1
|
Navacchia ML, Cinti C, Marchesi E, Perrone D. Insights into SARS-CoV-2: Small-Molecule Hybrids for COVID-19 Treatment. Molecules 2024; 29:5403. [PMID: 39598790 PMCID: PMC11596935 DOI: 10.3390/molecules29225403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
The advantages of a treatment modality that combines two or more therapeutic agents with different mechanisms of action encourage the study of hybrid functional compounds for pharmacological applications. Molecular hybridization, resulting from a covalent combination of two or more pharmacophore units, has emerged as a promising approach to overcome several issues and has also been explored for the design of new drugs for COVID-19 treatment. In this review, we presented an overview of small-molecule hybrids from both natural products and synthetic sources reported in the literature to date with potential antiviral anti-SARS-CoV-2 activity.
Collapse
Affiliation(s)
- Maria Luisa Navacchia
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), 40129 Bologna, Italy;
| | - Caterina Cinti
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), 40129 Bologna, Italy;
| | - Elena Marchesi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Daniela Perrone
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
2
|
Ávila-Martínez DV, Mixtega-Ruiz WK, Hurtado-Capetillo JM, Lopez-Franco O, Flores-Muñoz M. Counter-regulatory RAS peptides: new therapy targets for inflammation and fibrotic diseases? Front Pharmacol 2024; 15:1377113. [PMID: 38666016 PMCID: PMC11044688 DOI: 10.3389/fphar.2024.1377113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/18/2024] [Indexed: 04/28/2024] Open
Abstract
The renin-angiotensin system (RAS) is an important cascade of enzymes and peptides that regulates blood pressure, volume, and electrolytes. Within this complex system of reactions, its counter-regulatory axis has attracted attention, which has been associated with the pathophysiology of inflammatory and fibrotic diseases. This review article analyzes the impact of different components of the counter-regulatory axis of the RAS on different pathologies. Of these peptides, Angiotensin-(1-7), angiotensin-(1-9) and alamandine have been evaluated in a wide variety of in vitro and in vivo studies, where not only they counteract the actions of the classical axis, but also exhibit independent anti-inflammatory and fibrotic actions when binding to specific receptors, mainly in heart, kidney, and lung. Other functional peptides are also addressed, which despite no reports associated with inflammation and fibrosis to date were found, they could represent a potential target of study. Furthermore, the association of agonists of the counter-regulatory axis is analyzed, highlighting their contribution to the modulation of the inflammatory response counteracting the development of fibrotic events. This article shows an overview of the importance of the RAS in the resolution of inflammatory and fibrotic diseases, offering an understanding of the individual components as potential treatments.
Collapse
Affiliation(s)
- Diana V Ávila-Martínez
- Laboratorio de Medicina Traslacional, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
- Doctorado en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
| | - Wendy K Mixtega-Ruiz
- Laboratorio de Medicina Traslacional, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
- Doctorado en Ciencias Biológicas, Centro Tlaxcala de Biología de la Conducta, Universidad Autónoma de Tlaxcala, Tlaxcala, Mexico
| | | | - Oscar Lopez-Franco
- Laboratorio de Medicina Traslacional, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
- Doctorado en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
| | - Mónica Flores-Muñoz
- Laboratorio de Medicina Traslacional, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
- Doctorado en Ciencias de la Salud, Instituto de Ciencias de la Salud, Universidad Veracruzana, Xalapa, Mexico
| |
Collapse
|
3
|
Ma H, Mao C, Hu Y, Wang L, Guo X, Li L, Wang F, Guan R. Angiotensin-(1-9) attenuates adriamycin-induced cardiomyopathy in rats via the angiotensin type 2 receptor. Mol Cell Biochem 2024; 479:73-83. [PMID: 36995547 DOI: 10.1007/s11010-023-04718-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 03/19/2023] [Indexed: 03/31/2023]
Abstract
Adriamycin (ADR) causes irreversible damage to the heart, leading to ADR-induced cardiomyopathy (ACM). Angiotensin-(1-9) [Ang-(1-9)] is a peptide from the counter-regulatory renin-angiotensin system, but the effects on ACM is unclear. Our study was aimed to explore the effects and underlying molecular mechanisms of Ang-(1-9) against ACM in Wistar rats. Rats were injected intraperitoneally with ADR via six equal doses (each containing 2.5 mg/kg) within a period of 2 weeks to induce ACM. After 2 weeks of ADR treatment, the rats were treated with Ang-(1-9) (200 ng/kg/min) or angiotensin type 2 receptor (AT2R) antagonist PD123319 (100 ng/kg/min) for 4 weeks. Although Ang-(1-9) treatment did not influence blood pressure, it significantly improved left ventricular function and remodeling in ADR-treated rats, by inhibiting collagen deposition, the expression of TGF-β1, inflammatory response, cardiomyocyte apoptosis and oxidative stress. Moreover, Ang-(1-9) reduced ERK1/2 and P38 MAPK phosphorylation. The therapeutic effects of Ang-(1-9) were blocked by the AT2R antagonist PD123319, which also offset the down-regulation protein expression of pERK1/2 and pP38 MAPK induced by Ang-(1-9). These data suggest that Ang-(1-9) improved left ventricular function and remodeling in ADR-treated rats by an AT2R/ ERK1/2 and P38 MAPK-dependent mechanism. Thus, the Ang-(1-9)/AT2R axis may provide a novel and promising target to the prevention and treatment of ACM.
Collapse
Affiliation(s)
- Hui Ma
- Department of Pediatrics, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Chenggang Mao
- Department of Pediatrics, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Yang Hu
- Department of Pediatrics, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Liqin Wang
- Department of Anesthesiology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xingqing Guo
- Department of Pediatrics, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Lei Li
- Department of Pediatrics, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Fang Wang
- Department of Pediatrics, Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| | - Renzheng Guan
- Department of Pediatrics, Affiliated Hospital of Qingdao University, Qingdao, 266000, China.
| |
Collapse
|
4
|
Villela DC, Namsolleck P, Reichetzeder C, Moll GN. AT 2 receptor agonist LP2 restores respiratory function in a rat model of bleomycin-induced lung remodelling. Peptides 2023; 170:171106. [PMID: 37742799 DOI: 10.1016/j.peptides.2023.171106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 09/26/2023]
Abstract
This study aimed to evaluate the prophylactic and therapeutic potential of angiotensin II type 2 receptor peptide agonist LP2 in bleomycin-induced airway and cardiac remodeling in rats. Male Wistar rats were intratracheally instillated with bleomycin. Animals of a prophylactic arm received LP2 from day 0 at intraperitoneal doses of 1, 3 or 10 μg/kg/d, whereas animals from a therapeutic arm received this LP2 treatment from day 7. On day 28 direct lung mechanics were determined and cardiac and lung tissues were collected and (histo)morphologically assessed. Prophylactic LP2 at 1 µg/kg/d with bleomycin, versus bleomycin alone, significantly improved the airway pressure responses at fixed inflation of 4 ml (p < 0.05) and 7 ml volume (p < 0.05), static compliance (p < 0.01), inspiratory capacity (p < 0.05), lung tolerance of increased volume (p < 0.0001), right to left ventricular hypertrophy (p < 0.05). Therapeutic regime showed a similar trend as the prophylactic arm but was less effective, mostly lacking significance. However, and importantly, therapeutic LP2 at 1 µg/kg/d significantly decreased mRNA expression of collagen 1A1 (p < 0.01), of Connective Tissue Growth Factor 1 (p < 0.05) and of Tissue MetalloPeptidase inhibitor 1 (p < 0.05). In conclusion, a very low dose of 1 µg/kg/d LP2 has capacity to counter bleomycin-induced impairment of lung functioning and consequent cardiac remodeling.
