1
|
Karabulut D, Başaran KE, Kuloğlu N, Değer N, Yakan B. Effect of chronic sustained hypoxia on NPR-A, NPR-B, MAP-2 and GFAP expressions in cerebral cortex and hippocampus. Neuroscience 2025; 573:237-243. [PMID: 40127756 DOI: 10.1016/j.neuroscience.2025.03.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/14/2025] [Accepted: 03/19/2025] [Indexed: 03/26/2025]
Abstract
Chronic sustained hypoxia affects various mechanisms depending on changes in blood flow in the brain. The natriuretic peptide system acts as a modulatory regulator of blood pressure and body fluid homeostasis. This study aimed to evaluate the expressions of natriuretic peptide receptor (NPR) and monoamine oxidase levels in rats' cerebral cortex and hippocampus under chronic sustained hypoxia. Groups; Sham: Rats exposed to 21 % O2 in a normobaric chamber for 1 week. Moderate-chronic sustained hypoxia (mCSH): Rats exposed to 13 % O2 in a normobaric chamber for 1 week. Severe-chronic sustained hypoxia (sCSH): Rats exposed to 10 % O2 in a normobaric chamber for 1 week. Significant histopathological changes occurred in the cerebral cortex and hippocampus. NPR-A and NPR-B immunoreactivities increased in the hypoxia groups. Hypoxia decreased microtubule-associated protein-2 (MAP-2) immunoreactivity while increasing glial fibrillary acidic protein (GFAP) immunoreactivity. Monoamine oxidase was upregulated in sCSH. The NPR system is one of the mechanisms affected by hypoxia-induced damage in parallel with the degree of hypoxia. The use of natriuretic peptides or monoamine oxidase inhibitors against hypoxia exposure will serve to increase the potential efficacy of therapeutic interventions.
Collapse
Affiliation(s)
- Derya Karabulut
- Department of Histology-Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey.
| | - Kemal Erdem Başaran
- Department of Physiology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Nurhan Kuloğlu
- Department of Healthcare Services, Niğde Ömer Halisdemir University, Niğde, Turkey
| | - Necla Değer
- Department of Histology-Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey; Institute of Health Sciences, Erciyes University, Kayseri, Turkey
| | - Birkan Yakan
- Department of Histology-Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
2
|
Li S, Liu W, Chen X, Chen Z, Shi J, Hua J. From Hypoxia to Oxidative Stress: Antioxidants' Role to Reduce Male Reproductive Damage. Reprod Sci 2025; 32:261-277. [PMID: 39557807 DOI: 10.1007/s43032-024-01746-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 10/28/2024] [Indexed: 11/20/2024]
Abstract
Hypoxia is one of the main reasons causing male reproductive damage for people living in high altitude. Pathological evidences have been presented both in humans and animal models. Spermatogenesis disruption, worse sperm parameters, hormone disorder and erectile dysfunction are emblematic of male reproductive impairments brought by hypoxia. Among many mechanisms impairing male reproductive systems, oxidative stress is always a field of interest to explore. Although previous reviews have discussed about hypoxia or oxidative stress and antioxidants on male fertility respectively, no one has elucidated the concrete role of oxidative stress in hypoxia and correlating antioxidants that can ameliorate the negative effects. In this review, we firstly introduce hypoxia etiology and describe specific damage of hypoxia on male reproductive functions. Then, we emphasized interplays between hypoxia and oxidative stress as well as negative influences brought by oxidative stress. Finally, we listed antioxidants for oxidative stress and hypoxia-induced reproductive damage and discussed their controversial experimental effects for male infertility.
Collapse
Affiliation(s)
- Siyao Li
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Wenjing Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Xin Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Zhaoyu Chen
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Jingtian Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China
| | - Juan Hua
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| |
Collapse
|
3
|
Zhang C, Wang Q, Lu A. ECMO for bridging lung transplantation. Eur J Med Res 2024; 29:628. [PMID: 39726046 DOI: 10.1186/s40001-024-02239-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 12/18/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND With the shift in donor lung allocation from blood type and waiting order to the use of the lung allocation score (LAS) system, there are increasingly more cases of ECMO bridging lung transplantation. However, there are still some problems in case selection, implementation, and management. METHODS We analyzed and summarized a series of data on ECMO bridging lung transplantation through an extensive literature review. RESULTS The improvement of the lung transplant allocation system and the progress of ECMO technology have made the ECMO bridge to lung transplant more widely used in clinical practice. The selection of bridge patients is a crucial link in the success of transplantation, and accurate assessment of the patient before transplantation is necessary. The advantages and disadvantages of different bridge strategies exist, and the appropriate bridge strategy should be selected based on the patient's situation. Bleeding and thrombosis complications often occur during ECMO circulation, and there is currently no optimal anticoagulation strategy. The predictive score for bridge post-outcome is still subject to certain limitations. CONCLUSIONS ECMO bridging lung transplantation is suitable for patients waiting for lung transplantation when other respiratory support is ineffective or when hemodynamic instability occurs the disease is severe and the donor organ is easily obtainable. Patients aged 65 years or older, or have reversible multiple organ dysfunction should not be included as contraindications for ECMO bridging lung transplantation.
Collapse
Affiliation(s)
- Chuhan Zhang
- School of Medicine, Zhejiang Chinese Medical University, Hangzhou, 310053, People's Republic of China
| | - Qingjing Wang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310022, People's Republic of China
| | - Anwei Lu
- Department of Critical Care Medicine, Shulan Hangzhou Hospital, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310022, People's Republic of China.
| |
Collapse
|
4
|
Narasimhan S, Al Kawas S, Shetty SR, Al-Daghestani HS, Samsudin R. Impact of hypoxia on alveolar bone dynamics and remodeling. Heliyon 2024; 10:e40868. [PMID: 39717576 PMCID: PMC11664270 DOI: 10.1016/j.heliyon.2024.e40868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 11/27/2024] [Accepted: 12/01/2024] [Indexed: 12/25/2024] Open
Abstract
Oxygen is a fundamental requirement for cellular metabolism. Hypoxia is a state of oxygen deprivation of the tissues. Cells develop numerous adaptive mechanisms to survive hypoxic insult. Alveolar bone is a unique structure that encases and protects the tooth. Literature reports that hypoxia, in all forms, impacts alveolar bone health. The hypoxia-inducible pathway appears to play a key role in mediating changes in alveolar bone metabolism. Embryonic hypoxia plays a vital role in craniofacial skeletal development. Further, hypoxia has been anticipated in the repair of extraction sockets. Alveolar bone cells respond distinctly to hypoxic conditions with both beneficial and detrimental effects. Studies have demonstrated enhanced alveolar bone resorption upon hypoxic stimuli. However, hypoxia has also been shown to have potential therapeutic effects on alveolar bone by triggering an angiogenic response. Additionally, the type, duration, and mode of hypoxia are critical in triggering varied responses in alveolar bone metabolism. The main objective of this review is to recapitulate the effects of different types of hypoxia on the tooth supporting apparatus and to analyze some of the presumptive mechanisms underlying hypoxia-induced changes in alveolar bone remodeling.
Collapse
Affiliation(s)
- Sangeetha Narasimhan
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, United Arab Emirates
| | - Sausan Al Kawas
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, United Arab Emirates
| | - Shishir Ram Shetty
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, United Arab Emirates
| | - Hiba Saad Al-Daghestani
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, United Arab Emirates
| | - Rani Samsudin
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, United Arab Emirates
| |
Collapse
|
5
|
Asefa T, Bitew G, Tezera H, Tesfaye W. Prevalence of cancer-related fatigue, associated factors and adult cancer patients' experiences at Hawassa University Comprehensive Specialized Hospital in Ethiopia: a mixed methods study. Front Oncol 2024; 14:1480246. [PMID: 39555447 PMCID: PMC11563971 DOI: 10.3389/fonc.2024.1480246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 09/27/2024] [Indexed: 11/19/2024] Open
Abstract
Purpose Cancer-related fatigue is a prevalent issue affecting 50-90% of cancer patients who experience fatigue at diagnosis, during therapy, and often for months or years after the completion of therapy. This study aimed to explore the prevalence of cancer-related fatigue, associated factors, and adult cancer patients' experiences at Hawassa University Comprehensive Specialized Hospital in Ethiopia. Methods A mixed-method study was conducted from February 25 to May 15, 2023, via cross-sectional descriptive and phenomenological approaches. The validated Amharic Brief Fatigue Inventory scale and semistructured interview guide were used. The data were processed via Epi-data version 4.4.3.1 and SPSS version 24, with logistic regression analysis. The interview records and field notes were transcribed and translated from Amharic to English and then analysed thematically. Results All participants (100%) completed the study, with 77.4% reporting significant fatigue. Fatigue was strongly associated with uninsured medical expenses (P = 0.008, OR = 3.22), late-stage cancer (P = 0.000, OR = 6.11), anaemia (P = 0.009, OR = 3.71), and comorbidities (P = 0.000, OR = 7.22). From the in-depth interviews with 16 participants, two main themes emerged: financial strain (giving up basics, and inability to work) and disease progression (intensified symptoms, increased treatment side effects, and managing multiple conditions). Conclusion This study revealed that 77.4% of cancer patients experience significant fatigue, which is linked to a lack of medical insurance, late-stage cancer, anaemia, and comorbid conditions. Financial strain limits access to care, whereas disease progression and managing multiple conditions intensify fatigue. Early intervention, financial support, and integrated care are crucial for reducing fatigue and improving quality of life. Future research should focus on multicentre and longitudinal studies to improve generalizability and track fatigue progression over time.
Collapse
Affiliation(s)
- Tseganesh Asefa
- Department of Medical Nursing, School of Nursing, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| | - Gedamnesh Bitew
- Department of Epidemiology and Biostatics, School of Medicine, College of Medicine and Health Science, Injibara University, Injibara, Ethiopia
| | - Hiwot Tezera
- Department of Biochemistry, School of Medicine, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| | - Winta Tesfaye
- Department of Physiology, School of Medicine, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
6
|
Chen C, Wang X, Li Y, Zhao T, Wang H, Gao Y, Feng Y, Wang J, Shang L, Wang Y, Zhao B, Dong W. Hypobaric hypoxia causes low fecundity in zebrafish parents and impairment of skeletal development in zebrafish embryos and rat offspring. Reprod Toxicol 2024; 127:108603. [PMID: 38759877 DOI: 10.1016/j.reprotox.2024.108603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/19/2024]
Abstract
Hypobaric Hypoxia (HH) negatively affects the cardiovascular and respiratory systems as well as gonadal development and the therefore next generation. This study investigated the effects of HH on zebrafish and SD rats, by exposing them to a low-pressure environment at 6000 m elevation for 30 days to simulate high-altitude conditions. It was indicated that parental zebrafish reared amh under HH had increased embryo mortality, reduced hatchability, and abnormal cartilage development in the offspring. Furthermore, the HH-exposed SD rats had fewer reproductive cells and smaller litters. Moreover, the transcriptome analysis revealed the down-regulation of steroid hormone biosynthesis pathways. The expression of the gonad-associated genes (amh, pde8a, man2a2 and lhcgr), as well as the gonad and cartilage-related gene bmpr1a, were also down-regulated. In addition, Western blot analysis validated reduced bmpr1a protein expression in the ovaries of HH-treated rats. In summary, these data indicate the negative impact of HH on reproductive organs and offspring development, emphasizing the need for further research and precautions to protect future generations' health.
Collapse
Affiliation(s)
- Chaobao Chen
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China; Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Xin Wang
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing 100700, China
| | - Yajuan Li
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Tianwei Zhao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Huan Wang
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Yunqi Gao
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Yuanzhou Feng
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Jing Wang
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing 100700, China
| | - Lixin Shang
- Department of Obstetrics and Gynecology, The Seventh Medical Center of Chinese PLA General Hospital, Beijing 100700, China
| | - Yongan Wang
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China
| | - Baoquan Zhao
- State Key Laboratory of Toxicology and Medical Countermeasures, Institute of Pharmacology and Toxicology, Academy of Military Medical Sciences, Beijing 100850, China.
| | - Wu Dong
- Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, College of Animal Science and Technology, Inner Mongolia Minzu University, Tongliao 028000, China.
| |
Collapse
|
7
|
Aşar S, Rahim F, Rahimi P, Acicbe Ö, Tontu F, Çukurova Z. Novel Oxygenation and Saturation Indices for Mortality Prediction in COVID-19 ARDS Patients: The Impact of Driving Pressure and Mechanical Power. J Intensive Care Med 2024; 39:595-608. [PMID: 38179691 PMCID: PMC11092301 DOI: 10.1177/08850666231223498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Background: The oxygenation index (OI) and oxygen saturation index (OSI) are proven mortality predictors in pediatric and adult patients, traditionally using mean airway pressure (Pmean). We introduce novel indices, replacing Pmean with DP (ΔPinsp), MPdyn, and MPtot, assessing their potential for predicting COVID-19 acute respiratory distress syndrome (ARDS) mortality, comparing them to traditional indices. Methods: We studied 361 adult COVID-19 ARDS patients for 7 days, collecting ΔPinsp, MPdyn, and MPtot, OI-ΔPinsp, OI-MPdyn, OI-MPtot, OSI-ΔPinsp, OSI-MPdyn, and OSI-MPtot. We compared these in surviving and non-surviving patients over the first 7 intensive care unit (ICU) days using Mann-Whitney U test. Logistic regression receiver operating characteristic (ROC) analysis assessed AUC and CI values for ICU mortality on day three. We determined cut-off values using Youden's method and conducted multivariate Cox regression on parameter limits. Results: All indices showed significant differences between surviving and non-surviving patients on the third day of ICU care. The AUC values of OI-ΔPinsp were significantly higher than those of P/F and OI-Pmean (P values .0002 and <.0001, respectively). Similarly, AUC and CI values of OSI-ΔPinsp and OSI-MPdyn were significantly higher than those of SpO2/FiO2 and OSI-Pmean values (OSI-ΔPinsp: P < .0001, OSI-MPdyn: P values .047 and .028, respectively). OI-ΔPinsp, OSI-ΔPinsp, OI-MPdyn, OSI-MPdyn, OI-MPtot, and OSI-MPtot had AUC values of 0.72, 0.71, 0.69, 0.68, 0.66, and 0.64, respectively, with cut-off values associated with hazard ratios and P values of 7.06 (HR = 1.84, P = .002), 8.04 (HR = 2.00, P ≤ .0001), 7.12 (HR = 1.68, P = .001), 5.76 (HR = 1.70, P ≤ .0001), 10.43 (HR = 1.52, P = .006), and 10.68 (HR = 1.66, P = .001), respectively. Conclusions: Critical values of all indices were associated to higher ICU mortality rates and extended mechanical ventilation durations. The OI-ΔPinsp, OSI-ΔPinsp, and OSI-MPdyn indices displayed the strongest predictive capabilities for ICU mortality. These novel indices offer valuable insights for intensivists in the clinical management and decision-making process for ARDS patients.
