1
|
Cesarini V, Appleton SL, de Franciscis V, Catalucci D. The recent blooming of therapeutic aptamers. Mol Aspects Med 2025; 102:101350. [PMID: 39933246 DOI: 10.1016/j.mam.2025.101350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/13/2025]
Abstract
In the dynamic landscape of biomedical research, therapeutic RNA aptamers have recently come to the forefront, showing significant potential in diagnostics and therapeutics. This review aims to raise awareness of aptamer technology within the scientific community by exploring the progress made in the therapeutic field, from the lessons learned in research to the future opportunities and impact that these innovative molecules are increasingly having on society to meet current health needs, i.e. targeted and personalized therapies.
Collapse
Affiliation(s)
- Valeriana Cesarini
- National Research Council (CNR), Institute of Genetic and Biomedical Research (IRGB), Milan, Italy
| | - Silvia Lucia Appleton
- National Research Council (CNR), Institute of Genetic and Biomedical Research (IRGB), Milan, Italy
| | - Vittorio de Franciscis
- National Research Council (CNR), Institute of Genetic and Biomedical Research (IRGB), Milan, Italy.
| | - Daniele Catalucci
- National Research Council (CNR), Institute of Genetic and Biomedical Research (IRGB), Milan, Italy; Humanitas Cardio Center, IRCCS Humanitas Research Hospital, Rozzano, (Milan), Italy.
| |
Collapse
|
2
|
Zhang H, Kelly K, Lee J, Echeverria D, Cooper D, Panwala R, Amrani N, Chen Z, Gaston N, Wagh A, Newby G, Xie J, Liu DR, Gao G, Wolfe S, Khvorova A, Watts J, Sontheimer E. Self-delivering, chemically modified CRISPR RNAs for AAV co-delivery and genome editing in vivo. Nucleic Acids Res 2024; 52:977-997. [PMID: 38033325 PMCID: PMC10810193 DOI: 10.1093/nar/gkad1125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 11/01/2023] [Accepted: 11/13/2023] [Indexed: 12/02/2023] Open
Abstract
Guide RNAs offer programmability for CRISPR-Cas9 genome editing but also add challenges for delivery. Chemical modification, which has been key to the success of oligonucleotide therapeutics, can enhance the stability, distribution, cellular uptake, and safety of nucleic acids. Previously, we engineered heavily and fully modified SpyCas9 crRNA and tracrRNA, which showed enhanced stability and retained activity when delivered to cultured cells in the form of the ribonucleoprotein complex. In this study, we report that a short, fully stabilized oligonucleotide (a 'protecting oligo'), which can be displaced by tracrRNA annealing, can significantly enhance the potency and stability of a heavily modified crRNA. Furthermore, protecting oligos allow various bioconjugates to be appended, thereby improving cellular uptake and biodistribution of crRNA in vivo. Finally, we achieved in vivo genome editing in adult mouse liver and central nervous system via co-delivery of unformulated, chemically modified crRNAs with protecting oligos and AAV vectors that express tracrRNA and either SpyCas9 or a base editor derivative. Our proof-of-concept establishment of AAV/crRNA co-delivery offers a route towards transient editing activity, target multiplexing, guide redosing, and vector inactivation.
Collapse
Affiliation(s)
- Han Zhang
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Karen Kelly
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jonathan Lee
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Dimas Echeverria
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - David Cooper
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Rebecca Panwala
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Nadia Amrani
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Zexiang Chen
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Nicholas Gaston
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Atish Wagh
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Gregory A Newby
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02139, USA
| | - Jun Xie
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Viral Vector Core, University of Massachusetts Chan Medical, School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - David R Liu
- Merkin Institute of Transformative Technologies in Healthcare, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Harvard University, Cambridge, MA 02139, USA
| | - Guangping Gao
- Horae Gene Therapy Center, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Viral Vector Core, University of Massachusetts Chan Medical, School, Worcester, MA 01605, USA
- Department of Microbiology and Physiological Systems, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Scot A Wolfe
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Jonathan K Watts
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- NeuroNexus Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Erik J Sontheimer
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Li Weibo Institute for Rare Diseases Research, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
3
|
Kruglova N, Shepelev M. Increasing Gene Editing Efficiency via CRISPR/Cas9- or Cas12a-Mediated Knock-In in Primary Human T Cells. Biomedicines 2024; 12:119. [PMID: 38255224 PMCID: PMC10813735 DOI: 10.3390/biomedicines12010119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/22/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
T lymphocytes represent a promising target for genome editing. They are primarily modified to recognize and kill tumor cells or to withstand HIV infection. In most studies, T cell genome editing is performed using the CRISPR/Cas technology. Although this technology is easily programmable and widely accessible, its efficiency of T cell genome editing was initially low. Several crucial improvements were made in the components of the CRISPR/Cas technology and their delivery methods, as well as in the culturing conditions of T cells, before a reasonable editing level suitable for clinical applications was achieved. In this review, we summarize and describe the aforementioned parameters that affect human T cell editing efficiency using the CRISPR/Cas technology, with a special focus on gene knock-in.