Collapse
Affiliation(s)
- Daniel Campos Villela
- Faculty of Medicine, University of the Jequitinhonha and Mucuri Valleys (UFVJM), Diamantina, Brazil
| | - Pawel Namsolleck
- PCDA Pharma Consulting & Data Analytics, Ten Boer, the Netherlands
| | | | - Gert N Moll
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Linnaeusborg, Nijenborg 7, 9747 AG Groningen, the Netherlands.
| |
Collapse
|
5
|
Cappelletti P, Gallo G, Marino R, Palaniappan S, Corbo M, Savoia C, Feligioni M. From cardiovascular system to brain, the potential protective role of Mas Receptors in COVID-19 infection. Eur J Pharmacol 2023; 959:176061. [PMID: 37775018 DOI: 10.1016/j.ejphar.2023.176061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023]
Abstract
Coronavirus disease 2019 (COVID-19) has been declared a new pandemic in March 2020. Although most patients are asymptomatic, those with underlying cardiovascular comorbidities may develop a more severe systemic infection which is often associated with fatal pneumonia. Nonetheless, neurological and cardiovascular manifestations could be present even without respiratory symptoms. To date, no COVID-19-specific drugs are able for preventing or treating the infection and generally, the symptoms are relieved with general anti-inflammatory drugs. Angiotensin-converting-enzyme 2 (ACE2) may function as the receptor for virus entry within the cells favoring the progression of infection in the organism. On the other hand, ACE2 is a relevant enzyme in renin angiotensin system (RAS) cascade fostering Ang1-7/Mas receptor activation which promotes protective effects in neurological and cardiovascular systems. It is known that RAS is composed by two functional countervailing axes the ACE/AngII/AT1 receptor and the ACE/AngII/AT2 receptor which counteracts the actions mediated by AngII/AT1 receptor by inducing anti-inflammatory, antioxidant and anti-growth functions. Subsequently an "alternative" ACE2/Ang1-7/Mas receptor axis has been described with functions similar to the latter protective arm. Here, we discuss the neurological and cardiovascular effects of COVID-19 highlighting the role of the stimulation of the RAS "alternative" protective arm in attenuating pulmonary, cerebral and cardiovascular damages. In conclusion, only two clinical trials are running for Mas receptor agonists but few other molecules are in preclinical phase and if successful these drugs might represent a successful strategy for the treatment of the acute phase of COVID-19 infection.
Collapse
Affiliation(s)
- Pamela Cappelletti
- Department of Neuro-Rehabilitation Sciences, Casa di Cura Igea, Milan, Italy.
| | - Giovanna Gallo
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Rachele Marino
- European Brain Research Institute (EBRI) Rita Levi Montalcini Foundation, Rome, Italy
| | | | - Massimo Corbo
- Department of Neuro-Rehabilitation Sciences, Casa di Cura Igea, Milan, Italy
| | - Carmine Savoia
- Department of Clinical and Molecular Medicine, Faculty of Medicine and Psychology, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Marco Feligioni
- Department of Neuro-Rehabilitation Sciences, Casa di Cura Igea, Milan, Italy; European Brain Research Institute (EBRI) Rita Levi Montalcini Foundation, Rome, Italy.
| |
Collapse
|
6
|
Zhang Y, Fang XM. The pan-liver network theory: From traditional chinese medicine to western medicine. CHINESE J PHYSIOL 2023; 66:401-436. [PMID: 38149555 DOI: 10.4103/cjop.cjop-d-22-00131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023] Open
Abstract
In traditional Chinese medicine (TCM), the liver is the "general organ" that is responsible for governing/maintaining the free flow of qi over the entire body and storing blood. According to the classic five elements theory, zang-xiang theory, yin-yang theory, meridians and collaterals theory, and the five-viscera correlation theory, the liver has essential relationships with many extrahepatic organs or tissues, such as the mother-child relationships between the liver and the heart, and the yin-yang and exterior-interior relationships between the liver and the gallbladder. The influences of the liver to the extrahepatic organs or tissues have been well-established when treating the extrahepatic diseases from the perspective of modulating the liver by using the ancient classic prescriptions of TCM and the acupuncture and moxibustion. In modern medicine, as the largest solid organ in the human body, the liver has the typical functions of filtration and storage of blood; metabolism of carbohydrates, fats, proteins, hormones, and foreign chemicals; formation of bile; storage of vitamins and iron; and formation of coagulation factors. The liver also has essential endocrine function, and acts as an immunological organ due to containing the resident immune cells. In the perspective of modern human anatomy, physiology, and pathophysiology, the liver has the organ interactions with the extrahepatic organs or tissues, for example, the gut, pancreas, adipose, skeletal muscle, heart, lung, kidney, brain, spleen, eyes, skin, bone, and sexual organs, through the circulation (including hemodynamics, redox signals, hepatokines, metabolites, and the translocation of microbiota or its products, such as endotoxins), the neural signals, or other forms of pathogenic factors, under normal or diseases status. The organ interactions centered on the liver not only influence the homeostasis of these indicated organs or tissues, but also contribute to the pathogenesis of cardiometabolic diseases (including obesity, type 2 diabetes mellitus, metabolic [dysfunction]-associated fatty liver diseases, and cardio-cerebrovascular diseases), pulmonary diseases, hyperuricemia and gout, chronic kidney disease, and male and female sexual dysfunction. Therefore, based on TCM and modern medicine, the liver has the bidirectional interaction with the extrahepatic organ or tissue, and this established bidirectional interaction system may further interact with another one or more extrahepatic organs/tissues, thus depicting a complex "pan-hepatic network" model. The pan-hepatic network acts as one of the essential mechanisms of homeostasis and the pathogenesis of diseases.
Collapse
Affiliation(s)
- Yaxing Zhang
- Department of Physiology; Research Centre of Basic Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong; Issue 12th of Guangxi Apprenticeship Education of Traditional Chinese Medicine (Shi-Cheng Class of Guangxi University of Chinese Medicine), College of Continuing Education, Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| | - Xian-Ming Fang
- Department of Cardiology, Ruikang Hospital Affiliated to Guangxi University of Chinese Medicine (Guangxi Hospital of Integrated Chinese Medicine and Western Medicine, Ruikang Clinical Faculty of Guangxi University of Chinese Medicine), Guangxi University of Chinese Medicine, Nanning, Guangxi, China
| |
Collapse
|
7
|
Barhoumi T, Todryk S. Role of monocytes/macrophages in renin-angiotensin system-induced hypertension and end organ damage. Front Physiol 2023; 14:1199934. [PMID: 37854465 PMCID: PMC10579565 DOI: 10.3389/fphys.2023.1199934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/12/2023] [Indexed: 10/20/2023] Open
Abstract
The renin-angiotensin system (RAS) is a central modulator of cardiovascular physiology. Pathophysiology of hypertension is commonly accompanied by hyper-activation of RAS. Angiotensin II receptor blockers (ARBs) and Angiotensin-converting enzyme (ACE) inhibitors are the gold standard treatment for hypertension. Recently, several studies highlighted the crucial role of immune system in hypertension. Angiotensin-II-induced hypertension is associated with low grade inflammation characterized by innate and adaptive immune system dysfunction. Throughout the progression of hypertension, monocyte/macrophage cells appear to have a crucial role in vascular inflammation and interaction with the arterial wall. Since myelomonocytic cells potentially play a key role in angiotensin-II-induced hypertension and organ damage, pharmacological targeting of RAS components in monocyte/macrophages may possibly present an innovative strategy for treatment of hypertension and related pathology.
Collapse
Affiliation(s)
- Tlili Barhoumi
- Medical Research Core Facility and Platforms (MRCFP), King Abdullah International Medical Research Center, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Kingdom of Saudi Arabia
| | - Stephen Todryk
- Department of Applied Sciences, Northumbria University, Newcastle Upon Tyne, United Kingdom
| |
Collapse
|
8
|
Gilyazova I, Timasheva Y, Karunas A, Kazantseva A, Sufianov A, Mashkin A, Korytina G, Wang Y, Gareev I, Khusnutdinova E. COVID-19: Mechanisms, risk factors, genetics, non-coding RNAs and neurologic impairments. Noncoding RNA Res 2023; 8:240-254. [PMID: 36852336 PMCID: PMC9946734 DOI: 10.1016/j.ncrna.2023.02.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/18/2023] [Accepted: 02/18/2023] [Indexed: 02/24/2023] Open
Abstract
The novel coronavirus infection (COVID-19) causes a severe acute illness with the development of respiratory distress syndrome in some cases. COVID-19 is a global problem of mankind to this day. Among its most important aspects that require in-depth study are pathogenesis and molecular changes in severe forms of the disease. A lot of literature data is devoted to the pathogenetic mechanisms of COVID-19. Without dwelling in detail on some paths of pathogenesis discussed, we note that at present there are many factors of development and progression. Among them, this is the direct role of both viral non-coding RNAs (ncRNAs) and host ncRNAs. One such class of ncRNAs that has been extensively studied in COVID-19 is microRNAs (miRNAs) and long non-coding RNAs (lncRNAs). Moreover, Initially, it was believed that this COVID-19 was limited to damage to the respiratory system. It has now become clear that COVID-19 affects not only the liver and kidneys, but also the nervous system. In this review, we summarized the current knowledge of mechanisms, risk factors, genetics and neurologic impairments in COVID-19. In addition, we discuss and evaluate evidence demonstrating the involvement of miRNAs and lnRNAs in COVID-19 and use this information to propose hypotheses for future research directions.