Collapse
Affiliation(s)
- Sinan Aşar
- Department of Anesthesiology and Reanimation, Bakırköy Dr SadiKonuk Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Fatih Rahim
- Department of Industrial Engineering, Koç University, Istanbul, Turkey
| | - Payam Rahimi
- Department of Anesthesiology and Reanimation, Bakırköy Dr SadiKonuk Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Özlem Acicbe
- Department of Anesthesiology and Reanimation, Şişli HamidiyeEtfal Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| | - Furkan Tontu
- Department of Anesthesiology and Reanimation, Ağrı Training and Research Hospital, Ağrı, Turkey
| | - Zafer Çukurova
- Department of Anesthesiology and Reanimation, Bakırköy Dr SadiKonuk Training and Research Hospital, University of Health Sciences, Istanbul, Turkey
| |
Collapse
|
8
|
Li W, Han Z, Yin X, Zhou R, Liu H. CDX2 alleviates hypoxia-induced apoptosis and oxidative stress in spermatogenic cells through suppression of reactive oxygen species-mediated Wnt/β-catenin pathway. J Appl Toxicol 2024; 44:853-862. [PMID: 38295844 DOI: 10.1002/jat.4580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/08/2023] [Accepted: 12/28/2023] [Indexed: 05/21/2024]
Abstract
Hypoxia-induced apoptosis and oxidative stress in spermatogenic cells are considered to be important factors leading to male infertility. It was reported that CDX2 expression was downregulated in hypoxia-stimulated spermatogenic cells. However, the effects of CDX2 on hypoxia-induced apoptosis and oxidative stress in spermatogenic cells are still unknown. This study aimed to explore the roles of CDX2 in hypoxia-induced injury of spermatogenic cells, as well as its mechanism of action. Spermatogenic cells were cultured under 1% oxygen for 48 h to established hypoxia damage model. Reactive oxygen species (ROS) generation was determined using 2',7'-dichlorofluorescein diacetate assay. Apoptosis was assessed using flow cytometry. Enzyme-linked immunosorbent assay was used to evaluate oxidative stress markers, including malondialdehyde (MDA) content and the activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidases (GSH-Px). Protein levels were detected using western blotting. Hypoxia exposure induced increase in ROS generation, apoptosis rate, and oxidative stress in spermatogenic cells. ROS scavenger inhibited hypoxia-induced apoptosis, oxidative stress, and Wnt/β-catenin pathway activation. Hypoxia exposure induced CDX2 downregulation. CDX2 overexpression suppressed hypoxia-induced ROS generation, apoptosis rate, oxidative stress, and Wnt/β-catenin pathway activation. Moreover, CDX2 knockdown restores the inhibitory effects of si-β-catenin or NAC on hypoxia-induced activation of the Wnt/β-catenin pathway, apoptosis, and oxidative stress. In conclusion, our study suggests that CDX2 overexpression alleviates hypoxia-induced apoptosis and oxidative stress by suppression of ROS-mediated Wnt/β-catenin pathway in spermatogenic cells.
Collapse
Affiliation(s)
- Weiwei Li
- Department of Reproductive Medicine, Qinhuangdao Maternal and Child Health Hospital, Qinhuangdao, China
| | - Zhonghou Han
- Qinhuangdao Maternal and Child Health Hospital, Qinhuangdao, China
| | - Xiurong Yin
- Department of Reproductive Medicine, Qinhuangdao Maternal and Child Health Hospital, Qinhuangdao, China
| | - Rongjuan Zhou
- Department of Audit Section, Qinhuangdao Maternal and Child Health Hospital, Qinhuangdao, China
| | - Hongfeng Liu
- Department of Women's Health, Qinhuangdao Maternal and Child Health Hospital, Qinhuangdao, China
| |
Collapse
|
9
|
Kuhn B, Barjaktarevic I. Editorial: Understanding the impact of lung ventilation heterogeneity. FRONTIERS IN MEDICAL TECHNOLOGY 2024; 6:1332958. [PMID: 38500568 PMCID: PMC10944995 DOI: 10.3389/fmedt.2024.1332958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Affiliation(s)
- Brooks Kuhn
- Division of Pulmonary and Critical Care Medicine, UC Davis School of Medicine, Sacramento, CA, United States
| | - Igor Barjaktarevic
- Division of Pulmonary and Critical Care Medicine, UCLA Geffen School of Medicine, Sacramento, CA, United States
| |
Collapse
|
10
|
Xu Y, Sa Y, Zhang C, Wang J, Shao Q, Liu J, Wang S, Zhou J. A preventative role of nitrate for hypoxia-induced intestinal injury. Free Radic Biol Med 2024; 213:457-469. [PMID: 38281627 DOI: 10.1016/j.freeradbiomed.2024.01.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/02/2024] [Accepted: 01/18/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND Studying effective interventions for hypoxia-induced injury is crucial, particularly in high-altitude areas. Symptoms stemming from intestinal injuries have a significant impact on the health of individuals transitioning from plains to plateau regions. This research explores the effects and mechanisms of nitrate supplementation in preventing hypoxia-induced intestinal injury. METHODS A hypoxia survival mouse model was established using 7% O2 conditions. The intervention with 4 mM sodium nitrate (NaNO3) in drinking water commenced 7 days prior to hypoxia exposure. Weight monitoring, hematoxylin and eosin (HE) staining, transmission electron microscopy (TEM), and intestinal permeability assays were employed for physiological, histological, and functional analyses. Quantitative PCR (qPCR), Western blot, and immunofluorescence were utilized to analyze the levels of tight junction (TJ) proteins and hypoxia-inducible factor 1α (Hif 1α). RNA sequencing (RNA-seq) identified nitrate's target, and chromatin immunoprecipitation (ChIP) verified the transcriptional impact of Hif 1α on TJ proteins. Villin-cre mice infected with AAV9-FLEX-EGFP-Hif 1α were used for mechanism validation. RESULTS The results demonstrated that nitrate supplementation significantly alleviated small intestinal epithelial cell necrosis, intestinal permeability, disruption of TJs, and weight loss under hypoxia. Moreover, the nitrate-triggered enhancement of TJs is mediated by Hif 1α nuclear translocation and its subsequent transcriptional function. The effect of nitrate supplementation on TJs was largely attributed to the stimulation of the EGFR/PI3K/AKT/mTOR/Hif 1α signaling pathways. CONCLUSION Nitrate serves as a novel approach in preventing hypoxia-induced intestinal injury, acting through Hif 1α activation to promote the transcription of TJ proteins. Furthermore, our study provides new and compelling evidence for the protective effects of nitrate in hypoxic conditions, especially at high altitudes.
Collapse
Affiliation(s)
- Yifan Xu
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing China
| | - Yunqiong Sa
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing China
| | - Chunmei Zhang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing China; Laboratory for Oral and General Health Integration and Translation, Beijing Tiantan Hospital, Capital Medical University, Beijing China
| | - Jinsong Wang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing China
| | - Qianqian Shao
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Jia Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-based Precision Medicine, Capital Medical University, Beijing, China
| | - Songlin Wang
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing China; Immunology Research Centre for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing China; Laboratory for Oral and General Health Integration and Translation, Beijing Tiantan Hospital, Capital Medical University, Beijing China; Research Units of Tooth Development and Regeneration, Chinese Academy of Medical Sciences, Beijing China.
| | - Jian Zhou
- Salivary Gland Disease Center and Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Beijing, China; Immunology Research Centre for Oral and Systemic Health, Beijing Friendship Hospital, Capital Medical University, Beijing China; Laboratory for Oral and General Health Integration and Translation, Beijing Tiantan Hospital, Capital Medical University, Beijing China; Department of VIP Dental Service, School of Stomatology, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
11
|
Wang J, Kuang J, Zhang S, Liu Z, Guo Q, Li S, Qiu L, Fu G, Lin X, Wu J, Tian J, Huang J, Niu Y, Kang K, Zhang Y, Gou D. Comprehensive characterization of small noncoding RNA profiles in hypoxia-induced pulmonary hypertension (HPH) rat tissues. iScience 2024; 27:108815. [PMID: 38322991 PMCID: PMC10844824 DOI: 10.1016/j.isci.2024.108815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/10/2023] [Accepted: 01/02/2024] [Indexed: 02/08/2024] Open
Abstract
Hypoxia-induced pulmonary hypertension (HPH) is a fatal cardiovascular disease characterized by an elevation in pulmonary artery pressure, resulting in right ventricular dysfunction and eventual heart failure. Exploring the pathogenesis of HPH is crucial, and small noncoding RNAs (sncRNAs) are gaining recognition as potential regulators of cellular responses to hypoxia. In this study, we conducted a comprehensive analysis of sncRNA profiles in eight tissues of male HPH rats using high-throughput sequencing. Our study unveiled several sncRNAs, with the brain, kidney, and spleen exhibiting the highest abundance of microRNA (miRNA), tRNA-derived small RNA (tDR), and small nucleolar RNA (snoRNA), respectively. Moreover, we identified numerous tissue-specific and hypoxia-responsive sncRNAs, particularly miRNAs and tDRs. Interestingly, we observed arm switching in miRNAs under hypoxic conditions and a significant increase in the abundance of 5' tRNA-halves among the total tDRs during hypoxia. Overall, our study provides a comprehensive characterization of the sncRNA profiles in HPH rats.
Collapse
Affiliation(s)
- Jun Wang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Jiahao Kuang
- College of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Shasha Zhang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Zixin Liu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Qianwen Guo
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Shujin Li
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Lin Qiu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Gaohui Fu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Xinyang Lin
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Jiayu Wu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Jinglin Tian
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Jinyong Huang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yanqin Niu
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Kang Kang
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen 518060, China
- College of Medicine, Shenzhen University, Shenzhen 518060, China
| | - Yunhui Zhang
- Department of Pulmonary and Critical Care Medicine, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650022, China
| | - Deming Gou
- Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Disease, Carson International Cancer Center, School of Medicine, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
12
|
Pena E, San Martin-Salamanca R, El Alam S, Flores K, Arriaza K. Tau Protein Alterations Induced by Hypobaric Hypoxia Exposure. Int J Mol Sci 2024; 25:889. [PMID: 38255962 PMCID: PMC10815386 DOI: 10.3390/ijms25020889] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/21/2023] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Tauopathies are a group of neurodegenerative diseases whose central feature is dysfunction of the microtubule-associated protein tau (MAPT). Although the exact etiology of tauopathies is still unknown, it has been hypothesized that their onset may occur up to twenty years before the clear emergence of symptoms, which has led to questions about whether the prognosis of these diseases can be improved by, for instance, targeting the factors that influence tauopathy development. One such factor is hypoxia, which is strongly linked to Alzheimer's disease because of its association with obstructive sleep apnea and has been reported to affect molecular pathways related to the dysfunction and aggregation of tau proteins and other biomarkers of neurological damage. In particular, hypobaric hypoxia exposure increases the activation of several kinases related to the hyperphosphorylation of tau in neuronal cells, such as ERK, GSK3β, and CDK5. In addition, hypoxia also increases the levels of inflammatory molecules (IL-β1, IL-6, and TNF-α), which are also associated with neurodegeneration. This review discusses the many remaining questions regarding the influence of hypoxia on tauopathies and the contribution of high-altitude exposure to the development of these diseases.
Collapse
Affiliation(s)
| | | | - Samia El Alam
- High Altitude Medicine Research Center (CEIMA), Arturo Prat University, Iquique 1110939, Chile; (E.P.); (R.S.M.-S.); (K.F.); (K.A.)
| | | | | |
Collapse
|
13
|
Alam MA, Mangapuram P, Fredrick FC, Singh B, Singla A, Kumar A, Jain R. Bronchiectasis-COPD Overlap Syndrome: A Comprehensive Review of its Pathophysiology and Potential Cardiovascular Implications. THERAPEUTIC ADVANCES IN PULMONARY AND CRITICAL CARE MEDICINE 2024; 19:29768675241300808. [PMID: 39655338 PMCID: PMC11626662 DOI: 10.1177/29768675241300808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/28/2024] [Indexed: 12/12/2024]
Abstract
Bronchiectasis-Chronic Obstructive Pulmonary Disease Overlap Syndrome (BCOS) is a complex pulmonary condition that merges bronchiectasis and chronic obstructive pulmonary disease (COPD), presenting unique clinical challenges. Patients with BCOS typically exhibit a range of symptoms from both conditions, including a chronic productive cough, reduced lung function, frequent exacerbations, and diminished exercise tolerance. The etiology of BCOS involves multiple factors such as genetic predisposition, respiratory infections, tobacco smoke, air pollutants, and other inflammatory mediators. Accurate diagnosis requires a comprehensive approach, incorporating pulmonary function tests to evaluate airflow limitation, radiographic imaging to identify structural lung abnormalities, and blood eosinophil counts to detect underlying inflammation. Treatment strategies are tailored to individual symptom profiles and severity, potentially including bronchodilators, inhaled corticosteroids, and pulmonary therapy to improve lung function and quality of life. Patients with BCOS are also at an increased risk for cardiovascular complications, such as stroke, ischemic heart disease, and cor pulmonale. Additionally, medications like beta-agonists and muscarinic antagonists used in COPD treatment can further affect cardiac risk by altering heart rate. This paper aims to provide a thorough understanding of BCOS, addressing its development, diagnosis, treatment, and associated cardiovascular complications, to aid healthcare providers in managing this multifaceted condition and improving patient outcomes.
Collapse
Affiliation(s)
| | | | | | - Bhupinder Singh
- Icahn School of Medicine at Mount Sinai, NYC Health+Hospitals, Queens, NY, USA
| | | | - Avi Kumar
- Department of Pulmonary Medicine, Fortis Escorts Heart Institute, Okhla, Delhi, India
| | - Rohit Jain
- Department of Internal Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, PA, USA
| |
Collapse
|
14
|
Nazarov K, Perik-Zavodskii R, Perik-Zavodskaia O, Alrhmoun S, Volynets M, Shevchenko J, Sennikov S. Phenotypic Alterations in Erythroid Nucleated Cells of Spleen and Bone Marrow in Acute Hypoxia. Cells 2023; 12:2810. [PMID: 38132130 PMCID: PMC10741844 DOI: 10.3390/cells12242810] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023] Open
Abstract
Hypoxia leads to metabolic changes at the cellular, tissue, and organismal levels. The molecular mechanisms for controlling physiological changes during hypoxia have not yet been fully studied. Erythroid cells are essential for adjusting the rate of erythropoiesis and can influence the development and differentiation of immune cells under normal and pathological conditions. We simulated high-altitude hypoxia conditions for mice and assessed the content of erythroid nucleated cells in the spleen and bone marrow under the existing microenvironment. For a pure population of CD71+ erythroid cells, we assessed the production of cytokines and the expression of genes that regulate the immune response. Our findings show changes in the cellular composition of the bone marrow and spleen during hypoxia, as well as changes in the composition of the erythroid cell subpopulations during acute hypoxic exposure in the form of a decrease in orthochromatophilic erythroid cells that are ready for rapid enucleation and the accumulation of their precursors. Cytokine production normally differs only between organs; this effect persists during hypoxia. In the bone marrow, during hypoxia, genes of the C-lectin pathway are activated. Thus, hypoxia triggers the activation of various adaptive and compensatory mechanisms in order to limit inflammatory processes and modify metabolism.
