1
|
Wilson DM, Pietropaolo SL, Acevedo-Calado M, Huang S, Anyaiwe D, Scheinker D, Steck AK, Vasudevan MM, McKay SV, Sherr JL, Herold KC, Dunne JL, Greenbaum CJ, Lord SM, Haller MJ, Schatz DA, Atkinson MA, Nelson PW, Pietropaolo M. CGM Metrics Identify Dysglycemic States in Participants From the TrialNet Pathway to Prevention Study. Diabetes Care 2023; 46:526-534. [PMID: 36730530 PMCID: PMC10020029 DOI: 10.2337/dc22-1297] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 11/28/2022] [Indexed: 02/04/2023]
Abstract
OBJECTIVE Continuous glucose monitoring (CGM) parameters may identify individuals at risk for progression to overt type 1 diabetes. We aimed to determine whether CGM metrics provide additional insights into progression to clinical stage 3 type 1 diabetes. RESEARCH DESIGN AND METHODS One hundred five relatives of individuals in type 1 diabetes probands (median age 16.8 years; 89% non-Hispanic White; 43.8% female) from the TrialNet Pathway to Prevention study underwent 7-day CGM assessments and oral glucose tolerance tests (OGTTs) at 6-month intervals. The baseline data are reported here. Three groups were evaluated: individuals with 1) stage 2 type 1 diabetes (n = 42) with two or more diabetes-related autoantibodies and abnormal OGTT; 2) stage 1 type 1 diabetes (n = 53) with two or more diabetes-related autoantibodies and normal OGTT; and 3) negative test for all diabetes-related autoantibodies and normal OGTT (n = 10). RESULTS Multiple CGM metrics were associated with progression to stage 3 type 1 diabetes. Specifically, spending ≥5% time with glucose levels ≥140 mg/dL (P = 0.01), ≥8% time with glucose levels ≥140 mg/dL (P = 0.02), ≥5% time with glucose levels ≥160 mg/dL (P = 0.0001), and ≥8% time with glucose levels ≥160 mg/dL (P = 0.02) were all associated with progression to stage 3 disease. Stage 2 participants and those who progressed to stage 3 also exhibited higher mean daytime glucose values; spent more time with glucose values over 120, 140, and 160 mg/dL; and had greater variability. CONCLUSIONS CGM could aid in the identification of individuals, including those with a normal OGTT, who are likely to rapidly progress to stage 3 type 1 diabetes.
Collapse
Affiliation(s)
- Darrell M. Wilson
- Division of Pediatric Endocrinology, Stanford University School of Medicine, Palo Alto, CA
| | - Susan L. Pietropaolo
- Division of Endocrinology, Diabetes, and Metabolism, Diabetes Research Center, Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Maria Acevedo-Calado
- Division of Endocrinology, Diabetes, and Metabolism, Diabetes Research Center, Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Shuai Huang
- Department of Industrial & Systems Engineering, University of Washington, Seattle, WA
| | - Destiny Anyaiwe
- Department of Mathematics & Computer Science, Lawrence Technological University, Southfield, MI
| | - David Scheinker
- Division of Pediatric Endocrinology, Stanford University School of Medicine, Palo Alto, CA
| | - Andrea K. Steck
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Madhuri M. Vasudevan
- Division of Endocrinology, Diabetes, and Metabolism, Diabetes Research Center, Department of Medicine, Baylor College of Medicine, Houston, TX
| | - Siripoom V. McKay
- Division of Endocrinology, Diabetes, and Metabolism, Diabetes Research Center, Department of Medicine, Baylor College of Medicine, Houston, TX
- Department of Pediatrics, Baylor College of Medicine, Houston, TX
| | - Jennifer L. Sherr
- Division of Pediatric Endocrinology, Yale University School of Medicine, New Haven, CT
| | - Kevan C. Herold
- Departments of Immunobiology and Internal Medicine, Yale University, New Haven, CT
| | | | - Carla J. Greenbaum
- Center for Interventional Immunology and Diabetes Program, Benaroya Research Institute, Seattle, WA
| | - Sandra M. Lord
- Center for Interventional Immunology and Diabetes Program, Benaroya Research Institute, Seattle, WA
| | - Michael J. Haller
- Department of Pediatrics, University of Florida Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL
| | - Desmond A. Schatz
- Department of Pediatrics, University of Florida Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL
| | - Mark A. Atkinson
- Department of Pediatrics, University of Florida Diabetes Institute, College of Medicine, University of Florida, Gainesville, FL
| | - Patrick W. Nelson
- Department of Mathematics & Computer Science, Lawrence Technological University, Southfield, MI
| | - Massimo Pietropaolo
- Division of Endocrinology, Diabetes, and Metabolism, Diabetes Research Center, Department of Medicine, Baylor College of Medicine, Houston, TX
| | | |
Collapse
|
2
|
Duvernoy CS, Raffel DM, Swanson SD, Jaiswal M, Mueller G, Ibrahim ES, Pennathur S, Plunkett C, Stojanovska J, Brown MB, Pop-Busui R. Left ventricular metabolism, function, and sympathetic innervation in men and women with type 1 diabetes. J Nucl Cardiol 2016; 23:960-969. [PMID: 27146882 PMCID: PMC5103640 DOI: 10.1007/s12350-016-0434-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/29/2016] [Indexed: 01/09/2023]
Abstract
BACKGROUND In type I diabetes (T1DM), alterations in LV function may occur due to changes in innervation, metabolism, and efficiency. OBJECTIVES We evaluated the association between sympathetic nerve function, oxidative metabolism, resting blood flow, LV efficiency and function in healthy diabetics, and assessed gender differences. METHODS Cross-sectional study of 45 subjects with T1DM, 60% females, age 34 ± 13 years, and 10 age-matched controls. Positron emission tomography (PET) imaging with [(11)C]acetate and [(11)C]meta-hydroxyephedrine was performed, in addition to cardiac magnetic resonance imaging. RESULTS There were no significant differences in LV function, innervation, or oxidative metabolism between T1DM and controls. Cardiac oxidative metabolism was positively associated with higher levels of sympathetic activation, particularly in women. Diabetic women had significantly lower efficiency compared with diabetic men. Resting flow was significantly higher in diabetic women compared with diabetic men, and tended to be higher in female controls as well. CONCLUSIONS Measures of myocardial function, metabolism, blood flow, and sympathetic activation were preserved in young, otherwise healthy, T1DM patients. However, T1DM women presented with greater myocardial oxidative metabolism requirements than men. Ongoing studies are evaluating changes over time.
Collapse
Affiliation(s)
- Claire S Duvernoy
- Cardiology Section, VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
- Division of Cardiology, University of Michigan, Ann Arbor, MI, USA
| | - David M Raffel
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Scott D Swanson
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Mamta Jaiswal
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, 5329 Brehm Tower, 1000 Wall Street, Ann Arbor, MI, 48105, USA
| | - Gisela Mueller
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - El-Sayed Ibrahim
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Subramaniam Pennathur
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Cynthia Plunkett
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, 5329 Brehm Tower, 1000 Wall Street, Ann Arbor, MI, 48105, USA
| | | | - Morton B Brown
- Department of Biostatistics, University of Michigan, Ann Arbor, MI, USA
| | - Rodica Pop-Busui
- Division of Metabolism, Endocrinology and Diabetes, University of Michigan, 5329 Brehm Tower, 1000 Wall Street, Ann Arbor, MI, 48105, USA.
| |
Collapse
|