Collapse
Affiliation(s)
- Irina Gilyazova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences, 450054, Ufa, Russia
- Bashkir State Medical University, 450008, Ufa, Russia
| | - Yanina Timasheva
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences, 450054, Ufa, Russia
| | - Alexandra Karunas
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences, 450054, Ufa, Russia
- Federal State Educational Institution of Higher Education, Ufa University of Science and Technology, 450076, Ufa, Russia
| | - Anastasiya Kazantseva
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences, 450054, Ufa, Russia
- Federal State Educational Institution of Higher Education, Ufa University of Science and Technology, 450076, Ufa, Russia
| | - Albert Sufianov
- Рeoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russia
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), 119435, Moscow, Russia
| | - Andrey Mashkin
- Рeoples’ Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russia
| | - Gulnaz Korytina
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences, 450054, Ufa, Russia
| | - Yaolou Wang
- Harbin Medical University, 157 Baojian Rd, Nangang, Harbin, Heilongjiang, 150088, China
| | - Ilgiz Gareev
- Bashkir State Medical University, 450008, Ufa, Russia
| | - Elza Khusnutdinova
- Institute of Biochemistry and Genetics, Ufa Federal Research Center of the Russian Academy of Sciences, 450054, Ufa, Russia
- Federal State Educational Institution of Higher Education, Ufa University of Science and Technology, 450076, Ufa, Russia
| |
Collapse
|
9
|
Norambuena-Soto I, Lopez-Crisosto C, Martinez-Bilbao J, Hernandez-Fuentes C, Parra V, Lavandero S, Chiong M. Angiotensin-(1-9) in hypertension. Biochem Pharmacol 2022; 203:115183. [PMID: 35870482 DOI: 10.1016/j.bcp.2022.115183] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/02/2022]
Abstract
Angiotensin-(1-9) [Ang-(1-9)] is a peptide of the non-canonical renin-angiotensin system (RAS) synthesized from angiotensin I by the monopeptidase angiotensin-converting enzyme type 2 (ACE2). Using osmotic minipumps, infusion of Ang-(1-9) consistently reduces blood pressure in several rat hypertension models. In these animals, hypertension-induced end-organ damage is also decreased. Several pieces of evidence suggest that Ang-(1-9) is the endogenous ligand that binds and activates the type-2 angiotensin II receptor (AT2R). Activation of AT2R triggers different tissue-specific signaling pathways. This phenomenon could be explained by the ability of AT2R to form different heterodimers with other G protein-coupled receptors. Because of the antihypertensive and protective effects of AT2R activation by Ang-(1-9), associated with a short half-life of RAS peptides, several synthetic AT2R agonists have been synthesized and assayed. Some of them, particularly CGP42112, C21 and novokinin, have demonstrated antihypertensive properties. Only two synthetic AT2R agonists, C21 and LP2-3, have been tested in clinical trials, but none of them like an antihypertensive. Therefore, Ang-(1-9) is a promising antihypertensive drug that reduces hypertension-induced end-organ damage. However, further research is required to translate this finding successfully to the clinic.
Collapse
Affiliation(s)
- Ignacio Norambuena-Soto
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Camila Lopez-Crisosto
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Javiera Martinez-Bilbao
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Carolina Hernandez-Fuentes
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile
| | - Valentina Parra
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile; Network for the Study of High-lethality Cardiopulmonary Diseases (REECPAL), Universidad de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile; Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences and Faculty of Medicine, University of Chile, Santiago, Chile.
| |
Collapse
|
10
|
Almutlaq M, Alamro AA, Alroqi F, Barhoumi T. Classical and Counter-Regulatory Renin-Angiotensin System: Potential Key Roles in COVID-19 Pathophysiology. CJC Open 2021; 3:1060-1074. [PMID: 33875979 PMCID: PMC8046706 DOI: 10.1016/j.cjco.2021.04.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 04/08/2021] [Indexed: 02/08/2023] Open
Abstract
In the current COVID-19 pandemic, severe acute respiratory syndrome coronavirus 2 uses angiotensin-converting enzyme-2 (ACE-2) receptors for cell entry, leading to ACE-2 dysfunction and downregulation, which disturb the balance between the classical and counter-regulatory renin-angiotensin system (RAS) in favor of the classical RAS. RAS dysregulation is one of the major characteristics of several cardiovascular diseases; thus, adjustment of this system is the main therapeutic target. RAS inhibitors-particularly angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin II type 1 receptor blockers (ARBs)-are commonly used for treatment of hypertension and cardiovascular disease. Patients with cardiovascular diseases are the group most commonly seen among those with COVID-19 comorbidity. At the beginning of this pandemic, a dilemma occurred regarding the use of ACEIs and ARBs, potentially aggravating cardiovascular and pulmonary dysfunction in COVID-19 patients. Urgent clinical trials from different countries and hospitals reported that there is no association between RAS inhibitor treatment and COVID-19 infection or comorbidity complication. Nevertheless, the disturbance of the RAS that is associated with COVID-19 infection and the potential treatment targeting this area have yet to be resolved. In this review, the link between the dysregulation of classical RAS and counter-regulatory RAS activities in COVID-19 patients with cardiovascular metabolic diseases is investigated. In addition, the latest findings based on ACEI and ARB administration and ACE-2 availability in relation to COVID-19, which may provide a better understanding of the RAS contribution to COVID-19 pathology, are discussed, as they are of the utmost importance amid the current pandemic.
Collapse
Affiliation(s)
- Moudhi Almutlaq
- King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
- Moudhi Almutlaq, King Abdullah International Medical Research Centre, Ministry of National Guard Health Affairs, Riyadh 11461, Saudi Arabia. Tel.: +1-966-543-159145.
| | - Abir Abdullah Alamro
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Fayhan Alroqi
- King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- Department of Pediatrics, King Abdulaziz Medical City, King Abdullah Specialized Children's Hospital, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Tlili Barhoumi
- King Abdullah International Medical Research Centre, King Abdulaziz Medical City, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
- King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- Corresponding authors: Dr Tlili Barhoumi, King Abdullah International Medical Research Centre, Ministry of National Guard Health Affairs, Riyadh 11461, Saudi Arabia. Tel.: +1-966-543-159145.
| |
Collapse
|
11
|
Trump S, Lukassen S, Anker MS, Chua RL, Liebig J, Thürmann L, Corman VM, Binder M, Loske J, Klasa C, Krieger T, Hennig BP, Messingschlager M, Pott F, Kazmierski J, Twardziok S, Albrecht JP, Eils J, Hadzibegovic S, Lena A, Heidecker B, Bürgel T, Steinfeldt J, Goffinet C, Kurth F, Witzenrath M, Völker MT, Müller SD, Liebert UG, Ishaque N, Kaderali L, Sander LE, Drosten C, Laudi S, Eils R, Conrad C, Landmesser U, Lehmann I. Hypertension delays viral clearance and exacerbates airway hyperinflammation in patients with COVID-19. Nat Biotechnol 2021; 39:705-716. [PMID: 33361824 DOI: 10.1038/s41587-020-00796-1] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/11/2020] [Indexed: 01/29/2023]
Abstract
In coronavirus disease 2019 (COVID-19), hypertension and cardiovascular diseases are major risk factors for critical disease progression. However, the underlying causes and the effects of the main anti-hypertensive therapies-angiotensin-converting enzyme inhibitors (ACEIs) and angiotensin receptor blockers (ARBs)-remain unclear. Combining clinical data (n = 144) and single-cell sequencing data of airway samples (n = 48) with in vitro experiments, we observed a distinct inflammatory predisposition of immune cells in patients with hypertension that correlated with critical COVID-19 progression. ACEI treatment was associated with dampened COVID-19-related hyperinflammation and with increased cell intrinsic antiviral responses, whereas ARB treatment related to enhanced epithelial-immune cell interactions. Macrophages and neutrophils of patients with hypertension, in particular under ARB treatment, exhibited higher expression of the pro-inflammatory cytokines CCL3 and CCL4 and the chemokine receptor CCR1. Although the limited size of our cohort does not allow us to establish clinical efficacy, our data suggest that the clinical benefits of ACEI treatment in patients with COVID-19 who have hypertension warrant further investigation.
