1
|
Ateutchia-Ngouanet S, Nanfack-Minkeu F, Mavridis K, Wanji S, Demanou M, Vontas J, Djouaka R. Monitoring Aedes populations for arboviruses, Wolbachia, insecticide resistance and its mechanisms in various agroecosystems in Benin. Acta Trop 2024; 253:107178. [PMID: 38461924 DOI: 10.1016/j.actatropica.2024.107178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/07/2024] [Accepted: 03/07/2024] [Indexed: 03/12/2024]
Abstract
Aedes mosquitoes are the main vectors of arboviruses in Benin. Cases of dengue have been reported in Benin with all four serotypes of the virus actively circulating in this region. Some agricultural settings are known to harbor Aedes vectors responsible for the transmission of arboviruses. The massive use of certain insecticides in agricultural settings has probably contributed to insecticide resistance in these vectors. In Benin, the susceptibility of arbovirus vectors to insecticides is poorly studied. In addition, the distribution of Wolbachia spp., which is used against some arboviruses is unknown. Moreover, there is limited information regarding the vectors responsible for the transmission of arboviruses in Benin. This present study monitored the species composition, arboviruses, and Wolbachia symbiont status, as well as the phenotypic and molecular insecticide resistance profile of Aedes populations from three agroecosystems in Benin. Aedes species identification was performed morphologically and confirmed using qPCR. (RT)-qPCR assay was applied for monitoring the presence of DENV, CHIKV, ZIKV, and WNV pathogens as well as for naturally occurring Wolbachia symbionts. Insecticide resistance was assessed phenotypically, by permethrin (0.75%) exposure of Adults (F0) using World Health Organization (WHO) bioassay protocols, and at the molecular level, using TaqMan (RT)-qPCR assays for assessing knock-down resistance (kdr) mutations (F1534C, V1016G/I, and S989P) and the expression levels of eight detoxification genes (P450s from the CYP9 and CYP6 families, carboxylesterases and glutathione-S-transferases). Aedes aegypti (Ae. aegypti) mosquitoes were the most abundant (93.9%) in the three agroecosystems studied, followed by Aedes albopictus (Ae. albopictus) mosquitoes (6.1%). No arboviruses were detected in the study's mosquito populations. Naturally occurring Wolbachia symbionts were present in 7 pools out of 15 pools tested. This could influence the effectiveness of vector control strategies based on exogenously introduced Wolbachia, all present in the three agroecosystems. Full susceptibility to permethrin was observed in all tested populations of Ae. albopictus. On the contrary, Ae. aegypti were found to be resistant in all three agroecosystem sites except for banana plantation sites, where full susceptibility was observed. Molecular analysis revealed that individual target site resistance kdr mutations F1534C and V1016G/I were detected in most Ae. aegypti populations. Additionally, double mutant (F1534C + V1016G/I) mosquitoes were found in some populations, and in one case, triple mutant (F1534C + V1016G/I + S989P) mosquitoes were detected. Metabolic resistance, as reflected by overexpression of three P450 genes (CYP6BB2, CYP9J26, and CYP9J32), was also detected in Ae. aegypti mosquitoes. Our study provides information that could be used to strategize future vector control strategies and highlights the importance of continuing vector surveillance. Future studies should assess the effect of piperonyl butoxide (PBO) on metabolic resistance and identify the different strains of Wolbachia spp., to choose the best vector control strategies in Benin.
Collapse
Affiliation(s)
- S Ateutchia-Ngouanet
- International Institute of Tropical Agriculture (IITA), 08 Tri-Postal, P.O. Box 0932, Cotonou, Benin; Department Microbiology and Parasitology, Faculty of Science, University of Buea, P.O. BOX 63, Buea, Cameroon.
| | - F Nanfack-Minkeu
- International Institute of Tropical Agriculture (IITA), 08 Tri-Postal, P.O. Box 0932, Cotonou, Benin; Department of Biology, The College of Wooster, OH, USA
| | - K Mavridis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece
| | - S Wanji
- Department Microbiology and Parasitology, Faculty of Science, University of Buea, P.O. BOX 63, Buea, Cameroon
| | - M Demanou
- Regional Yellow Fever Laboratory Coordinator World Health Organization, Inter-Country Support Team West Africa, 03 PO BOX 7019 Ouagadougou 03, Burkina Faso
| | - J Vontas
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Heraklion 70013, Greece; Department of Crop Science, Pesticide Science Laboratory, Agricultural University of Athens, Athens 11855, Greece
| | - R Djouaka
- International Institute of Tropical Agriculture (IITA), 08 Tri-Postal, P.O. Box 0932, Cotonou, Benin
| |
Collapse
|
2
|
Tunstall T, Rogers T, Möbius W. Assisted percolation of slow-spreading mutants in heterogeneous environments. Phys Rev E 2023; 108:044401. [PMID: 37978675 DOI: 10.1103/physreve.108.044401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 08/11/2023] [Indexed: 11/19/2023]
Abstract
Environmental heterogeneity can drive genetic heterogeneity in expanding populations; mutant strains may emerge that trade overall growth rate for an improved ability to survive in patches that are hostile to the wild type. This evolutionary dynamic is of practical importance when seeking to prevent the emergence of damaging traits. We show that a subcritical slow-spreading mutant can attain dominance even when the density of patches is below their percolation threshold and predict this transition using geometrical arguments. This work demonstrates a phenomenon of "assisted percolation", where one subcritical process assists another to achieve supercriticality.
