1
|
Zhu X, Ding G, Ren S, Xi J, Liu K. The bioavailability, absorption, metabolism, and regulation of glucolipid metabolism disorders by quercetin and its important glycosides: A review. Food Chem 2024; 458:140262. [PMID: 38944925 DOI: 10.1016/j.foodchem.2024.140262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/02/2024]
Abstract
Quercetin and its glycosides (QG), vitally natural flavonoid, have been popular for health benefits. However, the absorption and metabolism affect their bioavailability, and the metabolic transformation alters their biological activities. This review systematically summarizes the bioavailability and pathways for the absorption and metabolism of quercetin/QG in vivo and in vitro, the biological activities and mechanism of quercetin/QG and their metabolites in treating glucolipid metabolism are discussed. After oral administration, quercetin/QG are mainly absorbed by the intestine, undergo phase II metabolism in the small intestine and liver to form conjugates and are metabolized into small phenolic acids by intestinal microbiota. Quercetin/QG and their metabolites exert beneficial effects on regulating glucolipid metabolism disorders, including improving insulin resistance, inhibiting lipogenesis, enhancing thermogenesis, modulating intestinal microbiota, relieving oxidative stress, and attenuating inflammation. This review enhances understanding of the mechanism of quercetin/QG regulate glucolipid metabolism and provides scientific support for the development of functional foods.
Collapse
Affiliation(s)
- Xiaoai Zhu
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, Henan Key Laboratory of Natural Pigment Preparation, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| | - Guiyuan Ding
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, Henan Key Laboratory of Natural Pigment Preparation, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Shuncheng Ren
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, Henan Key Laboratory of Natural Pigment Preparation, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Jun Xi
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, Henan Key Laboratory of Natural Pigment Preparation, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, PR China
| | - Kunlun Liu
- Food Engineering Technology Research Center/Key Laboratory of Henan Province, Henan Key Laboratory of Natural Pigment Preparation, College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, PR China.
| |
Collapse
|
2
|
Sangeetha Vijayan P, Xavier J, Valappil MP. A review of immune modulators and immunotherapy in infectious diseases. Mol Cell Biochem 2024; 479:1937-1955. [PMID: 37682390 DOI: 10.1007/s11010-023-04825-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/05/2023] [Indexed: 09/09/2023]
Abstract
The human immune system responds to harmful foreign invaders frequently encountered by the body and employs defense mechanisms to counteract such assaults. Various exogenous and endogenous factors play a prominent role in maintaining the balanced functioning of the immune system, which can result in immune suppression or immune stimulation. With the advent of different immune-modulatory agents, immune responses can be modulated or regulated to control infections and other health effects. Literature provides evidence on various immunomodulators from different sources and their role in modulating immune responses. Due to the limited efficacy of current drugs and the rise in drug resistance, there is a growing need for new therapies for infectious diseases. In this review, we aim to provide a comprehensive overview of different immune-modulating agents and immune therapies specifically focused on viral infectious diseases.
Collapse
Affiliation(s)
- P Sangeetha Vijayan
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology [Govt. of India], Thiruvananthapuram, 695 012, Kerala, India
| | - Joseph Xavier
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology [Govt. of India], Thiruvananthapuram, 695 012, Kerala, India
| | - Mohanan Parayanthala Valappil
- Toxicology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology [Govt. of India], Thiruvananthapuram, 695 012, Kerala, India.
| |
Collapse
|
3
|
Mir SA, Dar A, Hamid L, Nisar N, Malik JA, Ali T, Bader GN. Flavonoids as promising molecules in the cancer therapy: An insight. CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2023; 6:100167. [PMID: 38144883 PMCID: PMC10733705 DOI: 10.1016/j.crphar.2023.100167] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/16/2023] [Accepted: 11/30/2023] [Indexed: 12/26/2023] Open
Abstract
Cancer continues to increase global morbidity and mortality rates. Despite substantial progress in the development of various chemically synthesized anti-cancer drugs, the poor prognosis of the disease still remains a big challenge. The most common drawback of conventional cancer therapies is the emergence of drug resistance eventually leading to the discontinuation of chemotherapy. Moreover, advanced target-specific therapies including immunotherapy and stem cell therapy are expensive enough and are unaffordable for most patients in poorer nations. Therefore, alternative and cheaper therapeutic strategies are needed to complement the current cancer treatment approaches. Phytochemicals are bioactive compounds produced naturally by plants and have great potential in human health and disease. These compounds possess antiproliferative, anti-oxidant, and immunomodulatory properties. Among the phytochemicals, flavonoids are very effective in treating a wide range of diseases from cardiovascular diseases and immunological disorders to cancer. They scavenge reactive oxygen species (ROS), inhibit cancer metastasis, modulate the immune system and induce apoptotic or autophagic cell death in cancers. This review will discuss the potential of various phytochemicals particularly flavonoids in attempts to target various cancers.
Collapse
Affiliation(s)
- Suhail Ahmad Mir
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, J & K, 190006, India
| | - Ashraf Dar
- Department of Biochemistry, University of Kashmir, Hazratbal, Srinagar, J & K, 190006, India
| | - Laraibah Hamid
- Department of Zoology, University of Kashmir, Hazratbal, Srinagar, J & K, 190006, India
| | - Nasir Nisar
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, J & K, 190006, India
| | - Jonaid Ahmad Malik
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research Guwahati, India
| | - Tabasum Ali
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, J & K, 190006, India
| | - Ghulam Nabi Bader
- Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, J & K, 190006, India
| |
Collapse
|
4
|
Xie X, Chen C, Fu X. Modulation Effects of Sargassum pallidum Extract on Hyperglycemia and Hyperlipidemia in Type 2 Diabetic Mice. Foods 2023; 12:4409. [PMID: 38137213 PMCID: PMC10742466 DOI: 10.3390/foods12244409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/01/2023] [Accepted: 12/05/2023] [Indexed: 12/24/2023] Open
Abstract
The aim of this study was to investigate the antidiabetic effect of the extract from Sargassum pallidum (SPPE) on type 2 diabetes mellitus (T2DM) mice. SPPE treatment alleviated hyperglycemia, insulin resistance (IR), liver and pancreatic tissue damage, hyperlipidemia and hepatic oxidative stress resulting from T2DM. SPPE reversed phosphoenolpyruvate carboxylase (PEPCK) and hexokinase (HK) activities to improve gluconeogenesis and glycogen storage in the liver. Furthermore, SPPE modulated glucose metabolism by regulating the levels of mRNA expression involving the PI3K/Akt/FOXO1/G6pase/GLUT2 pathway and could inhibit fatty acid synthesis by reducing the gene expression levels of fatty acid synthase (FAS) and acetyl-CoA carboxylase-1 (ACC-1). A 16 sRNA analysis indicated that SPPE treatment also reversed gut dysbiosis by increasing the abundance of beneficial bacteria (Bacteroides and Lactobacillus) and suppressing the proliferation of harmful bacteria (Enterococcus and Helicobacter). Untargeted metabolomics results indicated that histidine metabolism, nicotinate and nicotinamide metabolism and fatty acid biosynthesis were significantly influenced by SPPE. Thus, SPPE may be applied as an effective dietary supplement or drug in the management of T2DM.
Collapse
Affiliation(s)
- Xing Xie
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China (X.F.)
- College of Health, Jiangxi Normal University, Nanchang 330022, China
| | - Chun Chen
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China (X.F.)
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China
| | - Xiong Fu
- SCUT-Zhuhai Institute of Modern Industrial Innovation, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China (X.F.)
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
5
|
Gan L, Inamura Y, Shimizu Y, Yokoi Y, Ohnishi Y, Song Z, Kumaki Y, Kikukawa T, Demura M, Ito M, Ayabe T, Nakamura K, Aizawa T. A Basic Study of the Effects of Mulberry Leaf Administration to Healthy C57BL/6 Mice on Gut Microbiota and Metabolites. Metabolites 2023; 13:1003. [PMID: 37755283 PMCID: PMC10535692 DOI: 10.3390/metabo13091003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 09/05/2023] [Accepted: 09/05/2023] [Indexed: 09/28/2023] Open
Abstract
Mulberry leaves contain α-glucosidase inhibitors, which have hypoglycemic effects and are considered functional foods. However, few reports have covered the effects of mulberry leaf components on normal gut microbiota and gut metabolites. Herein, gut microbiota analysis and NMR-based metabolomics were performed on the feces of mulberry leaf powder (MLP)-treated mice to determine the effects of long-term MLP consumption. Gut microbiota in the mouse were analyzed using 16S-rRNA gene sequencing, and no significant differences were revealed in the diversity and community structure of the gut microbiota in the C57BL/6 mice with or without MLP supplementation. Thirty-nine metabolites were identified via 1H-NMR analysis, and carbohydrates and amino acids were significantly (p < 0.01-0.05) altered upon MLP treatment. In the MLP-treated group, there was a marked increase and decrease in maltose and glucose concentrations, respectively, possibly due to the degradation inhibitory activity of oligosaccharides. After 5 weeks, all amino acid concentrations decreased. Furthermore, despite clear fluctuations in fecal saccharide concentrations, short-chain fatty acid production via intestinal bacterial metabolism was not strongly affected. This study provides the knowledge that MLP administration can alter the gut metabolites without affecting the normal gut microbiota, which is useful for considering MLP as a healthy food source.