Collapse
Affiliation(s)
- Saskia Trump
- Molecular Epidemiology Unit, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Soeren Lukassen
- Center for Digital Health, Berlin Institute of Health (BIH) and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Markus S Anker
- Department of Cardiology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.,Division of Cardiology and Metabolism, Department of Cardiology Campus Virchow, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.,Centre for Cardiovascular Research (DZHK), Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Robert Lorenz Chua
- Center for Digital Health, Berlin Institute of Health (BIH) and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Johannes Liebig
- Center for Digital Health, Berlin Institute of Health (BIH) and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Loreen Thürmann
- Molecular Epidemiology Unit, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Victor Max Corman
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Marco Binder
- Research group 'Dynamics of early viral infection and the innate antiviral response' (division F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jennifer Loske
- Molecular Epidemiology Unit, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Christina Klasa
- Institute for Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Teresa Krieger
- Center for Digital Health, Berlin Institute of Health (BIH) and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Bianca P Hennig
- Center for Digital Health, Berlin Institute of Health (BIH) and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marey Messingschlager
- Molecular Epidemiology Unit, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Fabian Pott
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Julia Kazmierski
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Sven Twardziok
- Center for Digital Health, Berlin Institute of Health (BIH) and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jan Philipp Albrecht
- Center for Digital Health, Berlin Institute of Health (BIH) and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jürgen Eils
- Center for Digital Health, Berlin Institute of Health (BIH) and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Sara Hadzibegovic
- Department of Cardiology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.,Division of Cardiology and Metabolism, Department of Cardiology Campus Virchow, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.,Centre for Cardiovascular Research (DZHK), Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Alessia Lena
- Department of Cardiology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.,Division of Cardiology and Metabolism, Department of Cardiology Campus Virchow, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.,Centre for Cardiovascular Research (DZHK), Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies (BCRT), Berlin, Germany
| | - Bettina Heidecker
- Department of Cardiology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Thore Bürgel
- Center for Digital Health, Berlin Institute of Health (BIH) and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Jakob Steinfeldt
- Department of Cardiology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Christine Goffinet
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.,Berlin Institute of Health (BIH), Berlin, Germany
| | - Florian Kurth
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.,Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine & I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Martin Witzenrath
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Maria Theresa Völker
- Department of Anesthesiology and Intensive Care, University Hospital Leipzig, Leipzig, Germany
| | - Sarah Dorothea Müller
- Department of Anesthesiology and Intensive Care, University Hospital Leipzig, Leipzig, Germany
| | - Uwe Gerd Liebert
- Institute of Virology, University Hospital Leipzig, Leipzig, Germany
| | - Naveed Ishaque
- Center for Digital Health, Berlin Institute of Health (BIH) and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lars Kaderali
- Institute for Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Leif-Erik Sander
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Christian Drosten
- Institute of Virology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany
| | - Sven Laudi
- Department of Anesthesiology and Intensive Care, University Hospital Leipzig, Leipzig, Germany.
| | - Roland Eils
- Center for Digital Health, Berlin Institute of Health (BIH) and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany. .,German Center for Lung Research (DZL), Berlin, Germany. .,Health Data Science Unit, Medical Faculty and BioQuant, University of Heidelberg, Heidelberg, Germany.
| | - Christian Conrad
- Center for Digital Health, Berlin Institute of Health (BIH) and Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.
| | - Ulf Landmesser
- Department of Cardiology, Campus Benjamin Franklin, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany.
| | - Irina Lehmann
- Molecular Epidemiology Unit, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health (BIH), Berlin, Germany. .,German Center for Lung Research (DZL), Berlin, Germany.
| |
Collapse
|
12
|
Kostyunina DS, McLoughlin P. Sex Dimorphism in Pulmonary Hypertension: The Role of the Sex Chromosomes. Antioxidants (Basel) 2021; 10:779. [PMID: 34068984 PMCID: PMC8156365 DOI: 10.3390/antiox10050779] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/09/2021] [Accepted: 05/11/2021] [Indexed: 01/01/2023] Open
Abstract
Pulmonary hypertension (PH) is a condition characterised by an abnormal elevation of pulmonary artery pressure caused by an increased pulmonary vascular resistance, frequently leading to right ventricular failure and reduced survival. Marked sexual dimorphism is observed in patients with pulmonary arterial hypertension, a form of pulmonary hypertension with a particularly severe clinical course. The incidence in females is 2-4 times greater than in males, although the disease is less severe in females. We review the contribution of the sex chromosomes to this sex dimorphism highlighting the impact of proteins, microRNAs and long non-coding RNAs encoded on the X and Y chromosomes. These genes are centrally involved in the cellular pathways that cause increased pulmonary vascular resistance including the production of reactive oxygen species, altered metabolism, apoptosis, inflammation, vasoconstriction and vascular remodelling. The interaction with genetic mutations on autosomal genes that cause heritable pulmonary arterial hypertension such as bone morphogenetic protein 2 (BMPR2) are examined. The mechanisms that can lead to differences in the expression of genes located on the X chromosomes between females and males are also reviewed. A better understanding of the mechanisms of sex dimorphism in this disease will contribute to the development of more effective therapies for both women and men.
Collapse
Affiliation(s)
| | - Paul McLoughlin
- Conway Institute, School of Medicine, University College Dublin, Dublin D04 V1W8, Ireland;
| |
Collapse
|
13
|
Mehrabadi ME, Hemmati R, Tashakor A, Homaei A, Yousefzadeh M, Hemati K, Hosseinkhani S. Induced dysregulation of ACE2 by SARS-CoV-2 plays a key role in COVID-19 severity. Biomed Pharmacother 2021; 137:111363. [PMID: 33582450 PMCID: PMC7862910 DOI: 10.1016/j.biopha.2021.111363] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/29/2021] [Accepted: 02/02/2021] [Indexed: 12/24/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the cause of COVID-19, is reported to increase the rate of mortality worldwide. COVID-19 is associated with acute respiratory symptoms as well as blood coagulation in the vessels (thrombosis), heart attack and stroke. Given the requirement of angiotensin converting enzyme 2 (ACE2) receptor for SARS-CoV-2 entry into host cells, here we discuss how the downregulation of ACE2 in the COVID-19 patients and virus-induced shift in ACE2 catalytic equilibrium, change the concentrations of substrates such as angiotensin II, apelin-13, dynorphin-13, and products such as angiotensin (1-7), angiotensin (1-9), apelin-12, dynorphin-12 in the human body. Substrates accumulation ultimately induces inflammation, angiogenesis, thrombosis, neuronal and tissue damage while diminished products lead to the loss of the anti-inflammatory, anti-thrombotic and anti-angiogenic responses. In this review, we focus on the viral-induced imbalance between ACE2 substrates and products which exacerbates the severity of COVID-19. Considering the roadmap, we propose multiple therapeutic strategies aiming to rebalance the products of ACE2 and to ameliorate the symptoms of the disease.
Collapse
Affiliation(s)
| | - Roohullah Hemmati
- Department of Biology, Faculty of Basic Sciences, Shahrekord University, Sharekord, Iran; Biotechnology Research Institute, Shahrekord University, Shahrekord, Iran; COVID-19 research group, Faculty of Basic Sciences, Shahrekord Univesity, Shahrekord, Iran.
| | - Amin Tashakor
- Irish Centre for Vascular Biology, Royal College of Surgeons in Ireland, Dublin, Ireland; School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | | | - Karim Hemati
- Department of Anesthesiology and Pain, Iran University of Medical Sciences, Tehran, Iran
| | - Saman Hosseinkhani
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
14
|
Peters EL, Bogaard HJ, Vonk Noordegraaf A, de Man FS. Neurohormonal modulation in pulmonary arterial hypertension. Eur Respir J 2021; 58:13993003.04633-2020. [PMID: 33766951 PMCID: PMC8551560 DOI: 10.1183/13993003.04633-2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 03/13/2021] [Indexed: 12/15/2022]
Abstract
Pulmonary hypertension is a fatal condition of elevated pulmonary pressures, complicated by right heart failure. Pulmonary hypertension appears in various forms; one of those is pulmonary arterial hypertension (PAH) and is particularly characterised by progressive remodelling and obstruction of the smaller pulmonary vessels. Neurohormonal imbalance in PAH patients is associated with worse prognosis and survival. In this back-to-basics article on neurohormonal modulation in PAH, we provide an overview of the pharmacological and nonpharmacological strategies that have been tested pre-clinically and clinically. The benefit of neurohormonal modulation strategies in PAH patients has been limited by lack of insight into how the neurohormonal system is changed throughout the disease and difficulties in translation from animal models to human trials. We propose that longitudinal and individual assessments of neurohormonal status are required to improve the timing and specificity of neurohormonal modulation strategies. Ongoing developments in imaging techniques such as positron emission tomography may become helpful to determine neurohormonal status in PAH patients in different disease stages and optimise individual treatment responses.