Collapse
Affiliation(s)
- Thomas Tunstall
- Living Systems Institute, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4QD, United Kingdom
- Physics and Astronomy, Faculty of Environment, Science and Economy, University of Exeter, Exeter, EX4 4QL, United Kingdom
| | - Tim Rogers
- Center for Networks and Collective Behaviour, Department of Mathematical Sciences, University of Bath, Bath, BA2 7AY, United Kingdom
| | - Wolfram Möbius
- Living Systems Institute, Faculty of Health and Life Sciences, University of Exeter, Exeter, EX4 4QD, United Kingdom
- Physics and Astronomy, Faculty of Environment, Science and Economy, University of Exeter, Exeter, EX4 4QL, United Kingdom
| |
Collapse
|
3
|
Forson AO, Hinne IA, Sraku IK, Afrane YA. Larval habitat stability and productivity in two sites in Southern Ghana. Malar J 2023; 22:74. [PMID: 36864430 PMCID: PMC9983185 DOI: 10.1186/s12936-023-04498-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/14/2023] [Indexed: 03/04/2023] Open
Abstract
BACKGROUND Mosquito larval source management (LSM) is a valuable additional tool for malaria vector control. Understanding the characteristics of mosquito larval habitats and its ecology in different land use types can give valuable insight for an effective larval control strategy. This study determined the stability and productivity of potential anopheline larval habitats in two different ecological sites: Anyakpor and Dodowa in southern Ghana. METHODS A total of 59 aquatic habitats positive for anopheline larvae were identified, and sampled every two weeks for a period of 30 weeks using a standard dipping method. Larvae were collected using standard dippers and were raised in the insectary for identification. Sibling species of the Anopheles gambiae sensu lato (s.l.) were further identified by polymerase chain reaction. The presence of larval habitats, their stability and larvae positive habitats were compared between the two sites using Mann-Whitney U and the Kruskal-Wallis test. Factors affecting the presence of An. gambiae larvae and physicochemical properties at the sites were determined using multiple logistic regression analysis and Spearman's correlation. RESULTS Out of a total of 13,681 mosquito immatures collected, 22.6% (3095) were anophelines and 77.38% (10,586) were culicines. Out of the 3095 anophelines collected, An. gambiae s.l. was predominant (99.48%, n = 3079), followed by Anopheles rufipes (0.45%, n = 14), and Anopheles pharoensis (0.064%, n = 2). Sibling species of the An. gambiae consisted of Anopheles coluzzii (71%), followed by An. gambiae s.s. (23%), and Anopheles melas (6%). Anopheles mean larval density was highest in wells [6.44 (95% CI 5.0-8.31) larvae/dip], lowest in furrows [4.18 (95% CI 2.75-6.36) larvae/dip] and man-made ponds [1.20 (95% CI 0.671-2.131) larvae/dip].The results also revealed habitat stability was highly dependent on rainfall intensity, and Anopheles larval densities were also dependent on elevated levels of pH, conductivity and TDS. CONCLUSION The presence of larvae in the habitats was dependent on rainfall intensity and proximity to human settlements. To optimize the vector control measures of malaria interventions in southern Ghana, larval control should be focused on larval habitats that are fed by underground water, as these are more productive habitats.
Collapse
Affiliation(s)
- Akua O Forson
- Department of Medical Laboratory Science, School of Biomedical and Allied Health Sciences, University of Ghana, Korle-Bu, Accra, Ghana
| | - Isaac A Hinne
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Korle-Bu, Accra, Ghana
| | - Isaac Kwame Sraku
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Korle-Bu, Accra, Ghana
| | - Yaw A Afrane
- Department of Medical Microbiology, University of Ghana Medical School, University of Ghana, Korle-Bu, Accra, Ghana.
| |
Collapse
|
4
|
Porretta D, Mastrantonio V, Lucchesi V, Bellini R, Vontas J, Urbanelli S. Historical samples reveal a combined role of agriculture and public-health applications in vector resistance to insecticides. PEST MANAGEMENT SCIENCE 2022; 78:1567-1572. [PMID: 34984788 PMCID: PMC9303699 DOI: 10.1002/ps.6775] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/28/2021] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Insecticide resistance is the major threat to vector control and for the prevention of vector-borne diseases. Because almost all insecticides used against insect vectors are or have been used in agriculture, a connection between agricultural insecticide use and resistance in insect vectors has been hypothesized. However, it is challenging to find a causal link between past agricultural use of insecticides and current resistance in vector populations without historical data series. Here we investigated the relative contribution across time of agricultural and public-health insecticide applications in selecting for diflubenzuron (DFB) resistance in Culex pipiens populations. Using DNA sequencing, we looked for DFB resistant mutations in current and historical mosquito samples, dating back to the 1980s-1990s, when DFB was used in agriculture but not yet in mosquito control. RESULTS In the samples collected before the introduction of DFB in vector control, we found the resistant mutation I1043M in rural regions but not any of the neighboring urban and natural areas, indicating that the selection pressure was derived by agriculture. However, after the introduction of DFB for vector control, the resistant mutations were found across all study areas showing that the initial selection from agriculture was further boosted by the selection pressure imposed by the mosquito control applications in the 2000s. CONCLUSIONS Our findings support a combined role of agricultural and public-health use of insecticides in vector resistance across time and call for specific actions in integrated resistance management, including increased communication between agriculture and health practitioners. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Daniele Porretta
- Department of Environmental BiologySapienza University of RomeRomeItaly
| | | | | | - Romeo Bellini
- Medical and Veterinary Entomology DepartmentCentro Agricoltura Ambiente ‘G. Nicoli’BolognaItaly
| | - John Vontas
- Department of Crop Science, Pesticide Science LabAgricultural University of AthensAthensGreece
- Institute of Molecular Biology and BiotechnologyFoundation for Research and Technology HellasHeraklion, CreteGreece
| | - Sandra Urbanelli
- Department of Environmental BiologySapienza University of RomeRomeItaly
| |
Collapse
|
5
|
Rai P, Saha D. Occurrence of L1014F and L1014S mutations in insecticide resistant Culex quinquefasciatus from filariasis endemic districts of West Bengal, India. PLoS Negl Trop Dis 2022; 16:e0010000. [PMID: 35025867 PMCID: PMC9135371 DOI: 10.1371/journal.pntd.0010000] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/13/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Lymphatic filariasis causes long term morbidity and hampers the socio-economic status. Apart from the available treatments and medication, control of vector population Culex quinquefasciatus Say through the use of chemical insecticides is a widely applied strategy. However, the unrestrained application of these insecticides over many decades has led to resistance development in the vectors. METHODS In order to determine the insecticide susceptibility/resistance status of Cx. quinquefasciatus from two filariasis endemic districts of West Bengal, India, wild mosquito populations were collected and assayed against six different insecticides and presence of L1014F; L1014S kdr mutations in the voltage-gated sodium channel gene was also screened along with the use of synergists to evaluate the role of major detoxifying enzymes in resistance development. RESULTS The collected mosquito populations showed severe resistance to insecticides and the two synergists used-PBO (piperonyl butoxide) and TPP (triphenyl phosphate), were unable to restore the susceptibility status of the vector thereupon pointing towards a minor role of metabolic enzymes. kdr mutations were present in the studied populations in varying percent with higher L1014F frequency indicating its association with the observed resistance to pyrethroids and DDT. This study reports L1014S mutation in Cx. quinquefasciatus for the first time.