Collapse
Affiliation(s)
- Li Gan
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan
| | - Yuga Inamura
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan
- Laboratory of Biological Information Analysis Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan
| | - Yu Shimizu
- Innate Immunity Laboratory, Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Hokkaido, Japan
| | - Yuki Yokoi
- Innate Immunity Laboratory, Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Hokkaido, Japan
| | - Yuki Ohnishi
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan
| | - Zihao Song
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan
| | - Yasuhiro Kumaki
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan
| | - Takashi Kikukawa
- Laboratory of Biological Information Analysis Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan
| | - Makoto Demura
- Laboratory of Biological Information Analysis Science, Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan
| | - Masaaki Ito
- National Institute of Technology, Okinawa College, Nago 905-2192, Okinawa, Japan
| | - Tokiyoshi Ayabe
- Innate Immunity Laboratory, Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Hokkaido, Japan
| | - Kiminori Nakamura
- Innate Immunity Laboratory, Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Hokkaido, Japan
| | - Tomoyasu Aizawa
- Laboratory of Protein Science, Graduate School of Life Science, Hokkaido University, Sapporo 060-0810, Hokkaido, Japan
| |
Collapse
|
6
|
Zhang Y, Miao R, Ma K, Zhang Y, Fang X, Wei J, Yin R, Zhao J, Tian J. Effects and Mechanistic Role of Mulberry Leaves in Treating Diabetes and its Complications. THE AMERICAN JOURNAL OF CHINESE MEDICINE 2023; 51:1711-1749. [PMID: 37646143 DOI: 10.1142/s0192415x23500775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Diabetes mellitus (DM) has become a surge burden worldwide owing to its high prevalence and range of associated complications such as coronary artery disease, blindness, stroke, and renal failure. Accordingly, the treatment and management of DM have become a research hotspot. Mulberry leaves (Morus alba L.) have been used in Traditional Chinese Medicine for a long time, with the first record of its use published in Shennong Bencao Jing (Shennong's Classic of Materia Medica). Mulberry leaves (MLs) are considered highly valuable medicinal food homologs that contain polysaccharides, flavonoids, alkaloids, and other bioactive substances. Modern pharmacological studies have shown that MLs have multiple bioactive effects, including hypolipidemic, hypoglycemic, antioxidation, and anti-inflammatory properties, with the ability to protect islet [Formula: see text]-cells, alleviate insulin resistance, and regulate intestinal flora. However, the pharmacological mechanisms of MLs in DM have not been fully elucidated. In this review, we summarize the botanical characterization, traditional use, chemical constituents, pharmacokinetics, and toxicology of MLs, and highlight the mechanisms involved in treating DM and its complications. This review can provide a valuable reference for the further development and utilization of MLs in the prevention and treatment of DM.
Collapse
Affiliation(s)
- Yanjiao Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| | - Runyu Miao
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
- Graduate College, Beijing University of Chinese Medicine, Beijing 100029, P. R. China
| | - Kaile Ma
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| | - Yuxin Zhang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| | - Xinyi Fang
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
- Graduate College, Beijing University of Chinese Medicine, Beijing 100029, P. R. China
| | - Jiahua Wei
- Graduate College, Changchun University of Chinese Medicine, Changchun 130117, P. R. China
| | - Ruiyang Yin
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| | - Jingxue Zhao
- Development Department, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| | - Jiaxing Tian
- Institute of Metabolic Diseases, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, P. R. China
| |
Collapse
|
7
|
Qin L, Huang T, Jing R, Wen J, Cao M. Mulberry leaf extract reduces abdominal fat deposition via adenosine-activated protein kinase/sterol regulatory element binding protein-1c/acetyl-CoA carboxylase signaling pathway in female Arbor Acre broilers. Poult Sci 2023; 102:102638. [PMID: 37015160 DOI: 10.1016/j.psj.2023.102638] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 04/03/2023] Open
Abstract
This experiment was carried out to investigate the mechanism of action of mulberry leaf extract (MLE) in reducing abdominal fat accumulation in female broilers. A total of 192 one-day-old female Arbor Acres (AA) broilers were divided into 4 diet groups, with each group consisting of 8 replicates with 6 birds per replicate. The diets contained a basal diet and 3 test diets with supplementation of 400, 800, or 1,200 MLE mg/kg, respectively. The trial had 2 phases that lasted from 1 to 21 d and from 22 to 56 d, respectively. The growth performance, abdominal fat deposition, fatty acid composition, serum biochemistry and mRNA expression of genes related to fat metabolism in liver were determined. The results showed that, 1) dietary supplementation with MLE had no significant impact on broilers final body weight, average daily gain (ADG), or feed to gain ration (F/G) (P > 0.05), but linearly reduced abdominal fat accumulation in both experimental phases (P < 0.05); 2) the total contents of monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA), such as palmitoleic acid, oleic acid, and eicosadienoic acid, were increased quadratically as a result of dietary supplements of 400, 800, and 1,200 mg/kg MLE (P < 0.01), while the total contents of saturated fatty acids (SFA), such as teracosanoic acid were decreased (P < 0.01); 3) the addition of 800 or 1,200 MLE mg/kg to the diet linearly reduced total cholesterol (TC) in the serum and liver (P < 0.05). Adenosine-activated protein kinase (AMPK) mRNA expression in the liver was quadratically increased by the addition of 800 or 1,200 MLE mg/kg to the diet (P < 0.05), and the mRNA expression of sterol regulatory element binding protein-1c (SREBP-1c), acetyl-CoA carboxylase (ACC), and acetyl-CoA carboxylate), fatty acid synthase (FAS) were linearly decreased (P < 0.05). In conclusion, MLE can be employed as a viable fat loss feed supplement in fast-growing broiler diets since it reduces abdominal fat deposition in female AA broilers via the AMPK/SREBP-1c/ACC signaling pathway. MLE can also be utilized to modify the fatty acid profile in female broilers (AA) at varied inclusion levels.
Collapse
|
8
|
Batiha GES, Al-Snafi AE, Thuwaini MM, Teibo JO, Shaheen HM, Akomolafe AP, Teibo TKA, Al-Kuraishy HM, Al-Garbeeb AI, Alexiou A, Papadakis M. Morus alba: a comprehensive phytochemical and pharmacological review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023:10.1007/s00210-023-02434-4. [PMID: 36877269 DOI: 10.1007/s00210-023-02434-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/16/2023] [Indexed: 03/07/2023]
Abstract
Morus alba is a fast-growing shrub or medium-sized tree with a straight, cylindrical trunk. Medicinally, whole plants, leaves, fruits, branches, and roots have been employed. Google Scholar, PubMed, Scopus, and Web of Science were used to search for relevant material on the phytochemical components and pharmacologic and mechanism of action of the Morus alba. This was reviewed to assess important updates about Morus alba. The fruits of Morus alba have traditionally been used as an analgesic, anthelmintic, antibacterial, anti-rheumatic, diuretic, hypotensive, hypoglycemia, purgative, restorative, sedative tonic, and blood stimulant. Various plant parts were used as a cooling, sedating, diuretic, tonic, and astringent agent to treat nerve disorders. The plant contained tannins, steroids, phytosterols, sitosterol, glycosides, alkaloids, carbohydrates, proteins, and amino acids, as well as saponins, triterpenes, phenolics, flavonoids, benzofuran derivatives, anthocyanins, anthraquinones, glycosides, vitamins, and minerals. Previous pharmacological research identified antimicrobial, anti-inflammatory, immunological, analgesic, antipyretic, antioxidant, anti-cancer, antidiabetic, gastrointestinal, respiratory, cardiovascular, hypolipidemic, anti-obesity, dermatological, neurological, muscular, and protecting effects. This study looked at Morus alba's traditional uses, chemical components, and pharmacological effects.
Collapse
Affiliation(s)
- Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, El Beheira, Egypt.
| | - Ali Esmail Al-Snafi
- Department of Pharmacology, College of Medicine, University of Thi-Qar, Nasiriyah, Iraq
| | - Mahdi M Thuwaini
- College of Medical and Healthy Techniques, Southern Technique University, Basra, Iraq
| | - John Oluwafemi Teibo
- Department of Biochemistry and Immunology, Ribeirão, Preto Medical School , University of São Paulo, Ribeirão Preto, São Paulo, Brazil.
| | - Hazem M Shaheen
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, 22511, El Beheira, Egypt
| | | | - Titilade Kehinde Ayandeyi Teibo
- Department of Maternal-Infant and Public Health Nursing, College of Nursing, University of São Paulo, Ribeirão PretoRibeirão Preto, São Paulo, Brazil
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacologyand, Therapeutic Medicine, College of Medicine , Almustansiriyah University, Baghdad, Iraq
| | - Ali I Al-Garbeeb
- Department of Clinical Pharmacologyand, Therapeutic Medicine, College of Medicine , Almustansiriyah University, Baghdad, Iraq
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, NSW, 2770, Australia.,AFNP Med, 1030, Vienna, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| |
Collapse
|
9
|
Enayati A, Ghojoghnejad M, Roufogalis BD, Maollem SA, Sahebkar A. Impact of Phytochemicals on PPAR Receptors: Implications for Disease Treatments. PPAR Res 2022; 2022:4714914. [PMID: 36092543 PMCID: PMC9453090 DOI: 10.1155/2022/4714914] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/10/2022] [Indexed: 11/17/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) are members of the ligand-dependent nuclear receptor family. PPARs have attracted wide attention as pharmacologic mediators to manage multiple diseases and their underlying signaling targets. They mediate a broad range of specific biological activities and multiple organ toxicity, including cellular differentiation, metabolic syndrome, cancer, atherosclerosis, neurodegeneration, cardiovascular diseases, and inflammation related to their up/downstream signaling pathways. Consequently, several types of selective PPAR ligands, such as fibrates and thiazolidinediones (TZDs), have been approved as their pharmacological agonists. Despite these advances, the use of PPAR agonists is known to cause adverse effects in various systems. Conversely, some naturally occurring PPAR agonists, including polyunsaturated fatty acids and natural endogenous PPAR agonists curcumin and resveratrol, have been introduced as safe agonists as a result of their clinical evidence or preclinical experiments. This review focuses on research on plant-derived active ingredients (natural phytochemicals) as potential safe and promising PPAR agonists. Moreover, it provides a comprehensive review and critique of the role of phytochemicals in PPARs-related diseases and provides an understanding of phytochemical-mediated PPAR-dependent and -independent cascades. The findings of this research will help to define the functions of phytochemicals as potent PPAR pharmacological agonists in underlying disease mechanisms and their related complications.