Collapse
Affiliation(s)
- Natalia Kruglova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology RAS, 119334 Moscow, Russia;
| | | |
Collapse
|
4
|
Cavanaugh C, Hesson J, Mathieu J. Genomic Engineering of Induced Pluripotent Stem Cell-Derived Cardiomyocytes. Methods Mol Biol 2024; 2735:129-143. [PMID: 38038847 DOI: 10.1007/978-1-0716-3527-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Recent advances in patient-derived induced Pluripotent Stem Cell (iPSC) generation, improvement of cardiomyocyte-directed differentiation protocols, and the availability of new genome editing techniques have opened up new avenues for disease modeling of cardiomyopathies. Patients with cardiomyopathies often harbor a single-base substitution believed to be linked to the disease phenotype. Somatic cells derived from patients can be efficiently reprogrammed into iPSCs and subsequently engineered. The targeting of a precise mutation can be achieved by the introduction of double stranded breaks with CRISPR-Cas9 and by homology-directed repair when using a DNA donor template. This allows for the correction of a mutation in a patient iPSC line to generate an isogenic control. In addition, key mutations associated with cardiomyopathies can be introduced in an iPSC line derived from a healthy individual using the same techniques. In this chapter, we describe in detail how to engineer pluripotent stem cells to model cardiomyopathy in a dish using CRISPR-Cas9 technology.
Collapse
Affiliation(s)
- Christopher Cavanaugh
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | - Jennifer Hesson
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA
| | - Julie Mathieu
- Department of Comparative Medicine, University of Washington, Seattle, WA, USA.
- Institute for Stem Cell and Regenerative Medicine, University of Washington, School of Medicine, Seattle, WA, USA.
| |
Collapse
|
5
|
Kevadiya BD, Islam F, Deol P, Zaman LA, Mosselhy DA, Ashaduzzaman M, Bajwa N, Routhu NK, Singh PA, Dawre S, Vora LK, Nahid S, Mathur D, Nayan MU, Baldi A, Kothari R, Patel TA, Madan J, Gounani Z, Bariwal J, Hettie KS, Gendelman HE. Delivery of gene editing therapeutics. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2023; 54:102711. [PMID: 37813236 PMCID: PMC10843524 DOI: 10.1016/j.nano.2023.102711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/31/2023] [Accepted: 09/15/2023] [Indexed: 10/11/2023]
Abstract
For the past decades, gene editing demonstrated the potential to attenuate each of the root causes of genetic, infectious, immune, cancerous, and degenerative disorders. More recently, Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR-associated protein 9 (CRISPR-Cas9) editing proved effective for editing genomic, cancerous, or microbial DNA to limit disease onset or spread. However, the strategies to deliver CRISPR-Cas9 cargos and elicit protective immune responses requires safe delivery to disease targeted cells and tissues. While viral vector-based systems and viral particles demonstrate high efficiency and stable transgene expression, each are limited in their packaging capacities and secondary untoward immune responses. In contrast, the nonviral vector lipid nanoparticles were successfully used for as vaccine and therapeutic deliverables. Herein, we highlight each available gene delivery systems for treating and preventing a broad range of infectious, inflammatory, genetic, and degenerative diseases. STATEMENT OF SIGNIFICANCE: CRISPR-Cas9 gene editing for disease treatment and prevention is an emerging field that can change the outcome of many chronic debilitating disorders.
Collapse
Affiliation(s)
- Bhavesh D Kevadiya
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| | - Farhana Islam
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| | - Pallavi Deol
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; Institute of Modeling Collaboration and Innovation and Department of Biological Sciences, University of Idaho, Moscow, ID 83844, USA.
| | - Lubaba A Zaman
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| | - Dina A Mosselhy
- Department of Virology, Faculty of Medicine, University of Helsinki, P.O. Box 21, 00014 Helsinki, Finland; Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, 00014 Helsinki, Finland; Microbiological Unit, Fish Diseases Department, Animal Health Research Institute, ARC, Dokki, Giza 12618, Egypt.
| | - Md Ashaduzzaman
- Department of Computer Science, University of Nebraska Omaha, Omaha, NE 68182, USA.
| | - Neha Bajwa
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India.
| | - Nanda Kishore Routhu
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA; Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| | - Preet Amol Singh
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India; Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab.
| | - Shilpa Dawre
- Department of Pharmaceutics, School of Pharmacy & Technology Management, SVKMs, NMIMS, Babulde Banks of Tapi River, MPTP Park, Mumbai-Agra Road, Shirpur, Maharashtra, 425405, India.
| | - Lalitkumar K Vora
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, United Kingdom.
| | - Sumaiya Nahid
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| | | | - Mohammad Ullah Nayan
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| | - Ashish Baldi
- University Institute of Pharma Sciences, Chandigarh University, Mohali, Punjab, India; Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, Punjab.
| | - Ramesh Kothari
- Department of Biosciences, Saurashtra University, Rajkot 360005, Gujarat, India.
| | - Tapan A Patel
- Department of Cellular and Integrative Physiology, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-NIPER, Hyderabad 500037, Telangana, India.
| | - Zahra Gounani
- Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, Viikinkaari 5, 00790 Helsinki, Finland.