Collapse
Affiliation(s)
- Kirill Nazarov
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution “Research Institute of Fundamental and Clinical Immunology”, 630099 Novosibirsk, Russia; (K.N.); (R.P.-Z.); (O.P.-Z.); (S.A.); (M.V.); (J.S.)
| | - Roman Perik-Zavodskii
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution “Research Institute of Fundamental and Clinical Immunology”, 630099 Novosibirsk, Russia; (K.N.); (R.P.-Z.); (O.P.-Z.); (S.A.); (M.V.); (J.S.)
| | - Olga Perik-Zavodskaia
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution “Research Institute of Fundamental and Clinical Immunology”, 630099 Novosibirsk, Russia; (K.N.); (R.P.-Z.); (O.P.-Z.); (S.A.); (M.V.); (J.S.)
| | - Saleh Alrhmoun
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution “Research Institute of Fundamental and Clinical Immunology”, 630099 Novosibirsk, Russia; (K.N.); (R.P.-Z.); (O.P.-Z.); (S.A.); (M.V.); (J.S.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Marina Volynets
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution “Research Institute of Fundamental and Clinical Immunology”, 630099 Novosibirsk, Russia; (K.N.); (R.P.-Z.); (O.P.-Z.); (S.A.); (M.V.); (J.S.)
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Julia Shevchenko
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution “Research Institute of Fundamental and Clinical Immunology”, 630099 Novosibirsk, Russia; (K.N.); (R.P.-Z.); (O.P.-Z.); (S.A.); (M.V.); (J.S.)
| | - Sergey Sennikov
- Laboratory of Molecular Immunology, Federal State Budgetary Scientific Institution “Research Institute of Fundamental and Clinical Immunology”, 630099 Novosibirsk, Russia; (K.N.); (R.P.-Z.); (O.P.-Z.); (S.A.); (M.V.); (J.S.)
| |
Collapse
|
15
|
Liang H, Song K. Comprehensive metabolomics and transcriptomics analysis reveals protein and amino acid metabolic characteristics in liver tissue under chronic hypoxia. PLoS One 2023; 18:e0291798. [PMID: 37747892 PMCID: PMC10519603 DOI: 10.1371/journal.pone.0291798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 09/06/2023] [Indexed: 09/27/2023] Open
Abstract
At high altitudes, oxygen deprivation can cause pathophysiological changes. Liver tissue function is known to impact whole-body energy metabolism; however, how these functions are affected by chronic hypoxia remains unclear. We aimed to elucidate changing characteristics underlying the effect of chronic hypoxia on protein and amino acid metabolism in mouse livers. Mice were maintained in a hypobaric chamber simulating high altitude for 4 weeks. Livers were collected for metabolomic analysis via ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry. For transcriptomics analysis, we conducted RNA sequencing of hepatic tissues followed by Gene Ontology and KEGG pathway enrichment analyses. Chronic hypoxic exposure caused metabolic disorders of amino acids and their derivatives in liver tissue. We identified a number of metabolites with significantly altered profiles (including amino acids, peptides, and analogues), of which serine, phenylalanine, leucine, proline, aspartic acid, L-glutamate, creatine, 5-aminovaleric acid, L-hydroxyarginin, and g-guanidinobutyrate showed great potential as biomarkers of chronic hypoxia. A total of 2124 genes with significantly different expression levels were identified in hypoxic liver tissue, of which 1244 were upregulated and 880 were downregulated. We found pathways for protein digestion and absorption, arginine and proline metabolism, and mineral absorption related to amino acid metabolism were affected by hypoxia. Our findings surrounding the regulation of key metabolites and differentially expressed genes provide new insights into changes in protein and amino acid metabolism in the liver that result from chronic hypoxia.
Collapse
Affiliation(s)
- Hong Liang
- Department of Basic Medical Sciences, Medical College, Qinghai University, Xining, Qinghai, China
| | - Kang Song
- Endocrinology Department, Qinghai Provincial People’s Hospital, Xining, Qinghai, China
- Qinghai University Affiliated People’s Hospital, Xining, PR, China
| |
Collapse
|
16
|
Kuang G, Halimitabrizi M, Edziah AA, Salowe R, O’Brien JM. The potential for mitochondrial therapeutics in the treatment of primary open-angle glaucoma: a review. Front Physiol 2023; 14:1184060. [PMID: 37601627 PMCID: PMC10433652 DOI: 10.3389/fphys.2023.1184060] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/21/2023] [Indexed: 08/22/2023] Open
Abstract
Glaucoma, an age-related neurodegenerative disease, is characterized by the death of retinal ganglion cells (RGCs) and the corresponding loss of visual fields. This disease is the leading cause of irreversible blindness worldwide, making early diagnosis and effective treatment paramount. The pathophysiology of primary open-angle glaucoma (POAG), the most common form of the disease, remains poorly understood. Current available treatments, which target elevated intraocular pressure (IOP), are not effective at slowing disease progression in approximately 30% of patients. There is a great need to identify and study treatment options that target other disease mechanisms and aid in neuroprotection for POAG. Increasingly, the role of mitochondrial injury in the development of POAG has become an emphasized area of research interest. Disruption in the function of mitochondria has been linked to problems with neurodevelopment and systemic diseases. Recent studies have shown an association between RGC death and damage to the cells' mitochondria. In particular, oxidative stress and disrupted oxidative phosphorylation dynamics have been linked to increased susceptibility of RGC mitochondria to secondary mechanical injury. Several mitochondria-targeted treatments for POAG have been suggested, including physical exercise, diet and nutrition, antioxidant supplementation, stem cell therapy, hypoxia exposure, gene therapy, mitochondrial transplantation, and light therapy. Studies have shown that mitochondrial therapeutics may have the potential to slow the progression of POAG by protecting against mitochondrial decline associated with age, genetic susceptibility, and other pathology. Further, these therapeutics may potentially target already present neuronal damage and symptom manifestations. In this review, the authors outline potential mitochondria-targeted treatment strategies and discuss their utility for use in POAG.
Collapse
Affiliation(s)
- Grace Kuang
- Perelman School of Medicine, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, United States
- Penn Medicine Center for Genetics in Complex Diseases, University of Pennsylvania, Philadelphia, PA, United States
| | - Mina Halimitabrizi
- Perelman School of Medicine, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, United States
- Penn Medicine Center for Genetics in Complex Diseases, University of Pennsylvania, Philadelphia, PA, United States
| | - Amy-Ann Edziah
- Perelman School of Medicine, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, United States
- Penn Medicine Center for Genetics in Complex Diseases, University of Pennsylvania, Philadelphia, PA, United States
| | - Rebecca Salowe
- Perelman School of Medicine, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, United States
- Penn Medicine Center for Genetics in Complex Diseases, University of Pennsylvania, Philadelphia, PA, United States
| | - Joan M. O’Brien
- Perelman School of Medicine, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA, United States
- Penn Medicine Center for Genetics in Complex Diseases, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
17
|
Deng Y, You L, Wang X, Wu W, Kuca K, Wu Q, Wei W. Deoxynivalenol: Emerging Toxic Mechanisms and Control Strategies, Current and Future Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37437258 DOI: 10.1021/acs.jafc.3c02020] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Deoxynivalenol (DON) is the most frequently present mycotoxin contaminant in food and feed, causing a variety of toxic effects in humans and animals. Currently, a series of mechanisms involved in DON toxicity have been identified. In addition to the activation of oxidative stress and the MAPK signaling pathway, DON can activate hypoxia-inducible factor-1α, which further regulates reactive oxygen species production and cancer cell apoptosis. Noncoding RNA and signaling pathways including Wnt/β-catenin, FOXO, and TLR4/NF-κB also participate in DON toxicity. The intestinal microbiota and the brain-gut axis play a crucial role in DON-induced growth inhibition. In view of the synergistic toxic effect of DON and other mycotoxins, strategies to detect DON and control it biologically and the development of enzymes for the biodegradation of various mycotoxins and their introduction in the market are the current and future research hotspots.
Collapse
Affiliation(s)
- Ying Deng
- College of Life Science, Yangtze University, Jingzhou 434025, China
| | - Li You
- College of Physical Education and Health, Chongqing College of International Business and Economics, Chongqing 401520, China
| | - Xu Wang
- National Reference Laboratory of Veterinary Drug Residues and MAO Key Laboratory for Detection of Veterinary Drug Residues, Huazhong Agricultural University (HZAU), Wuhan, Hubei 430070, China
| | - Wenda Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic
| | - Kamil Kuca
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic
- Andalusian Research Institute in Data Science and Computational Intelligence (DaSCI), University of Granada, Granada 18071, Spain
| | - Qinghua Wu
- College of Life Science, Yangtze University, Jingzhou 434025, China
- Department of Chemistry, Faculty of Science, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic
| | - Wei Wei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Key Laboratory of Traceability for Agricultural Genetically Modified Organisms, Ministry of Agriculture and Rural Affairs, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
18
|
Skrifvars MB, Meyhoff CS. Optimal oxygen targets in patients undergoing general anesthesia for major non-cardiac surgery-How to handle the conflict between observational and randomized trials? Acta Anaesthesiol Scand 2023; 67:686-687. [PMID: 36973884 DOI: 10.1111/aas.14243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Affiliation(s)
- Markus B Skrifvars
- Department of Emergency Care and Services, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Christian S Meyhoff
- Department of Anaesthesia and Intensive Care, Copenhagen University Hospital - Bispebjerg and Frederiksberg, Copenhagen, Denmark
| |
Collapse
|
19
|
Li D, Jiang Y, He P, Li Y, Wu Y, Lei W, Liu N, de Bruijn JD, Zhang H, Zhang H, Ji P, Yuan H, Li M. Hypoxia Drives Material-Induced Heterotopic Bone Formation by Enhancing Osteoclastogenesis via M2/Lipid-Loaded Macrophage Axis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207224. [PMID: 36970815 PMCID: PMC10214238 DOI: 10.1002/advs.202207224] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/19/2023] [Indexed: 05/27/2023]
Abstract
Heterotopic ossification (HO) is a double-edged sword. Pathological HO presents as an undesired clinical complication, whereas controlled heterotopic bone formation by synthetic osteoinductive materials shows promising therapeutic potentials for bone regeneration. However, the mechanism of material-induced heterotopic bone formation remains largely unknown. Early acquired HO being usually accompanied by severe tissue hypoxia prompts the hypothesis that hypoxia caused by the implantation coordinates serial cellular events and ultimately induces heterotopic bone formation in osteoinductive materials. The data presented herein shows a link between hypoxia, macrophage polarization to M2, osteoclastogenesis, and material-induced bone formation. Hypoxia inducible factor-1α (HIF-1α), a crucial mediator of cellular responses to hypoxia, is highly expressed in an osteoinductive calcium phosphate ceramic (CaP) during the early phase of implantation, while pharmacological inhibition of HIF-1α significantly inhibits M2 macrophage, subsequent osteoclast, and material-induced bone formation. Similarly, in vitro, hypoxia enhances M2 macrophage and osteoclast formation. Osteoclast-conditioned medium enhances osteogenic differentiation of mesenchymal stem cells, such enhancement disappears with the presence of HIF-1α inhibitor. Furthermore, metabolomics analysis reveals that hypoxia enhances osteoclastogenesis via the axis of M2/lipid-loaded macrophages. The current findings shed new light on the mechanism of HO and favor the design of more potent osteoinductive materials for bone regeneration.
Collapse
Affiliation(s)
- Dan Li
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationStomatological Hospital of Chongqing Medical UniversityChongqing401120P. R. China
| | - Yucan Jiang
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationStomatological Hospital of Chongqing Medical UniversityChongqing401120P. R. China
| | - Ping He
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationStomatological Hospital of Chongqing Medical UniversityChongqing401120P. R. China
| | - Yeming Li
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationStomatological Hospital of Chongqing Medical UniversityChongqing401120P. R. China
| | - Yan Wu
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationStomatological Hospital of Chongqing Medical UniversityChongqing401120P. R. China
| | - Wei Lei
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationStomatological Hospital of Chongqing Medical UniversityChongqing401120P. R. China
| | - Nanxin Liu
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationStomatological Hospital of Chongqing Medical UniversityChongqing401120P. R. China
| | - Joost D. de Bruijn
- School of Engineering and Materials ScienceQueen Mary University of LondonLondonE1 4NSUK
- Kuros Biosciences BVProf. Bronkhorstlaan 10Bilthoven3723 MBThe Netherlands
| | - Hua Zhang
- Department of Obstetrics and GynecologyThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400015P. R. China
| | - Hongmei Zhang
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationStomatological Hospital of Chongqing Medical UniversityChongqing401120P. R. China
| | - Ping Ji
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationStomatological Hospital of Chongqing Medical UniversityChongqing401120P. R. China
| | - Huipin Yuan
- Kuros Biosciences BVProf. Bronkhorstlaan 10Bilthoven3723 MBThe Netherlands
- Huipin Yuan's LabChengdu610000P. R. China
| | - Mingzheng Li
- Chongqing Key Laboratory of Oral Diseases and Biomedical SciencesChongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher EducationStomatological Hospital of Chongqing Medical UniversityChongqing401120P. R. China
| |
Collapse
|
20
|
Palamim CVC, Boschiero MN, Marson FAL. Epidemiological profile and risk factors associated with death in patients receiving invasive mechanical ventilation in an adult intensive care unit from Brazil: a retrospective study. Front Med (Lausanne) 2023; 10:1064120. [PMID: 37181356 PMCID: PMC10166862 DOI: 10.3389/fmed.2023.1064120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/28/2023] [Indexed: 05/16/2023] Open
Abstract
Introduction Understanding the epidemiological profile and risk factors associated with invasive mechanical ventilation (IMV) is essential to manage the patients better and to improve health services. Therefore, our objective was to describe the epidemiological profile of adult patients in intensive care that required IMV in-hospital treatment. Also, to evaluate the risks associated with death and the influence of positive end-expiratory pressure (PEEP) and arterial oxygen pressure (PaO2) at admission in the clinical outcome. Methods We conducted an epidemiological study analyzing medical records of inpatients who received IMV from January 2016 to December 2019 prior to the Coronavirus Disease (COVID)-19 pandemic in Brazil. We considered the following characteristics in the statistical analysis: demographic data, diagnostic hypothesis, hospitalization data, and PEEP and PaO2 during IMV. We associated the patients' features with the risk of death using a multivariate binary logistic regression analysis. We adopted an alpha error of 0.05. Results We analyzed 1,443 medical records; out of those, 570 (39.5%) recorded the patients' deaths. The binary logistic regression was significant in predicting the patients' risk of death [X2(9) = 288.335; p < 0.001]. Among predictors, the most significant in relation to death risk were: age [elderly ≥65 years old; OR = 2.226 (95%CI = 1.728-2.867)]; male sex (OR = 0.754; 95%CI = 0.593-0.959); sepsis diagnosis (OR = 1.961; 95%CI = 1.481-2.595); need for elective surgery (OR = 0.469; 95%CI = 0.362-0.608); the presence of cerebrovascular accident (OR = 2.304; 95%CI = 1.502-3.534); time of hospital care (OR = 0.946; 95%CI = 0.935-0.956); hypoxemia at admission (OR = 1.635; 95%CI = 1.024-2.611), and PEEP >8 cmH2O at admission (OR = 2.153; 95%CI = 1.426-3.250). Conclusion The death rate of the studied intensive care unit was equivalent to that of other similar units. Regarding risk predictors, several demographic and clinical characteristics were associated with enhanced mortality in intensive care unit patients under mechanical ventilation, such as diabetes mellitus, systemic arterial hypertension, and older age. The PEEP >8 cmH2O at admission was also associated with increased mortality since this value is a marker of initially severe hypoxia.