Collapse
Affiliation(s)
- Ayesheh Enayati
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mobina Ghojoghnejad
- Ischemic Disorders Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Basil D. Roufogalis
- Discipline of Pharmacology, School of Medical Sciences, University of Sydney, Sydney, NSW, Australia
- NICM Health Research Institute, Western Sydney University, Penrith, NSW, Australia
| | - Seyed Adel Maollem
- Department of Pharmacology and Toxicology, College of Pharmacy, Al-Zahraa University for Women, Karbala, Iraq
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Chen T, Jia F, Yu Y, Zhang W, Wang C, Zhu S, Zhang N, Liu X. Potential Role of Quercetin in Polycystic Ovary Syndrome and Its Complications: A Review. Molecules 2022; 27:molecules27144476. [PMID: 35889348 PMCID: PMC9325244 DOI: 10.3390/molecules27144476] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/08/2022] [Accepted: 07/08/2022] [Indexed: 12/18/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common multisystem disease with reproductive, metabolic and psychological abnormalities. It is characterized by a high prevalence rate in women of childbearing age and highly heterogeneous clinical manifestations, which seriously harm women’s physical and mental health. Quercetin (QUR) is a natural compound of flavonoids found in a variety of foods and medicinal plants. It can intervene with the pathologic process of PCOS from multiple targets and channels and has few adverse reactions. It is mentioned in this review that QUR can improve ovulation disorder, relieve Insulin resistance (IR), reduce androgen, regulate lipid metabolism, regulate gut microbiota and improve vascular endothelial function, which is of great significance in the treatment of PCOS.
Collapse
Affiliation(s)
- Tong Chen
- Department of Gynecology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; (T.C.); (F.J.); (Y.Y.); (W.Z.); (C.W.); (S.Z.); (N.Z.)
- China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Fan Jia
- Department of Gynecology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; (T.C.); (F.J.); (Y.Y.); (W.Z.); (C.W.); (S.Z.); (N.Z.)
- China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Yue Yu
- Department of Gynecology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; (T.C.); (F.J.); (Y.Y.); (W.Z.); (C.W.); (S.Z.); (N.Z.)
- China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Wufan Zhang
- Department of Gynecology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; (T.C.); (F.J.); (Y.Y.); (W.Z.); (C.W.); (S.Z.); (N.Z.)
- China Academy of Chinese Medical Sciences, Beijing 100700, China
| | - Chaoying Wang
- Department of Gynecology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; (T.C.); (F.J.); (Y.Y.); (W.Z.); (C.W.); (S.Z.); (N.Z.)
- Department of Gynecology of Traditional Chinese Medicine, Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Shiqin Zhu
- Department of Gynecology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; (T.C.); (F.J.); (Y.Y.); (W.Z.); (C.W.); (S.Z.); (N.Z.)
- Department of Gynecology of Traditional Chinese Medicine, Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Nana Zhang
- Department of Gynecology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; (T.C.); (F.J.); (Y.Y.); (W.Z.); (C.W.); (S.Z.); (N.Z.)
- Department of Gynecology of Traditional Chinese Medicine, Graduate School, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Xinmin Liu
- Department of Gynecology, Guang’anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China; (T.C.); (F.J.); (Y.Y.); (W.Z.); (C.W.); (S.Z.); (N.Z.)
- Correspondence:
| |
Collapse
|
11
|
Wu S, Luo H, Zhong Z, Ai Y, Zhao Y, Liang Q, Wang Y. Phytochemistry, Pharmacology and Quality Control of Xiasangju: A Traditional Chinese Medicine Formula. Front Pharmacol 2022; 13:930813. [PMID: 35814215 PMCID: PMC9259862 DOI: 10.3389/fphar.2022.930813] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/31/2022] [Indexed: 11/25/2022] Open
Abstract
As a traditional Chinese herbal formula, Xiasangju (XSJ) is widely used in China for antipyresis and influenza treatment. However, XSJ still fails to have a comprehensive summary of the research progress in the last decade. This review summarizes the advanced research on the extraction process, phytochemistry, pharmacological activity, and quality control of XSJ. Current research mainly focuses on quality control and the pharmacological effects of single herbs and active ingredients, but many pharmacological mechanisms of the formula are unclear. The development of active ingredients reflects the active characteristics of triterpenes, phenolic acids and flavonoids, but the hepatotoxicity of Prunella vulgaris L. has not been taken into account. XSJ has extensive historical practical experiences, while systematic clinical trials remain lacking. Therefore, it is necessary to study the active ingredients and define the mechanisms of XSJ to develop multiple applications, and further studies on the dose range between its hepatoprotective activity and hepatotoxicity are necessary to improve the safety of the clinical application. In this review, the current problems are discussed to facilitate the reference basis for the subsequent research on the development of XSJ and future application directions.
Collapse
Affiliation(s)
- Siyuan Wu
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Hua Luo
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Zhangfeng Zhong
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
| | - Yongjian Ai
- Department of Chemistry, Center for Synthetic and Systems Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Beijing Key Lab of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing, China
| | - Yonghua Zhao
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
- *Correspondence: Yonghua Zhao, ; Qionglin Liang, ; Yitao Wang,
| | - Qionglin Liang
- Department of Chemistry, Center for Synthetic and Systems Biology, MOE Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology, Beijing Key Lab of Microanalytical Methods and Instrumentation, Tsinghua University, Beijing, China
- *Correspondence: Yonghua Zhao, ; Qionglin Liang, ; Yitao Wang,
| | - Yitao Wang
- Macau Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR, China
- *Correspondence: Yonghua Zhao, ; Qionglin Liang, ; Yitao Wang,
| |
Collapse
|
12
|
Taghizadeh M, Mohammad Zadeh A, Asemi Z, Farrokhnezhad AH, Memarzadeh MR, Banikazemi Z, Shariat M, Shafabakhsh R. Morus Alba leaf extract affects metabolic profiles, biomarkers inflammation and oxidative stress in patients with type 2 diabetes mellitus: A double-blind clinical trial. Clin Nutr ESPEN 2022; 49:68-73. [PMID: 35623877 DOI: 10.1016/j.clnesp.2022.03.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/07/2022] [Accepted: 03/15/2022] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Morus Alba extract, despite its special properties, has been less studied in terms of its effects on metabolic profiles in patients with type 2 diabetes mellitus (T2DM). This study was carried out to determine the effects of Morus Alba extract, known as white mulberry, on liver enzymes, biomarkers of inflammation and oxidative stress, insulin metabolism and lipid profiles in patients with T2DM. METHODS The current randomized, double-blind, placebo-controlled trial was conducted among 60 patients with T2DM. Subjects were randomly divided into 2 groups to receive either Morus Alba extract (300 mg) (n = 30) or placebo (n = 30) twice a day. Fasting blood samples were collected at the baseline and 12 weeks after intervention to quantify related markers. RESULTS Morus Alba extract intake significantly decreased insulin (P = 0.026) and malondialdehyde (MDA) (P < 0.001), and significantly increased HDL-cholesterol concentrations (P = 0.001) compared with the placebo. However, Morus Alba extract intake did not affect other metabolic profiles. CONCLUSIONS The results of this study shown that the 12-week administration of Morus Alba extract among subjects with T2DM had beneficial effects on HDL-cholesterol, insulin and MDA levels, but did not affect other metabolic profiles. The present study was registered in the Iranian website for clinical trials as http://www.irct.ir: IRCT2016081312438N21.
Collapse
Affiliation(s)
- Mohsen Taghizadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Azam Mohammad Zadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Amir Hosein Farrokhnezhad
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Mohammad Reza Memarzadeh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Zarin Banikazemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Mohammad Shariat
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| | - Rana Shafabakhsh
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran.
| |
Collapse
|
13
|
Lu L, Cai X, Guo L, Ji H, Ren J, Ni H, Feng X. Fabrication of Quercitrin Nano Micellar Delivery System and Its Therapeutic Effect on Unexplained Recurrent Abortion. J Biomed Nanotechnol 2022. [DOI: 10.1166/jbn.2022.3328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We prepared a quercitrin nano micellar delivery system in this study to evaluate its oral bioavailability. The optimal formulation of quercetin nano micelles was determined through an orthogonal test. Characteristics (size of particles-SOP, morphology, efficiency of encapsulation-EE
and stability) and the therapeutic property of quercitrin nano micelles on unexplained recurrent abortion (URSA) were evaluated. The SOP of quercitrin nano micelles was 111.88±3.70 nm with an EE of 95.66±0.57. A substantially increased release rate of quercetin from the micellar
system was observed in different dissolution media comparable to that of quercitrin. Also, through quercitrin micelles, the oral bioavailability of quercetin was increased by 15.45-fold compared to quercitrin solution. Significantly, quercetin could reduce the levels of LDH and SOD as well
as increase the level of MDA in serum restricted HTR-8/SVneo cells. Western blotting (WB) experiments showed that quercitrin had a protective effect on H2O2 induced oxidative stress injury of a human placental trophoblast HTR8-SVneo cell line. The developed nano micelles
are a potential carrier that could enhance the aqueous solubility, oral in vivo availability and potential therapeutic abortion effect of quercitrin.
Collapse
Affiliation(s)
- Lidan Lu
- Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, 215500, China
| | - Ximei Cai
- Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, 215500, China
| | - Luqin Guo
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Wenzheng Road, Heilongjiang, 150040, China
| | - Hongjian Ji
- Wuxi Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, 214000, China
| | - Jiajie Ren
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Wenzheng Road, Heilongjiang, 150040, China
| | - Haiyan Ni
- Changshu Hospital Affiliated to Nanjing University of Chinese Medicine, Changshu, 215500, China
| | - Xiaoling Feng
- The First Affiliated Hospital of Heilongjiang University of Chinese Medicine, Wenzheng Road, Heilongjiang, 150040, China
| |
Collapse
|
14
|
Zhang R, Zhang Q, Zhu S, Liu B, Liu F, Xu Y. Mulberry leaf (Morus alba L.): A review of its potential influences in mechanisms of action on metabolic diseases. Pharmacol Res 2021; 175:106029. [PMID: 34896248 DOI: 10.1016/j.phrs.2021.106029] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/17/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022]
Abstract
The leaves of Morus alba L. (called Sangye in Chinese, ML), which belong to the genus Morus., are highly valuable edible plants in nutrients and nutraceuticals. In Asian countries including China, Japan and Korea, ML are widely used as functional foods including beverages, noodles and herbal tea because of its biological and nutritional value. Meanwhile, ML-derived products in the form of powders, extracts and capsules are widely consumed as dietary supplements for controlling blood glucose and sugar. Clinical studies showed that ML play an important role in the treatment of metabolic diseases including the diabetes, dyslipidemia, obesity, atherosclerosis and hypertension. People broadly use ML due to their nutritiousness, deliciousness, safety, and abundant active benefits. However, the systematic pharmacological mechanisms of ML on metabolic diseases have not been fully revealed. Therefore, in order to fully utilize and scale relevant products about ML, this review summarizes the up-to-date information about the ML and its constituents effecting on metabolic disease.