Collapse
Affiliation(s)
- Eva L Peters
- Dept of Pulmonology, Amsterdam UMC, Amsterdam, The Netherlands.,Dept of Physiology, Amsterdam UMC, Amsterdam, The Netherlands
| | | | | | | |
Collapse
|
15
|
Xu Z, Ding J, Zhang L, Feng X, Zhou J, Shen X, Lu H, Qian L, Li X. Peptidomics analysis revealed that a novel peptide VMP‑19 protects against Ang II‑induced injury in human umbilical vein endothelial cells. Mol Med Rep 2021; 23:298. [PMID: 33649860 PMCID: PMC7930926 DOI: 10.3892/mmr.2021.11937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Accepted: 02/02/2021] [Indexed: 11/06/2022] Open
Abstract
Vascular endothelial dysfunction is a vital pathological change in hypertension, which is mainly caused by apoptosis and oxidative stress injury of vascular endothelial cells. Peptidomics is a method for the direct analysis of small bioactive peptides in various biological samples using liquid chromatography‑mass spectrometry (MS)/MS. Given the advantages of the low molecular weight, optimum targeting and easy access to cells, peptides have attracted extensive attention in the field of drug research. However, to the best of our knowledge, little is currently known regarding the role of peptides in vascular endothelial injury. In order to investigate the peptides involved in vascular endothelial protection, MS was used to analyze the peptide profiles in the supernatant of human umbilical vein endothelial cells (HUVECs) stimulated by Ang II. The results revealed that 211 peptides were identified, of which six were upregulated and 13 were downregulated when compared with the control group. Subsequently, the present study analyzed the physical and chemical properties and biological functions of identified peptides by bioinformatics, and successfully screened a peptide (LLQDSVDFSLADAINTEFK) named VMP‑19 that could alleviate the apoptosis and oxidative stress injury of HUVECs induced by Ang II. In conclusion, to the best of our knowledge, the present study was the first to use peptidomics to analyze the peptide profiles of supernatant secreted by HUVECs, and revealed that the novel peptide VMP‑19 could protect HUVECs from apoptosis and oxidative stress injury. The results of the present study could provide novel insights into treatment strategies for hypertension.
Collapse
Affiliation(s)
- Zhongqing Xu
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Jingjing Ding
- Department of General Practice, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P.R. China
| | - Li Zhang
- Hongqiao International Institute of Medicine, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P.R. China
| | - Xianzhen Feng
- Department of General Practice, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P.R. China
| | - Jun Zhou
- Department of General Practice, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P.R. China
| | - Xiaoyi Shen
- Department of General Practice, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P.R. China
| | - Hong Lu
- Department of General Practice, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P.R. China
| | - Lingmei Qian
- Department of General Practice, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200336, P.R. China
| | - Xun Li
- Department of Cardiology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
16
|
Latil M, Camelo S, Veillet S, Lafont R, Dilda PJ. Developing new drugs that activate the protective arm of the renin-angiotensin system as a potential treatment for respiratory failure in COVID-19 patients. Drug Discov Today 2021; 26:1311-1318. [PMID: 33609783 PMCID: PMC7888990 DOI: 10.1016/j.drudis.2021.02.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/02/2020] [Accepted: 02/08/2021] [Indexed: 12/18/2022]
Abstract
COVID-19, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has reached pandemic proportions with negative impacts on global health, the world economy and human society. The clinical picture of COVID-19, and the fact that Angiotensin converting enzyme 2 (ACE2) is a receptor of SARS-CoV-2, suggests that SARS-CoV-2 infection induces an imbalance in the renin–angiotensin system (RAS). We review clinical strategies that are attempting to rebalance the RAS in COVID-19 patients by using ACE inhibitors, angiotensin receptor blockers, or agonists of angiotensin-II receptor type 2 or Mas receptor (MasR). We also propose that the new MasR activator BIO101, a pharmaceutical grade formulation of 20-hydroxyecdysone that has anti-inflammatory, anti-fibrotic and cardioprotective properties, could restore RAS balance and improve the health of COVID-19 patients who have severe pneumonia.
Collapse
Affiliation(s)
- Mathilde Latil
- Biophytis, Sorbonne Université - BC9, 4 Place Jussieu, 75005 Paris, France
| | - Serge Camelo
- Biophytis, Sorbonne Université - BC9, 4 Place Jussieu, 75005 Paris, France
| | - Stanislas Veillet
- Biophytis, Sorbonne Université - BC9, 4 Place Jussieu, 75005 Paris, France
| | - René Lafont
- Biophytis, Sorbonne Université - BC9, 4 Place Jussieu, 75005 Paris, France; Sorbonne Université, CNRS - Institut de Biologie Paris Seine (BIOSIPE), 75005 Paris, France
| | - Pierre J Dilda
- Biophytis, Sorbonne Université - BC9, 4 Place Jussieu, 75005 Paris, France.
| |
Collapse
|
17
|
Hülsmann S, Khabbazzadeh S, Meissner K, Quintel M. A Potential Role of the Renin-Angiotensin-System for Disturbances of Respiratory Chemosensitivity in Acute Respiratory Distress Syndrome and Severe Acute Respiratory Syndrome. Front Physiol 2021; 11:588248. [PMID: 33551831 PMCID: PMC7857271 DOI: 10.3389/fphys.2020.588248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 12/07/2020] [Indexed: 12/27/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) represents an acute diffuse inflammation of the lungs triggered by different causes, uniformly leading to a noncardiogenic pulmonary edema with inhomogeneous densities in lung X-ray and lung CT scan and acute hypoxemia. Edema formation results in "heavy" lungs, inducing loss of compliance and the need to spend more energy to "move" the lungs. Consequently, an ARDS patient, as long as the patient is breathing spontaneously, has an increased respiratory drive to ensure adequate oxygenation and CO2 removal. One would expect that, once the blood gases get back to "physiological" values, the respiratory drive would normalize and the breathing effort return to its initial status. However, in many ARDS patients, this is not the case; their respiratory drive appears to be upregulated and fully or at least partially detached from the blood gas status. Strikingly, similar alteration of the respiratory drive can be seen in patients suffering from SARS, especially SARS-Covid-19. We hypothesize that alterations of the renin-angiotensin-system (RAS) related to the pathophysiology of ARDS and SARS are involved in this dysregulation of chemosensitive control of breathing.
Collapse
Affiliation(s)
- Swen Hülsmann
- Universitätsmedizin Göttingen, Klinik für Anästhesiologie, Georg-August-Universität, Göttingen, Germany
| | - Sepideh Khabbazzadeh
- Universitätsmedizin Göttingen, Klinik für Anästhesiologie, Georg-August-Universität, Göttingen, Germany
| | - Konrad Meissner
- Universitätsmedizin Göttingen, Klinik für Anästhesiologie, Georg-August-Universität, Göttingen, Germany
| | - Michael Quintel
- Universitätsmedizin Göttingen, Klinik für Anästhesiologie, Georg-August-Universität, Göttingen, Germany
- DONAUISAR Klinikum Deggendorf, Deggendorf, Germany
| |
Collapse
|
18
|
Simões e Silva AC, Lanza K, Palmeira VA, Costa LB, Flynn JT. 2020 update on the renin-angiotensin-aldosterone system in pediatric kidney disease and its interactions with coronavirus. Pediatr Nephrol 2021; 36:1407-1426. [PMID: 32995920 PMCID: PMC7524035 DOI: 10.1007/s00467-020-04759-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/12/2020] [Accepted: 09/03/2020] [Indexed: 12/16/2022]
Abstract
The last decade was crucial for our understanding of the renin-angiotensin-aldosterone system (RAAS) as a two-axis, counter-regulatory system, divided into the classical axis, formed by angiotensin-converting enzyme (ACE), angiotensin II (Ang II), and the angiotensin type 1 receptor (AT1R), and the alternative axis comprising angiotensin-converting enzyme 2 (ACE2), angiotensin-(1-7) (Ang-(1-7)), and the Mas receptor. Breakthrough discoveries also took place, with other RAAS endopeptides being described, including alamandine and angiotensin A. In this review, we characterize the two RAAS axes and the role of their components in pediatric kidney diseases, including childhood hypertension (HTN), pediatric glomerular diseases, congenital abnormalities of the kidney and urinary tract (CAKUT), and chronic kidney disease (CKD). We also present recent findings on potential interactions between the novel coronavirus, SARS-CoV-2, and components of the RAAS, as well as potential implications of coronavirus disease 2019 (COVID-19) for pediatric kidney diseases.