Collapse
Affiliation(s)
- Priyanka Rai
- Insect Biochemistry and Molecular Biology Laboratory,
Department of Zoology, University of North Bengal, P.O. North Bengal University,
Siliguri, District - Darjeeling, West Bengal, India
| | - Dhiraj Saha
- Insect Biochemistry and Molecular Biology Laboratory,
Department of Zoology, University of North Bengal, P.O. North Bengal University,
Siliguri, District - Darjeeling, West Bengal, India
| |
Collapse
|
6
|
Bamou R, Kopya E, Nkahe LD, Menze BD, Awono-Ambene P, Tchuinkam T, Njiokou F, Wondji CS, Antonio-Nkondjio C. Increased prevalence of insecticide resistance in Anopheles coluzzii populations in the city of Yaoundé, Cameroon and influence on pyrethroid-only treated bed net efficacy. ACTA ACUST UNITED AC 2021; 28:8. [PMID: 33528357 PMCID: PMC7852377 DOI: 10.1051/parasite/2021003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 01/08/2021] [Indexed: 11/15/2022]
Abstract
In Cameroon, pyrethroid-only long-lasting insecticidal nets (LLINs) are still largely used for malaria control. The present study assessed the efficacy of such LLINs against a multiple-resistant population of the major malaria vector, Anopheles coluzzii, in the city of Yaoundé via a cone bioassay and release-recapture experimental hut trial. Susceptibility of field mosquitoes in Yaoundé to pyrethroids, DDT, carbamates and organophosphate insecticides was investigated using World Health Organization (WHO) bioassay tube tests. Mechanisms of insecticide resistance were characterised molecularly. Efficacy of unwashed PermaNet® 2.0 was evaluated against untreated control nets using a resistant colonised strain of An. coluzzii. Mortality, exophily and blood feeding inhibition were estimated. Field collected An. coluzzii displayed high resistance with mortality rates of 3.5% for propoxur (0.1%), 4.16% for DDT (4%), 26.9% for permethrin (0.75%), 50.8% for deltamethrin (0.05%), and 80% for bendiocarb (0.1%). High frequency of the 1014F west-Africa kdr allele was recorded in addition to the overexpression of several detoxification genes, such as Cyp6P3, Cyp6M2, Cyp9K1, Cyp6P4 Cyp6Z1 and GSTe2. A low mortality rate (23.2%) and high blood feeding inhibition rate (65%) were observed when resistant An. coluzzii were exposed to unwashed PermaNet® 2.0 net compared to control untreated net (p < 0.001). Furthermore, low personal protection (52.4%) was observed with the resistant strain, indicating reduction of efficacy. The study highlights the loss of efficacy of pyrethroid-only nets against mosquitoes exhibiting high insecticide resistance and suggests a switch to new generation bed nets to improve control of malaria vector populations in Yaoundé.
Collapse
Affiliation(s)
- Roland Bamou
- Vector-Borne Diseases Laboratory of the Applied Biology and Ecology Research Unit (VBID-URBEA), Department of Animal Biology, Faculty of Science of the University of Dschang, P.O. Box 067, Dschang, Cameroon - Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), B.P. 288 Yaoundé, Cameroon
| | - Edmond Kopya
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), B.P. 288 Yaoundé, Cameroon - Faculty of Sciences, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - Leslie Diane Nkahe
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), B.P. 288 Yaoundé, Cameroon - Faculty of Sciences, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - Benjamin D Menze
- Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom - Centre for Research in Infectious Disease (CRID), P.O. Box 13591, Yaoundé, Cameroon
| | - Parfait Awono-Ambene
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), B.P. 288 Yaoundé, Cameroon
| | - Timoléon Tchuinkam
- Vector-Borne Diseases Laboratory of the Applied Biology and Ecology Research Unit (VBID-URBEA), Department of Animal Biology, Faculty of Science of the University of Dschang, P.O. Box 067, Dschang, Cameroon
| | - Flobert Njiokou
- Faculty of Sciences, University of Yaoundé I, P.O. Box 337, Yaoundé, Cameroon
| | - Charles S Wondji
- Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom - Centre for Research in Infectious Disease (CRID), P.O. Box 13591, Yaoundé, Cameroon
| | - Christophe Antonio-Nkondjio
- Laboratoire de Recherche sur le Paludisme, Organisation de Coordination pour la lutte contre les Endémies en Afrique Centrale (OCEAC), B.P. 288 Yaoundé, Cameroon - Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, United Kingdom
| |
Collapse
|
7
|
Nambunga IH, Ngowo HS, Mapua SA, Hape EE, Msugupakulya BJ, Msaky DS, Mhumbira NT, Mchwembo KR, Tamayamali GZ, Mlembe SV, Njalambaha RM, Lwetoijera DW, Finda MF, Govella NJ, Matoke-Muhia D, Kaindoa EW, Okumu FO. Aquatic habitats of the malaria vector Anopheles funestus in rural south-eastern Tanzania. Malar J 2020; 19:219. [PMID: 32576200 PMCID: PMC7310514 DOI: 10.1186/s12936-020-03295-5] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/17/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND In rural south-eastern Tanzania, Anopheles funestus is a major malaria vector, and has been implicated in nearly 90% of all infective bites. Unfortunately, little is known about the natural ecological requirements and survival strategies of this mosquito species. METHODS Potential mosquito aquatic habitats were systematically searched along 1000 m transects from the centres of six villages in south-eastern Tanzania. All water bodies were geo-referenced, characterized and examined for presence of Anopheles larvae using standard 350 mLs dippers or 10 L buckets. Larvae were collected for rearing, and the emergent adults identified to confirm habitats containing An. funestus. RESULTS One hundred and eleven habitats were identified and assessed from the first five villages (all < 300 m altitude). Of these, 36 (32.4%) had An. funestus co-occurring with other mosquito species. Another 47 (42.3%) had other Anopheles species and/or culicines, but not An. funestus, and 28 (25.2%) had no mosquitoes. There were three main habitat types occupied by An. funestus, namely: (a) small spring-fed pools with well-defined perimeters (36.1%), (b) medium-sized natural ponds retaining water most of the year (16.7%), and (c) slow-moving waters along river tributaries (47.2%). The habitats generally had clear waters with emergent surface vegetation, depths > 0.5 m and distances < 100 m from human dwellings. They were permanent or semi-permanent, retaining water most of the year. Water temperatures ranged from 25.2 to 28.8 °C, pH from 6.5 to 6.7, turbidity from 26.6 to 54.8 NTU and total dissolved solids from 60.5 to 80.3 mg/L. In the sixth village (altitude > 400 m), very high densities of An. funestus were found along rivers with slow-moving clear waters and emergent vegetation. CONCLUSION This study has documented the diversity and key characteristics of aquatic habitats of An. funestus across villages in south-eastern Tanzania, and will form an important basis for further studies to improve malaria control. The observations suggest that An. funestus habitats in the area can indeed be described as fixed, few and findable based on their unique characteristics. Future studies should investigate the potential of targeting these habitats with larviciding or larval source management to complement malaria control efforts in areas dominated by this vector species.