| | - Jitender Bariwal
- Department of Cell Physiology and Molecular Biophysics, Center for Membrane Protein Research, Texas Tech University Health Sciences Center, School of Medicine, 3601 4th Street, Lubbock, TX 79430-6551, USA.
| | - Kenneth S Hettie
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Department of Otolaryngology - Head & Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
6
|
Booth BJ, Nourreddine S, Katrekar D, Savva Y, Bose D, Long TJ, Huss DJ, Mali P. RNA editing: Expanding the potential of RNA therapeutics. Mol Ther 2023; 31:1533-1549. [PMID: 36620962 PMCID: PMC9824937 DOI: 10.1016/j.ymthe.2023.01.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 12/06/2022] [Accepted: 01/04/2023] [Indexed: 01/09/2023] Open
Abstract
RNA therapeutics have had a tremendous impact on medicine, recently exemplified by the rapid development and deployment of mRNA vaccines to combat the COVID-19 pandemic. In addition, RNA-targeting drugs have been developed for diseases with significant unmet medical needs through selective mRNA knockdown or modulation of pre-mRNA splicing. Recently, RNA editing, particularly antisense RNA-guided adenosine deaminase acting on RNA (ADAR)-based programmable A-to-I editing, has emerged as a powerful tool to manipulate RNA to enable correction of disease-causing mutations and modulate gene expression and protein function. Beyond correcting pathogenic mutations, the technology is particularly well suited for therapeutic applications that require a transient pharmacodynamic effect, such as the treatment of acute pain, obesity, viral infection, and inflammation, where it would be undesirable to introduce permanent alterations to the genome. Furthermore, transient modulation of protein function, such as altering the active sites of enzymes or the interface of protein-protein interactions, opens the door to therapeutic avenues ranging from regenerative medicine to oncology. These emerging RNA-editing-based toolsets are poised to broadly impact biotechnology and therapeutic applications. Here, we review the emerging field of therapeutic RNA editing, highlight recent laboratory advancements, and discuss the key challenges on the path to clinical development.
Collapse
Affiliation(s)
| | - Sami Nourreddine
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | | | | | | | | | | | - Prashant Mali
- Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
7
|
Kostyushev D, Kostyusheva A, Ponomareva N, Brezgin S, Chulanov V. CRISPR/Cas and Hepatitis B Therapy: Technological Advances and Practical Barriers. Nucleic Acid Ther 2021; 32:14-28. [PMID: 34797701 DOI: 10.1089/nat.2021.0075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
After almost a decade of using CRISPR/Cas9 systems to edit target genes, CRISPR/Cas9 and related technologies are rapidly moving to clinical trials. Hepatitis B virus (HBV), which causes severe liver disease, cannot be cleared by modern antivirals, but represents an ideal target for CRISPR/Cas9 systems. Early studies demonstrated very high antiviral potency of CRISPR/Cas9 and supported its use for developing a cure against chronic HBV infection. This review discusses the key issues that must be solved to make CRISPR/Cas9 an anti-HBV therapy.
Collapse
Affiliation(s)
- Dmitry Kostyushev
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, Moscow, Russia.,Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - Anastasiya Kostyusheva
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, Moscow, Russia
| | - Natalia Ponomareva
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, Moscow, Russia.,Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia.,Department of Infectious Diseases, Sechenov University, Moscow, Russia
| | - Sergey Brezgin
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, Moscow, Russia.,Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia
| | - Vladimir Chulanov
- National Medical Research Center of Tuberculosis and Infectious Diseases, Ministry of Health, Moscow, Russia.,Division of Biotechnology, Scientific Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia.,Department of Infectious Diseases, Sechenov University, Moscow, Russia
| |
Collapse
|
8
|
Lee BC, Lozano RJ, Dunbar CE. Understanding and overcoming adverse consequences of genome editing on hematopoietic stem and progenitor cells. Mol Ther 2021; 29:3205-3218. [PMID: 34509667 DOI: 10.1016/j.ymthe.2021.09.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/25/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
Hematopoietic stem and progenitor cell (HSPC) gene therapies have recently moved beyond gene-addition approaches to encompass targeted genome modification or correction, based on the development of zinc finger nucleases (ZFNs), transcription activator-like effector nucleases (TALENs), and CRISPR-Cas technologies. Advances in ex vivo HSPC manipulation techniques have greatly improved HSPC susceptibility to genetic modification. Targeted gene-editing techniques enable precise modifications at desired genomic sites. Numerous preclinical studies have already demonstrated the therapeutic potential of gene therapies based on targeted editing. However, several significant hurdles related to adverse consequences of gene editing on HSPC function and genomic integrity remain before broad clinical potential can be realized. This review summarizes the status of HSPC gene editing, focusing on efficiency, genomic integrity, and long-term engraftment ability related to available genetic editing platforms and HSPC delivery methods. The response of long-term engrafting HSPCs to nuclease-mediated DNA breaks, with activation of p53, is a significant challenge, as are activation of innate and adaptive immune responses to editing components. Lastly, we propose alternative strategies that can overcome current hurdles to HSPC editing at various stages from cell collection to transplantation to facilitate successful clinical applications.