Collapse
Affiliation(s)
- Ana Cristina Simões e Silva
- grid.8430.f0000 0001 2181 4888Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Avenida Alfredo Balena, 190, 2nd floor, Room # 281, Belo Horizonte, MG 30130-100 Brazil ,grid.8430.f0000 0001 2181 4888Pediatric Nephrology Unit, Department of Pediatrics, Faculty of Medicine, UFMG, Belo Horizonte, Brazil
| | - Katharina Lanza
- grid.8430.f0000 0001 2181 4888Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Avenida Alfredo Balena, 190, 2nd floor, Room # 281, Belo Horizonte, MG 30130-100 Brazil
| | - Vitória Andrade Palmeira
- grid.8430.f0000 0001 2181 4888Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Avenida Alfredo Balena, 190, 2nd floor, Room # 281, Belo Horizonte, MG 30130-100 Brazil
| | - Larissa Braga Costa
- grid.8430.f0000 0001 2181 4888Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Avenida Alfredo Balena, 190, 2nd floor, Room # 281, Belo Horizonte, MG 30130-100 Brazil
| | - Joseph T. Flynn
- grid.34477.330000000122986657Pediatric Nephrology, Seattle Children’s Hospital, University of Washington School of Medicine, Seattle, WA 98105 USA
| |
Collapse
|
19
|
Hrenak J, Simko F. Renin-Angiotensin System: An Important Player in the Pathogenesis of Acute Respiratory Distress Syndrome. Int J Mol Sci 2020; 21:ijms21218038. [PMID: 33126657 PMCID: PMC7663767 DOI: 10.3390/ijms21218038] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 10/24/2020] [Accepted: 10/26/2020] [Indexed: 02/08/2023] Open
Abstract
Acute respiratory distress syndrome (ARDS) is characterized by massive inflammation, increased vascular permeability and pulmonary edema. Mortality due to ARDS remains very high and even in the case of survival, acute lung injury can lead to pulmonary fibrosis. The renin-angiotensin system (RAS) plays a significant role in these processes. The activities of RAS molecules are subject to dynamic changes in response to an injury. Initially, increased levels of angiotensin (Ang) II and des-Arg9-bradykinin (DABK), are necessary for an effective defense. Later, augmented angiotensin converting enzyme (ACE) 2 activity supposedly helps to attenuate inflammation. Appropriate ACE2 activity might be decisive in preventing immune-induced damage and ensuring tissue repair. ACE2 has been identified as a common target for different pathogens. Some Coronaviruses, including SARS-CoV-2, also use ACE2 to infiltrate the cells. A number of questions remain unresolved. The importance of ACE2 shedding, associated with the release of soluble ACE2 and ADAM17-mediated activation of tumor necrosis factor-α (TNF-α)-signaling is unclear. The roles of other non-classical RAS-associated molecules, e.g., alamandine, Ang A or Ang 1-9, also deserve attention. In addition, the impact of established RAS-inhibiting drugs on the pulmonary RAS is to be elucidated. The unfavorable prognosis of ARDS and the lack of effective treatment urge the search for novel therapeutic strategies. In the context of the ongoing SARS-CoV-2 pandemic and considering the involvement of humoral disbalance in the pathogenesis of ARDS, targeting the renin-angiotensin system and reducing the pathogen's cell entry could be a promising therapeutic strategy in the struggle against COVID-19.
Collapse
Affiliation(s)
- Jaroslav Hrenak
- Department of Cardiovascular Surgery, Inselspital – University Hospital of Bern, Freiburgstrasse 18, 3010 Bern, Switzerland;
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovak
| | - Fedor Simko
- Institute of Pathophysiology, Faculty of Medicine, Comenius University, Sasinkova 4, 811 08 Bratislava, Slovak
- 3rd Department of Internal Medicine, Faculty of Medicine, Comenius University, Limbova 5, 833 05 Bratislava, Slovak
- Institute of Experimental Endocrinology, Biomedical Research Center, Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovak
- Correspondence:
| |
Collapse
|
20
|
Kruglikov IL, Shah M, Scherer PE. Obesity and diabetes as comorbidities for COVID-19: Underlying mechanisms and the role of viral-bacterial interactions. eLife 2020; 9:e61330. [PMID: 32930095 PMCID: PMC7492082 DOI: 10.7554/elife.61330] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
Obesity and diabetes are established comorbidities for COVID-19. Adipose tissue demonstrates high expression of ACE2 which SARS- CoV-2 exploits to enter host cells. This makes adipose tissue a reservoir for SARS-CoV-2 viruses and thus increases the integral viral load. Acute viral infection results in ACE2 downregulation. This relative deficiency can lead to disturbances in other systems controlled by ACE2, including the renin-angiotensin system. This will be further increased in the case of pre-conditions with already compromised functioning of these systems, such as in patients with obesity and diabetes. Here, we propose that interactions of virally-induced ACE2 deficiency with obesity and/or diabetes leads to a synergistic further impairment of endothelial and gut barrier function. The appearance of bacteria and/or their products in the lungs of obese and diabetic patients promotes interactions between viral and bacterial pathogens, resulting in a more severe lung injury in COVID-19.
Collapse
Affiliation(s)
| | - Manasi Shah
- Division of Endocrinology, University of Texas Southwestern Medical CenterDallasUnited States
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical CenterDallasUnited States
| | - Philipp E Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Cell Biology, University of Texas Southwestern Medical CenterDallasUnited States
| |
Collapse
|
21
|
Li Y, Yuan S, Yong X, zhao T, Liu J. Research progress on small peptides in Chinese Baijiu. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104081] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
22
|
Meini S, Zanichelli A, Sbrojavacca R, Iuri F, Roberts AT, Suffritti C, Tascini C. Understanding the Pathophysiology of COVID-19: Could the Contact System Be the Key? Front Immunol 2020; 11:2014. [PMID: 32849666 PMCID: PMC7432138 DOI: 10.3389/fimmu.2020.02014] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/24/2020] [Indexed: 12/20/2022] Open
Abstract
To date the pathophysiology of COVID-19 remains unclear: this represents a factor determining the current lack of effective treatments. In this paper, we hypothesized a complex host response to SARS-CoV-2, with the Contact System (CS) playing a pivotal role in innate immune response. CS is linked with different proteolytic defense systems operating in human vasculature: the Kallikrein–Kinin (KKS), the Coagulation/Fibrinolysis and the Renin–Angiotensin (RAS) Systems. We investigated the role of the mediators involved. CS consists of Factor XII (FXII) and plasma prekallikrein (complexed to high-molecular-weight kininogen-HK). Autoactivation of FXII by contact with SARS-CoV-2 could lead to activation of intrinsic coagulation, with fibrin formation (microthrombosis), and fibrinolysis, resulting in increased D-dimer levels. Activation of kallikrein by activated FXII leads to production of bradykinin (BK) from HK. BK binds to B2-receptors, mediating vascular permeability, vasodilation and edema. B1-receptors, binding the metabolite [des-Arg9]-BK (DABK), are up-regulated during infections and mediate lung inflammatory responses. BK could play a relevant role in COVID-19 as already described for other viral models. Angiotensin-Converting-Enzyme (ACE) 2 displays lung protective effects: it inactivates DABK and converts Angiotensin II (Ang II) into Angiotensin-(1-7) and Angiotensin I into Angiotensin-(1-9). SARS-CoV-2 binds to ACE2 for cell entry, downregulating it: an impaired DABK inactivation could lead to an enhanced activity of B1-receptors, and the accumulation of Ang II, through a negative feedback loop, may result in decreased ACE activity, with consequent increase of BK. Therapies targeting the CS, the KKS and action of BK could be effective for the treatment of COVID-19.
Collapse
Affiliation(s)
- Simone Meini
- Internal Medicine Unit, Azienda USL Toscana Centro, Santa Maria Annunziata Hospital, Florence, Italy
| | - Andrea Zanichelli
- General Medicine Unit, ASST Fatebenefratelli Sacco, Ospedale Luigi Sacco-Università degli Studi di Milano, Milan, Italy
| | - Rodolfo Sbrojavacca
- Infectious Diseases Clinic, Santa Maria Misericordia Hospital, Università degli Studi di Udine, Udine, Italy
| | - Federico Iuri
- Department of Emergency, Santa Maria Misericordia Hospital, Università degli Studi di Udine, Udine, Italy
| | | | - Chiara Suffritti
- General Medicine Unit, ASST Fatebenefratelli Sacco, Ospedale Luigi Sacco-Università degli Studi di Milano, Milan, Italy
| | - Carlo Tascini
- Infectious Diseases Clinic, Santa Maria Misericordia Hospital, Università degli Studi di Udine, Udine, Italy
| |
Collapse
|
23
|
Norambuena-Soto I, Ocaranza MP, Cancino-Arenas N, Sanhueza-Olivares F, Villar-Fincheira P, Leiva-Navarrete S, Mancilla-Medina C, Moya J, Novoa U, Jalil JE, Castro PF, Lavandero S, Chiong M. Angiotensin-(1-9) prevents vascular remodeling by decreasing vascular smooth muscle cell dedifferentiation through a FoxO1-dependent mechanism. Biochem Pharmacol 2020; 180:114190. [PMID: 32768401 DOI: 10.1016/j.bcp.2020.114190] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/29/2020] [Accepted: 08/03/2020] [Indexed: 12/30/2022]
Abstract
The renin-angiotensin system, one of the main regulators of vascular function, controls vasoconstriction, inflammation and vascular remodeling. Antagonistic actions of the counter-regulatory renin-angiotensin system, which include vasodilation, anti-proliferative, anti-inflammatory and anti-remodeling effects, have also been described. However, little is known about the direct effects of angiotensin-(1-9), a peptide of the counter-regulatory renin-angiotensin system, on vascular smooth muscle cells. Here, we studied the anti-vascular remodeling effects of angiotensin-(1-9), with special focus on the control of vascular smooth muscle cell phenotype. Angiotensin-(1-9) decreased blood pressure and aorta media thickness in spontaneously hypertensive rats. Reduction of media thickness was associated with decreased vascular smooth muscle cell proliferation. In the A7r5 VSMC cell line and in primary cultures of rat aorta smooth muscle cells, angiotensin-(1-9) did not modify basal proliferation. However, angiotensin-(1-9) inhibited proliferation, migration and contractile protein decrease induced by platelet derived growth factor-BB. Moreover, angiotensin-(1-9) reduced Akt and FoxO1 phosphorylation at 30 min, followed by an increase of total FoxO1 protein content. Angiotensin-(1-9) effects were blocked by the AT2R antagonist PD123319, Akt-Myr overexpression and FoxO1 siRNA. These data suggest that angiotensin-(1-9) inhibits vascular smooth muscle cell dedifferentiation by an AT2R/Akt/FoxO1-dependent mechanism.