Collapse
Affiliation(s)
- Ismail H Nambunga
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania.
| | - Halfan S Ngowo
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Salum A Mapua
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Newcastle-under-Lyme, UK
| | - Emmanuel E Hape
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | - Betwel J Msugupakulya
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- School of Life Science and Bioengineering, Nelson Mandela African Institution of Science & Technology, Arusha, Tanzania
| | - Dickson S Msaky
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | - Nicolaus T Mhumbira
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | - Karim R Mchwembo
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | - Gerald Z Tamayamali
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | - Slyakus V Mlembe
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | - Rukiyah M Njalambaha
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
| | - Dickson W Lwetoijera
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- School of Life Science and Bioengineering, Nelson Mandela African Institution of Science & Technology, Arusha, Tanzania
| | - Marceline F Finda
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Park Town, Republic of South Africa
| | - Nicodem J Govella
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK
- School of Life Science and Bioengineering, Nelson Mandela African Institution of Science & Technology, Arusha, Tanzania
| | - Damaris Matoke-Muhia
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- Center for Biotechnology Research and Development, Kenya Medical Research Institute, Nairobi, Kenya
| | - Emmanuel W Kaindoa
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Park Town, Republic of South Africa
| | - Fredros O Okumu
- Environmental Health and Ecological Sciences Department, Ifakara Health Institute, P.O. Box 53, Ifakara, Tanzania.
- School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Park Town, Republic of South Africa.
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, UK.
- School of Life Science and Bioengineering, Nelson Mandela African Institution of Science & Technology, Arusha, Tanzania.
| |
Collapse
|
8
|
Talom AD, Essoung MA, Gbankoto A, Tchigossou G, Akoton R, Sahabi BBA, Atoyebi SM, Fotso Kuate A, Verspoor RL, Tamò M, Tchuinkam T, Lehman GL, Lines J, Wondji CS, Djouaka R. A preliminary analysis on the effect of copper on Anopheles coluzzii insecticide resistance in vegetable farms in Benin. Sci Rep 2020; 10:6392. [PMID: 32286370 PMCID: PMC7156479 DOI: 10.1038/s41598-020-63086-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 03/17/2020] [Indexed: 12/02/2022] Open
Abstract
The use of agrochemicals in vegetable production could influence the selection for insecticide resistance in malaria vectors. Unfortunately, there is a dearth of information on the potential contribution of agrochemicals to insecticide resistance in Anopheles mosquitoes breeding on vegetable farms in southern Benin. A Knowledge, Attitudes and Practices study was conducted with 75 vegetable farmers from Houeyiho and Seme to determine the main agrochemicals used in vegetable production, and the concentration and frequency of application, among other details. Mosquitoes and breeding water were sampled from the farms for analysis. Bioassays were conducted on mosquitoes, while breeding water was screened for heavy metal and pesticide residue contamination. Lambda-cyhalothrin was the main insecticide (97.5%) used by farmers, and Anopheles coluzzii was the main mosquito identified. This mosquito species was resistant (30-63% mortality rate) to λ-cyhalothrin. It was also observed that 16.7% of the examined breeding sites were contaminated with λ-cyhalothrin residues. Furthermore, copper contamination detected in mosquito breeding sites showed a positive correlation (r = 0.81; P = 0.0017) with mosquito resistance to λ-cyhalothrin. The presence of copper in λ-cyhalothrin-free breeding sites, where mosquitoes have developed resistance to λ-cyhalothrin, suggests the involvement of copper in the insecticide resistance of malaria vectors; this, however, needs further investigation.
Collapse
Affiliation(s)
- Armand Defo Talom
- University of Dschang, Vector Borne Diseases Laboratory (VBID), Po Box 067, Dschang, Cameroon.
- International Institute of Tropical Agriculture, Yaoundé, Cameroon.
| | - Michele Agnes Essoung
- University of Dschang, Vector Borne Diseases Laboratory (VBID), Po Box 067, Dschang, Cameroon
- International Institute of Tropical Agriculture, Yaoundé, Cameroon
| | - Adam Gbankoto
- University of Abomey Calavi, Laboratory of Experimental Physiology and Pharmacology, Faculty of Sciences and Technology BP 526, Cotonou, Benin
| | - Genevieve Tchigossou
- University of Abomey Calavi, Laboratory of Experimental Physiology and Pharmacology, Faculty of Sciences and Technology BP 526, Cotonou, Benin
- International Institute of Tropical Agriculture, Cotonou, 08 BP, 0932, Benin
| | - Romaric Akoton
- University of Abomey Calavi, Laboratory of Experimental Physiology and Pharmacology, Faculty of Sciences and Technology BP 526, Cotonou, Benin
- International Institute of Tropical Agriculture, Cotonou, 08 BP, 0932, Benin
| | | | - Seun Michael Atoyebi
- International Institute of Tropical Agriculture, Cotonou, 08 BP, 0932, Benin
- Cell Biology and Genetics Unit, Department of Zoology, University of Ibadan, P.O. Box 5116, Oyo State, Nigeria
| | | | - Rudi L Verspoor
- University of Liverpool, Institute of Integrative Biology, Liverpool, L697ZB, United Kingdom
| | - Manuele Tamò
- International Institute of Tropical Agriculture, Cotonou, 08 BP, 0932, Benin
| | - Timoleon Tchuinkam
- University of Dschang, Vector Borne Diseases Laboratory (VBID), Po Box 067, Dschang, Cameroon
| | | | - Jo Lines
- London School of Hygiene & Tropical Medicine, London, UK
| | - Charles S Wondji
- International Institute of Tropical Agriculture, Yaoundé, Cameroon
- Liverpool School of Tropical Medicine, Pembroke Place, L3 5QA, Liverpool, UK
- Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
| | - Rousseau Djouaka
- International Institute of Tropical Agriculture, Cotonou, 08 BP, 0932, Benin.