Collapse
Affiliation(s)
- Ruiyuan Zhang
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People's Republic of China
| | - Qian Zhang
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People's Republic of China
| | - Shun Zhu
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People's Republic of China
| | - Biyang Liu
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People's Republic of China
| | - Fang Liu
- Pharmacy College of Chengdu University of Traditional Chinese Medicine, Chengdu 611137, People's Republic of China; State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu 611137, People's Republic of China.
| | - Yao Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, People's Republic of China.
| |
Collapse
|
15
|
Basak S, Gokhale J. Immunity boosting nutraceuticals: Current trends and challenges. J Food Biochem 2021; 46:e13902. [PMID: 34467553 DOI: 10.1111/jfbc.13902] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/29/2021] [Accepted: 08/03/2021] [Indexed: 12/23/2022]
Abstract
The immune function of the human body is highly influenced by the dietary intake of certain nutrients and bioactive compounds present in foods. The preventive effects of these bioactive ingredients against various diseases have been well investigated. Functional foods are consumed across various diverse cultures, in some form or the other, which provide benefits greater than the basic nutritional needs. Novel functional foods are being developed using novel bioactive ingredients such as probiotics, polyunsaturated fatty acids, and various phytoconstituents, which have a range of immunomodulatory properties. Apart from immunomodulation, these ingredients also affect immunity by their antioxidant, antibacterial, and antiviral properties. The global pandemic of Severe Acute Respiratory Syndrome Coronavirus-2 has forced the scientific community to race against time to find a proper and effective drug or a vaccine. In this review, various non-pharmacological interventions using nutraceuticals and functional foods have been discussed. PRACTICAL APPLICATIONS: Despite a plethora of research being undertaken to understand the immunity boosting properties of the various bioactive present in food, the findings are not translating to nutraceutical products in the market. Immunity has proved to be one of the most important factors for the health and well-being of an individual, especially when the world has been under the grip of the novel coronavirus Severe Acute Respiratory Syndrome Coronavirus-2. The anti-inflammatory properties of various nutraceuticals can come out as potential inhibitors of the various inflammatory processes such as cytokine storms, usually being observed in COVID 19. This review gives an insight into how various nutraceuticals can help in the prevention of various diseases through different mechanisms. The lack of awareness and proper clinical trials pose a challenge to the nutraceutical industry. This review will help and encourage researchers to further design and develop various functional foods, which might help in building immunity.
Collapse
Affiliation(s)
- Somnath Basak
- Department of Food Engineering and Technology, Institute of Chemical Technology, Mumbai, India
| | - Jyoti Gokhale
- Department of Food Engineering and Technology, Institute of Chemical Technology, Mumbai, India
| |
Collapse
|
16
|
Tahri-Joutey M, Andreoletti P, Surapureddi S, Nasser B, Cherkaoui-Malki M, Latruffe N. Mechanisms Mediating the Regulation of Peroxisomal Fatty Acid Beta-Oxidation by PPARα. Int J Mol Sci 2021; 22:ijms22168969. [PMID: 34445672 PMCID: PMC8396561 DOI: 10.3390/ijms22168969] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/14/2021] [Accepted: 08/15/2021] [Indexed: 12/12/2022] Open
Abstract
In mammalian cells, two cellular organelles, mitochondria and peroxisomes, share the ability to degrade fatty acid chains. Although each organelle harbors its own fatty acid β-oxidation pathway, a distinct mitochondrial system feeds the oxidative phosphorylation pathway for ATP synthesis. At the same time, the peroxisomal β-oxidation pathway participates in cellular thermogenesis. A scientific milestone in 1965 helped discover the hepatomegaly effect in rat liver by clofibrate, subsequently identified as a peroxisome proliferator in rodents and an activator of the peroxisomal fatty acid β-oxidation pathway. These peroxisome proliferators were later identified as activating ligands of Peroxisome Proliferator-Activated Receptor α (PPARα), cloned in 1990. The ligand-activated heterodimer PPARα/RXRα recognizes a DNA sequence, called PPRE (Peroxisome Proliferator Response Element), corresponding to two half-consensus hexanucleotide motifs, AGGTCA, separated by one nucleotide. Accordingly, the assembled complex containing PPRE/PPARα/RXRα/ligands/Coregulators controls the expression of the genes involved in liver peroxisomal fatty acid β-oxidation. This review mobilizes a considerable number of findings that discuss miscellaneous axes, covering the detailed expression pattern of PPARα in species and tissues, the lessons from several PPARα KO mouse models and the modulation of PPARα function by dietary micronutrients.
Collapse
Affiliation(s)
- Mounia Tahri-Joutey
- Bio-PeroxIL Laboratory, University of Bourgogne Franche-Comté, 21000 Dijon, France; (M.T.-J.); (P.A.); (M.C.-M.)
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences & Techniques, University Hassan I, BP 577, 26000 Settat, Morocco;
| | - Pierre Andreoletti
- Bio-PeroxIL Laboratory, University of Bourgogne Franche-Comté, 21000 Dijon, France; (M.T.-J.); (P.A.); (M.C.-M.)
| | - Sailesh Surapureddi
- Office of Pollution Prevention and Toxics, United States Environmental Protection Agency, Washington, DC 20460, USA;
| | - Boubker Nasser
- Laboratory of Biochemistry, Neurosciences, Natural Resources and Environment, Faculty of Sciences & Techniques, University Hassan I, BP 577, 26000 Settat, Morocco;
| | - Mustapha Cherkaoui-Malki
- Bio-PeroxIL Laboratory, University of Bourgogne Franche-Comté, 21000 Dijon, France; (M.T.-J.); (P.A.); (M.C.-M.)
| | - Norbert Latruffe
- Bio-PeroxIL Laboratory, University of Bourgogne Franche-Comté, 21000 Dijon, France; (M.T.-J.); (P.A.); (M.C.-M.)
- Correspondence:
| |
Collapse
|
17
|
Monfoulet LE, Ruskovska T, Ajdžanović V, Havlik J, Vauzour D, Bayram B, Krga I, Corral-Jara KF, Kistanova E, Abadjieva D, Massaro M, Scoditti E, Deligiannidou E, Kontogiorgis C, Arola-Arnal A, van Schothorst EM, Morand C, Milenkovic D. Molecular Determinants of the Cardiometabolic Improvements of Dietary Flavanols Identified by an Integrative Analysis of Nutrigenomic Data from a Systematic Review of Animal Studies. Mol Nutr Food Res 2021; 65:e2100227. [PMID: 34048642 DOI: 10.1002/mnfr.202100227] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/21/2021] [Indexed: 12/11/2022]
Abstract
SCOPE Flavanols are important polyphenols of the human diet with extensive demonstrations of their beneficial effects on cardiometabolic health. They contribute to preserve health acting on a large range of cellular processes. The underlying mechanisms of action of flavanols are not fully understood but involve a nutrigenomic regulation. METHODS AND RESULTS To further capture how the intake of dietary flavanols results in the modulation of gene expression, nutrigenomics data in response to dietary flavanols obtained from animal models of cardiometabolic diseases have been collected and submitted to a bioinformatics analysis. This systematic analysis shows that dietary flavanols modulate a large range of genes mainly involved in endocrine function, fatty acid metabolism, and inflammation. Several regulators of the gene expression have been predicted and include transcription factors, miRNAs and epigenetic factors. CONCLUSION This review highlights the complex and multilevel action of dietary flavanols contributing to their strong potential to preserve cardiometabolic health. The identification of the potential molecular mediators and of the flavanol metabolites driving the nutrigenomic response in the target organs is still a pending question which the answer will contribute to optimize the beneficial health effects of dietary bioactives.
Collapse
Affiliation(s)
| | - Tatjana Ruskovska
- Faculty of Medical Sciences, Goce Delcev University, Stip, North Macedonia
| | - Vladimir Ajdžanović
- Department of Cytology, Institute for Biological Research "Siniša Stanković,", National Institute of Republic of Serbia, University of Belgrade, 142 Despot Stefan Blvd., Belgrade, Serbia
| | - Jaroslav Havlik
- Department of Food Science, Czech University of Life Sciences Prague, Prague 6, Suchdol, Czech Republic
| | - David Vauzour
- Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia, Norwich, NR4 7TJ, UK
| | - Banu Bayram
- Department of Nutrition and Dietetics, University of Health Sciences, Istanbul, Turkey
| | - Irena Krga
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, F-63000, France.,Centre of Excellence in Nutrition and Metabolism Research, Institute for Medical Research, National Institute of Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | | | - Elena Kistanova
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Desislava Abadjieva
- Institute of Biology and Immunology of Reproduction, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Marika Massaro
- National Research Council (CNR) Institute of Clinical Physiology, Lecce, Italy
| | - Egeria Scoditti
- National Research Council (CNR) Institute of Clinical Physiology, Lecce, Italy
| | - Eirini Deligiannidou
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, 68100, Greece
| | - Christos Kontogiorgis
- Laboratory of Hygiene and Environmental Protection, Department of Medicine, Democritus University of Thrace, Alexandroupolis, 68100, Greece
| | - Anna Arola-Arnal
- Universitat Rovira i Virgili, Departament de Bioquímica i Biotecnologia, Nutrigenomics Research Group, Tarragona, 43007, Spain
| | | | - Christine Morand
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, F-63000, France
| | - Dragan Milenkovic
- Université Clermont Auvergne, INRAE, UNH, Clermont-Ferrand, F-63000, France.,Department of Internal Medicine, Division of Cardiovascular Medicine, School of Medicine, University of California Davis, Davis, California, 95616, USA
| |
Collapse
|
18
|
Liu Y, Li Y, Xiao Y, Peng Y, He J, Chen C, Xiao D, Yin Y, Li F. Mulberry leaf powder regulates antioxidative capacity and lipid metabolism in finishing pigs. ACTA ACUST UNITED AC 2020; 7:421-429. [PMID: 34258430 PMCID: PMC8245823 DOI: 10.1016/j.aninu.2020.08.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/31/2020] [Accepted: 08/02/2020] [Indexed: 11/18/2022]
Abstract
This study evaluated the potential of mulberry leaf powder as an unconventional feed material for finishing pigs by assessing the growth performance, antioxidative properties, fatty acid profile, and lipid metabolism in 180 Xiangcun black pigs. Pigs with an initial body weight (BW) of 71.64 ± 1.46 kg were randomly assigned to 5 treatment groups, including the control diet and 4 experimental diets. The corn, soybean meal, and wheat bran in the control diet were partly replaced by 3%, 6%, 9%, or 12% mulberry leaf powder in experimental diets. There were 6 replicates (pens) of 6 pigs per replicate in each treatment. Blood and muscle samples were collected after the 50-day feed experiment. Compared with the control group, the 3%, 6%, and 9% mulberry diets had no adverse effect (P > 0.05) on the growth performance of pigs. The serum glutathione peroxidase activity and glutathione concentration increased linearly (P < 0.05) with the increase in dietary mulberry inclusion. There was no significant difference in the relative expression levels of antioxidant-related genes in muscle tissue between the control and mulberry groups. Inclusion of dietary mulberry powder increased (P < 0.05) the content of polyunsaturated fatty acids, especially in the longissimus dorsi (LD) muscle, up-regulated (P < 0.05) the relative mRNA expression level of uncoupling protein-3 in muscle tissue, but down-regulated (P < 0.05) the relative mRNA expression levels of hormone-sensitive lipase, acetyl CoA carboxylase α, lipoprotein lipase, and peroxisome proliferator-activated receptor γ in LD in a linear pattern. The nuclear respiratory factor 2 expression level in the LD muscle of pigs fed the 9% mulberry diet was higher (P < 0.01) than that in the other mulberry groups and control group. The inclusion of less than 12% dietary mulberry did not detrimentally affect the growth performance of Xiangcun black pigs, but enhanced the serum antioxidant property, increased the polyunsaturated fatty acid content, and inhibited lipid oxidation by regulating gene expression levels of lipid metabolism and mitochondrial uncoupling protein in muscle tissue. Mulberry leaves can be utilized as a forage crop in the diet of finishing pigs.