Collapse
Affiliation(s)
- Camila Vantini Capasso Palamim
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University, Bragança Paulista, São Paulo, Brazil
- Laboratory of Human and Medical Genetics, Bragança Paulista, São Francisco University, São Paulo, Brazil
| | - Matheus Negri Boschiero
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University, Bragança Paulista, São Paulo, Brazil
- Laboratory of Human and Medical Genetics, Bragança Paulista, São Francisco University, São Paulo, Brazil
| | - Fernando Augusto Lima Marson
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University, Bragança Paulista, São Paulo, Brazil
- Laboratory of Human and Medical Genetics, Bragança Paulista, São Francisco University, São Paulo, Brazil
| |
Collapse
|
21
|
Hancková M, Miháliková L, Pastoreková S, Betáková T. Hypoxia alters the immune response in mouse peritoneal macrophages infected with influenza a virus with truncated NS1 protein. Cytokine 2023; 164:156138. [PMID: 36796258 DOI: 10.1016/j.cyto.2023.156138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/30/2022] [Accepted: 01/19/2023] [Indexed: 02/16/2023]
Abstract
Macrophages are the most abundant cells in infected tissue and are involved in the clearing infection, and immunomodulation of the innate and adaptive immune response. NS80 virus of influenza A virus, which encodes only the first 80 aa of the NS1 protein, suppresses the immune host response and is associated with enhanced pathogenicity. Hypoxia promotes infiltration of peritoneal macrophages into the adipose tissue and production of cytokines. To understand the role of hypoxia in the regulation of immune response, macrophages were infected with A/WSN/33 (WSN) and NS80 virus, and transcriptional profiles of the RIG-I-like receptor signalling pathway and expression of cytokines were evaluated in normoxia and hypoxia. Hypoxia inhibited the proliferation of IC-21 cells, downregulated the RIG-I-like receptor signalling pathway, and inhibited transcriptional activity of IFN-α, IFN-β, IFN-ε, and IFN-λ mRNA in infected macrophages. While transcription of IL-1β and Casp-1 mRNAs were increased in infected macrophages in normoxia, hypoxia resulted in decreased transcription activity of IL-1β and Casp-1 mRNAs. Hypoxia significantly affected expression of the translation factors IRF4, IFN-γ, and CXCL10 involved in regulation of immune response and polarization of the macrophages. The expression of pro-inflammatory cytokines such as sICAM-1, IL-1α, TNF-α, CCL2, CCL3, CXCL12, and M-CSF was to a large extent affected in uninfected and infected macrophages cultivated in hypoxia. The NS80 virus increased the expression of M-CSF, IL-16, CCL2, CCL3, and CXCL12, especially under hypoxia. The results show that hypoxia may play an important role in peritoneal macrophage activation, regulates the innate and adaptive immune response, changes production of pro-inflammatory cytokines, promotes macrophage polarization, and could affect the function of other immune cells.
Collapse
Affiliation(s)
- Miriam Hancková
- Biomedical Research Center, Slovak Academy of Sciences, Institute of Virology, Bratislava, Slovak Republic
| | - Lucia Miháliková
- Biomedical Research Center, Slovak Academy of Sciences, Institute of Virology, Bratislava, Slovak Republic
| | - Silvia Pastoreková
- Biomedical Research Center, Slovak Academy of Sciences, Institute of Virology, Bratislava, Slovak Republic
| | - Tatiana Betáková
- Biomedical Research Center, Slovak Academy of Sciences, Institute of Virology, Bratislava, Slovak Republic; Comenius University in Bratislava, Faculty of Natural Sciences, Department of Microbiology and Virology, Bratislava, Slovak Republic.
| |
Collapse
|
22
|
Oyedokun PA, Akhigbe RE, Ajayi LO, Ajayi AF. Impact of hypoxia on male reproductive functions. Mol Cell Biochem 2023; 478:875-885. [PMID: 36107286 DOI: 10.1007/s11010-022-04559-1] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 09/02/2022] [Indexed: 11/30/2022]
Abstract
Male reproductive functions, which include testicular steroidogenesis, spermatogenesis, and sexual/erectile functions are key in male fertility, but may be adversely altered by several factors, including hypoxia. This review demonstrates the impact of hypoxia on male reproductive functions. Acute exposure to hypoxia promotes testosterone production via stimulation of autophagy and upregulation of steroidogenic enzymes and voltage-gated L-type calcium channel, nonetheless, chronic exposure to hypoxia impairs steroidogenesis via suppression of the hypothalamic-pituitary-testicular axis. Also, hypoxia distorts spermatogenesis and reduces sperm count, motility, and normal forms via upregulation of VEGF and oxidative stress-sensitive signaling. Furthermore, hypoxia induces sexual and erectile dysfunction via a testosterone-dependent downregulation of NO/cGMP signaling and upregulation of PGE1/TGFβ1-driven penile endothelial dysfunction. Notably, hypoxia programs male sexual function and spermatogenesis/sperm quality via feminization and demasculinization of males and oxidative stress-mediated alteration in sperm DNA methylation. Since oxidative stress plays a central role in hypoxia-induced male reproductive dysfunction, studies exploring the effects of antioxidants and upregulation of transcription of antioxidants on hypoxia-induced male reproductive dysfunction are recommended.
Collapse
Affiliation(s)
- P A Oyedokun
- Anchor Reproductive Physiology and Bioinformatics Research Unit, Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - R E Akhigbe
- Anchor Reproductive Physiology and Bioinformatics Research Unit, Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria.
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun, Nigeria.
| | - L O Ajayi
- Department of Biochemistry, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| | - A F Ajayi
- Anchor Reproductive Physiology and Bioinformatics Research Unit, Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo, Nigeria
| |
Collapse
|
23
|
Kosenko E, Tikhonova L, Alilova G, Montoliu C. Erythrocytes Functionality in SARS-CoV-2 Infection: Potential Link with Alzheimer's Disease. Int J Mol Sci 2023; 24:5739. [PMID: 36982809 PMCID: PMC10051442 DOI: 10.3390/ijms24065739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a rapidly spreading acute respiratory infection caused by SARS-CoV-2. The pathogenesis of the disease remains unclear. Recently, several hypotheses have emerged to explain the mechanism of interaction between SARS-CoV-2 and erythrocytes, and its negative effect on the oxygen-transport function that depends on erythrocyte metabolism, which is responsible for hemoglobin-oxygen affinity (Hb-O2 affinity). In clinical settings, the modulators of the Hb-O2 affinity are not currently measured to assess tissue oxygenation, thereby providing inadequate evaluation of erythrocyte dysfunction in the integrated oxygen-transport system. To discover more about hypoxemia/hypoxia in COVID-19 patients, this review highlights the need for further investigation of the relationship between biochemical aberrations in erythrocytes and oxygen-transport efficiency. Furthermore, patients with severe COVID-19 experience symptoms similar to Alzheimer's, suggesting that their brains have been altered in ways that increase the likelihood of Alzheimer's. Mindful of the partly assessed role of structural, metabolic abnormalities that underlie erythrocyte dysfunction in the pathophysiology of Alzheimer's disease (AD), we further summarize the available data showing that COVID-19 neurocognitive impairments most probably share similar patterns with known mechanisms of brain dysfunctions in AD. Identification of parameters responsible for erythrocyte function that vary under SARS-CoV-2 may contribute to the search for additional components of progressive and irreversible failure in the integrated oxygen-transport system leading to tissue hypoperfusion. This is particularly relevant for the older generation who experience age-related disorders of erythrocyte metabolism and are prone to AD, and provide an opportunity for new personalized therapies to control this deadly infection.
Collapse
Affiliation(s)
- Elena Kosenko
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Lyudmila Tikhonova
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Gubidat Alilova
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Carmina Montoliu
- Hospital Clinico Research Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain
- Pathology Department, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
24
|
Animaw L, Woldegiorgis Abate T, Endeshaw D, Tsegaye D. Fatigue and associated factors among adult cancer patients receiving cancer treatment at oncology unit in Amhara region, Ethiopia. PLoS One 2023; 18:e0279628. [PMID: 36607977 PMCID: PMC9821493 DOI: 10.1371/journal.pone.0279628] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION Fatigue is one of the most commonly and frequently reported symptoms by cancer patients. The cause of fatigue is multifactorial in origin, and its impact varies in range from affecting patients' daily social life, and physical, mental, economic, and social well-being to becoming a threat to their quality of life. Therefore every cancer patient needs to be screened for fatigue and considered as one of the vital signs. OBJECTIVE To assess the prevalence of fatigue and associated factors among adult cancer patients, receiving cancer treatment at the oncology unit in Amhara region, Ethiopia, 2022. METHOD Institutional-based, cross-sectional study was conducted among adult cancer patients receiving cancer treatment from May 9th-June 8th, 2022. A stratified random sampling technique was used to select study participants. Data were entered into Epi data version 4.6 and then exported to the SPSS statistical package version 23 for further analysis. Both bivariable and multivariable logistic regression analyses were carried out. P-values <0.05 in multivariable logistic regression were considered statistically significant. RESULTS The prevalence of cancer-related fatigue was 77.3% at 95% CI (73.1-81.1) with nonresponse rate of 1.97% (9). Poor social support (AOR = 3.62; 95% CI: 1.53-8.60), anxiety (AOR = 3.13; 95% CI: 1.54-6.36), physical inactivity (AOR = 3.67; 95% CI: 1.74-7.54), underweight (AOR = 2.03; 95% CI: 1.05-3.90), anemia (AOR = 2.01; 95% CI: 1.04-3.90), surgery as a treatment modality (AOR = 0.21; 95% CI: 0.06-0.78), combination therapy (AOR = 3.56; 95% CI: 1.68-7.54), treatment less than 3 cycle (AOR = 4.43; 95% CI: 1.53-12.80), and treatment 3-5 cycle (AOR = 3.55; 95% CI: 1.38-9.09) were significantly associated factors with cancer related fatigue. CONCLUSION Psychosocial assessment and intervention, nutritional support, early intervention of anemia, and promoting exercise are the key elements to minimizing fatigue among cancer patients.
Collapse
Affiliation(s)
- Lingerew Animaw
- Adult Health Nursing at Feres Bet primary hospital, Amhara, Ethiopia
| | - Teshager Woldegiorgis Abate
- Department of Adult Health Nursing, College of Medicine and Health Science, Bahir Dar University, Bahir Dar, Ethiopia
| | - Destaw Endeshaw
- Department of Adult Health Nursing, College of Medicine and Health Science, Bahir Dar University, Bahir Dar, Ethiopia
| | - Dejen Tsegaye
- Department of Nursing, Debre Markos University, College of Health Sciences, Debre Markos, Ethiopia
| |
Collapse
|
25
|
Zhu MM, Ma Y, Tang M, Pan L, Liu WL. Hypoxia-induced upregulation of matrix metalloproteinase 9 increases basement membrane degradation by downregulating collagen type IV alpha 1 chain. Physiol Res 2022. [DOI: 10.33549/physiolres.934930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Hypoxia can cause basement membrane (BM) degradation in tissues. Matrix metalloproteinase 9 (MMP-9) is involved in various human cancers as well as BM degradation by downregulating type IV collagen (COL4). This study investigated the role of MMP-9 in hypoxia-mediated BM degradation in rat bone marrow based on its regulation of collagen type IV alpha 1 chain (COL4A1). Eighty male rats were randomly divided into four groups based on exposure to hypoxic conditions at a simulated altitude of 7,000 m, control (normoxia) and 3, 7, and 10 days of hypoxia exposure. BM degradation in bone marrow was determined by transmission electron microscopy. MMP-9 levels were assessed by western blot and real-time PCR, and COL4A1 levels were assessed by western blot and immunohistochemistry. Microvessels BMs in bone marrow exposed to acute hypoxia were observed by electron microscopy. MMP-9 expression increased, COL4A1 protein expression decreased, and BM degradation occurred in the 10-, 7-, and 3-day hypoxia groups compared with that in the control group (all P < 0.05). Hypoxia increased MMP-9 levels, which in turn downregulated COL4A1, thereby increasing BM degradation. MMP-9 upregulation significantly promoted BM degradation and COL4A1 downregulation. Our results suggest that MMP-9 is related to acute hypoxia-induced BM degradation in bone marrow by regulating COL4A1.