| |
Collapse
|
9
|
Pesticides and the evolution of the genetic structure of Anopheles coluzzii populations in some localities in Benin (West Africa). Malar J 2019; 18:407. [PMID: 31805939 PMCID: PMC6896764 DOI: 10.1186/s12936-019-3036-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 11/26/2019] [Indexed: 01/25/2023] Open
Abstract
Background Changes in the natural habitats of insect groups are determined the genetic polymorphisms between individuals. The objective of this study was to establish the genetic structure of the Anopheles coluzzii populations in four localities of Benin. Methods Insecticide surveys and larval sampling were conducted on 4 study localities, including Cotonou, Ketou, Zagnanado, and Sô-Ava. Molecular characterizations were performed on the Anopheles mosquitoes collected with the allelic and genotypic frequencies of kdr gene determined. The multiple comparison Chi square test for proportions was performed with R version 3.3.3. Next, the observed heterozygosity, expected heterozygosity, and indices of fixation, and genetic differentiation were estimated. Finally, the Hardy–Weinberg equilibrium (EHW) was determined to assess whether panmixia exists in the different populations of mosquitoes of the agroecological zones under study. Results Carbamates, pyrethroids, organophosphorus and organochlorines use have been reported in all localities except Sô-Ava. Anopheles coluzzii was strongly represented across all study localities. The L1014F allele was observed in the localities of Kétou, Cotonou and Zagnanado. Likewise, insecticide selection pressure of homozygous resistant individuals (L1014F/L1014F) was significantly higher in Kétou, Cotonou and Zagnanado (p value < 0.05). Surprisingly in Sô-Ava, a relatively high frequency of the L1014F allele despite the reported absence of pesticide use was observed. All mosquito populations were found to be deficient in heterozygosity across the study sites (FIS< 0). No genetic differentiation (FST< 0) was observed in the localities of Zagnanado and Kétou. Conclusion The survey on the use of insecticides showed that insecticide selection pressures differ across the investigated localities. It would be desirable to rotate or apply formulations of combined products with different modes of action. Doing so would enable a better management of resistant homozygous individuals, and mitigate the resistance effect of commonly used insecticides.
Collapse
|
10
|
Preet S, Satsangi N. Size Controlled Green Synthesis of Biocompatible Silver Nanoparticles with Enhanced Mosquito Larvicidal Activity. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01606-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
11
|
Baia-da-Silva DC, Brito-Sousa JD, Rodovalho SR, Peterka C, Moresco G, Lapouble OMM, Melo GCD, Sampaio VDS, Alecrim MDGC, Pimenta P, Lima JBP, Lacerda MVGD, Monteiro WM. Current vector control challenges in the fight against malaria in Brazil. Rev Soc Bras Med Trop 2019; 52:e20180542. [PMID: 30843971 DOI: 10.1590/0037-8682-0542-2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 02/20/2019] [Indexed: 11/22/2022] Open
Abstract
In Brazil, malaria is an important public health problem first reported in 1560. Historically, fluctuations in malaria cases in Brazil are attributed to waves of economic development; construction of railroads, highways, and hydroelectric dams; and population displacement and land occupation policies. Vector control measures have been widely used with an important role in reducing malaria cases. In this review article, we reviewed the vector control measures established in the Brazilian territory and aspects associated with such measures for malaria. Although some vector control measures are routinely used in Brazil, many entomological and effectiveness information still need better evidence in endemic areas where Plasmodium vivax predominates. Herein, we outlined some of the needs and priorities for future research: a) update of the cartography of malaria vectors in Brazil, adding molecular techniques for the correct identification of species and complexes of species; b) evaluation of vector competence of anophelines in Brazil; c) strengthening of local entomology teams to perform vector control measures and interpret results; d) evaluation of vector control measures, especially use of insecticide-treated nets and long-lasting insecticidal nets, estimating their effectiveness, cost-benefit, and population acceptance; e) establishment of colonies of malaria vectors in Brazil, i.e., Anopheles darlingi, to understand parasite-vector interactions better; f) study of new vector control strategies with impacts on non-endophilic vectors; g) estimation of the impact of insecticide resistance in different geographical areas; and h) identification of the relative contribution of natural and artificial breeding sites in different epidemiological contexts for transmission.
Collapse
Affiliation(s)
- Djane Clarys Baia-da-Silva
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, AM, Brasil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, AM, Brasil
| | - José Diego Brito-Sousa
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, AM, Brasil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, AM, Brasil
| | - Sheila Rodrigues Rodovalho
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, AM, Brasil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, AM, Brasil.,Organização Pan-Americana de Saúde, Brasília, DF, Brasil
| | - Cassio Peterka
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, AM, Brasil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, AM, Brasil.,Programa Nacional de Controle da Malária, Ministério da Saúde, Brasília, DF, Brasil
| | - Gilberto Moresco
- Programa Nacional de Controle da Malária, Ministério da Saúde, Brasília, DF, Brasil
| | - Oscar Martín Mesones Lapouble
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, AM, Brasil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, AM, Brasil.,Organização Pan-Americana de Saúde, Brasília, DF, Brasil
| | - Gisely Cardoso de Melo
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, AM, Brasil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, AM, Brasil
| | - Vanderson de Souza Sampaio
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, AM, Brasil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, AM, Brasil.,Fundação de Vigilância em Saúde, Manaus, AM, Brasil
| | - Maria das Graças Costa Alecrim
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, AM, Brasil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, AM, Brasil
| | - Paulo Pimenta
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, AM, Brasil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, AM, Brasil.,Instituto de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, MG, Brasil
| | | | - Marcus Vinícius Guimarães de Lacerda
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, AM, Brasil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, AM, Brasil.,Instituto de Pesquisas Leônidas and Maria Deane, Fundação Oswaldo Cruz, Manaus, AM, Brasil
| | - Wuelton Marcelo Monteiro
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado, Manaus, AM, Brasil.,Programa de Pós-Graduação em Medicina Tropical, Universidade do Estado do Amazonas, Manaus, AM, Brasil
| |
Collapse
|
12
|
Bharati M, Saha D. Assessment of insecticide resistance in primary dengue vector, Aedes aegypti (Linn.) from Northern Districts of West Bengal, India. Acta Trop 2018; 187:78-86. [PMID: 30026024 DOI: 10.1016/j.actatropica.2018.07.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 05/10/2018] [Accepted: 07/04/2018] [Indexed: 01/01/2023]
Abstract
Aedes mosquitoes are the major vectors transmitting several arboviral diseases such as dengue, zika and chikungunya worldwide. Northern districts of West Bengal is home to several epidemics vectored by mosquito including dengue infections, proper control of which depends on efficient vector control. However the onset of insecticide resistance has resulted in failure of vector control approaches. This study was carried out to unveil the level of insecticide resistance prevailing among the primary dengue vector in this dengue endemic region of India. It was observed that, field caught populations of Ae. aegypti were moderately to severely resistant to majority of the insecticide classes tested, i.e. Organochlorine (DDT), Organophosphates (temephos, malathion), Synthetic Pyrethroids (deltamethrin, lambdacyhalothrin and permethrin) and carbamate (propoxur). In majority of the populations, metabolic detoxification seemed to play the underlying role behind the development of insecticide resistance. This study seems to be the first report revealing the pattern of insecticide resistance in Ae. aegypti from Northern West Bengal. Efficient disease management in this region can only be achieved through proper insecticide resistance management. This study may help the concerned authorities in the formulation of an effective vector control strategy throughout this region incorporating the knowledge gained through this study.