Collapse
Affiliation(s)
- Byung-Chul Lee
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Richard J Lozano
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Cynthia E Dunbar
- Translational Stem Cell Biology Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
9
|
Gray DH, Villegas I, Long J, Santos J, Keir A, Abele A, Kuo CY, Kohn DB. Optimizing Integration and Expression of Transgenic Bruton's Tyrosine Kinase for CRISPR-Cas9-Mediated Gene Editing of X-Linked Agammaglobulinemia. CRISPR J 2021; 4:191-206. [PMID: 33876953 PMCID: PMC8336228 DOI: 10.1089/crispr.2020.0080] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
X-linked agammaglobulinemia (XLA) is a monogenic primary immune deficiency characterized by very low levels of immunoglobulins and greatly increased risks for recurrent and severe infections. Patients with XLA have a loss-of-function mutation in the Bruton's tyrosine kinase (BTK) gene and fail to produce mature B lymphocytes. Gene editing in the hematopoietic stem cells of XLA patients to correct or replace the defective gene should restore B cell development and the humoral immune response. We used the clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 platform to precisely target integration of a corrective, codon-optimized BTK complementary DNA (cDNA) cassette into its endogenous locus. This process is driven by homologous recombination and should place the transgenic BTK under transcriptional control of its endogenous regulatory elements. Each integrated copy of this cDNA in BTK-deficient K562 cells produced only 11% as much BTK protein as the wild-type gene. The donor cDNA was modified to include the terminal intron of the BTK gene. Successful integration of the intron-containing BTK donor led to a nearly twofold increase in BTK expression per cell over the base donor. However, this donor variant was too large to package into an adeno-associated viral vector for delivery into primary cells. Donors containing truncated variants of the terminal intron also produced elevated expression, although to a lesser degree than the full intron. Addition of the Woodchuck hepatitis virus posttranscriptional regulatory element led to a large boost in BTK transgene expression. Combining these modifications led to a BTK donor template that generated nearly physiological levels of BTK expression in cell lines. These reagents were then optimized to maximize integration rates into human hematopoietic stem and progenitor cells, which have reached potentially therapeutic levels in vitro. The novel donor modifications support effective gene therapy for XLA and will likely assist in the development of other gene editing-based therapies for genetic disorders.
Collapse
Affiliation(s)
- David H. Gray
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, USA; University of California, Los Angeles, Los Angeles, California, USA
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, USA; University of California, Los Angeles, Los Angeles, California, USA
| | - Isaac Villegas
- Department of Pediatrics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA; Departments of University of California, Los Angeles, Los Angeles, California, USA
| | - Joseph Long
- Department of Pediatrics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA; Departments of University of California, Los Angeles, Los Angeles, California, USA
| | - Jasmine Santos
- Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
| | - Alexandra Keir
- Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, California, USA
| | - Alison Abele
- Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA
| | - Caroline Y. Kuo
- Department of Pediatrics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA; Departments of University of California, Los Angeles, Los Angeles, California, USA
| | - Donald B. Kohn
- Department of Pediatrics, David Geffen School of Medicine at University of California, Los Angeles, Los Angeles, California, USA; Departments of University of California, Los Angeles, Los Angeles, California, USA
- Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA
- Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, California, USA; University of California, Los Angeles, Los Angeles, California, USA
- The Eli & Edith Broad Center of Regenerative Medicine & Stem Cell Research, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
10
|
Allen D, Rosenberg M, Hendel A. Using Synthetically Engineered Guide RNAs to Enhance CRISPR Genome Editing Systems in Mammalian Cells. Front Genome Ed 2021; 2:617910. [PMID: 34713240 PMCID: PMC8525374 DOI: 10.3389/fgeed.2020.617910] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/14/2020] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas9 is quickly revolutionizing the way we approach gene therapy. CRISPR-Cas9 is a complexed, two-component system using a short guide RNA (gRNA) sequence to direct the Cas9 endonuclease to the target site. Modifying the gRNA independent of the Cas9 protein confers ease and flexibility to improve the CRISPR-Cas9 system as a genome-editing tool. gRNAs have been engineered to improve the CRISPR system's overall stability, specificity, safety, and versatility. gRNAs have been modified to increase their stability to guard against nuclease degradation, thereby enhancing their efficiency. Additionally, guide specificity has been improved by limiting off-target editing. Synthetic gRNA has been shown to ameliorate inflammatory signaling caused by the CRISPR system, thereby limiting immunogenicity and toxicity in edited mammalian cells. Furthermore, through conjugation with exogenous donor DNA, engineered gRNAs have been shown to improve homology-directed repair (HDR) efficiency by ensuring donor proximity to the edited site. Lastly, synthetic gRNAs attached to fluorescent labels have been developed to enable highly specific nuclear staining and imaging, enabling mechanistic studies of chromosomal dynamics and genomic mapping. Continued work on chemical modification and optimization of synthetic gRNAs will undoubtedly lead to clinical and therapeutic benefits and, ultimately, routinely performed CRISPR-based therapies.