Collapse
Affiliation(s)
| | | | | | | | - WL Liu
- Affiliated Hospital of Qinghai University, Xining 810001, China;
| |
Collapse
|
26
|
Rezoagli E, Petrosino M, Rebora P, Menon DK, Mondello S, Cooper DJ, Maas AIR, Wiegers EJA, Galimberti S, Citerio G. High arterial oxygen levels and supplemental oxygen administration in traumatic brain injury: insights from CENTER-TBI and OzENTER-TBI. Intensive Care Med 2022; 48:1709-1725. [PMID: 36264365 PMCID: PMC9705485 DOI: 10.1007/s00134-022-06884-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 08/17/2022] [Indexed: 11/05/2022]
Abstract
PURPOSE The effect of high arterial oxygen levels and supplemental oxygen administration on outcomes in traumatic brain injury (TBI) is debated, and data from large cohorts of TBI patients are limited. We investigated whether exposure to high blood oxygen levels and high oxygen supplementation is independently associated with outcomes in TBI patients admitted to the intensive care unit (ICU) and undergoing mechanical ventilation. METHODS This is a secondary analysis of two multicenter, prospective, observational, cohort studies performed in Europe and Australia. In TBI patients admitted to ICU, we describe the arterial partial pressure of oxygen (PaO2) and the oxygen inspired fraction (FiO2). We explored the association between high PaO2 and FiO2 levels within the first week with clinical outcomes. Furthermore, in the CENTER-TBI cohort, we investigate whether PaO2 and FiO2 levels may have differential relationships with outcome in the presence of varying levels of brain injury severity (as quantified by levels of glial fibrillary acidic protein (GFAP) in blood samples obtained within 24 h of injury). RESULTS The analysis included 1084 patients (11,577 measurements) in the CENTER-TBI cohort, of whom 55% had an unfavorable outcome, and 26% died at a 6-month follow-up. Median PaO2 ranged from 93 to 166 mmHg. Exposure to higher PaO2 and FiO2 in the first seven days after ICU admission was independently associated with a higher mortality rate. A trend of a higher mortality rate was partially confirmed in the OzENTER-TBI cohort (n = 159). GFAP was independently associated with mortality and functional neurologic outcome at follow-up, but it did not modulate the outcome impact of high PaO2 levels, which remained independently associated with 6-month mortality. CONCLUSIONS In two large prospective multicenter cohorts of critically ill patients with TBI, levels of PaO2 and FiO2 varied widely across centers during the first seven days after ICU admission. Exposure to high arterial blood oxygen or high supplemental oxygen was independently associated with 6-month mortality in the CENTER-TBI cohort, and the severity of brain injury did not modulate this relationship. Due to the limited sample size, the findings were not wholly validated in the external OzENTER-TBI cohort. We cannot exclude the possibility that the worse outcomes associated with higher PaO2 were due to use of higher FiO2 in patients with more severe injury or physiological compromise. Further, these findings may not apply to patients in whom FiO2 and PaO2 are titrated to brain tissue oxygen monitoring (PbtO2) levels. However, at minimum, these findings support the need for caution with oxygen therapy in TBI, particularly since titration of supplemental oxygen is immediately applicable at the bedside.
Collapse
Affiliation(s)
- Emanuele Rezoagli
- School of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy.,Department of Emergency and Intensive Care, San Gerardo University Hospital, Extracorporeal Membrane Oxygenation (ECMO) Center, Azienda Socio-Sanitaria Territoriale (ASST) di Monza, Monza, Italy
| | - Matteo Petrosino
- Department of Medicine and Surgery, Bicocca Bioinformatics Biostatistics and Bioimaging B4 Center, University of Milano - Bicocca, Monza, Italy
| | - Paola Rebora
- Department of Medicine and Surgery, Bicocca Bioinformatics Biostatistics and Bioimaging B4 Center, University of Milano - Bicocca, Monza, Italy
| | - David K Menon
- Division of Anaesthesia, Addenbrooke's Hospital, University of Cambridge, Hills Road, Box 93, Cambridge, CB2 0QQ, UK
| | - Stefania Mondello
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - D James Cooper
- Intensive Care Department, Alfred Hospital, Melbourne, Australia.,School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Andrew I R Maas
- Antwerp University Hospital and University of Antwerp, Edegem, Belgium
| | - Eveline J A Wiegers
- Department of Public Health, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - Stefania Galimberti
- Department of Medicine and Surgery, Bicocca Bioinformatics Biostatistics and Bioimaging B4 Center, University of Milano - Bicocca, Monza, Italy
| | - Giuseppe Citerio
- School of Medicine and Surgery, University of Milano - Bicocca, Monza, Italy. .,NeuroIntensive Care Unit, Neuroscience Department, Hospital San Gerardo, ASST Monza, Monza, Italy.
| | | |
Collapse
|
27
|
Li G, Guan Y, Gu Y, Guo M, Ma W, Shao Q, Liu J, Ji X. Intermittent hypoxic conditioning restores neurological dysfunction of mice induced by long-term hypoxia. CNS Neurosci Ther 2022; 29:202-215. [PMID: 36401601 PMCID: PMC9804074 DOI: 10.1111/cns.13996] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/18/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Central nervous system diseases are associated with hypoxia, which usually cause irreversible nerve damage, but the underlying mechanism is unclear and effective intervention strategies are lacking. This study was designed to explore the mechanism and treatment strategy of hypoxia-induced nerve injury. METHODS In this study, 13% O2 was used to treat mice for 0, 1, 3 7, and 14 days, Morris water maze and other animal behavior experiments were used to evaluate the neurological function of mice. TUNEL, BrdU, PCNA, DCX, and SOX2 staining were used to observe the apoptosis and proliferation of mouse neurons. RT-PCR and Iba1 staining were used to evaluate the release of inflammatory factors IL-1β, IL-6, and TNF-α and the activation of microglia. RESULTS Short-term hypoxia promotes neurogenesis, while long-term hypoxia inhibits neurogenesis. The changes in hypoxia-induced neurogenesis were positively correlated with neurological functions, but negatively correlated with apoptosis. Moreover, intermittent hypoxic conditioning restored long-term hypoxia-induced neurological dysfunction by promoting neural stem cell generation and inhibiting the release of inflammatory factors IL-1β, IL-6, and TNF-α and the activation of microglia. CONCLUSION Hypoxia promoted neurogenesis in a time-dependent manner, and intermittent hypoxic conditioning exerted a neuroprotective effect through promoting neural stem cell generation and suppressing inflammation induced by long-term hypoxia stress, which provided a novel concept to develop a treatment for hypoxia-related brain injury.
Collapse
Affiliation(s)
- Gaifen Li
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data‐based Precision MedicineCapital Medical UniversityBeijingChina,Department of Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Yuying Guan
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data‐based Precision MedicineCapital Medical UniversityBeijingChina,Department of Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
| | - Yakun Gu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data‐based Precision MedicineCapital Medical UniversityBeijingChina
| | - Mengyuan Guo
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data‐based Precision MedicineCapital Medical UniversityBeijingChina
| | - Wei Ma
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data‐based Precision MedicineCapital Medical UniversityBeijingChina
| | - Qianqian Shao
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data‐based Precision MedicineCapital Medical UniversityBeijingChina
| | - Jia Liu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data‐based Precision MedicineCapital Medical UniversityBeijingChina
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data‐based Precision MedicineCapital Medical UniversityBeijingChina,Department of Neurosurgery, Xuanwu HospitalCapital Medical UniversityBeijingChina
| |
Collapse
|
28
|
Mathew SC, Bhatia G, Kaur R, Mathai AS. Appropriateness of red cell transfusion practices in an intensive care unit: A prospective observational study. Indian J Anaesth 2022; 66:796-799. [PMID: 36590190 PMCID: PMC9795497 DOI: 10.4103/ija.ija_1027_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 11/05/2022] [Accepted: 11/05/2022] [Indexed: 11/18/2022] Open
Affiliation(s)
- Sona C. Mathew
- Department of Anaesthesia, CMC Vellore, Tamil Nadu, India,Address for correspondence: Dr. Sona C. Mathew, Department of Anaesthesia, Christian Medical College, IDA Scudder Rd, Vellore, Tamil Nadu - 632 004, India. E-mail:
| | - Gaurav Bhatia
- Department of Critical Care, SGHS Hospital, Sohana, Mohali, Punjab, India
| | - Rupinder Kaur
- Department of Pathology, MMIMSR, Mullana, Ambala, Haryana, India
| | - Ashu Sara Mathai
- Department of Anaesthesia, Believers Church Medical College, Thiruvalla, Kerala, India
| |
Collapse
|
29
|
Carroll RP, Balasubramaniam R, Sawyer M, Tran K. A novel non-invasive index of oxygenation and prediction of outcomes for patients on high-flow nasal cannula: a pilot study. Intern Med J 2022; 52:1831-1835. [PMID: 36266064 PMCID: PMC9827887 DOI: 10.1111/imj.15924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 08/26/2022] [Indexed: 11/05/2022]
Abstract
Predicting success of a therapy in acute respiratory failure is clinically important. The FOx index (high-flow rate × FiO2 )/SpO2 was retrospectively applied to 70 patients who required high-flow nasal prongs for hypoxaemic and hypercapnic respiratory failure. The FOx index could predict between success and failure of high-flow nasal prongs at 6 hours, using non-invasive markers. This adds to the clinician's toolbox in managing respiratory failure and represents important proof of concept for a prospective study.
Collapse
Affiliation(s)
- Robert P. Carroll
- Respiratory DepartmentLogan Hospital, Queensland HealthLogan CityQueenslandAustralia,School of MedicineUniversity of QueenslandBrisbaneQueenslandAustralia
| | | | - Michael Sawyer
- Respiratory DepartmentLogan Hospital, Queensland HealthLogan CityQueenslandAustralia
| | - Khoa Tran
- Respiratory DepartmentLogan Hospital, Queensland HealthLogan CityQueenslandAustralia,School of MedicineUniversity of QueenslandBrisbaneQueenslandAustralia,School of MedicineGriffith UniversityBrisbaneQueenslandAustralia
| |
Collapse
|
30
|
Joean O, Klooster MPV, Kayser MZ, Valtin C, Ewen R, Golpon H, Fühner T, Gottlieb J. Eine Querschnittsuntersuchung zur Qualität der Sauerstofftherapie in drei deutschen Krankenhäusern. Pneumologie 2022; 76:697-704. [DOI: 10.1055/a-1916-1505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Zusammenfassung
Einleitung Sauerstoff (O2) ist eines der am häufigsten angewendeten Arzneimittel in deutschen Krankenhäusern und im Rettungswesen. Sowohl eine Hypoxämie als auch eine Hyperoxämie sind mit Komplikationen vergesellschaftet. In Deutschland fehlen bislang belastbare Daten zur Anwendung, Dokumentation und Überwachung der O2-Therapie.
Methoden Eine Querschnittsstudie zur Sauerstoff-Anwendung wurde in 3 Krankenhäusern der maximalen bzw. supramaximalen Versorgung in Hannover im Herbst 2020 durchgeführt.
Ergebnisse Von 343 erfassten Patienten erhielten 20 % eine O2-Therapie. Bei 29 % der Patienten mit O2-Therapie bestand ein Hyperkapnie-Risiko. Lediglich bei 68 % Patienten mit einer O2-Therapie lag eine SOP zur O2-Anwendung auf den jeweiligen Stationen vor und nur bei 22 % entsprach die gegebene O2-Therapie dem tatsächlichen Bedarf des Patienten. Nur bei 30 % des Gesamtkollektivs und 41 % der Patienten mit O2-Therapie erfolgte eine vollständige Dokumentation der Vitalparameter. Eine Überwachung der O2-Therapie mittels arterieller oder kapillärer Blutgasanalyse (BGA) erfolgte bei 76 % der O2-Patienten. Hier zeigte sich bei 64 % der Patienten eine Normoxämie, bei 17 % eine Hyperoxämie und bei 19 % eine Hypoxämie. Der einzige identifizierbare Prediktor für eine adäquate O2-Therapie war eine vorangegangene Beatmungstherapie.
Diskussion Insgesamt zeigt sich eine suboptimale Indikationsstellung, Anwendung und Kontrolle der Sauerstofftherapie. Schulungen des pflegerischen und ärztlichen Personals zur Verbesserung der Anwendung der O2-Therapie und resultierend auch der Patientensicherheit sind dringend notwendig.
Collapse
Affiliation(s)
- Oana Joean
- Klinik für Pneumologie, Medizinische Hochschule Hannover
| | | | | | | | - Raphael Ewen
- Klinik für Pneumologie, Medizinische Hochschule Hannover
| | - Heiko Golpon
- Klinik für Pneumologie, Medizinische Hochschule Hannover
- Deutsches Zentrum für Lungenforschung (DZL), Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), Hannover
| | - Thomas Fühner
- Klinik für Pneumologie und Beatmungsmedizin, Krankenhaus Siloah, Klinikum Region Hannover
| | - Jens Gottlieb
- Klinik für Pneumologie, Medizinische Hochschule Hannover
- Deutsches Zentrum für Lungenforschung (DZL), Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), Hannover
| |
Collapse
|
31
|
Pu X, Lin X, Qi Y, Li Y, Li T, Liu Y, Wei D. Effects of Fdft 1 gene silencing and VD3 intervention on lung injury in hypoxia-stressed rats. Genes Genomics 2022; 44:1201-1213. [PMID: 35947298 DOI: 10.1007/s13258-022-01284-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/08/2022] [Indexed: 11/24/2022]
Abstract
BACKGROUND Hypoxia can induce lung injury such as pulmonary arterial hypertension and pulmonary edema. And in the rat model of hypoxia-induced lung injury, the expression of Farnesyl diphosphate farnesyl transferase 1 (Fdft 1) was highly expressed and the steroid biosynthesis pathway was activated. However, the role of Fdft 1 and steroid biosynthesis pathway in hypoxia-induced lung injury remains unclear. OBJECTIVE The study aimed to further investigate the relationship between Fdft1 and steroid biosynthesis pathway with hypoxia-induced lung injury. METHODS A rat model of lung injury was constructed by hypobaric chamber with hypoxic stress, the adenovirus interference vector was used to silence the expression of Fdft 1, and the exogenous steroid biosynthesis metabolite Vitamin D3 (VD3) was used to treat acute hypoxia-induced lung injury in rats. RESULTS Sh-Fdft 1 and exogenous VD3 significantly inhibited the expression of Fdft 1 and the activation of the steroid pathway in hypoxia-induced lung injury rats, which showed a synergistic effect on the steroid activation pathway. In addition, sh-Fdft 1 promoted the increase of pulmonary artery pressure and lung water content, the decrease of oxygen partial pressure and oxygen saturation, and leaded to the increase of lung cell apoptosis and the aggravation of mitochondrial damage in hypoxia-stressed rats. And VD3 could significantly improve the lung injury induced by hypoxia and sh-Fdft 1 in rats. CONCLUSIONS Fdft 1 gene silencing can promote hypoxic-induced lung injury, and exogenous supplement of VD3 has an antagonistic effect on lung injury induced by Fdft 1 gene silencing and hypoxic in rats, suggesting that VD3 has a preventive and protective effect on the occurrence and development of hypoxia-induced lung injury.