Collapse
|
13
|
Insecticides Resistance Status of An. gambiae in Areas of Varying Agrochemical Use in Côte D'Ivoire. BIOMED RESEARCH INTERNATIONAL 2018; 2018:2874160. [PMID: 30402467 PMCID: PMC6196986 DOI: 10.1155/2018/2874160] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 07/03/2018] [Accepted: 09/06/2018] [Indexed: 12/04/2022]
Abstract
Background Insecticide resistance monitoring of the malaria vectors to different classes of insecticides is necessary for resistance management. Malaria vector control management approaches are essentially based on IRS and LLINs. However, insecticide resistance is caused by several sources of selection and in case the selection pressure is from agricultural practices, then measures need to be taken to avoid a failure of the control methods put in place. The current study was undertaken to monitor the susceptibility of vectors to different classes of insecticides in areas of varying agrochemical use patterns. Methods A survey to determine the agricultural chemical use pattern was undertaken in ten localities across Côte d'Ivoire. In addition, WHO susceptibility tests were carried out on adults Anopheles gambiae s.l. mosquitoes emerging from collected larvae from the sites surveyed. Four insecticides from each class of the four classes of insecticides were evaluated using the standard susceptibility test methods. Furthermore, the target site mutations involved in resistance mechanisms were identified following the Taqman assay protocols and mosquito species were identified using SINE-PCR. Results The mortalities of all the An. gambiae s.l populations were similar regardless of the pesticide use pattern. The vectors were resistant to DDT, deltamethrin, and bendiocarb in all localities. In contrast, mosquitoes showed high susceptibility to malathion. High frequency of the Kdr-West gene allele was observed (70-100%). A single Kdr-East mutation was identified in a mosquito that harboured both Ace-1 and Kdr-West genes. Conclusion Cultivated marshlands representing good habitats for mosquito development may deeply contribute to the selection of resistance genes given the intensive use of agrochemical for crop protection. In view of these, special attention must be given to them to mitigate mosquito resistance to insecticides.
Collapse
|
14
|
Bharati M, Saha D. Multiple insecticide resistance mechanisms in primary dengue vector, Aedes aegypti (Linn.) from dengue endemic districts of sub-Himalayan West Bengal, India. PLoS One 2018; 13:e0203207. [PMID: 30199543 PMCID: PMC6130861 DOI: 10.1371/journal.pone.0203207] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 08/16/2018] [Indexed: 12/21/2022] Open
Abstract
Background Mosquitoes belonging to genus Aedes are the prime vectors of several arboviral diseases such as Dengue, Zika and Chikungunya worldwide. Every year numerous cases of dengue infections occur throughout the world, proper control of which depends on efficient vector control. However the onset of insecticide resistance has resulted in failure of vector control approaches. Principal findings This study was carried out to unveil the degree of prevailing insecticide resistance along with its underlying mechanisms among the primary dengue vector in dengue endemic districts of West Bengal, India through standard WHO protocol. It was observed that, the majority of the tested populations were found to possess resistance to more than one insecticide. In adult bioassay, the toxicity levels of the six tested insecticides was found to decrease in the following order: deltamethrin > lambdacyhalothrin > malathion > propoxur > permethrin > DDT. In larval bioassay, one of the tested populations was found to possess moderate resistance against temephos, mortality percentage 92.5% and 79.8% for WHO (0.0200 ppm) and National Vector Borne disease Programme, India recommended dose (0.0125 ppm) respectively. Carboxylesterases were found to be involved in conferring resistance as revealed in synergistic and quantitative assay against temephos in North Dinajpur (NDP) population and malathion in Alipurduar (APD) and Darjeeling (DAR) populations. Similar correlations were also observed in the majority of the tested populations between reduced susceptibilities against pyrethroid insecticides and Cytochrome P450s activity. Conclusion Efficient disease management in this region can only be achieved through proper integrated vector management along with tools to minimize insecticide resistance. This study may help the concerned authorities in the formulation of an effective vector control strategy throughout this region incorporating the knowledge gained through this study.
Collapse
Affiliation(s)
- Minu Bharati
- Insect Biochemistry and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Ramohunpur, P.O. North Bengal University, Siliguri, District – Darjeeling, West Bengal, India
| | - Dhiraj Saha
- Insect Biochemistry and Molecular Biology Laboratory, Department of Zoology, University of North Bengal, Raja Ramohunpur, P.O. North Bengal University, Siliguri, District – Darjeeling, West Bengal, India
- * E-mail: ,
| |
Collapse
|
15
|
Emidi B, Kisinza WN, Mmbando BP, Malima R, Mosha FW. Effect of physicochemical parameters on Anopheles and Culex mosquito larvae abundance in different breeding sites in a rural setting of Muheza, Tanzania. Parasit Vectors 2017. [PMID: 28645303 PMCID: PMC5482952 DOI: 10.1186/s13071-017-2238-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Basiliana Emidi
- Kilimanjaro Christian Medical University College, P.O. Box 2240, Moshi, Tanzania. .,National Institute for Medical Research, Headquarters, P.O. Box 9653, Dar es Salaam, Tanzania.