Collapse
Affiliation(s)
- Yingying Liu
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center of Healthy Livestock and Poultry, and Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- Hunan Institute of Animal and Veterinary Science, Changsha, 410131, China
| | - Yinghui Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Yi Xiao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Yinglin Peng
- Hunan Institute of Animal and Veterinary Science, Changsha, 410131, China
| | - Jianhua He
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Chen Chen
- Hunan Institute of Animal and Veterinary Science, Changsha, 410131, China
| | - Dingfu Xiao
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, 410128, China
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center of Healthy Livestock and Poultry, and Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- Guangdong Open Laboratory of Applied Microbiology, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, 510070, China
| | - Fengna Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Hunan Provincial Engineering Research Center of Healthy Livestock and Poultry, and Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, China
- Corresponding author.
| |
Collapse
|
19
|
Guan T, Xin Y, Zheng K, Wang R, Zhang X, Jia S, Li S, Cao C, Zhao X. Metabolomics analysis of the effects of quercetin on renal toxicity induced by cadmium exposure in rats. Biometals 2020; 34:33-48. [PMID: 33033991 DOI: 10.1007/s10534-020-00260-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/01/2020] [Indexed: 02/08/2023]
Abstract
This study aims to explore the protective effects of quercetin against cadmium-induced nephrotoxicity utilizing metabolomics methods. Male Sprague-Dawley rats were randomly assigned to six groups: control, different dosages of quercetin (10 and 50 mg/kg·bw, respectively), CdCl2 (4.89 mg/kg·bw) and different dosages quercetin plus CdCl2 groups. After 12 weeks, the kidneys were collected for metabolomics analysis and histopathology examination. In total, 11 metabolites were confirmed, the intensities of which significantly changed (up-regulated or down-regulated) compared with the control group (p < 0.00067). These metabolites include xanthosine, uric acid (UA), guanidinosuccinic acid (GSA), hypoxanthine (Hyp), 12-hydroxyeicosatetraenoic acid (tetranor 12-HETE), taurocholic acid (TCA), hydroxyphenylacetylglycine (HPAG), deoxyinosine (DI), ATP, formiminoglutamic acid (FIGLU) and arachidonic acid (AA). When high-dose quercetin and cadmium were given to rats concurrently, the intensities of above metabolites significantly restored (p < 0.0033 or p < 0.00067). The results showed quercetin attenuated Cd-induced nephrotoxicity by regulating the metabolism of lipids, amino acids, and purine, inhibiting oxidative stress, and protecting kidney functions.
Collapse
Affiliation(s)
- Tong Guan
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 194 Xuefu Road, Harbin, 150081, Heilongjiang, China
| | - Youwei Xin
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 194 Xuefu Road, Harbin, 150081, Heilongjiang, China
| | - Kai Zheng
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 194 Xuefu Road, Harbin, 150081, Heilongjiang, China
| | - Ruijuan Wang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 194 Xuefu Road, Harbin, 150081, Heilongjiang, China
| | - Xia Zhang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 194 Xuefu Road, Harbin, 150081, Heilongjiang, China
| | - Siqi Jia
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 194 Xuefu Road, Harbin, 150081, Heilongjiang, China
| | - Siqi Li
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 194 Xuefu Road, Harbin, 150081, Heilongjiang, China
| | - Can Cao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 194 Xuefu Road, Harbin, 150081, Heilongjiang, China.
| | - Xiujuan Zhao
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 194 Xuefu Road, Harbin, 150081, Heilongjiang, China.
| |
Collapse
|
20
|
Chen Z, Xie Y, Luo J, Chen T, Xi Q, Zhang Y, Sun J. Dietary supplementation with Moringa oleifera and mulberry leaf affects pork quality from finishing pigs. J Anim Physiol Anim Nutr (Berl) 2020; 105:72-79. [PMID: 33021002 DOI: 10.1111/jpn.13450] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 08/22/2020] [Accepted: 08/23/2020] [Indexed: 01/08/2023]
Abstract
Moringa oleifera and Morus alba leaves are nutritious non-traditional feed ingredients containing bioactive substances. This study was to evaluate the potential application of dietary Moringa and Morus leaf powder on the growth traits, carcass characteristics and meat quality of finishing pigs. Moringa did not alter growth performance or carcass characteristics, but it decreased meat b* value, increased MyHCIIa and decreased MyHCIIx mRNA levels, and increased CP and concentrations of Ala, Thr, Ile, Lys and Pro in longissimus thoracis. Morus increased final BW, ADFI and ADG, decreased F/G ratio, improved slaughter weight, carcass weight, carcass yield and meat a* value, and decreased shear force, drip loss, MyHCIIx and MyHCIIb mRNA levels, and increased MyHCI and MyHCIIa mRNA levels. Morus also increased CP, Glu, Gly, Ala, Arg, Ile, Phe, Pro, Ser, Tyr and Asp, and C16:1, C18:1n9c, C20:4n6, C18:3n3, C20:3n3, C22:1n9 and n-3 PUFA, but decreased C12:0 and C16:0. In summary, Morus improved the parameters and held great potential as an unconventional feed crop.
Collapse
Affiliation(s)
- Zujing Chen
- College of Animal Science, Guangdong Engineering & Research Center for Woody Fodder Plants, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Yueqin Xie
- College of Animal Science, Guangdong Engineering & Research Center for Woody Fodder Plants, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Junyi Luo
- College of Animal Science, Guangdong Engineering & Research Center for Woody Fodder Plants, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Ting Chen
- College of Animal Science, Guangdong Engineering & Research Center for Woody Fodder Plants, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Qianyun Xi
- College of Animal Science, Guangdong Engineering & Research Center for Woody Fodder Plants, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Yongliang Zhang
- College of Animal Science, Guangdong Engineering & Research Center for Woody Fodder Plants, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| | - Jiajie Sun
- College of Animal Science, Guangdong Engineering & Research Center for Woody Fodder Plants, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
21
|
Magrone T, Magrone M, Russo MA, Jirillo E. Recent Advances on the Anti-Inflammatory and Antioxidant Properties of Red Grape Polyphenols: In Vitro and In Vivo Studies. Antioxidants (Basel) 2019; 9:E35. [PMID: 31906123 PMCID: PMC7022464 DOI: 10.3390/antiox9010035] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 12/27/2019] [Accepted: 12/28/2019] [Indexed: 12/20/2022] Open
Abstract
In this review, special emphasis will be placed on red grape polyphenols for their antioxidant and anti-inflammatory activities. Therefore, their capacity to inhibit major pathways responsible for activation of oxidative systems and expression and release of proinflammatory cytokines and chemokines will be discussed. Furthermore, regulation of immune cells by polyphenols will be illustrated with special reference to the activation of T regulatory cells which support a tolerogenic pathway at intestinal level. Additionally, the effects of red grape polyphenols will be analyzed in obesity, as a low-grade systemic inflammation. Also, possible modifications of inflammatory bowel disease biomarkers and clinical course have been studied upon polyphenol administration, either in animal models or in clinical trials. Moreover, the ability of polyphenols to cross the blood-brain barrier has been exploited to investigate their neuroprotective properties. In cancer, polyphenols seem to exert several beneficial effects, even if conflicting data are reported about their influence on T regulatory cells. Finally, the effects of polyphenols have been evaluated in experimental models of allergy and autoimmune diseases. Conclusively, red grape polyphenols are endowed with a great antioxidant and anti-inflammatory potential but some issues, such as polyphenol bioavailability, activity of metabolites, and interaction with microbiota, deserve deeper studies.