Collapse
Affiliation(s)
- Xiaoyan Pu
- Qinghai University, Xining, Qinghai, 810016, People's Republic of China.,Qinghai Normal University, Xining, Qinghai, 810008, People's Republic of China
| | - Xue Lin
- Qinghai University, Xining, Qinghai, 810016, People's Republic of China.,West China Hospital, Sichuan University, Chengdu, Sichuan, 610000, People's Republic of China
| | - Yinglian Qi
- Qinghai Normal University, Xining, Qinghai, 810008, People's Republic of China
| | - Yinglian Li
- Qinghai University Affiliated Hospital, Xining, Qinghai, 810001, People's Republic of China
| | - Tiantian Li
- Qinghai University, Xining, Qinghai, 810016, People's Republic of China
| | - Yang Liu
- Qinghai University, Xining, Qinghai, 810016, People's Republic of China
| | - Dengbang Wei
- Qinghai University, Xining, Qinghai, 810016, People's Republic of China.
| |
Collapse
|
32
|
He L, Wang Y, Luo J. Epigenetic modification mechanism of histone demethylase KDM1A in regulating cardiomyocyte apoptosis after myocardial ischemia-reperfusion injury. PeerJ 2022; 10:e13823. [PMID: 35959481 PMCID: PMC9359132 DOI: 10.7717/peerj.13823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 07/10/2022] [Indexed: 01/18/2023] Open
Abstract
Hypoxia and reoxygenation (H/R) play a prevalent role in heart-related diseases. Histone demethylases are involved in myocardial injury. In this study, the mechanism of the lysine-specific histone demethylase 1A (KDM1A/LSD1) on cardiomyocyte apoptosis after myocardial ischemia-reperfusion injury (MIRI) was investigated. Firstly, HL-1 cells were treated with H/R to establish the MIRI models. The expressions of KDM1A and Sex Determining Region Y-Box Transcription Factor 9 (SOX9) in H/R-treated HL-1 cells were examined. The cell viability, markers of myocardial injury (LDH, AST, and CK-MB) and apoptosis (Bax and Bcl-2), and Caspase-3 and Caspase-9 protein activities were detected, respectively. We found that H/R treatment promoted cardiomyocyte apoptosis and downregulated KDM1A, and overexpressing KDM1A reduced apoptosis in H/R-treated cardiomyocytes. Subsequently, tri-methylation of lysine 4 on histone H3 (H3K4me3) level on the SOX9 promoter region was detected. We found that KDM1A repressed SOX9 transcription by reducing H3K4me3. Then, HL-1 cells were treated with CPI-455 and plasmid pcDNA3.1-SOX9 and had joint experiments with pcDNA3.1-KDM1A. We disclosed that upregulating H3K4me3 or overexpressing SOX9 reversed the inhibitory effect of overexpressing KDM1A on apoptosis of H/R-treated cardiomyocytes. In conclusion, KDM1A inhibited SOX9 transcription by reducing the H3K4me3 on the SOX9 promoter region and thus inhibited H/R-induced apoptosis of cardiomyocytes.
Collapse
Affiliation(s)
- Lin He
- Department of Cardiology, The Center Hospital of Shaoyang, Shaoyang, China
| | - Yanbo Wang
- Department of Cardiology, The Center Hospital of Shaoyang, Shaoyang, China
| | - Jin Luo
- Department of Cardiology, The Center Hospital of Shaoyang, Shaoyang, China
| |
Collapse
|
33
|
Kim K, Leem AY, Kim SY, Chung KS, Park MS, Kim YS, Lee JG, Paik HC, Lee SH. Complications related to extracorporeal membrane oxygenation support as a bridge to lung transplantation and their clinical significance. Heart Lung 2022; 56:148-153. [PMID: 35908349 DOI: 10.1016/j.hrtlng.2022.07.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 07/21/2022] [Accepted: 07/22/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Incidence of complications related extracorporeal membrane oxygenation (ECMO) support as a bridge to lung transplantation (BTT) and its association with the patient outcome in lung transplantation (LT) has not been well documented in previous studies. OBJECTIVES We evaluated the incidence of complications related to the use of ECMO support as a BTT, and the association between the occurrence of the complications and patient outcomes in LTs. METHODS This retrospective cohort study investigated 100 consecutive patients who started ECMO support as a BTT between April 2013 and March 2020. Data for the analyses were retrieved from electronic medical records. RESULTS Fifty-six percent of the patients experienced at least one complication during the BTT with ECMO. Major bleeding was the most common complication. In multivariate logistic regression analysis, occurrence of oxygenator thromboses (OR 16.438, P = 0.008) and the use of renal replacement therapy (RRT) (OR 32.288, P < 0.001) were associated with a failed BTT. In the subgroup analysis of the LT recipients, intracranial hemorrhages, (OR 13.825, P = 0.021), RRT use, (OR 11.395, P = 0.038), and bloodstream infection occurrence (OR 6.210; P = 0.034) were identified as risk factors for in-hospital mortality. CONCLUSIONS The occurrence of complications during the use of ECMO support as a BTT was associated with unfavorable outcomes in LTs. Close monitoring and the proper management of these complications may be important to achieve better outcomes in patients using ECMO support as a BTT.
Collapse
Affiliation(s)
- Kangjoon Kim
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Severance Hospital, Yonsei University College of Medicine, Postal address: 50-1, Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Ah Young Leem
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Severance Hospital, Yonsei University College of Medicine, Postal address: 50-1, Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Song Yee Kim
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Severance Hospital, Yonsei University College of Medicine, Postal address: 50-1, Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Kyung Soo Chung
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Severance Hospital, Yonsei University College of Medicine, Postal address: 50-1, Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Moo Suk Park
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Severance Hospital, Yonsei University College of Medicine, Postal address: 50-1, Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Young Sam Kim
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Severance Hospital, Yonsei University College of Medicine, Postal address: 50-1, Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea
| | - Jin Gu Lee
- Department of Thoracic and Cardiovascular Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyo Chae Paik
- Department of Thoracic and Cardiovascular Surgery, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Su Hwan Lee
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, Severance Hospital, Yonsei University College of Medicine, Postal address: 50-1, Yonsei-ro, Seodaemun-gu, Seoul, Republic of Korea.
| |
Collapse
|
34
|
Joean O, vanʼt Klooster MP, Kayser MZ, Valtin C, Ewen R, Golpon H, Fühner T, Gottlieb J. [A cross-sectional study in three German hospitals regarding oxygen therapy characteristics]. Dtsch Med Wochenschr 2022; 147:62-69. [PMID: 35868312 PMCID: PMC9307294 DOI: 10.1055/a-1821-5994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Oxygen (O2) therapy is one of the most commonly applied medications in German hospitals and rescue services. Both hypoxemia and hyperoxemia can be associated with complications. There is currently a lack of reliable data on the use, documentation and surveillance of O2-therapy in German hospitals. METHODS We conducted a cross-sectional study on the use of O2 in three hospitals in Hannover, Germany. RESULTS Of 343 patients included in this study, 20 % received O2 therapy. Twenty-nine percent of patients receiving O2 were at increased risk for hypercapnia. A standard operating procedure (SOP) for O2 therapy was available in only 68 % of patients. In 22 % patients the applied O2-therapy was appropriate in the context of the documented vital parameters. A complete documentation of vital parameters was conducted in only 30 % of all patients and 41 % of patients receiving O2-therapy. A surveillance of O2-therapy using capillary or arterial blood gas analysis was performed in 76 % of patients. Here, 64 % of patients showed normoxemia, 17 % showed hyperoxemia and 19 % of patients showed hypoxemia. The only identifiable predictor for an adequate O2-therapy was a previous invasive ventilation. DISCUSSION Our data point towards and inadequate prescription, application and documentation of O2 therapy. The recently released German S3-guideline should be used to increase awareness among physicians and nursing staff regarding the use of O2-therapy to improve O2 therapy and consequently patient safety.
Collapse
Affiliation(s)
- Oana Joean
- Klinik für Pneumologie, Medizinische Hochschule Hannover
| | | | | | | | - Raphael Ewen
- Klinik für Pneumologie, Medizinische Hochschule Hannover
| | - Heiko Golpon
- Klinik für Pneumologie, Medizinische Hochschule Hannover
- Deutsches Zentrum für Lungenforschung (DZL), Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), Hannover
| | - Thomas Fühner
- Klinik für Pneumologie und Beatmungsmedizin, Krankenhaus Siloah, Klinikum Region Hannover
| | - Jens Gottlieb
- Klinik für Pneumologie, Medizinische Hochschule Hannover
- Deutsches Zentrum für Lungenforschung (DZL), Biomedical Research in End-Stage and Obstructive Lung Disease (BREATH), Hannover
| |
Collapse
|
35
|
Wrona A, Aleksandrovych V, Bereza T, Basta P, Gil A, Ulatowska-Białas M, Mazur-Laskowska M, Pityński K, Gil K. Oviductal Oxygen Homeostasis in Patients with Uterine Myoma: Correlation between Hypoxia and Telocytes. Int J Mol Sci 2022; 23:6155. [PMID: 35682833 PMCID: PMC9181375 DOI: 10.3390/ijms23116155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/29/2022] [Accepted: 05/30/2022] [Indexed: 02/04/2023] Open
Abstract
Oxygen balance is crucial for angiogenesis, immunity, and tissue repair. The human oviduct is essential for reproductive function, and any imbalance in homeostasis leads to fertility disturbances and might be a reason for ectopic pregnancy development. Uterine myoma is a widespread benign tumour, which is often accompanied by infertility. Telocytes have been discussed in the contexts of motility, fibrosis development, and angiogenesis. We observed the oviducts from patients with and without uterine myoma, comparing the expression of HIF-1, HO, VEGF and its receptor, NOS, oestrogen, and progesterone receptors by immunolabeling. The myometrial and oviductal telocytes were also compared in both groups. Biochemical analyses were conducted for FSH, LH, AMH, sFlt, oestrogen, and progesterone in blood samples. Patients with uterine myoma have different expressions of sex steroid receptors and an increased number of telocytes. The decreasing VEFG expression was compensated by the rise in the HIF-1 and NOS expression. Blood biochemical analyses revealed a higher progesterone level and lower AMH in patients with uterine myoma. No differences in sFlt, FSH, and LF were observed. Uterine myoma impacts oviduct oxygen homeostasis and might cause fertility disturbances (uterine and oviductal infertility factors).
Collapse
Affiliation(s)
- Anna Wrona
- Gynecology and Obstetrics Ward with Gynecologic Oncology Subdivision, J. Śniadecki’s Specialistic Hospital, 33-300 Nowy Sącz, Poland;
| | - Veronika Aleksandrovych
- Department of Pathophysiology, Jagiellonian University Medical College, 31-121 Krakow, Poland;
| | - Tomasz Bereza
- Department of Anatomy, Jagiellonian University Medical College, 31-034 Krakow, Poland; (T.B.); (A.G.)
| | - Paweł Basta
- Department of Gynecology and Oncology, Jagiellonian University Medical College, 30-688 Krakow, Poland; (P.B.); (K.P.)
| | - Anna Gil
- Department of Anatomy, Jagiellonian University Medical College, 31-034 Krakow, Poland; (T.B.); (A.G.)
| | | | | | - Kazimierz Pityński
- Department of Gynecology and Oncology, Jagiellonian University Medical College, 30-688 Krakow, Poland; (P.B.); (K.P.)
| | - Krzysztof Gil
- Department of Pathophysiology, Jagiellonian University Medical College, 31-121 Krakow, Poland;
| |
Collapse
|
36
|
Dong WH, Yan WQ, Chen Z. Effect of liberal or conservative oxygen therapy on the prognosis for mechanically ventilated intensive care unit patients: a meta-analysis. SAO PAULO MED J 2022; 140:463-473. [PMID: 35507988 PMCID: PMC9671248 DOI: 10.1590/1516-3180.2021.0062.21092021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 09/21/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND For critically ill patients, physicians tend to administer sufficient or even excessive oxygen to maintain oxygen saturation at a high level. However, the credibility of the evidence for this practice is unclear. OBJECTIVE To determine the effects of different oxygen therapy strategies on the outcomes of mechanically ventilated intensive care unit (ICU) patients. DESIGN AND SETTING Systematic review of the literature and meta-analysis conducted at Jiangxi Provincial People's Hospital, Affiliated to Nanchang University, Nanchang, China. METHODS We systematically searched electronic databases such as PubMed and Embase for relevant articles and performed meta-analyses on the effects of different oxygen therapy strategies on the outcomes of mechanically ventilated ICU patients. RESULTS A total of 1802 patients from five studies were included. There were equal numbers of patients in the conservative and liberal groups (n = 910 in each group). There was no significant difference between the conservative and liberal groups with regard to 28-day mortality (risk ratio, RR = 0.88; 95% confidence interval, CI = 0.59-1.32; P = 0.55; I2 = 63%). Ninety-day mortality, infection rates, ICU length of stay, mechanical ventilation-free days up to day 28 and vasopressor-free days up to day 28 were comparable between the two strategies. CONCLUSIONS It is not necessary to use liberal oxygen therapy strategies to pursue a higher level of peripheral oxygen saturation for mechanically ventilated ICU patients. Conservative oxygen therapy was not associated with any statistically significant reduction in mortality.
Collapse
Affiliation(s)
- Wei-Hua Dong
- Undergraduate Student, Emergency Department, Jiangxi Provincial People's Hospital Affiliated to Nanchang University; Medical Department of Nanchang University, Nanchang, Jiangxi, China
| | - Wen-Qing Yan
- Undergraduate Student, Emergency Department, Jiangxi Provincial People's Hospital Affiliated to Nanchang University; Medical Department of Nanchang University, Nanchang, Nanchang, Jiangxi, China
| | - Zhi Chen
- MD. Chief Physician, Emergency Department, Jiangxi Provincial People's Hospital Affiliated to Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
37
|
ÜNER AK, KAYMAK E, DOĞANYİĞİT Z, AKIN AT, BAŞARAN KE, ÖZDAMAR S, YAKAN B, AKYÜZ E. Chloroquine Decreased Kir6.2 Immunoreactivity in Chronic Hypoxic Heart. BEZMIALEM SCIENCE 2022. [DOI: 10.14235/bas.galenos.2021.5543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
38
|
Lubis B, Amelia P, Akil M, Viandy V. The Association between Mean Arterial Pressure, Central Venous Pressure, Cerebral Perfusion Pressure, Lung Oxygenation, and Glasgow Coma Scale in Sepsis Patients in the Intensive Care Unit. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.9285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND: Sepsis is the most frequent condition encountered in the intensive care unit (ICU). One of the neurological features of sepsis is sepsis-associated encephalopathy (SAE). The exact pathophysiology of SAE remains unclear. Many factors have been linked to SAE, such as hypotension, hypoxemia, and other metabolic abnormalities. However, alteration of cerebral blood flow is thought to be the main culprit behind SAE.