Collapse
Affiliation(s)
- Ignacio Norambuena-Soto
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Maria Paz Ocaranza
- Division de Enfermedades Cardiovasculares, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Center of New Drugs for Hypertension (CENDHY), Universidad de Chile & Pontificia Universidad Católica de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicole Cancino-Arenas
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Fernanda Sanhueza-Olivares
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Paulina Villar-Fincheira
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Sebastian Leiva-Navarrete
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Cristian Mancilla-Medina
- Division de Enfermedades Cardiovasculares, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Center of New Drugs for Hypertension (CENDHY), Universidad de Chile & Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jacqueline Moya
- Division de Enfermedades Cardiovasculares, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Center of New Drugs for Hypertension (CENDHY), Universidad de Chile & Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ulises Novoa
- Departamento de Ciencias Básicas Biomédicas, Facultad de Ciencias de la Salud, Universidad de Talca, Chile
| | - Jorge E Jalil
- Division de Enfermedades Cardiovasculares, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Center of New Drugs for Hypertension (CENDHY), Universidad de Chile & Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo F Castro
- Division de Enfermedades Cardiovasculares, Escuela de Medicina, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile; Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Sergio Lavandero
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile; Corporacion Centro de Estudios Científicos de las Enfermedades Crónicas (CECEC), Santiago, Chile; Department of Internal Medicine (Cardiology Division), University of Texas Southwestern Medical Center, Dallas, USA
| | - Mario Chiong
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
24
|
Sandoval J, Del Valle-Mondragón L, Masso F, Zayas N, Pulido T, Teijeiro R, Gonzalez-Pacheco H, Olmedo-Ocampo R, Sisniega C, Paez-Arenas A, Pastelin-Hernandez G, Gomez-Arroyo J, Voelkel NF. Angiotensin converting enzyme 2 and angiotensin (1-7) axis in pulmonary arterial hypertension. Eur Respir J 2020; 56:13993003.02416-2019. [PMID: 32241831 DOI: 10.1183/13993003.02416-2019] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 03/21/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND In animal models of pulmonary arterial hypertension (PAH), angiotensin-converting enzyme (ACE)2 and angiotensin (Ang)-(1-7) have been shown to have vasodilatory, antiproliferative, antifibrotic and antihypertrophic properties. However, the status and role of the ACE2-Ang(1-7) axis in human PAH is incompletely understood. METHODS We studied 85 patients with a diagnosis of PAH of distinct aetiologies. 55 healthy blood donors paired for age and sex served as controls. Blood samples were obtained from the pulmonary artery in patients with PAH during right heart catheterisation. Peripheral blood was obtained for both groups. Ang(1-7) and -II were measured using zone capillary electrophoresis. Aldosterone, Ang(1-9), AngA and ACE2 were measured using ELISA, and ACE2 activity was determined enzymatically. RESULTS Of the 85 patients, 47 had idiopathic PAH, 25 had PAH associated with congenital heart disease and 13 had PAH associated with collagen vascular disease. Compared to controls, patients with PAH had a higher concentration of AngII (median 1.03, interquartile range 0.72-1.88 pmol·mL-1 versus 0.19, 0.10-0.37 pmol·mL-1; p<0.001) and of aldosterone (88.7, 58.7-132 ng·dL-1 versus 12.9, 9.55-19.9 ng·dL-1; p<0.001). Conversely, PAH patients had a lower concentration of Ang(1-7) than controls (0.69, 0.474-0.91 pmol·mL-1 versus 4.07, 2.82-6.73 pmol·mL-1; p<0.001), and a lower concentration of Ang(1-9) and AngA. Similarly, the ACE2 concentration was higher than in controls (8.7, 5.35-13.2 ng·mL-1 versus 4.53, 1.47-14.3 ng·mL-1; p=0.011), whereas the ACE2 activity was significantly reduced (1.88, 1.08-2.81 nmol·mL-1 versus 5.97, 3.1-17.8 nmol·mL-1; p<0.001). No significant differences were found among the three different aetiological forms of PAH. CONCLUSIONS The AngII-ACE2-Ang(1-7) axis appears to be altered in human PAH and we propose that this imbalance, in favour of AngII, plays a role in the pathogenesis of the severe PAH. Further mechanistic studies are warranted.
Collapse
Affiliation(s)
- Julio Sandoval
- Cardiopulmonary Dept, Instituto Nacional de Cardiologia, Mexico City, Mexico
| | | | - Felipe Masso
- Physiology and Molecular Biology Dept of the "Ignacio Chávez", National Institute of Cardiology, Mexico City, Mexico
| | - Nayeli Zayas
- Cardiopulmonary Dept, Instituto Nacional de Cardiologia, Mexico City, Mexico
| | - Tomás Pulido
- Cardiopulmonary Dept, Instituto Nacional de Cardiologia, Mexico City, Mexico
| | - Ricardo Teijeiro
- Cardiopulmonary Dept, Instituto Nacional de Cardiologia, Mexico City, Mexico
| | | | | | - Carlos Sisniega
- Cardiopulmonary Dept, Instituto Nacional de Cardiologia, Mexico City, Mexico
| | - Araceli Paez-Arenas
- Physiology and Molecular Biology Dept of the "Ignacio Chávez", National Institute of Cardiology, Mexico City, Mexico
| | | | - Jose Gomez-Arroyo
- Cardiopulmonary Dept, Instituto Nacional de Cardiologia, Mexico City, Mexico.,Division of Pulmonary and Critical Care Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Norbert F Voelkel
- Dept of Pulmonary Medicine, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| |
Collapse
|
25
|
Sarzani R, Giulietti F, Di Pentima C, Giordano P, Spannella F. Disequilibrium between the classic renin-angiotensin system and its opposing arm in SARS-CoV-2-related lung injury. Am J Physiol Lung Cell Mol Physiol 2020; 319:L325-L336. [PMID: 32639866 PMCID: PMC7414236 DOI: 10.1152/ajplung.00189.2020] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
A dysregulation of the renin-angiotensin system (RAS) has been involved in the genesis of lung injury and acute respiratory distress syndrome from different causes, including several viral infections. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection of pneumocytes, the hallmark of the pandemic coronavirus disease 2019 (COVID-19) involving both alveolar interstitium and capillaries, is linked to angiotensin-converting enzyme 2 (ACE2) binding and its functional downregulation. ACE2 is a key enzyme for the balance between the two main arms of the RAS: the ACE/angiotensin (Ang) II/Ang II type 1 receptor axis (“classic RAS”) and the ACE2/Ang(1–7)/Mas receptor (MasR) axis (“anti-RAS”). The ACE2 downregulation, as a result of SARS-coronaviruses binding, enhances the classic RAS, leading to lung damage and inflammation with leaky pulmonary blood vessels and fibrosis, when the attenuation mediated by the anti-RAS arm is reduced. ACE inhibitors (ACE-I) and Ang II type 1 receptor blockers (ARB), effective in cardiovascular diseases, were found to prevent and counteract acute lung injury in several experimental models by restoring the balance between these two opposing arms. The evidence of RAS arm disequilibrium in COVID-19 and the hypothesis of a beneficial role of RAS modulation supported by preclinical and clinical studies are the focus of the present review. Preclinical and clinical studies on drugs balancing RAS arms might be the right way to counter COVID-19.