Collapse
Affiliation(s)
- Thea Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari, 70124 Bari, Italy; (M.M.); (E.J.)
| | - Manrico Magrone
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari, 70124 Bari, Italy; (M.M.); (E.J.)
| | - Matteo Antonio Russo
- MEBIC Consortium, San Raffaele Open University of Rome and IRCCS San Raffaele Pisana of Rome, 00166 Rome, Italy;
| | - Emilio Jirillo
- Department of Basic Medical Sciences, Neuroscience and Sensory Organs, School of Medicine, University of Bari, 70124 Bari, Italy; (M.M.); (E.J.)
| |
Collapse
|
22
|
Cao H, Jia Q, Shen D, Yan L, Chen C, Xing S. Quercetin has a protective effect on atherosclerosis via enhancement of autophagy in ApoE -/- mice. Exp Ther Med 2019; 18:2451-2458. [PMID: 31555357 PMCID: PMC6755277 DOI: 10.3892/etm.2019.7851] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Accepted: 05/31/2019] [Indexed: 11/17/2022] Open
Abstract
The present study examined the involvement of autophagy as a mechanism in the protective effect of quercetin (QUE) on atherosclerosis (AS) in ApoE−/− mice. An AS model was established by feeding ApoE−/− mice a high-fat diet (HFD). Mice were divided into four experimental groups: The model, QUE, 3-methyladenine (3-MA) and QUE + 3-MA groups. Additionally, age-matched wild-type C57BL/6 mice were used as a Control group. Autophagosomes in the aorta were examined using a transmission electron microscope. Aorta pathology, serum lipid accumulation and collagen deposition were determined by hematoxylin and eosin, Oil Red O and Masson staining, respectively. The levels of cytokines, including tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-18 (IL-18) were measured using ELISA assays. Protein levels of mTOR, microtubule associated protein 1 light chain 3a (LC3), P53 and cyclin dependent kinase inhibitor 1A (P21) in the aorta were analyzed using western blotting. ApoE−/− mice which were fed HFD exhibited substantial AS pathology, no autophagosomes, higher levels of TNF-α, IL-1β, IL-18 and mTOR and lower ratios of LC3 II/I. All these alterations were ameliorated and aggravated by QUE and 3-MA treatment, respectively. The inhibition of AS by QUE may be associated with the enhancement of autophagy and upregulation of P21 and P53 expression.
Collapse
Affiliation(s)
- Hui Cao
- Geriatrics Laboratory, Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, P.R. China
| | - Qingling Jia
- Geriatrics Laboratory, Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, P.R. China
| | - Dingzhu Shen
- Geriatrics Laboratory, Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, P.R. China
| | - Li Yan
- Geriatrics Laboratory, Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, P.R. China
| | - Chuan Chen
- Geriatrics Laboratory, Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, P.R. China
| | - Sanli Xing
- Geriatrics Laboratory, Shanghai Geriatric Institute of Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200031, P.R. China
| |
Collapse
|
23
|
Chao WW, Chen SJ, Peng HC, Liao JW, Chou ST. Antioxidant Activity of Graptopetalum paraguayense E. Walther Leaf Extract Counteracts Oxidative Stress Induced by Ethanol and Carbon Tetrachloride Co-Induced Hepatotoxicity in Rats. Antioxidants (Basel) 2019; 8:antiox8080251. [PMID: 31357705 PMCID: PMC6720351 DOI: 10.3390/antiox8080251] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/24/2019] [Accepted: 07/25/2019] [Indexed: 12/14/2022] Open
Abstract
(1) Background: Graptopetalum paraguayense E. Walther is a traditional Chinese herbal medicine. In our previous study, 50% ethanolic G. paraguayense extracts (GE50) demonstrated good antioxidant activity. (2) Methods: To investigate the hepatoprotective effects of GE50 on ethanol and carbon tetrachloride (CCl4) co-induced hepatic damage in rats, Sprague–Dawley rats were randomly divided into five groups (Control group; GE50 group, 0.25 g/100 g BW; EC group: Ethanol + CCl4, 1.25 mL 50% ethanol and 0.1 mL 20% CCl4/100 g BW; EC + GE50 group: Ethanol + CCl4 + GE50; EC + silymarin group: ethanol + CCl4 + silymarin, 20 mg/100 g BW) for six consecutive weeks. (3) Results: Compared with the control group, EC group significantly elevated the serum aspartate aminotransferase (AST), alanine aminitransferase (ALT), and lactate dehydrogenase (LDH). However, GE50 or silymarin treatment effectively reversed these changes. GE50 had a significant protective effect against ethanol + CCl4 induced lipid peroxidation and increased the levels of glutathione (GSH), vitamin C, E, total antioxidant status (TAS), and the activities of superoxide dismutase (SOD), glutathione peroxidase (GPx), catalase (CAT), and glutathione S-transferases (GST). Furthermore, in EC focal group, slight fat droplet infiltration was observed in the livers, while in the GE50 or silymarin treatment groups, decreased fat droplet infiltration. HPLC phytochemical profile of GE50 revealed the presence of gallic acid, flavone, genistin, daidzin, and quercetin. (4) Conclusions: The hepatoprotective activity of GE50 is proposed to occur through the synergic effects of its chemical component, namely, gallic acid, flavone, genistin, daidzin, and quercetin. Hence, G. paraguayense can be used as a complementary and alternative therapy in the prevention of alcohol + CCl4-induced liver injury.
Collapse
Affiliation(s)
- Wen-Wan Chao
- Department of Nutrition and Health Sciences, Kainan University, Taoyuan 33857, Taiwan
| | - Shu-Ju Chen
- Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan
| | - Hui-Chen Peng
- Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Su-Tze Chou
- Department of Food and Nutrition, Providence University, Taichung 43301, Taiwan.
| |
Collapse
|
24
|
Saha P, Talukdar AD, Nath R, Sarker SD, Nahar L, Sahu J, Choudhury MD. Role of Natural Phenolics in Hepatoprotection: A Mechanistic Review and Analysis of Regulatory Network of Associated Genes. Front Pharmacol 2019; 10:509. [PMID: 31178720 PMCID: PMC6543890 DOI: 10.3389/fphar.2019.00509] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 04/24/2019] [Indexed: 12/11/2022] Open
Abstract
The liver is not only involved in metabolism and detoxification, but also participate in innate immune function and thus exposed to frequent target Thus, they are the frequent target of physical injury. Interestingly, liver has the unique ability to regenerate and completely recoup from most acute, non-iterative situation. However, multiple conditions, including viral hepatitis, non-alcoholic fatty liver disease, long term alcohol abuse and chronic use of medications can cause persistent injury in which regenerative capacity eventually becomes dysfunctional resulting in hepatic scaring and cirrhosis. Despite the recent therapeutic advances and significant development of modern medicine, hepatic diseases remain a health problem worldwide. Thus, the search for the new therapeutic agents to treat liver disease is still in demand. Many synthetic drugs have been demonstrated to be strong radical scavengers, but they are also carcinogenic and cause liver damage. Present day various hepatic problems are encountered with number of synthetic and plant based drugs. Nexavar (sorafenib) is a chemotherapeutic medication used to treat advanced renal cell carcinoma associated with several side effects. There are a few effective varieties of herbal preparation like Liv-52, silymarin and Stronger neomin phages (SNMC) against hepatic complications. Plants are the huge repository of bioactive secondary metabolites viz; phenol, flavonoid, alkaloid etc. In this review we will try to present exclusive study on phenolics with its mode of action mitigating liver associated complications. And also its future prospects as new drug lead.
Collapse
Affiliation(s)
- Priyanka Saha
- Department of Life Science & Bioinformatics, Assam University, Silchar, India
| | - Anupam Das Talukdar
- Department of Life Science & Bioinformatics, Assam University, Silchar, India
| | - Rajat Nath
- Department of Life Science & Bioinformatics, Assam University, Silchar, India
| | - Satyajit D. Sarker
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Lutfun Nahar
- Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Jagajjit Sahu
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | | |
Collapse
|
25
|
Hosseinzade A, Sadeghi O, Naghdipour Biregani A, Soukhtehzari S, Brandt GS, Esmaillzadeh A. Immunomodulatory Effects of Flavonoids: Possible Induction of T CD4+ Regulatory Cells Through Suppression of mTOR Pathway Signaling Activity. Front Immunol 2019; 10:51. [PMID: 30766532 PMCID: PMC6366148 DOI: 10.3389/fimmu.2019.00051] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/09/2019] [Indexed: 12/12/2022] Open
Abstract
The increasing rate of autoimmune disorders and cancer in recent years has been a controversial issue in all aspects of prevention, diagnosis, prognosis and treatment. Among dietary factors, flavonoids have specific immunomodulatory effects that might be of importance to several cancers. Over different types of immune cells, T lymphocytes play a critical role in protecting the immune system as well as in the pathogenesis of specific autoimmune diseases. One of the important mediators of metabolism and immune system is mTOR, especially in T lymphocytes. In the current review, we assessed the effects of flavonoids on the immune system and then their impact on the mTOR pathway. Flavonoids can suppress mTOR activity and are consequently able to induce the T regulatory subset.
Collapse
Affiliation(s)
- Aysooda Hosseinzade
- Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Omid Sadeghi
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Community Nutrition, School of Nutritional Sciences and Dietetics, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Naghdipour Biregani
- Department of Nutrition, School of Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sepideh Soukhtehzari
- Department of Pharmaceutical Science, University of British Columbia, Vancouver, BC, Canada
| | - Gabriel S Brandt
- Department of Chemistry, Franklin & Marshall College,, Lancaster, PA, United States
| | - Ahmad Esmaillzadeh
- Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Obesity and Eating Habits Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Community Nutrition, Food Security Research Center, School of Nutrition and Food Science, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
26
|
Thaipitakwong T, Numhom S, Aramwit P. Mulberry leaves and their potential effects against cardiometabolic risks: a review of chemical compositions, biological properties and clinical efficacy. PHARMACEUTICAL BIOLOGY 2018; 56:109-118. [PMID: 29347857 PMCID: PMC6130672 DOI: 10.1080/13880209.2018.1424210] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Revised: 12/18/2017] [Accepted: 01/02/2018] [Indexed: 06/07/2023]
Abstract
CONTEXT Cardiometabolic risks are regarded as the crucial factors associated with type 2 diabetes (T2DM) and cardiovascular diseases (CVD). Regarding an increased attention to medicinal plants in the current healthcare system, the effects of mulberry (Morus spp., Moraceae) leaves on cardiometabolic risks have been consecutively considered in scientific research. OBJECTIVE The present review compiles and summarizes the chemical compositions, biological properties and clinical efficacy of mulberry leaves that are related to the amelioration of cardiometabolic risks. METHODS Published English literature from the PubMed, Science Direct and Google Scholar databases was searched by using 'mulberry leaves' 'Morus spp.', 'hyperglycemia', 'hyperlipidemia', 'obesity', 'hypertension', 'oxidative stress', 'atherosclerosis' and 'cardiovascular diseases' as the keywords. The relevant articles published over the past two decades were identified and reviewed. RESULTS Mulberry leaves contain numerous chemical constituents. 1-Deoxynojirimycin (DNJ), phenolics and flavonoids are the prominent functional compounds. Preclinical and clinical studies showed that mulberry leaves possessed various beneficial effects against cardiometabolic risks, including antihyperglycaemic, antihyperlipidaemic, antiobesity, antihypertensive, antioxidative, anti-inflammatory, anti-atherosclerotic and cardioprotective effects. CONCLUSIONS Mulberry leaves could be a promising therapeutic option for modulating cardiometabolic risks. However, further investigations should be performed to substantiate the potential of mulberry leaves in practical uses.