AIM: This study aims to evaluate and find correlations between mean arterial pressure (MAP), central venous pressure (CVP), cerebral perfusion pressure (CPP), PaO2/FiO2 (PF) ratio, Glasgow Coma Scale (GCS), and level of consciousness.
METHODS: A cross-sectional study was conducted from March 2020 to October 2020 in the ICU of H. Adam Malik Central Hospital, Medan, Indonesia. Patients over 18 years old with sepsis were included in this study. We recorded the demographic data, MAP, CVP, CPP, PF ratio, and GCS in the 1st h of ICU admission. The data were then analyzed to find the correlation between these parameters.
RESULTS: The total subjects in this study were 62 patients, with an equal ratio of male-to-female. A quarter of the patients were intubated, affecting the GCS assessment. The median of GCS was 12. Most patients (46.8%) were determined to be somnolence. The mean age of the subjects is 54.84 ± 13.25 years old. There was no correlation between MAP, CVP, CPP, PF ratio, GCS, and level of consciousness in this study.
CONCLUSIONS: Our study found no correlation between MAP, CVP, CPP, PF ratio, GCS, and level of consciousness in sepsis patients.
Collapse
|
39
|
Cajanding RJM. Silent Hypoxia in COVID-19 Pneumonia: State of Knowledge, Pathophysiology, Mechanisms, and Management. AACN Adv Crit Care 2022; 33:143-153. [PMID: 35113990 DOI: 10.4037/aacnacc2022448] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Patients with COVID-19 often present with life-threatening hypoxemia without dyspnea or signs of respiratory distress. Termed silent or happy hypoxia, it has puzzled clinicians and challenged and defied our understanding of normal respiratory physiology. A range of host- and pathogen-related factors appears to contribute to its development, including SARS-CoV-2's ability to produce different COVID-19 phenotypes; induce endothelial damage and elicit a vascular distress response; invade cells of the central nervous system and disrupt normal interoception and response; and modulate transcription factors involved in hypoxic responses. Because hypoxemia in COVID-19 is associated with increased mortality risk and poorer survival, early detection and prompt treatment is essential to prevent potential complications. Interventions to prevent hypoxemia and improve oxygen delivery to the blood and the tissues include home pulse-oximetry monitoring, optimization of patient positioning, judicious use of supplemental oxygen, breathing control exercises, and timely and appropriate use of ventilatory modalities and adjuncts.
Collapse
Affiliation(s)
- Ruff Joseph Macale Cajanding
- Ruff Joseph Macale Cajanding is Senior Charge Nurse, Adult Critical Care Unit, 6th Floor, King George V Building, St Bartholomew's Hospital, Barts Health NHS Trust, 2 King Edward Street, London EC1A 1HQ, United Kingdom
| |
Collapse
|
40
|
Shuang M, Jie L, Ruixia Z, Chuanchuan L, Yan M. Proteomic profile analysis of pulmonary artery in a rat model under hypoxic pulmonary hypertensionc. CURR PROTEOMICS 2022. [DOI: 10.2174/1570164619666220204123709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Aim:
Proteomic profile analysis of pulmonary artery in a rat model under hypoxic pulmonary hypertension
Background:
Background: Hypoxic pulmonary hypertension (HPH) is a pathological condition exemplified by a constant rise in pulmonary artery pressure in high-altitudes.
Objective:
Objective: To investigated the proteome profile and response mechanisms of SD rats under hypoxia over a period of four-weeks.
Method:
Method: Proteomic profile analysis of pulmonary artery in a rat model under hypoxic pulmonary hypertension.
Results:
Results: With 3,204 proteins identified, 49 were up-regulated while 46 were down-regulated. Upregulated genes included Prolargin, Protein S100-A6 and Transgelin-2, whereas Nascent polypeptide-associated complex and Elongator complex protein 1 were down-regulated. KEGG enriched pathways had purine metabolism, cancer and lipolysis regulation as significantly enriched in hypoxic group.
Conclusion:
Conclusion: In conclusion, our findings submit basis for downstream studies on tissue hypoxia mechanisms alongside the associated physiological conditions.
Hypoxic pulmonary hypertension (HPH) is a pathological condition exemplified by a constant rise in pulmonary artery pressure in high altitudes. Herein, we investigated the proteome profile and response mechanisms of Sprague-Dawley (SD) rats under hypoxia over a period of four weeks. Unbiased iTRAQ-based quantitative proteomics was utilized in proteome profile analysis of a rat model exposed to HPH. With 3,204 proteins identified, 49 were upregulated while 46 were downregulated. Upregulated genes included Prolargin, Protein, S100-A6 and Transgelin-2, whereas Nascent polypeptide-associated complex and Elongator complex protein 1 were downregulated. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enriched pathways had purine metabolism, cancer, and lipolysis regulation as significantly enriched in hypoxic group. In conclusion, the findings from this study submit a basis for downstream studies on tissue hypoxia mechanisms alongside the associated physiological conditions.
Collapse
Affiliation(s)
- Ma Shuang
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, 810001, PR China
| | - Liu Jie
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, 810001, PR China
| | - Zhang Ruixia
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, 810001, PR China
| | - Liu Chuanchuan
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, 810001, PR China
| | - Ma Yan
- Research Center for High Altitude Medicine, Qinghai University Medical College, Xining, 810001, PR China
| |
Collapse
|
41
|
THE DEGREE OF INVOLVEMENT OF THE LEVEL OF CIRCULATING IMMUNE COMPLEXES AND RED BLOOD CELLS IN THE PATHOGENESIS OF COMMUNITY-ACQUIRED PNEUMONIA. WORLD OF MEDICINE AND BIOLOGY 2022. [DOI: 10.26724/2079-8334-2022-1-79-21-24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
42
|
Perez-Malagon CD, Barrera R. Lack of Medical Criteria for Long-Term Oxygen Therapy Usage According to International Guidance in Outpatients With Chronic Hypoxemia. Cureus 2021; 13:e19634. [PMID: 34956760 PMCID: PMC8675795 DOI: 10.7759/cureus.19634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/15/2021] [Indexed: 11/12/2022] Open
Abstract
Background Benefits of long-term oxygen therapy (LTOT) have been observed in hypoxemic respiratory patients. Reports have shown the lack of observance among healthcare professionals of LTOT. Thus, this study aimed to determine the demographic characteristics and observance of the medical indication of LTOT according to the international guidelines. Methodology A cross-sectional study was conducted on patients who attended the Medical Unit in Aguascalientes, Mexico to re-evaluate the need for LTOT. Data are presented as mean ± standard deviation. Statistical analyses were performed using the chi-square test or unpaired t-tests. P-values of <0.05 were considered statistically significant. Results From 813 outpatients attended to re-evaluate whether they met the medical criteria to use LTOT, 93 outpatients were excluded, and the remaining 714 outpatients were enrolled. The mean age of the patients was 70.0 ± 15.1 years, with a female gender predominance (59.1 %). The mean PaO2 level in room air was 7.9 ± 2.3 kPa. Hemoglobin and hematocrit levels were 14.9 ± 4.1 g/dL and 44.7 ± 8.4%, respectively. The mean levels of PaO2 were higher in female patients (8.1 ± 2.5 kPa vs. 7.6 ± 1.9 kPa; p = 0.01). The most common diagnosis was chronic obstructive pulmonary disorder (60.5%). Moreover, the specialty that most indicated the use of LTOT was pulmonology (57.8%); however, 36.8% of patients who used LTOT did not have any criteria according to international guidelines. Conclusions Although a significant percentage of patients do not use LTOT correctly, the most important finding is that the medical indication of LTOT by physicians is not always correct, leading to an excessive prescription of oxygen.
Collapse
Affiliation(s)
- Carlos David Perez-Malagon
- Centro de Ciencias Biomedicas, Universidad Autónoma de Aguascalientes, Aguascalientes, MEX.,Clinical Service Rotation, Unidades Médicas de Atención Ambulatoria, Instituto Mexicano del Seguro Social, Aguascalientes, MEX
| | - Raul Barrera
- Autoimmunity, National Institute of Respiratory Diseases, Mexico City, MEX
| |
Collapse
|
43
|
Kattan E, Hernández G. The role of peripheral perfusion markers and lactate in septic shock resuscitation. JOURNAL OF INTENSIVE MEDICINE 2021; 2:17-21. [PMID: 36789233 PMCID: PMC9924002 DOI: 10.1016/j.jointm.2021.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/04/2021] [Accepted: 11/18/2021] [Indexed: 10/19/2022]
Abstract
Septic shock leads to progressive hypoperfusion and tissue hypoxia. Unfortunately, numerous uncertainties exist around the best monitoring strategy, as available techniques are mere surrogates for these phenomena. Nevertheless, central venous oxygen saturation (ScvO2), venous-to-arterial CO2 gap, and lactate normalization have been fostered as resuscitation targets for septic shock. Moreover, recent evidence has challenged the central role of lactate. Following the ANDROMEDA-SHOCK trial, capillary refill time (CRT) has become a promissory target, considering the observed benefits in mortality, treatment intensity, and organ dysfunction. Interpretation of CRT within a multimodal approach may aid clinicians in guiding resuscitative interventions and stop resuscitation earlier, thus avoiding the risk of morbid fluid overload. Integrative assessment of a patient's perfusion status can be easily performed using bedside clinical tools. Based on its fast kinetics and recent supporting evidence, targeting CRT (within a holistic assessment of perfusion) may improve outcomes in septic shock resuscitation.
Collapse
|
44
|
Singer M, Young PJ, Laffey JG, Asfar P, Taccone FS, Skrifvars MB, Meyhoff CS, Radermacher P. Dangers of hyperoxia. Crit Care 2021; 25:440. [PMID: 34924022 PMCID: PMC8686263 DOI: 10.1186/s13054-021-03815-y] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 11/04/2021] [Indexed: 01/27/2023] Open
Abstract
Oxygen (O2) toxicity remains a concern, particularly to the lung. This is mainly related to excessive production of reactive oxygen species (ROS). Supplemental O2, i.e. inspiratory O2 concentrations (FIO2) > 0.21 may cause hyperoxaemia (i.e. arterial (a) PO2 > 100 mmHg) and, subsequently, hyperoxia (increased tissue O2 concentration), thereby enhancing ROS formation. Here, we review the pathophysiology of O2 toxicity and the potential harms of supplemental O2 in various ICU conditions. The current evidence base suggests that PaO2 > 300 mmHg (40 kPa) should be avoided, but it remains uncertain whether there is an "optimal level" which may vary for given clinical conditions. Since even moderately supra-physiological PaO2 may be associated with deleterious side effects, it seems advisable at present to titrate O2 to maintain PaO2 within the normal range, avoiding both hypoxaemia and excess hyperoxaemia.
Collapse
Affiliation(s)
- Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| | - Paul J Young
- Medical Research Institute of New Zealand, and Intensive Care Unit, Wellington Hospital, Wellington, Wellington, New Zealand
- Australian and New Zealand Intensive Care Research Centre, Department of Critical Care Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - John G Laffey
- Department of Anaesthesia and Intensive Care Medicine, Galway University Hospitals, and School of Medicine, National University of Ireland, Galway, Ireland
| | - Pierre Asfar
- Département de Médecine Intensive - Réanimation Et Médecine Hyperbare, Centre Hospitalier Universitaire d'Angers, Angers, France
| | - Fabio Silvio Taccone
- Department of Intensive Care, Hôpital Erasme, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Markus B Skrifvars
- Department of Emergency Care and Services, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Christian S Meyhoff
- Department of Anaesthesia and Intensive Care, Bispebjerg and Frederiksberg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Peter Radermacher
- Institut für Anästhesiologische Pathophysiologie und Verfahrensentwicklung, Universitätsklinikum, Helmholtzstrasse 8-1, 89081, Ulm, Germany.
| |
Collapse
|
45
|
Gere S, Berhane Y, Worku A. Comparison of Chest-to-Back Skin-to-Skin Contact and Chest-to-Chest Skin-to-Skin Contact on the Risk of Oxygen Desaturation and Change in Heart Rate in Low Birth Weight and/or Premature Babies: A Randomized Controlled Clinical Trial. Int J Pediatr 2021; 2021:7196749. [PMID: 34925513 PMCID: PMC8674035 DOI: 10.1155/2021/7196749] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022] Open
Abstract
Chest-to-chest (CC) skin-to-skin contact (SSC) is a widely used method of SSC to prevent low birth weight (LBW) and/or premature babies with the risk of hypothermia. However, very recently, a study has also shown that the chest-to-back (CB) SSC is also useful for such a purpose. It is also evident that CC SSC enhances the cardiorespiratory performance of LBW and/or premature babies from the risk of cold stress. However, whether babies kept in CB SSC have the risk of clinically relevant decreases of oxygen saturation or critical changes of the baby heart rate comparing the two SSC methods has been studied hardly. Thus, we assessed the risk of oxygen desaturation and changes in babies' heart rate among LBW and/or premature babies kept in CB SSC compared to the standard. In this study, we enrolled 46 LBW and/or premature babies born between 32 and 37 completed weeks of gestation. We used a parallel-group randomized controlled clinical trial. Peripheral arterial blood oxygen saturation (SpO2) and heart rate (HR) were measured using an OxiMaxN-600X Pulse Oximeter. We transformed these measurements into stability of the cardiorespiratory system in premature infant (SCRIP) scores. We applied a generalized estimating equation model to analyze the data. No statistically significant difference was observed between babies kept in CB SSC compared to babies kept in CC SSC in either blood oxygen saturation or heart rate (P > 0.05). Thus, the CB SSC can be used as one possible way to care for LBW and preterm babies in the kangaroo mother care. We suggest more studies before scaling up the approach in routine care.