Collapse
Affiliation(s)
| | | | - Ayal Hendel
- Institute of Nanotechnology and Advanced Materials, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| |
Collapse
|
11
|
Abstract
The discovery that gene expression can be silenced by exogenously introduced double-stranded RNAs into cells unveiled a hidden level of gene regulation by a variety of small RNA pathways, which are involved in regulating endogenous gene expression, defending against virus infections, and protecting the genome from invading transposons, both at the posttranscriptional and epigenetic levels. All endogenous RNA interference pathways share a conserved effector complex, which contains at least an argonaute protein and a short single-stranded RNA. Such argonaute-RNA complexes can repress the transcription of genes, target mRNA for site-specific cleavage, or block mRNA translation into proteins. This review outlines the history of RNAi discovery, function, and mechanisms of action. For comparison, it also touches on CRISPR interference.
Collapse
Affiliation(s)
- Mouldy Sioud
- Department of Cancer Immunology, Institute for Cancer Research, Oslo University Hospital-Radiumhospitalet, Oslo, Norway.
| |
Collapse
|
12
|
Chen Q, Zhang Y, Yin H. Recent advances in chemical modifications of guide RNA, mRNA and donor template for CRISPR-mediated genome editing. Adv Drug Deliv Rev 2021; 168:246-258. [PMID: 33122087 DOI: 10.1016/j.addr.2020.10.014] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 12/14/2022]
Abstract
The discovery and applications of clustered regularly interspaced short palindromic repeat (CRISPR) systems have revolutionized our ability to track and manipulate specific nucleic acid sequences in many cell types of various organisms. The robustness and simplicity of these platforms have rapidly extended their applications from basic research to the development of therapeutics. However, many hurdles remain on the path to translation of the CRISPR systems to therapeutic applications: efficient delivery, detectable off-target effects, potential immunogenicity, and others. Chemical modifications provide a variety of protection options for guide RNA, Cas9 mRNA and donor templates. For example, chemically modified gRNA demonstrated enhanced on-target editing efficiency, minimized immune response and decreased off-target genome editing. In this review, we summarize the use of chemically modified nucleotides for CRISPR-mediated genome editing and emphasize open questions that remain to be addressed in clinical applications.
Collapse
Affiliation(s)
- Qiubing Chen
- Department of Urology, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Department of Pathology, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China
| | - Ying Zhang
- Medical Research Institute, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, China.
| | - Hao Yin
- Department of Urology, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China; Department of Pathology, Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan 430071, China.
| |
Collapse
|
13
|
Dobrovolskaia MA, Bathe M. Opportunities and challenges for the clinical translation of structured DNA assemblies as gene therapeutic delivery and vaccine vectors. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1657. [PMID: 32672007 PMCID: PMC7736207 DOI: 10.1002/wnan.1657] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 12/12/2022]
Abstract
Gene therapeutics including siRNAs, anti-sense oligos, messenger RNAs, and CRISPR ribonucleoprotein complexes offer unmet potential to treat over 7,000 known genetic diseases, as well as cancer, through targeted in vivo modulation of aberrant gene expression and immune cell activation. Compared with viral vectors, nonviral delivery vectors offer controlled immunogenicity and low manufacturing cost, yet suffer from limitations in toxicity, targeting, and transduction efficiency. Structured DNA assemblies fabricated using the principle of scaffolded DNA origami offer a new nonviral delivery vector with intrinsic, yet controllable immunostimulatory properties and virus-like spatial presentation of ligands and immunogens for cell-specific targeting, activation, and control over intracellular trafficking, in addition to low manufacturing cost. However, the relative utilities and limitations of these vectors must clearly be demonstrated in preclinical studies for their clinical potential to be realized. Here, we review the major capabilities, opportunities, and challenges we foresee in translating these next-generation delivery and vaccine vectors to the clinic. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Marina A. Dobrovolskaia
- Nanotechnology Characterization Laboratory, Cancer Research Technology ProgramFrederick National Laboratory for Cancer Research sponsored by National Cancer InstituteFrederickMaryland
| | - Mark Bathe
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMassachusetts
| |
Collapse
|
14
|
Tay LS, Palmer N, Panwala R, Chew WL, Mali P. Translating CRISPR-Cas Therapeutics: Approaches and Challenges. CRISPR J 2020; 3:253-275. [PMID: 32833535 PMCID: PMC7469700 DOI: 10.1089/crispr.2020.0025] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
CRISPR-Cas clinical trials have begun, offering a first glimpse at how DNA and RNA targeting could enable therapies for many genetic and epigenetic human diseases. The speedy progress of CRISPR-Cas from discovery and adoption to clinical use is built on decades of traditional gene therapy research and belies the multiple challenges that could derail the successful translation of these new modalities. Here, we review how CRISPR-Cas therapeutics are translated from technological systems to therapeutic modalities, paying particular attention to the therapeutic cascade from cargo to delivery vector, manufacturing, administration, pipelines, safety, and therapeutic target profiles. We also explore potential solutions to some of the obstacles facing successful CRISPR-Cas translation. We hope to illuminate how CRISPR-Cas is brought from the academic bench toward use in the clinic.