Collapse
Affiliation(s)
- Thanchanit Thaipitakwong
- Bioactive Resources for Innovative Clinical Applications Research Unit and Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Surawej Numhom
- Department of Surgery, Faculty of Medicine, Plastic and Maxillofacial Surgery, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Pornanong Aramwit
- Bioactive Resources for Innovative Clinical Applications Research Unit and Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
27
|
Li S, Cao H, Shen D, Jia Q, Chen C, Xing SL. Quercetin protects against ox‑LDL‑induced injury via regulation of ABCAl, LXR‑α and PCSK9 in RAW264.7 macrophages. Mol Med Rep 2018; 18:799-806. [PMID: 29845234 PMCID: PMC6059709 DOI: 10.3892/mmr.2018.9048] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 05/04/2018] [Indexed: 02/01/2023] Open
Abstract
Quercetin is a flavonoid that has anti‑inflammatory, anti‑oxidant and lipid metabolic effects. It has also been reported to reduce the risk of cardiovascular disease. The present study measured the effects of quercetin on the expression of ATP‑binding cassette transporter 1 (ABCAl), ATP‑binding cassette sub‑family G member 1 (ABCG1), liver X receptor‑α (LXR‑α), proprotein convertase subtilisin/kexin type 9 (PCSK9), p53, p21 and p16 induced by oxidized low density lipoprotein (ox‑LDL). RAW264.7 macrophages were exposed to ox‑LDL with or without 20 µmol/l quercetin and cell proliferation and senescence were quantified using β‑gal staining. Superoxide dismutase (SOD), malondialdehyde (MDA) and lipid droplets were measured in the cytoplasm using oil red staining, while intracellular and total cholesterol (TC) were measured using filipin staining and a TC kit. Immunofluorescent studies and western blot analysis were performed to quantify the expression of ABCAl, ABCG1, LXR‑α, PCSK9, p53, p21 and p16. Quercetin increased RAW264.7 cell viability and reduced lipid accumulation, senescence, lipid droplets, intracellular cholesterol and TC. It was concluded that quercetin inhibits ox‑LDL‑induced lipid droplets in RAW264.7 cells by upregulation of ABCAl, ABCG1, LXR‑α and downregulation of PCSK9, p53, p21 and p16.
Collapse
Affiliation(s)
- Shanshan Li
- Shanghai Geriatrics Institute of Chinese Medicine, Shanghai 200031, P.R. China
| | - Hui Cao
- Shanghai Geriatrics Institute of Chinese Medicine, Shanghai 200031, P.R. China
| | - Dingzhu Shen
- Shanghai Geriatrics Institute of Chinese Medicine, Shanghai 200031, P.R. China
| | - Qingling Jia
- Shanghai Geriatrics Institute of Chinese Medicine, Shanghai 200031, P.R. China
| | - Chuan Chen
- Shanghai Geriatrics Institute of Chinese Medicine, Shanghai 200031, P.R. China
| | - San Li Xing
- Shanghai Geriatrics Institute of Chinese Medicine, Shanghai 200031, P.R. China
| |
Collapse
|
28
|
Shen F, Wang Z, Liu W, Liang Y. Ethyl pyruvate can alleviate alcoholic liver disease through inhibiting Nrf2 signaling pathway. Exp Ther Med 2018; 15:4223-4228. [PMID: 29725369 PMCID: PMC5920469 DOI: 10.3892/etm.2018.5925] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/19/2018] [Indexed: 12/22/2022] Open
Abstract
The effects of ethyl pyruvate (EP) on alcoholic liver disease and its related mechanism were investigated. Thirty male C57/BL6 mice were randomly divided to three groups: Control (n=10), alcoholic liver disease (ALD, n=10) and ethyl pyruvate group (EP, n=10). EP group was treated with gavage using EP (100 mg/kg) for 15 consecutive days. Control and ALD group were treated with the same volume of normal saline. After the last gavage, EP and ALD group were treated with the intraperitoneal injection of 50% alcoholic solution (10 ml/kg). After that, ALD and EP group received the gavage using alcohol for 4 weeks, while Control group received the same volume of normal saline, and blood and liver tissues were taken for detection. Results showed that in this experimental study that EP could effectively alleviate the alcoholic liver disease. The levels of alanine aminotransferase (AST), triglycerides (TG), free fatty acid (FFA) and FBG in EP group were significantly lower than those in ALD group, but the number of platelets was reversed, and the differences were statistically significant; the levels of anti-inflammatory factors (TGF-β/IL-10) and superoxide dismutase (SOD) in EP were significantly higher than those in ALP group, but the levels of pro-inflammatory factors (IL-6/TNF-α) and MDA were significantly lower than those in ALP group. EP upregulated CYP2E1, downregulated PPAR-α, nuclear factor 2 (Nrf2) and very-low density lipoprotein receptor (VLDLR), positively regulated the CYP2E1-PPAR-α-ROS signaling pathway and negatively regulated the ROS-Nrf2-VLDLR signaling pathway. EP can increase anti-inflammatory factors and decrease pro-inflammatory factors, enhance the activity of SOD and reduce FFA and TG. Moreover, it can upregulate the PPAR-α expression by negative regulation of CYP2E1-PPAR-α signaling pathway and downregulate the Nrf2 expression by negative regulation of Nrf2-VLDLR signaling pathway, thus alleviating the alcoholic liver disease.
Collapse
Affiliation(s)
- Fei Shen
- Department of Liver Disease, Jinan Infectious Disease Hospital, Jinan, Shandong 250000, P.R. China
| | - Zhaohong Wang
- Department of Liver Disease, Jinan Infectious Disease Hospital, Jinan, Shandong 250000, P.R. China
| | - Wei Liu
- Department of Infectious Disease, Rizhao People's Hospital, Rizhao, Shandong 276800, P.R. China
| | - Yuji Liang
- Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, Shandong 250062, P.R. China
| |
Collapse
|
29
|
Miltonprabu S, Tomczyk M, Skalicka-Woźniak K, Rastrelli L, Daglia M, Nabavi SF, Alavian SM, Nabavi SM. Hepatoprotective effect of quercetin: From chemistry to medicine. Food Chem Toxicol 2017; 108:365-374. [DOI: 10.1016/j.fct.2016.08.034] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/04/2016] [Accepted: 08/30/2016] [Indexed: 12/21/2022]
|
30
|
Xiao L, Liu L, Guo X, Zhang S, Wang J, Zhou F, Liu L, Tang Y, Yao P. Quercetin attenuates high fat diet-induced atherosclerosis in apolipoprotein E knockout mice: A critical role of NADPH oxidase. Food Chem Toxicol 2017; 105:22-33. [DOI: 10.1016/j.fct.2017.03.048] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 03/09/2017] [Accepted: 03/24/2017] [Indexed: 12/22/2022]
|
31
|
Ruiz-Miyazawa KW, Staurengo-Ferrari L, Mizokami SS, Domiciano TP, Vicentini FTMC, Camilios-Neto D, Pavanelli WR, Pinge-Filho P, Amaral FA, Teixeira MM, Casagrande R, Verri WA. Quercetin inhibits gout arthritis in mice: induction of an opioid-dependent regulation of inflammasome. Inflammopharmacology 2017; 25:10.1007/s10787-017-0356-x. [PMID: 28508104 DOI: 10.1007/s10787-017-0356-x] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/26/2017] [Indexed: 02/07/2023]
Abstract
We investigated the anti-inflammatory and analgesic effects of quercetin in monosodium urate crystals (MSU)-induced gout arthritis, and the sensitivity of quercetin effects to naloxone, an opioid receptor antagonist. Mice were treated with quercetin, and mechanical hyperalgesia was assessed at 1-24 h after MSU injection. In vivo, leukocyte recruitment, cytokine levels, oxidative stress, NFκB activation, and gp91phox and inflammasome components (NLRP3, ASC, Pro-caspase-1, and Pro-IL-1β) mRNA expression by qPCR were determined in the knee joints at 24 h after MSU injection. Inflammasome activation was determined, in vitro, in lipopolysaccharide-primed macrophages challenged with MSU. Quercetin inhibited MSU-induced mechanical hyperalgesia, leukocyte recruitment, TNFα and IL-1β production, superoxide anion production, inflammasome activation, decrease of antioxidants levels, NFκB activation, and inflammasome components mRNA expression. Naloxone pre-treatment prevented all the inhibitory effects of quercetin over MSU-induced gout arthritis. These results demonstrate that quercetin exerts analgesic and anti-inflammatory effect in the MSU-induced arthritis in a naloxone-sensitive manner.
Collapse
Affiliation(s)
- Kenji W Ruiz-Miyazawa
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid KM480 PR445, Cx Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil
| | - Larissa Staurengo-Ferrari
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid KM480 PR445, Cx Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil
| | - Sandra S Mizokami
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid KM480 PR445, Cx Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil
| | - Talita P Domiciano
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid KM480 PR445, Cx Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil
| | - Fabiana T M C Vicentini
- Farmacore Biotecnologia LTDA, Rua Edson Souto, 728, Lagoinha, 14095-250, Ribeirão Preto, São Paulo, Brazil
| | - Doumit Camilios-Neto
- Departamento de Bioquímica e Biotecnologia, Centro de Ciências Exatas, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid, Km 380, PR445, Cx. Postal 10.011, Londrina, Paraná, 86057-970, Brazil
| | - Wander R Pavanelli
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid KM480 PR445, Cx Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil
| | - Phileno Pinge-Filho
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid KM480 PR445, Cx Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil
| | - Flávio A Amaral
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Laboratório de Imunofarmacologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Mauro M Teixeira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Laboratório de Imunofarmacologia, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Rubia Casagrande
- Department of Pharmaceutical Sciences, Healthy Sciences Center, Londrina State University, Av. Robert Koch, 60, Londrina, Paraná, CEP 86038-350, Brazil
| | - Waldiceu A Verri
- Departamento de Ciências Patológicas, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid KM480 PR445, Cx Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil.