Collapse
Affiliation(s)
- Sisay Gere
- Department of Nursing, College of Health Sciences, Arsi University, Asella, Ethiopia
| | - Yemane Berhane
- Department of Epidemiology and Biostatistics, Addis Continental Institute of Public Health, Addis Ababa, Ethiopia
- Department of Reproductive Health and Population, Addis Continental Institute of Public Health, Addis Ababa, Ethiopia
| | - Alemayehu Worku
- Department of Biostatistics, Faculty of Health, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
46
|
High-Fructose Diet Alters Intestinal Microbial Profile and Correlates with Early Tumorigenesis in a Mouse Model of Barrett’s Esophagus. Microorganisms 2021; 9:microorganisms9122432. [PMID: 34946037 PMCID: PMC8708753 DOI: 10.3390/microorganisms9122432] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022] Open
Abstract
Esophageal adenocarcinoma (EAC) is mostly prevalent in industrialized countries and has been associated with obesity, commonly linked with a diet rich in fat and refined sugars containing high fructose concentrations. In meta-organisms, dietary components are digested and metabolized by the host and its gut microbiota. Fructose has been shown to induce proliferation and cell growth in pancreas and colon cancer cell lines and also alter the gut microbiota. In a previous study with the L2-IL-1B mouse model, we showed that a high-fat diet (HFD) accelerated EAC progression from its precursor lesion Barrett’s esophagus (BE) through changes in the gut microbiota. Aiming to investigate whether a high-fructose diet (HFrD) also alters the gut microbiota and favors EAC carcinogenesis, we assessed the effects of HFrD on the phenotype and intestinal microbial communities of L2-IL1B mice. Results showed a moderate acceleration in histologic disease progression, a mild effect on the systemic inflammatory response, metabolic changes in the host, and a shift in the composition, metabolism, and functionality of intestinal microbial communities. We conclude that HFrD alters the overall balance of the gut microbiota and induces an acceleration in EAC progression in a less pronounced manner than HFD.
Collapse
|
47
|
Wong AKI, Charpignon M, Kim H, Josef C, de Hond AAH, Fojas JJ, Tabaie A, Liu X, Mireles-Cabodevila E, Carvalho L, Kamaleswaran R, Madushani RWMA, Adhikari L, Holder AL, Steyerberg EW, Buchman TG, Lough ME, Celi LA. Analysis of Discrepancies Between Pulse Oximetry and Arterial Oxygen Saturation Measurements by Race and Ethnicity and Association With Organ Dysfunction and Mortality. JAMA Netw Open 2021; 4:e2131674. [PMID: 34730820 PMCID: PMC9178439 DOI: 10.1001/jamanetworkopen.2021.31674] [Citation(s) in RCA: 147] [Impact Index Per Article: 36.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
IMPORTANCE Discrepancies in oxygen saturation measured by pulse oximetry (Spo2), when compared with arterial oxygen saturation (Sao2) measured by arterial blood gas (ABG), may differentially affect patients according to race and ethnicity. However, the association of these disparities with health outcomes is unknown. OBJECTIVE To examine racial and ethnic discrepancies between Sao2 and Spo2 measures and their associations with clinical outcomes. DESIGN, SETTING, AND PARTICIPANTS This multicenter, retrospective, cross-sectional study included 3 publicly available electronic health record (EHR) databases (ie, the Electronic Intensive Care Unit-Clinical Research Database and Medical Information Mart for Intensive Care III and IV) as well as Emory Healthcare (2014-2021) and Grady Memorial (2014-2020) databases, spanning 215 hospitals and 382 ICUs. From 141 600 hospital encounters with recorded ABG measurements, 87 971 participants with first ABG measurements and an Spo2 of at least 88% within 5 minutes before the ABG test were included. EXPOSURES Patients with hidden hypoxemia (ie, Spo2 ≥88% but Sao2 <88%). MAIN OUTCOMES AND MEASURES Outcomes, stratified by race and ethnicity, were Sao2 for each Spo2, hidden hypoxemia prevalence, initial demographic characteristics (age, sex), clinical outcomes (in-hospital mortality, length of stay), organ dysfunction by scores (Sequential Organ Failure Assessment [SOFA]), and laboratory values (lactate and creatinine levels) before and 24 hours after the ABG measurement. RESULTS The first Spo2-Sao2 pairs from 87 971 patient encounters (27 713 [42.9%] women; mean [SE] age, 62.2 [17.0] years; 1919 [2.3%] Asian patients; 26 032 [29.6%] Black patients; 2397 [2.7%] Hispanic patients, and 57 632 [65.5%] White patients) were analyzed, with 4859 (5.5%) having hidden hypoxemia. Hidden hypoxemia was observed in all subgroups with varying incidence (Black: 1785 [6.8%]; Hispanic: 160 [6.0%]; Asian: 92 [4.8%]; White: 2822 [4.9%]) and was associated with greater organ dysfunction 24 hours after the ABG measurement, as evidenced by higher mean (SE) SOFA scores (7.2 [0.1] vs 6.29 [0.02]) and higher in-hospital mortality (eg, among Black patients: 369 [21.1%] vs 3557 [15.0%]; P < .001). Furthermore, patients with hidden hypoxemia had higher mean (SE) lactate levels before (3.15 [0.09] mg/dL vs 2.66 [0.02] mg/dL) and 24 hours after (2.83 [0.14] mg/dL vs 2.27 [0.02] mg/dL) the ABG test, with less lactate clearance (-0.54 [0.12] mg/dL vs -0.79 [0.03] mg/dL). CONCLUSIONS AND RELEVANCE In this study, there was greater variability in oxygen saturation levels for a given Spo2 level in patients who self-identified as Black, followed by Hispanic, Asian, and White. Patients with and without hidden hypoxemia were demographically and clinically similar at baseline ABG measurement by SOFA scores, but those with hidden hypoxemia subsequently experienced higher organ dysfunction scores and higher in-hospital mortality.
Collapse
Affiliation(s)
- An-Kwok Ian Wong
- Division of Pulmonary, Allergy, Critical Care,
and Sleep Medicine, Emory University, Atlanta, Georgia
- Division of Pulmonary, Allergy, and Critical
Care Medicine, Duke University, Durham, North Carolina
| | - Marie Charpignon
- MIT Institute for Data, Systems and Society,
Cambridge, Massachusetts
| | - Han Kim
- Department of Biomedical Engineering, Johns
Hopkins University, Baltimore, Maryland
| | | | - Anne A. H. de Hond
- Leiden University Medical Centre, Department of
Biomedical Data Sciences, Leiden, the Netherlands
- Leiden University Medical Centre, Department of
Information Technology and Digital Innovation, Leiden, the Netherlands
| | - Jhalique Jane Fojas
- Department of Neurology, Beth Israel Deaconess
Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Azade Tabaie
- Department of Biomedical Informatics, Emory
University, Atlanta, Georgia
| | - Xiaoli Liu
- School of Biological Science and Medical
Engineering, Beihang University, Beijing, China
| | | | - Leandro Carvalho
- Respiratory Institute, Cleveland Clinic,
Cleveland, Ohio
- Sociedade Mineira de Terapia Intensiva, Belo
Horizonte, Brazil
| | | | | | - Lasith Adhikari
- Connected Care and Personal Health, Philips
Research North America, Cambridge, Massachusetts
| | - Andre L. Holder
- Division of Pulmonary, Allergy, Critical Care,
and Sleep Medicine, Emory University, Atlanta, Georgia
| | - Ewout W. Steyerberg
- Leiden University Medical Centre, Department of
Biomedical Data Sciences, Leiden, the Netherlands
| | | | - Mary E. Lough
- Medicine–Primary Care and Population
Health, Stanford University, California
- Office of Research, Stanford Health Care,
Stanford, California
| | - Leo Anthony Celi
- Massachusetts Institute of Technology,
Laboratory for Computational Physiology, Cambridge
- Division of Pulmonary, Critical Care, and
Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
- Department of Biostatistics, Harvard T.H. Chan
School of Public Health, Boston, Massachusetts
| |
Collapse
|
48
|
Li Z, Wang S, Gong C, Hu Y, Liu J, Wang W, Chen Y, Liao Q, He B, Huang Y, Luo Q, Zhao Y, Xiao Y. Effects of Environmental and Pathological Hypoxia on Male Fertility. Front Cell Dev Biol 2021; 9:725933. [PMID: 34589489 PMCID: PMC8473802 DOI: 10.3389/fcell.2021.725933] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/23/2021] [Indexed: 12/28/2022] Open
Abstract
Male infertility is a widespread health problem affecting approximately 6%-8% of the male population, and hypoxia may be a causative factor. In mammals, two types of hypoxia are known, including environmental and pathological hypoxia. Studies looking at the effects of hypoxia on male infertility have linked both types of hypoxia to poor sperm quality and pregnancy outcomes. Hypoxia damages testicular seminiferous tubule directly, leading to the disorder of seminiferous epithelium and shedding of spermatogenic cells. Hypoxia can also disrupt the balance between oxidative phosphorylation and glycolysis of spermatogenic cells, resulting in impaired self-renewal and differentiation of spermatogonia, and failure of meiosis. In addition, hypoxia disrupts the secretion of reproductive hormones, causing spermatogenic arrest and erectile dysfunction. The possible mechanisms involved in hypoxia on male reproductive toxicity mainly include excessive ROS mediated oxidative stress, HIF-1α mediated germ cell apoptosis and proliferation inhibition, systematic inflammation and epigenetic changes. In this review, we discuss the correlations between hypoxia and male infertility based on epidemiological, clinical and animal studies and enumerate the hypoxic factors causing male infertility in detail. Demonstration of the causal association between hypoxia and male infertility will provide more options for the treatment of male infertility.
Collapse
Affiliation(s)
- Zhibin Li
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Key Laboratory of Extreme Environmental Medicine, Ministry of Education of China, Chongqing, China
| | - Sumin Wang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Chunli Gong
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yiyang Hu
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Jiao Liu
- Department of Endoscope, The General Hospital of Shenyang Military Region, Liaoning, China
| | - Wei Wang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yang Chen
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Qiushi Liao
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Bing He
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China.,Department of Laboratory Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Yu Huang
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Qiang Luo
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yongbing Zhao
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| | - Yufeng Xiao
- Department of Gastroenterology, Xinqiao Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
49
|
Moinipour N, Barati M, Sahebkar A, Iranshahy M, Shakeri A. Protective effects of curcumin against iron-induced toxicity. Curr Pharm Biotechnol 2021; 23:1020-1027. [PMID: 34521323 DOI: 10.2174/1389201022666210914122846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 08/02/2021] [Accepted: 08/05/2021] [Indexed: 11/22/2022]
Abstract
Iron is an essential element in cellular metabolism that participates in many biochemical reactions. Nevertheless, iron overload in the body is the cause of damage in some organs including liver, glands, brain, heart, gastrointestinal tract and lung. Iron chelation therapy could be considered as an effective approach for removing excess iron. Deferoxamine, deferiprone and deferasirox are three common iron chelators in clinical practice but cause several side effects. In this context, the use of curcumin, a dietary phytochemical derived from turmeric, as a natural and safe antioxidant with iron-chelating activity may be a useful strategy for the management of iron overload. This review focuses on the deleterious effect of iron accumulation in different organs of the body as well as the therapeutic potential of curcumin against iron-induced toxicity.
Collapse
Affiliation(s)
- Nastaran Moinipour
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad. Iran
| | - Mahdi Barati
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad. Iran
| | - Amirhosein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad. Iran
| | - Milad Iranshahy
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad. Iran
| | - Abolfazl Shakeri
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad. Iran
| |
Collapse
|
50
|
Ortega MA, Fraile-Martinez O, García-Montero C, Callejón-Peláez E, Sáez MA, Álvarez-Mon MA, García-Honduvilla N, Monserrat J, Álvarez-Mon M, Bujan J, Canals ML. A General Overview on the Hyperbaric Oxygen Therapy: Applications, Mechanisms and Translational Opportunities. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:864. [PMID: 34577787 PMCID: PMC8465921 DOI: 10.3390/medicina57090864] [Citation(s) in RCA: 123] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/09/2021] [Accepted: 08/20/2021] [Indexed: 12/17/2022]
Abstract
Hyperbaric oxygen therapy (HBOT) consists of using of pure oxygen at increased pressure (in general, 2-3 atmospheres) leading to augmented oxygen levels in the blood (Hyperoxemia) and tissue (Hyperoxia). The increased pressure and oxygen bioavailability might be related to a plethora of applications, particularly in hypoxic regions, also exerting antimicrobial, immunomodulatory and angiogenic properties, among others. In this review, we will discuss in detail the physiological relevance of oxygen and the therapeutical basis of HBOT, collecting current indications and underlying mechanisms. Furthermore, potential areas of research will also be examined, including inflammatory and systemic maladies, COVID-19 and cancer. Finally, the adverse effects and contraindications associated with this therapy and future directions of research will be considered. Overall, we encourage further research in this field to extend the possible uses of this procedure. The inclusion of HBOT in future clinical research could be an additional support in the clinical management of multiple pathologies.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (M.A.S.); (M.A.Á.-M.); (N.G.-H.); (J.M.); (M.Á.-M.); (J.B.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Cancer Registry and Pathology Department, Hospital Universitario Principe de Asturias, 28806 Alcala de Henares, Spain
| | - Oscar Fraile-Martinez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (M.A.S.); (M.A.Á.-M.); (N.G.-H.); (J.M.); (M.Á.-M.); (J.B.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (M.A.S.); (M.A.Á.-M.); (N.G.-H.); (J.M.); (M.Á.-M.); (J.B.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Enrique Callejón-Peláez
- Underwater and Hyperbaric Medicine Service, Central University Hospital of Defence—UAH Madrid, 28801 Alcala de Henares, Spain;
| | - Miguel A. Sáez
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (M.A.S.); (M.A.Á.-M.); (N.G.-H.); (J.M.); (M.Á.-M.); (J.B.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Pathological Anatomy Service, Central University Hospital of Defence—UAH Madrid, 28801 Alcala de Henares, Spain
| | - Miguel A. Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (M.A.S.); (M.A.Á.-M.); (N.G.-H.); (J.M.); (M.Á.-M.); (J.B.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (M.A.S.); (M.A.Á.-M.); (N.G.-H.); (J.M.); (M.Á.-M.); (J.B.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (M.A.S.); (M.A.Á.-M.); (N.G.-H.); (J.M.); (M.Á.-M.); (J.B.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (M.A.S.); (M.A.Á.-M.); (N.G.-H.); (J.M.); (M.Á.-M.); (J.B.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
- Immune System Diseases—Rheumatology, Oncology Service an Internal Medicine, University Hospital Príncipe de Asturias, (CIBEREHD), 28806 Alcala de Henares, Spain
| | - Julia Bujan
- Department of Medicine and Medical Specialities, Faculty of Medicine and Health Sciences, University of Alcalá, 28801 Alcala de Henares, Spain; (C.G.-M.); (M.A.S.); (M.A.Á.-M.); (N.G.-H.); (J.M.); (M.Á.-M.); (J.B.)
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), 28034 Madrid, Spain
| | - María Luisa Canals
- ISM, IMHA Research Chair, Former of IMHA (International Maritime Health Association), 43001 Tarragona, Spain;
| |
Collapse
|