Collapse
Affiliation(s)
- Lavina Sierra Tay
- Laboratory of Synthetic Biology and Genome Editing Therapeutics, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Nathan Palmer
- Division of Biological Sciences, University of California San Diego, La Jolla, California, USA
| | - Rebecca Panwala
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Wei Leong Chew
- Laboratory of Synthetic Biology and Genome Editing Therapeutics, Genome Institute of Singapore, Agency for Science, Technology and Research, Singapore, Singapore
| | - Prashant Mali
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
15
|
Lau CH, Tin C. The Synergy between CRISPR and Chemical Engineering. Curr Gene Ther 2020; 19:147-171. [PMID: 31267870 DOI: 10.2174/1566523219666190701100556] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/18/2019] [Accepted: 06/21/2019] [Indexed: 02/06/2023]
Abstract
Gene therapy and transgenic research have advanced quickly in recent years due to the development of CRISPR technology. The rapid development of CRISPR technology has been largely benefited by chemical engineering. Firstly, chemical or synthetic substance enables spatiotemporal and conditional control of Cas9 or dCas9 activities. It prevents the leaky expression of CRISPR components, as well as minimizes toxicity and off-target effects. Multi-input logic operations and complex genetic circuits can also be implemented via multiplexed and orthogonal regulation of target genes. Secondly, rational chemical modifications to the sgRNA enhance gene editing efficiency and specificity by improving sgRNA stability and binding affinity to on-target genomic loci, and hence reducing off-target mismatches and systemic immunogenicity. Chemically-modified Cas9 mRNA is also more active and less immunogenic than the native mRNA. Thirdly, nonviral vehicles can circumvent the challenges associated with viral packaging and production through the delivery of Cas9-sgRNA ribonucleoprotein complex or large Cas9 expression plasmids. Multi-functional nanovectors enhance genome editing in vivo by overcoming multiple physiological barriers, enabling ligand-targeted cellular uptake, and blood-brain barrier crossing. Chemical engineering can also facilitate viral-based delivery by improving vector internalization, allowing tissue-specific transgene expression, and preventing inactivation of the viral vectors in vivo. This review aims to discuss how chemical engineering has helped improve existing CRISPR applications and enable new technologies for biomedical research. The usefulness, advantages, and molecular action for each chemical engineering approach are also highlighted.
Collapse
Affiliation(s)
- Cia-Hin Lau
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong
| | - Chung Tin
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon Tong, Hong Kong
| |
Collapse
|
16
|
Johnston AD, Abdulrazak A, Sato H, Maqbool SB, Suzuki M, Greally JM, Simões-Pires CA. A Cellular Stress Response Induced by the CRISPR-dCas9 Activation System Is Not Heritable Through Cell Divisions. CRISPR J 2020; 3:188-197. [PMID: 33560917 DOI: 10.1089/crispr.2019.0077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The CRISPR-Cas9 system can be modified to perform "epigenetic editing" by utilizing the catalytically inactive (dead) Cas9 (dCas9) to recruit regulatory proteins to specific genomic locations. In prior studies, epigenetic editing with multimers of the transactivator VP16 and guide RNAs (gRNAs) was found to cause adverse cellular responses. These side effects may confound studies inducing new cellular properties, especially if the cellular responses are maintained through cell divisions-an epigenetic regulatory property. Here, we show how distinct components of this CRISPR-dCas9 activation system, particularly dCas9 with untargeted gRNAs, upregulate genes associated with transcriptional stress, defense response, and regulation of cell death. Our results highlight a previously undetected acute stress response to CRISPR-dCas9 components in human cells, which is transient and not maintained through cell divisions.
Collapse
Affiliation(s)
- Andrew D Johnston
- Center for Epigenomics and Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Alali Abdulrazak
- Center for Epigenomics and Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Hanae Sato
- Center for Epigenomics and Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Shahina B Maqbool
- Center for Epigenomics and Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Masako Suzuki
- Center for Epigenomics and Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - John M Greally
- Center for Epigenomics and Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Claudia A Simões-Pires
- Center for Epigenomics and Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
- School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| |
Collapse
|
17
|
Scott T, Soemardy C, Morris KV. Development of a Facile Approach for Generating Chemically Modified CRISPR/Cas9 RNA. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 19:1176-1185. [PMID: 32069700 PMCID: PMC7019045 DOI: 10.1016/j.omtn.2020.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/03/2020] [Accepted: 01/04/2020] [Indexed: 02/07/2023]
Abstract
The RNA-guided, modified type II prokaryotic CRISPR with CRISPR-associated proteins (CRISPR/Cas9) system represents a simple gene-editing platform with applications in biotechnology and also potentially as a therapeutic modality. The system requires a small guide RNA (sgRNA) and a catalytic Cas9 protein to induce non-homologous end joining (NHEJ) at break sites, resulting in the formation of inactivating mutations, or through homology-directed repair (HDR) can engineer in specific sequence changes. Although CRISPR/Cas9 is a powerful technology, the effects can be limited as a result of nuclease-mediated degradation of the RNA components. Significant research has focused on the solid-phase synthesis of CRISPR RNA components with chemically modified bases, but this approach is technically challenging and expensive. Development of a simple, generic approach to generate chemically modified CRISPR RNAs may broaden applications that require nuclease-resistant CRISPR components. We report here the development of a novel, functional U-replaced trans-activating RNA (tracrRNA) that can be in vitro transcribed with chemically stabilizing 2'-fluoro (2'F)-pyrimidines. These data represent a unique and facile approach to generating chemically stabilized CRISPR RNA.