Collapse
Affiliation(s)
- Riccardo Sarzani
- Internal Medicine and Geriatrics, "Hypertension Excellence Centre" of the European Society of Hypertension, Istituto di Ricovero e Cura a Carattere Scientifico Istituto Nazionale Ricovero e Cura per Anziani, Ancona, Italy.,Department of Clinical and Molecular Sciences, University "Politecnica delle Marche," Ancona, Italy
| | - Federico Giulietti
- Internal Medicine and Geriatrics, "Hypertension Excellence Centre" of the European Society of Hypertension, Istituto di Ricovero e Cura a Carattere Scientifico Istituto Nazionale Ricovero e Cura per Anziani, Ancona, Italy.,Department of Clinical and Molecular Sciences, University "Politecnica delle Marche," Ancona, Italy
| | - Chiara Di Pentima
- Internal Medicine and Geriatrics, "Hypertension Excellence Centre" of the European Society of Hypertension, Istituto di Ricovero e Cura a Carattere Scientifico Istituto Nazionale Ricovero e Cura per Anziani, Ancona, Italy.,Department of Clinical and Molecular Sciences, University "Politecnica delle Marche," Ancona, Italy
| | - Piero Giordano
- Internal Medicine and Geriatrics, "Hypertension Excellence Centre" of the European Society of Hypertension, Istituto di Ricovero e Cura a Carattere Scientifico Istituto Nazionale Ricovero e Cura per Anziani, Ancona, Italy
| | - Francesco Spannella
- Internal Medicine and Geriatrics, "Hypertension Excellence Centre" of the European Society of Hypertension, Istituto di Ricovero e Cura a Carattere Scientifico Istituto Nazionale Ricovero e Cura per Anziani, Ancona, Italy.,Department of Clinical and Molecular Sciences, University "Politecnica delle Marche," Ancona, Italy
| |
Collapse
|
26
|
Alsufyani HA, Docherty JR. The renin angiotensin aldosterone system and COVID-19. Saudi Pharm J 2020; 28:977-984. [PMID: 32788834 PMCID: PMC7332203 DOI: 10.1016/j.jsps.2020.06.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 06/26/2020] [Indexed: 12/12/2022] Open
Abstract
The ongoing pandemic has stimulated study of the Renin Angiotensin Aldosterone System (RAAS), and how it can be manipulated to treat COVID-19. Studies are examining whether drugs that act on the RAAS system might be useful to treat COVID-19. COVID-19 and the RAAS are closely linked both in infection and in possible post-infection inflammatory cascades. We detail the Physiology and Pharmacology of the RAAS including the effects of aldosterone and atrial natriuretic peptide. It is appropriate that the theoretical benefits of modulation of the RAAS should be considered based on available knowledge of the complexity of the system. In this short review we have tried to explain the actions of the angiotensin family of peptides and produce a relatively simple model and diagrammatic summary of the RAAS and the possible sites of intervention.
Collapse
Affiliation(s)
- Hadeel A Alsufyani
- Department of Physiology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - James R Docherty
- Department of Physiology, Royal College of Surgeons in Ireland, 123, St. Stephen's Green, Dublin 2, Ireland
| |
Collapse
|
27
|
Abstract
The renin-angiotensin system is an important component of the cardiovascular system. Mounting evidence suggests that the metabolic products of angiotensin I and II - initially thought to be biologically inactive - have key roles in cardiovascular physiology and pathophysiology. This non-canonical axis of the renin-angiotensin system consists of angiotensin 1-7, angiotensin 1-9, angiotensin-converting enzyme 2, the type 2 angiotensin II receptor (AT2R), the proto-oncogene Mas receptor and the Mas-related G protein-coupled receptor member D. Each of these components has been shown to counteract the effects of the classical renin-angiotensin system. This counter-regulatory renin-angiotensin system has a central role in the pathogenesis and development of various cardiovascular diseases and, therefore, represents a potential therapeutic target. In this Review, we provide the latest insights into the complexity and interplay of the components of the non-canonical renin-angiotensin system, and discuss the function and therapeutic potential of targeting this system to treat cardiovascular disease.
Collapse
|
28
|
Liu B, Lan M, Wei H, Zhang D, Liu J, Teng J. Downregulated microRNA‑133a induces HUVECs injury: Potential role of the (pro) renin receptor in angiotensin II‑dependent hypertension. Mol Med Rep 2019; 20:2796-2804. [PMID: 31524252 PMCID: PMC6691251 DOI: 10.3892/mmr.2019.10519] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 06/12/2019] [Indexed: 01/17/2023] Open
Abstract
The renin‑angiotensin system (RAS) serves an essential role in hypertension. MicroRNAs (miRs) have been reported to be important regulators in angiotensin (Ang) II‑dependent hypertension. We aimed to explore the roles of Ang II and miR‑133a in the mechanism underlying hypertension. Human umbilical vein endothelial cells (HUVECs) were identified by immunofluorescence staining. Cell viability and miR‑133a expression under the inhibition of Ang II of various concentrations were determined by an MTT assay and reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR), respectively. The effects of HUVECs transfected with miR‑133a mimic or inhibitor on Ang II‑induced apoptosis were measured using flow cytometry. The potential targeting of miR‑133a to the 3' untranslated region of (pro) renin receptor (PRR) was assessed using TargetScan and a dual‑luciferase assay. The effects of PRR interference using small interfering (si)RNA on PRR expression and the rate of apoptosis were determined by RT‑qPCR, western blotting and flow cytometry, respectively. Ang II at a concentration of 10‑5 M significantly inhibited the cell viability (P<0.05) and miR‑133a expression (P<0.01); Downregulation of miR‑133a suppressed cell viability. HUVECs transfected with miR‑133a mimic reduced the rate of Ang II‑induced apoptosis from 21.99 to 12.38%, but miR‑133a inhibitor promoted Ang II‑induced apoptosis (apoptosis rate, 28.9%). PRR was predicted to be a target gene of miR‑133a. Transfection with siPRR decreased the apoptotic rate in Ang II + negative control and Ang II + miR‑133a inhibitor group to 11.39 and 12.94%, respectively. Our findings also suggested that Ang II promoted PRR expression to enhance the apoptotic rate of HUVECs via the suppression of miR‑133a. Furthermore, siPRR efficiently decreased the Ang II‑induced apoptosis.
Collapse
Affiliation(s)
- Bing Liu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology of China, Beijing 100730, P.R. China
| | - Ming Lan
- Department of Cardiology, Beijing Hospital, National Center of Gerontology of China, Beijing 100730, P.R. China
| | - Huali Wei
- Department of Gynecology and Obstetrics, China Meitan General Hospital, Beijing 100028, P.R. China
| | - Dapeng Zhang
- Heart Center and Beijing Key Laboratory of Hypertension Disease, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100028, P.R. China
| | - Junmeng Liu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology of China, Beijing 100730, P.R. China
| | - Jiwei Teng
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| |
Collapse
|
29
|
Strassheim D, Karoor V, Stenmark K, Verin A, Gerasimovskaya E. A current view of G protein-coupled receptor - mediated signaling in pulmonary hypertension: finding opportunities for therapeutic intervention. ACTA ACUST UNITED AC 2018; 2. [PMID: 31380505 PMCID: PMC6677404 DOI: 10.20517/2574-1209.2018.44] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pathological vascular remodeling is observed in various cardiovascular diseases including pulmonary hypertension (PH), a disease of unknown etiology that has been characterized by pulmonary artery vasoconstriction, right ventricular hypertrophy, vascular inflammation, and abnormal angiogenesis in pulmonary circulation. G protein-coupled receptors (GPCRs) are the largest family in the genome and widely expressed in cardiovascular system. They regulate all aspects of PH pathophysiology and represent therapeutic targets. We overview GPCRs function in vasoconstriction, vasodilation, vascular inflammation-driven remodeling and describe signaling cross talk between GPCR, inflammatory cytokines, and growth factors. Overall, the goal of this review is to emphasize the importance of GPCRs as critical signal transducers and targets for drug development in PH.
Collapse
Affiliation(s)
- Derek Strassheim
- Departments of Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Vijaya Karoor
- Departments of Medicine, University of Colorado Denver, Aurora, CO 80045, USA.,Cardiovascular and Pulmonary Research laboratories, University of Colorado Denver, Aurora, CO 80045, USA
| | - Kurt Stenmark
- Cardiovascular and Pulmonary Research laboratories, University of Colorado Denver, Aurora, CO 80045, USA.,Department of Pediatrics, Pulmonary and Critical Care Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| | - Alexander Verin
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
| | - Evgenia Gerasimovskaya
- Cardiovascular and Pulmonary Research laboratories, University of Colorado Denver, Aurora, CO 80045, USA.,Department of Pediatrics, Pulmonary and Critical Care Medicine, University of Colorado Denver, Aurora, CO 80045, USA
| |
Collapse
|