- Departamento de Patologia, Universidade Estadual de Londrina, Rod. Celso Garcia Cid KM480 PR445, Cx Postal 10.011, Londrina, Paraná, CEP 86057-970, Brazil.
| |
Collapse
|
32
|
Effects of the flavonol quercetin and α-linolenic acid on n-3 PUFA status in metabolically healthy men and women: a randomised, double-blinded, placebo-controlled, crossover trial. Br J Nutr 2017; 117:698-711. [DOI: 10.1017/s0007114517000241] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
AbstractIncreased dietary intake and tissue status of the long-chain n-3 PUFA, EPA and DHA, is associated with cardiovascular benefits. Epidemiological and animal studies suggest that concomitant nutritive intake of flavonoids may increase the conversion of α-linolenic acid (ALA) to longer-chain n-3 fatty acids EPA and DHA. We investigated the effects of increased ALA intake on fatty acid composition of serum phospholipids and erythrocytes in metabolically healthy men and women and whether fatty acid profiles and ALA conversion were affected by regular quercetin intake or sex. Subjects (n 74) were randomised to receive at least 3·3 g/d ALA with either 190 mg/d quercetin (ALA+quercetin) or placebo (ALA+placebo) in a double-blinded, placebo-controlled, crossover trial with 8-week intervention periods separated by an 8-week washout period. A total of seven subjects dropped out for personal reasons. Data from the remaining sixty-seven subjects (thirty-four males and thirty-three females) were included in the analysis. Both interventions significantly increased serum phospholipid ALA (ALA+placebo: +69·3 %; ALA+quercetin: +55·8 %) and EPA (ALA+placebo: +37·3 %; ALA+quercetin: +25·5 %). ALA + quercetin slightly decreased DHA concentration by 9·3 %. Erythrocyte ALA and EPA significantly increased with both interventions, whereas DHA decreased. Fatty acid composition did not differ between sexes. We found no effect of quercetin. Intake of 3·6 g/d ALA over an 8-week period resulted in increased ALA and EPA, but not DHA, in serum phospholipids and erythrocytes. Neither quercetin supplementation nor sex affected the increment of ALA and relative proportions of n-3 PUFA in serum phospholipids and erythrocytes.
Collapse
|
33
|
Braun JBS, Ruchel JB, Adefegha SA, Coelho APV, Trelles KB, Signor C, Rubin MA, Oliveira JS, Dornelles GL, de Andrade CM, Castilhos LG, Leal DBR. Neuroprotective effects of pretreatment with quercetin as assessed by acetylcholinesterase assay and behavioral testing in poloxamer-407 induced hyperlipidemic rats. Biomed Pharmacother 2017; 88:1054-1063. [PMID: 28192878 DOI: 10.1016/j.biopha.2017.01.134] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 01/22/2017] [Accepted: 01/23/2017] [Indexed: 10/20/2022] Open
Abstract
Hyperlipidemia is a group of disorders characterized by excessive lipids in the bloodstream. It is associated with the incidence of cardiovascular diseases and recognized as the most important factor underlying the occurrence of atherosclerosis. This study was conducted to investigate whether pretreatment with quercetin can protect against possible memory impairment and deterioration of the cholinergic system in hyperlipidemic rats. Animals were divided into ten groups (n=7): saline/control, saline/quercetin 5mg/kg, saline/quercetin 25mg/kg, saline/quercetin 50mg/kg, saline/simvastatin (0.04mg/kg), hyperlipidemia, hyperlipidemia/quercetin 5mg/kg, hyperlipidemia/quercetin 25mg/kg, hyperlipidemia/quercetin 50mg/kg and hyperlipidemia/simvastatin. The animals were pretreated with quercetin by oral gavage for a period of 30days and hyperlipidemia was subsequently induced by intraperitoneal administration of a single dose of 500mg/kg of poloxamer-407. Simvastatin was administered after the induction of hyperlipidemia. The results demonstrated that hyperlipidemic rats had memory impairment compared with the saline control group (P<0.001). However, pretreatment with quercetin and simvastatin treatment attenuated the damage caused by hyperlipidemia compared with the hyperlipidemic group (P<0.05). Acetylcholinesterase (AChE) activity in the cerebral hippocampus was significantly (P<0.001) reduced in the hyperlipidemic group compared with the control saline group. Pretreatment with quercetin and simvastatin treatment in the hyperlipidemic groups significantly (P<0.05) increased AChE activity compared with the hyperlipidemic group. Our results thus suggest that quercetin may prevent memory impairment, alter lipid metabolism, and modulate AChE activity in an experimental model of hyperlipidemia.
Collapse
Affiliation(s)
- Josiane B S Braun
- Programa de-Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, RS, 97105-900, Brazil.
| | - Jader B Ruchel
- Programa de-Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, RS, 97105-900, Brazil.
| | - Stephen A Adefegha
- Programa de-Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, RS, 97105-900, Brazil.
| | - Ana Paula V Coelho
- Graduação em Ciências Biológicas Universidade Federal de Santa Maria, RS, 97105-900, Brazil.
| | - Kelly B Trelles
- Programa de-Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, RS, 97105-900, Brazil.
| | - Cristiane Signor
- Programa de-Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, RS, 97105-900, Brazil.
| | - Maribel A Rubin
- Programa de-Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, RS, 97105-900, Brazil.
| | - Juliana S Oliveira
- Programa de-Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, RS, 97105-900, Brazil.
| | - Guilherme L Dornelles
- Programa de Pós-Graduação em Medicina Veterinária, Setor de Bioquímica e Estresse Oxidativo do Laboratório de Terapia Celular, Centro de Ciências Rurais, Universidade Federal de Santa Maria, RS, 97105-900, Brazil.
| | - Cinthia M de Andrade
- Programa de-Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, RS, 97105-900, Brazil; Programa de Pós-Graduação em Medicina Veterinária, Setor de Bioquímica e Estresse Oxidativo do Laboratório de Terapia Celular, Centro de Ciências Rurais, Universidade Federal de Santa Maria, RS, 97105-900, Brazil.
| | - Lívia G Castilhos
- Programa de-Pós Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, RS, 97105-900, Brazil.
| | - Daniela B R Leal
- Programa de-Pós Graduação em Ciências Biológicas: Bioquímica Toxicológica, Departamento de Bioquímica e Biologia Molecular, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, RS, 97105-900, Brazil; Programa de-Pós Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
34
|
Biological activities and chemical composition of Morus leaves extracts obtained by maceration and supercritical fluid extraction. J Supercrit Fluids 2016. [DOI: 10.1016/j.supflu.2016.05.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
35
|
Castrejón-Tellez V, Rodríguez-Pérez JM, Pérez-Torres I, Pérez-Hernández N, Cruz-Lagunas A, Guarner-Lans V, Vargas-Alarcón G, Rubio-Ruiz ME. The Effect of Resveratrol and Quercetin Treatment on PPAR Mediated Uncoupling Protein (UCP-) 1, 2, and 3 Expression in Visceral White Adipose Tissue from Metabolic Syndrome Rats. Int J Mol Sci 2016; 17:ijms17071069. [PMID: 27399675 PMCID: PMC4964445 DOI: 10.3390/ijms17071069] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/16/2016] [Accepted: 06/28/2016] [Indexed: 12/25/2022] Open
Abstract
Uncoupling proteins (UCPs) are members of the mitochondrial anion carrier superfamily involved in the control of body temperature and energy balance regulation. They are currently proposed as therapeutic targets for treating obesity and metabolic syndrome (MetS). We studied the gene expression regulation of UCP1, -2, and -3 in abdominal white adipose tissue (WAT) from control and MetS rats treated with two doses of a commercial mixture of resveratrol (RSV) and quercetin (QRC). We found that UCP2 was the predominantly expressed isoform, UCP3 was present at very low levels, and UCP1 was undetectable. The treatment with RSV + QRC did not modify UCP3 levels; however, it significantly increased UCP2 mRNA in control and MetS rats in association with an increase in oleic and linoleic fatty acids. WAT from MetS rats showed a significantly increased expression of peroxisome proliferator-activated receptor (PPAR)-α and PPAR-γ when compared to the control group. Furthermore, PPAR-α protein levels were increased by the highest dose of RSV + QRC in the control and MetS groups. PPAR-γ expression was only increased in the control group. We conclude that the RSV + QRC treatment leads to overexpression of UCP2, which is associated with an increase in MUFA and PUFA, which might increase PPAR-α expression.
Collapse
Affiliation(s)
- Vicente Castrejón-Tellez
- Department of Physiology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Tlalpan, Mexico City 14080, Mexico.
| | - José Manuel Rodríguez-Pérez
- Department of Molecular Biology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Tlalpan, Mexico City 14080, Mexico.
| | - Israel Pérez-Torres
- Department of Pathology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Tlalpan, Mexico City 14080, Mexico.
| | - Nonanzit Pérez-Hernández
- Department of Molecular Biology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Tlalpan, Mexico City 14080, Mexico.
| | - Alfredo Cruz-Lagunas
- Department of Immunology Research, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Calzada de Tlalpan 4502, Tlalpan, Mexico City 14080, Mexico.
| | - Verónica Guarner-Lans
- Department of Physiology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Tlalpan, Mexico City 14080, Mexico.
| | - Gilberto Vargas-Alarcón
- Department of Molecular Biology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Tlalpan, Mexico City 14080, Mexico.
| | - María Esther Rubio-Ruiz
- Department of Physiology, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano 1, Tlalpan, Mexico City 14080, Mexico.
| |
Collapse
|
36
|
Chang YC, Yang MY, Chen SC, Wang CJ. Mulberry leaf polyphenol extract improves obesity by inducing adipocyte apoptosis and inhibiting preadipocyte differentiation and hepatic lipogenesis. J Funct Foods 2016. [DOI: 10.1016/j.jff.2015.11.033] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
37
|
Miyazaki Y, Kurata Y, Koga H, Yamaguchi S, Tachibana H, Yamada K. Involvement of Polyphenol Compounds in Histamine Release Suppression by Pomegranate Vinegar. J JPN SOC FOOD SCI 2016. [DOI: 10.3136/nskkk.63.63] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
| | | | | | | | | | - Koji Yamada
- Faculty of Agriculture, Kyushu University
- Faculty of Biotechnology and Life Science, Sojo University
| |
Collapse
|