Collapse
Affiliation(s)
- Tristan Scott
- Center for Gene Therapy, City of Hope-Beckman Research Institute and Hematological Malignancy and Stem Cell Transplantation Institute at the City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Citradewi Soemardy
- Center for Gene Therapy, City of Hope-Beckman Research Institute and Hematological Malignancy and Stem Cell Transplantation Institute at the City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA
| | - Kevin V Morris
- Center for Gene Therapy, City of Hope-Beckman Research Institute and Hematological Malignancy and Stem Cell Transplantation Institute at the City of Hope, 1500 E. Duarte Road, Duarte, CA 91010, USA.
| |
Collapse
|
18
|
Lennox KA, Behlke MA. Chemical Modifications in RNA Interference and CRISPR/Cas Genome Editing Reagents. Methods Mol Biol 2020; 2115:23-55. [PMID: 32006393 DOI: 10.1007/978-1-0716-0290-4_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chemically modified oligonucleotides (ONs) are routinely used in the laboratory to assess gene function, and clinical advances are rapidly progressing as continual efforts are being made to optimize ON efficacy. Over the years, RNA interference (RNAi) has become one of the main tools used to inhibit RNA expression across a wide variety of species. Efforts have been made to improve the exogenous delivery of the double-stranded RNA components to the endogenous intracellular RNAi machinery to direct efficacious degradation of a user-defined RNA target. More recently, synthetic RNA ONs are being used to mimic the bacterial-derived CRISPR/Cas system to direct specific editing of the mammalian genome. Both of these techniques rely on the use of various chemical modifications to the RNA phosphate backbone or sugar in specific positions throughout the ONs to improve the desired biological outcome. Relevant chemical modifications also include conjugated targeting ligands to assist ON delivery to specific cell types. Chemical modifications are most beneficial for therapeutically relevant ONs, as they serve to enhance target binding, increase drug longevity, facilitate cell-specific targeting, improve internalization into productive intracellular compartments, and mitigate both sequence-specific as well as immune-related off-target effects (OTEs). The knowledge gained from years of optimizing RNAi reagents and characterizing the biochemical and biophysical properties of each chemical modification will hopefully accelerate the CRISPR/Cas technology into the clinic, as well as further expand the use of RNAi to treat currently undruggable diseases. This review discusses the most commonly employed chemical modifications in RNAi reagents and CRISPR/Cas guide RNAs and provides an overview of select publications that have demonstrated success in improving ON efficacy and/or mitigating undesired OTEs.
Collapse
Affiliation(s)
- Kim A Lennox
- Integrated DNA Technologies, Inc., Coralville, IA, USA.
| | - Mark A Behlke
- Integrated DNA Technologies, Inc., Coralville, IA, USA
| |
Collapse
|
19
|
CRISPR-Cas9 Probing of Infectious Diseases and Genetic Disorders. Indian J Pediatr 2019; 86:1131-1135. [PMID: 31367975 DOI: 10.1007/s12098-019-03037-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 07/09/2019] [Indexed: 12/26/2022]
Abstract
The ability to precisely change the deoxyribonucleic acid (DNA) bases at specific sites offers tremendous advantages in the field of molecular biology and medical biotechnology. Identification of Clustered Regularly-Interspaced Short Palindromic Repeats (CRISPR), revelation of its role in prokaryotic adaptive immunity and subsequent conversion into genome and epigenome engineering system are the landmark research progresses of the decade. The possibilities of deciphering the molecular mechanisms of the disease, identifying the disease targets, generating the disease models, validating the drug targets, developing resistance to the infection and correcting the genotype have brought off much enthusiasm in the field of infectious diseases and genetic disorders. This review focuses on CRISPR/Cas9's impact in the field of infection and genetic disorders.
Collapse
|
20
|
Hoshijima K, Jurynec MJ, Klatt Shaw D, Jacobi AM, Behlke MA, Grunwald DJ. Highly Efficient CRISPR-Cas9-Based Methods for Generating Deletion Mutations and F0 Embryos that Lack Gene Function in Zebrafish. Dev Cell 2019; 51:645-657.e4. [PMID: 31708433 DOI: 10.1016/j.devcel.2019.10.004] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 09/13/2019] [Accepted: 10/03/2019] [Indexed: 11/24/2022]
Abstract
Inconsistent activity limits the use of CRISPR-Cas9 in zebrafish. We show supernumerary guanine nucleotides at the 5' ends of single guide RNAs (sgRNAs) account for diminished CRISPR-Cas9 activity in zebrafish embryos. Genomic sequences can be targeted consistently with extremely high efficiency using Cas9 ribonucleoproteins (RNPs) containing either a sgRNA molecule or a synthetic crRNA:tracrRNA duplex that perfectly matches the protospacer target site. Following injection of zebrafish eggs with such RNPs, virtually every copy of a targeted locus harbors an induced indel mutation. Loss of gene function is often complete, as F0 embryos closely resemble true null mutants without detectable non-specific effects. Mosaicism is sufficiently low in F0 embryos that cell non-autonomous gene functions can be probed effectively and redundant activities of genes can be uncovered when two genes are targeted simultaneously. Finally, heritable deletion mutations of at least 50 kbp can be readily induced using pairs of duplex guide RNPs targeted to a single chromosome.