| | - William N Kisinza
- National Institute for Medical Research, Amani Centre, P.O. Box 81, Muheza, Tanzania
| | - Bruno P Mmbando
- National Institute for Medical Research, Tanga Centre, P.O. Box 5004, Tanga, Tanzania
| | - Robert Malima
- National Institute for Medical Research, Amani Centre, P.O. Box 81, Muheza, Tanzania
| | - Franklin W Mosha
- Kilimanjaro Christian Medical University College, P.O. Box 2240, Moshi, Tanzania
| |
Collapse
|
16
|
Habitat productivity and pyrethroid susceptibility status of Aedes aegypti mosquitoes in Dar es Salaam, Tanzania. Infect Dis Poverty 2017; 6:102. [PMID: 28595653 PMCID: PMC5465599 DOI: 10.1186/s40249-017-0316-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 05/12/2017] [Indexed: 01/05/2023] Open
Abstract
Background Aedes aegypti (Diptera: Culicidae) is the main vector of the dengue virus globally. Dengue vector control is mainly based on reducing the vector population through interventions, which target potential breeding sites. However, in Tanzania, little is known about this vector’s habitat productivity and insecticide susceptibility status to support evidence-based implementation of control measures. The present study aimed at assessing the productivity and susceptibility status of A. aegypti mosquitoes to pyrethroid-based insecticides in Dar es Salaam, Tanzania. Methods An entomological assessment was conducted between January and July 2015 in six randomly selected wards in Dar es Salaam, Tanzania. Habitat productivity was determined by the number of female adult A. aegypti mosquitoes emerged per square metre. The susceptibility status of adult A. aegypti females after exposure to 0.05% deltamethrin, 0.75% permethrin and 0.05% lambda-cyhalothrin was evaluated using the standard WHO protocols. Mortality rates were recorded after 24 h exposure and the knockdown effect was recorded at the time points of 10, 15, 20, 30, 40, 50 and 60 min to calculate the median knockdown times (KDT50 and KDT95). Results The results suggest that disposed tyres had the highest productivity, while water storage tanks had the lowest productivity among the breeding habitats Of A. aegypti mosquitoes. All sites demonstrated reduced susceptibility to deltamethrin (0.05%) within 24 h post exposure, with mortalities ranging from 86.3 ± 1.9 (mean ± SD) to 96.8 ± 0.9 (mean ± SD). The lowest and highest susceptibilities were recorded in Mikocheni and Sinza wards, respectively. Similarly, all sites demonstrated reduced susceptibility permethrin (0.75%) ranging from 83.1 ± 2.1% (mean ± SD) to 96.2 ± 0.9% (mean ± SD), in Kipawa and Sinza, respectively. Relatively low mortality rates were observed in relation to lambda-cyhalothrin (0.05%) at all sites, ranging from 83.1 ± 0.7 (mean ± SD) to 86.3 ± 1.4 (mean ± SD). The median KDT50 for deltamethrin, permethrin and lambda-cyhalothrin were 24.9–30.3 min, 24.3–34.4 min and 26.7–32.8 min, respectively. The KDT95 were 55.2–90.9 min for deltamethrin, 54.3–94.6 min for permethrin and 64.5–69.2 min for lambda-cyhalothrin. Conclusions The productive habitats for A. aegypti mosquitoes found in Dar es Salaam were water storage containers, discarded tins and tyres. There was a reduced susceptibility of A. aegypti to and emergence of resistance against pyrethroid-based insecticides. The documented differences in the resistance profiles of A. aegypti mosquitoes warrants regular monitoring the pattern concerning resistance against pyrethroid-based insecticides and define dengue vector control strategies. Electronic supplementary material The online version of this article (doi:10.1186/s40249-017-0316-0) contains supplementary material, which is available to authorized users.
Collapse
|
17
|
Philbert A, Lyantagaye SL, Pradel G, Ngwa CJ, Nkwengulila G. Pyrethroids and DDT tolerance ofAnopheles gambiaes.l. from Sengerema District, an area of intensive pesticide usage in north-western Tanzania. Trop Med Int Health 2017; 22:388-398. [DOI: 10.1111/tmi.12850] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Anitha Philbert
- Mkwawa University College of Education; Private bag Iringa Tanzania
| | | | - Gabriele Pradel
- Division of Cellular and Applied Infection Biology; Institute of Zoology; RWTH Aachen University; Aachen Germany
| | - Che Julius Ngwa
- Division of Cellular and Applied Infection Biology; Institute of Zoology; RWTH Aachen University; Aachen Germany
| | | |
Collapse
|
18
|
Levels of insecticide resistance to deltamethrin, malathion, and temephos, and associated mechanisms in Aedes aegypti mosquitoes from the Guadeloupe and Saint Martin islands (French West Indies). Infect Dis Poverty 2017; 6:38. [PMID: 28187780 PMCID: PMC5303256 DOI: 10.1186/s40249-017-0254-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 02/06/2017] [Indexed: 01/01/2023] Open
Abstract
Background In the Guadeloupe and Saint Martin islands, Aedes aegypti mosquitoes are the only recognized vectors of dengue, chikungunya, and Zika viruses. For around 40 years, malathion was used as a mosquito adulticide and temephos as a larvicide. Since the European Union banned the use of these two insecticide molecules in the first decade of the 21st century, deltamethrin and Bacillus thuringiensis var. israelensis are the remaining adulticide and larvicide, respectively, used in Guadeloupe. In order to improve the management of vector control activities in Guadeloupe and Saint Martin, we investigated Ae. aegypti resistance to and mechanisms associated with deltamethrin, malathion, and temephos. Methods Ae. aegypti mosquitoes were collected from six different localities of Guadeloupe and Saint Martin. Larvae were used for malathion and temephos bioassays, and adult mosquitoes for deltamethrin bioassays, following World Health Organization recommendations. Knockdown resistance (Kdr) genotyping for V1016I and F1534C mutations, and expression levels of eight enzymes involved in detoxification mechanisms were examined in comparison with the susceptible reference Bora Bora strain. Results Resistance ratios (RR50) calculated for Ae. aegypti larvae showed high resistance levels to temephos (from 8.9 to 33.1-fold) and low resistance levels to malathion (from 1.7 to 4.4-fold). Adult females displayed moderate resistance levels to deltamethrin regarding the time necessary to affect 50% of individuals, varying from 8.0 to 28.1-fold. Molecular investigations on adult mosquitoes showed high resistant allele frequencies for V1016I and F1534C (from 85 to 96% and from 90 to 98%, respectively), as well as an overexpression of the glutathione S-transferase gene, GSTe2, the carboxylesterase CCEae3a, and the cytochrome genes 014614, CYP6BB2, CYP6M11, and CYP9J23. Conclusions Ae. aegypti populations from Guadeloupe and Saint Martin exhibit multiple resistance to organophosphates (temephos and malathion), and pyrethroids (deltamethrin). The mechanisms associated with these resistance patterns show strong frequencies of F1534C and V1016I Kdr mutations, and an over-expression of CCEae3a, GSTe2, and four cytochrome P450 genes (014614, CYP9J23, CYP6M11, CYP6BB2). These results will form the baseline for a deeper understanding of the insecticide resistance levels and associated mechanisms of Ae. aegypti populations and will be used to improve vector control strategies in Guadeloupe and Saint Martin. Electronic supplementary material The online version of this article (doi:10.1186/s40249-017-0254-x) contains supplementary material, which is available to authorized users.
