co-cultures, the role CP plays in modifying H. pylori -host interactions and the function of the cag Type IV Secretion System (cag T4SS) was investigated. This study indicates elevated gastric levels of CP are associated with the infiltration of neutrophils to the H. pylori-infected tissue. When infected with an H. pylori strain harboring a functional cag T4SS, calprotectin-deficient mice exhibited decreased bacterial burdens and a trend toward increased cag T4SS -dependent inflammation compared to wild-type mice. In vitro data demonstrate that culturing H. pylori with sub-inhibitory doses of CP reduces the activity of the cag T4SS and the biogenesis of cag T4SS-associated pili in a zinc-dependent fashion. Taken together, these data indicate that zinc homeostasis plays a role in regulating the proinflammatory activity of the cag T4SS.
Collapse
Affiliation(s)
- Jennifer A. Gaddy
- Veterans Affairs Tennessee Valley Healthcare Services, Nashville, Tennessee, United States of America
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Jana N. Radin
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - John T. Loh
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - M. Blanca Piazuelo
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Thomas E. Kehl-Fie
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Alberto G. Delgado
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Florin T. Ilca
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Richard M. Peek
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Timothy L. Cover
- Veterans Affairs Tennessee Valley Healthcare Services, Nashville, Tennessee, United States of America
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Walter J. Chazin
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Eric P. Skaar
- Veterans Affairs Tennessee Valley Healthcare Services, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Holly M. Scott Algood
- Veterans Affairs Tennessee Valley Healthcare Services, Nashville, Tennessee, United States of America
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
35
|
Crane JK, Broome JE, Reddinger RM, Werth BB. Zinc protects against Shiga-toxigenic Escherichia coli by acting on host tissues as well as on bacteria. BMC Microbiol 2014; 14:145. [PMID: 24903402 PMCID: PMC4072484 DOI: 10.1186/1471-2180-14-145] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/21/2014] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Zinc supplements can treat or prevent enteric infections and diarrheal disease. Many articles on zinc in bacteria, however, highlight the essential nature of this metal for bacterial growth and virulence, suggesting that zinc should make infections worse, not better. To address this paradox, we tested whether zinc might have protective effects on intestinal epithelium as well as on the pathogen. RESULTS Using polarized monolayers of T84 cells we found that zinc protected against damage induced by hydrogen peroxide, as measured by trans-epithelial electrical resistance. Zinc also reduced peroxide-induced translocation of Shiga toxin (Stx) across T84 monolayers from the apical to basolateral side. Zinc was superior to other divalent metals to (iron, manganese, and nickel) in protecting against peroxide-induced epithelial damage, while copper also showed a protective effect.The SOS bacterial stress response pathway is a powerful regulator of Stx production in STEC. We examined whether zinc's known inhibitory effects on Stx might be mediated by blocking the SOS response. Zinc reduced expression of recA, a reliable marker of the SOS. Zinc was more potent and more efficacious than other metals tested in inhibiting recA expression induced by hydrogen peroxide, xanthine oxidase, or the antibiotic ciprofloxacin. The close correlation between zinc's effects on recA/SOS and on Stx suggested that inhibition of the SOS response is one mechanism by which zinc protects against STEC infection. CONCLUSIONS Zinc's ability to protect against enteric bacterial pathogens may be the result of its combined effects on host tissues as well as inhibition of virulence in some pathogens. Research focused solely on the effects of zinc on pathogenic microbes may give an incomplete picture by failing to account for protective effects of zinc on host epithelia.
Collapse
Affiliation(s)
- John K Crane
- Department of Medicine, Division of Infectious Diseases, University at Buffalo, Room 317 Biomedical Research Bldg, 3435 Main St, Buffalo, NY 14214, USA.
| | | | | | | |
Collapse
|
36
|
Affiliation(s)
- John K Crane
- Department of Medicine; Division of Infectious Diseases; University at Buffalo; Buffalo, NY USA
| |
Collapse
|