Collapse
Affiliation(s)
- Kazuyuki Hoshijima
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Michael J Jurynec
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA; Department of Orthopaedics, University of Utah, Salt Lake City, UT 84112, USA
| | - Dana Klatt Shaw
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA
| | - Ashley M Jacobi
- Integrated DNA Technologies, 1710 Commercial Park, Coralville, IA 52241, USA
| | - Mark A Behlke
- Integrated DNA Technologies, 1710 Commercial Park, Coralville, IA 52241, USA
| | - David Jonah Grunwald
- Department of Human Genetics, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
21
|
Moon SB, Kim DY, Ko JH, Kim JS, Kim YS. Improving CRISPR Genome Editing by Engineering Guide RNAs. Trends Biotechnol 2019; 37:870-881. [PMID: 30846198 DOI: 10.1016/j.tibtech.2019.01.009] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/29/2019] [Accepted: 01/30/2019] [Indexed: 12/26/2022]
Abstract
CRISPR technology is a two-component gene editing system in which the effector protein induces genetic alterations with the aid of a gene targeting guide RNA. Guide RNA can be produced through chemical synthesis, in vitro transcription, or intracellular transcription. Guide RNAs can be engineered to have chemical modifications, alterations in the spacer length, sequence modifications, fusion of RNA or DNA components, and incorporation of deoxynucleotides. Engineered guide RNA can improve genome editing efficiency and target specificity, regulation of biological toxicity, sensitive and specific molecular imaging, multiplexing, and editing flexibility. Therefore, engineered guide RNA will enable more specific, efficient, and safe gene editing, ultimately improving the clinical benefits of gene therapy.
Collapse
Affiliation(s)
- Su Bin Moon
- Genome Editing Research Center, KRIBB, Daejeon, Republic of Korea; KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea; These authors contributed equally to this work
| | - Do Yon Kim
- Genome Editing Research Center, KRIBB, Daejeon, Republic of Korea; KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea; These authors contributed equally to this work
| | - Jeong-Heon Ko
- Genome Editing Research Center, KRIBB, Daejeon, Republic of Korea; KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Jin-Soo Kim
- Center for Genome Engineering, Institute for Basic Science, Daejeon, Republic of Korea; IBS School, Korea University of Science and Technology (UST), Daejeon, Republic of Korea; Department of Chemistry, Seoul National University, Seoul, Republic of Korea
| | - Yong-Sam Kim
- Genome Editing Research Center, KRIBB, Daejeon, Republic of Korea; KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, Republic of Korea.
| |
Collapse
|
22
|
Ishii T, Schubert V, Khosravi S, Dreissig S, Metje‐Sprink J, Sprink T, Fuchs J, Meister A, Houben A. RNA-guided endonuclease - in situ labelling (RGEN-ISL): a fast CRISPR/Cas9-based method to label genomic sequences in various species. THE NEW PHYTOLOGIST 2019; 222:1652-1661. [PMID: 30847946 PMCID: PMC6593734 DOI: 10.1111/nph.15720] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/24/2019] [Indexed: 06/02/2023]
Abstract
Visualising the spatio-temporal organisation of the genome will improve our understanding of how chromatin structure and function are intertwined. We developed a tool to visualise defined genomic sequences in fixed nuclei and chromosomes based on a two-part guide RNA with a recombinant Cas9 endonuclease complex. This method does not require any special construct or transformation method. In contrast to classical fluorescence in situ hybridiaztion, RGEN-ISL (RNA-guided endonuclease - in situ labelling) does not require DNA denaturation, and therefore permits a better structural chromatin preservation. The application of differentially labelled trans-activating crRNAs allows the multiplexing of RGEN-ISL. Moreover, this technique is combinable with immunohistochemistry. Real-time visualisation of the CRISPR/Cas9-mediated DNA labelling process revealed the kinetics of the reaction. The broad range of adaptability of RGEN-ISL to different temperatures and combinations of methods has the potential to advance the field of chromosome biology.
Collapse
Affiliation(s)
- Takayoshi Ishii
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenSeelandD‐06466Germany
- Arid Land Research Center (ALRC)Tottori University1390 HamasakaTottori680‐0001Japan
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenSeelandD‐06466Germany
| | - Solmaz Khosravi
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenSeelandD‐06466Germany
| | - Steven Dreissig
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenSeelandD‐06466Germany
| | - Janina Metje‐Sprink
- Julius Kühn‐InstituteInstitute of Biosafety in Plant BiotechnologyQuedlinburgD‐06484Germany
| | - Thorben Sprink
- Julius Kühn‐InstituteInstitute of Biosafety in Plant BiotechnologyQuedlinburgD‐06484Germany
| | - Jörg Fuchs
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenSeelandD‐06466Germany
| | - Armin Meister
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenSeelandD‐06466Germany
| | - Andreas Houben
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) GaterslebenSeelandD‐06466Germany
| |
Collapse
|