Collapse
|
19
|
Evidence of a multiple insecticide resistance in the malaria vector Anopheles funestus in South West Nigeria. Malar J 2016; 15:565. [PMID: 27876039 PMCID: PMC5120565 DOI: 10.1186/s12936-016-1615-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/15/2016] [Indexed: 11/30/2022] Open
Abstract
Background Knowing the extent and spread of insecticide resistance in malaria vectors is vital to successfully manage insecticide resistance in Africa. This information in the main malaria vector, Anopheles funestus sensu stricto, is completely lacking in the most populous country in Africa, Nigeria. This study reports the insecticide susceptibility status and the molecular basis of resistance of An. funestus as well as its involvement in malaria transmission in Akaka-Remo, a farm settlement village in southwest Nigeria. Results Plasmodium infection analysis using TaqMan protocol coupled with a nested PCR revealed an infection rate of 8% in An. funestus s.s. from Akaka-Remo. WHO susceptibility tests showed this species has developed multiple resistance to insecticides in the study area. Anopheles funestus s.s. population in Akaka-Remo is highly resistant to organochlorines: dieldrin (8%) and DDT (10%). Resistance was also observed against pyrethroids: permethrin (68%) and deltamethrin (87%), and the carbamate bendiocarb (84%). Mortality rate with DDT slightly increased (from 10 to 30%, n = 45) after PBO pre-exposure indicating that cytochrome P450s play little role in DDT resistance while high mortalities were recorded after PBO pre-exposure with permethrin (from 68 to 100%, n = 70) and dieldrin (from 8 to 100%, n = 48) suggesting the implication of P450s in the observed permethrin and dieldrin resistance. High frequencies of resistant allele, 119F in F0 (77%) and F1 (80% in resistant and 72% in susceptible) populations with an odd ratio of 1.56 (P = 0.1859) show that L119F-GSTe2 mutation is almost fixed in the population. Genotyping of the A296S-RDL mutation in both F0 and F1 samples shows an association with dieldrin resistance with an odd ratio of 81 (P < 0.0001) (allelic frequency (R) = 76% for F0; for F1, 90 and 10% were observed in resistant and susceptible populations, respectively) as this mutation is not yet fixed in the population. Conclusion The study reports multiple insecticide resistance in An. funestus from Akaka Remo. It is, therefore, necessary to pay more attention to this major malaria vector for effective malaria control in Nigeria.
Collapse
|
20
|
Chanda E, Ameneshewa B, Bagayoko M, Govere JM, Macdonald MB. Harnessing Integrated Vector Management for Enhanced Disease Prevention. Trends Parasitol 2016; 33:30-41. [PMID: 27720141 DOI: 10.1016/j.pt.2016.09.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/11/2016] [Accepted: 09/15/2016] [Indexed: 11/16/2022]
Abstract
The increasing global threat of emerging and re-emerging vector-borne diseases (VBDs) poses a serious health problem. The World Health Organization (WHO) recommends integrated vector management (IVM) strategy for combating VBD transmission. An IVM approach requires entomological knowledge, technical and infrastructure capacity, and systems facilitating stakeholder collaboration. In sub-Saharan Africa, successful operational IVM experience comes from relatively few countries. This article provides an update on the extent to which IVM is official national policy, the degree of IVM implementation, the level of compliance with WHO guidelines, and concordance in the understanding of IVM, and it assesses the operational impact of IVM. The future outlook encompasses rational and sustainable use of effective vector control tools and inherent improved return for investment for disease vector control.
Collapse
Affiliation(s)
- Emmanuel Chanda
- Vector Control Specialist/Consultant, Kamwala South, Lusaka, Zambia.
| | | | - Magaran Bagayoko
- World Health Organization, Regional Office for Africa, Brazzaville, Congo
| | - John M Govere
- Vector Control Specialist/Consultant, Nelspruit, Mpumalanga, South Africa
| | | |
Collapse
|
21
|
Chabi J, Baidoo PK, Datsomor AK, Okyere D, Ablorde A, Iddrisu A, Wilson MD, Dadzie SK, Jamet HP, Diclaro JW. Insecticide susceptibility of natural populations of Anopheles coluzzii and Anopheles gambiae (sensu stricto) from Okyereko irrigation site, Ghana, West Africa. Parasit Vectors 2016; 9:182. [PMID: 27030033 PMCID: PMC4815066 DOI: 10.1186/s13071-016-1462-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/17/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The increasing spread of insecticide resistance in malaria vectors has been well documented across sub-Saharan Africa countries. The influence of irrigation on increasing vector resistance is poorly understood, and is critical to successful and ethical implementation of food security policies. This study investigated the insecticide resistance status of An. gambiae (s.l.) mosquitoes collected from the irrigated rice area of Okyereko, a village containing about 42 hectares of irrigated field within an irrigation project plan in the Central Region of Ghana. Large amounts of insecticides, herbicides and fertilizers are commonly used in the area to boost the annual production of the rice. METHODS Mosquito larvae were collected and adults were assayed from the F1 progeny. The resistance status, allele and genotype were characterized using WHO susceptibility testing and PCR methods respectively. RESULTS The An. gambiae (s.l.) populations from Okyereko are highly resistant to DDT and pyrethroid insecticides, with possible involvement of metabolic mechanisms including the elevation of P450 and GST enzyme as well as P-gp activity. The population was mostly composed of An. coluzzii specimens (more than 96 %) with kdr and ace-1 frequencies of 0.9 and 0.2 %, respectively. CONCLUSION This study brings additional information on insecticide resistance and the characterization of An. gambiae (s.l.) mosquitoes from Okyereko, which can be helpful in decision making for vector control programmes in the region.
Collapse
Affiliation(s)
- Joseph Chabi
- Vestergaard-NMIMR Vector Labs (VNVL), Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana. .,Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana.
| | - Philip K Baidoo
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Alex K Datsomor
- Vestergaard-NMIMR Vector Labs (VNVL), Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana.,Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Dora Okyere
- Vestergaard-NMIMR Vector Labs (VNVL), Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana.,Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Aikins Ablorde
- Vestergaard-NMIMR Vector Labs (VNVL), Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana.,Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Alidu Iddrisu
- Vestergaard-NMIMR Vector Labs (VNVL), Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana.,Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Michael D Wilson
- Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | - Samuel K Dadzie
- Parasitology Department, Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Accra, Ghana
| | | | - Joseph W Diclaro
- Vector Biology Research Program, U.S. Naval Medical Research Unit No 3, Cairo, Egypt
| |
Collapse
|
22
|
Reid MC, McKenzie FE. The contribution of agricultural insecticide use to increasing insecticide resistance in African malaria vectors. Malar J 2016; 15:107. [PMID: 26895980 PMCID: PMC4759738 DOI: 10.1186/s12936-016-1162-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/11/2016] [Indexed: 11/26/2022] Open
Abstract
The fight against malaria is increasingly threatened by failures in vector control due to growing insecticide resistance. This review examines the recent primary research that addresses the putative relationship between agricultural insecticide use and trends in insecticide resistance. To do so, descriptive evidence offered by the new research was categorized, and additional factors that impact the relationship between agricultural insecticide use and observed insecticide resistance in malaria vectors were identified. In 23 of the 25 relevant recent publications from across Africa, higher resistance in mosquito populations was associated with agricultural insecticide use. This association appears to be affected by crop type, farm pest management strategy and urban development.
Collapse
Affiliation(s)
- Molly C Reid
- Maryland Institute of Applied Environmental Health, University of Maryland School of Public Health, 22242 Valley Drive, College Park, MD, 20742, USA.
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA.
| | - F Ellis McKenzie
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|