1
|
Barata IS, Rueff J, Kranendonk M, Esteves F. Pleiotropy of Progesterone Receptor Membrane Component 1 in Modulation of Cytochrome P450 Activity. J Xenobiot 2024; 14:575-603. [PMID: 38804287 PMCID: PMC11130977 DOI: 10.3390/jox14020034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Progesterone receptor membrane component 1 (PGRMC1) is one of few proteins that have been recently described as direct modulators of the activity of human cytochrome P450 enzymes (CYP)s. These enzymes form a superfamily of membrane-bound hemoproteins that metabolize a wide variety of physiological, dietary, environmental, and pharmacological compounds. Modulation of CYP activity impacts the detoxification of xenobiotics as well as endogenous pathways such as steroid and fatty acid metabolism, thus playing a central role in homeostasis. This review is focused on nine main topics that include the most relevant aspects of past and current PGRMC1 research, focusing on its role in CYP-mediated drug metabolism. Firstly, a general overview of the main aspects of xenobiotic metabolism is presented (I), followed by an overview of the role of the CYP enzymatic complex (IIa), a section on human disorders associated with defects in CYP enzyme complex activity (IIb), and a brief account of cytochrome b5 (cyt b5)'s effect on CYP activity (IIc). Subsequently, we present a background overview of the history of the molecular characterization of PGRMC1 (III), regarding its structure, expression, and intracellular location (IIIa), and its heme-binding capability and dimerization (IIIb). The next section reflects the different effects PGRMC1 may have on CYP activity (IV), presenting a description of studies on the direct effects on CYP activity (IVa), and a summary of pathways in which PGRMC1's involvement may indirectly affect CYP activity (IVb). The last section of the review is focused on the current challenges of research on the effect of PGRMC1 on CYP activity (V), presenting some future perspectives of research in the field (VI).
Collapse
Affiliation(s)
- Isabel S. Barata
- Department of Pediatrics, Division of Endocrinology, Diabetology and Metabolism, University Children’s Hospital, University of Bern, 3010 Bern, Switzerland;
- Translational Hormone Research Program, Department of Biomedical Research, University of Bern, 3010 Bern, Switzerland
- Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | - José Rueff
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal;
| | - Michel Kranendonk
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal;
| | - Francisco Esteves
- ToxOmics, NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade NOVA de Lisboa, Campo Mártires da Pátria 130, 1169-056 Lisboa, Portugal;
| |
Collapse
|
2
|
Mauro LJ, Spartz A, Austin JR, Lange CA. Reevaluating the Role of Progesterone in Ovarian Cancer: Is Progesterone Always Protective? Endocr Rev 2023; 44:1029-1046. [PMID: 37261958 PMCID: PMC11048595 DOI: 10.1210/endrev/bnad018] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 05/04/2023] [Accepted: 05/31/2023] [Indexed: 06/03/2023]
Abstract
Ovarian cancer (OC) represents a collection of rare but lethal gynecologic cancers where the difficulty of early detection due to an often-subtle range of abdominal symptoms contributes to high fatality rates. With the exception of BRCA1/2 mutation carriers, OC most often manifests as a post-menopausal disease, a time in which the ovaries regress and circulating reproductive hormones diminish. Progesterone is thought to be a "protective" hormone that counters the proliferative actions of estrogen, as can be observed in the uterus or breast. Like other steroid hormone receptor family members, the transcriptional activity of the nuclear progesterone receptor (nPR) may be ligand dependent or independent and is fully integrated with other ubiquitous cell signaling pathways often altered in cancers. Emerging evidence in OC models challenges the singular protective role of progesterone/nPR. Herein, we integrate the historical perspective of progesterone on OC development and progression with exciting new research findings and critical interpretations to help paint a broader picture of the role of progesterone and nPR signaling in OC. We hope to alleviate some of the controversy around the role of progesterone and give insight into the importance of nPR actions in disease progression. A new perspective on the role of progesterone and nPR signaling integration will raise awareness to the complexity of nPRs and nPR-driven gene regulation in OC, help to reveal novel biomarkers, and lend critical knowledge for the development of better therapeutic strategies.
Collapse
Affiliation(s)
- Laura J Mauro
- Department of Animal Science-Physiology, University of Minnesota, Saint Paul, MN 55108, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Angela Spartz
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Julia R Austin
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Carol A Lange
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Departments of Medicine (Division of Hematology, Oncology & Transplantation) and Pharmacology, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
3
|
Wang L, Chen Q, Ma R, Zhang B, Yang P, Cao T, Jiao S, Chen H, Lin C, Cai H. Insight into mitochondrial dysfunction mediated by clozapine-induced inhibition of PGRMC1 in PC12 cells. Toxicology 2023; 491:153515. [PMID: 37087062 DOI: 10.1016/j.tox.2023.153515] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 04/11/2023] [Accepted: 04/19/2023] [Indexed: 04/24/2023]
Abstract
Clozapine is usually considered as the last resort for treatment-resistant schizophrenia (TRS). However, it shows limited efficacy in cognition improvement. Moreover, the metabolic side effects induced by clozapine can aggravate cognitive impairment, which is closely related to its neurotoxicity. Nevertheless, the mechanisms underlying clozapine's neurotoxicity remain largely elusive. In this study, PC12 cells were simultaneously treated with different concentrations (0μM, 10μM, 20μM, 40μM and 80μM) of clozapine and AG205 which functions as a blocking reagent of progesterone receptor membrane component 1 (PGRMC1). In addition, we examined the effect of PGRMC1 in clozapine-induced neurotoxicity through overexpressing or downregulating PGRMC1. Molecular docking and surface plasmon resonance (SPR) analysis indicated that clozapine and AG205 inhibited the binding of endogenous progesterone to PGRMC1. The results showed that high concentration of clozapine and AG205 induced a significant increase in cytotoxicity, reactive oxygen species (ROS) accumulation and mitochondrial membrane potential (MMP) collapse, all of which were worsened as concentration increases, while overexpression of PGRMC1 reverted the above toxic effect of clozapine on PC12 cells. Furthermore, clozapine and AG205 also downregulated the expression of PGRMC1, glucagon-like peptide-1 receptor (GLP-1R) and mitofusin2 (Mfn2). Interestingly, overexpression of PGRMC1 could revert these effects. Our data suggest that overexpression of PGRMC1 in PC12 cells prevents and restores clozapine-induced oxidative and mitochondrial damage. We propose PGRMC1 activation as a promising therapeutic strategy for clozapine-induced neurotoxicity to facilitate the relief of neuronal damage.
Collapse
Affiliation(s)
- Liwei Wang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China
| | - Qian Chen
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China
| | - Rui Ma
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China
| | - Bikui Zhang
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China
| | - Ping Yang
- Department of Psychiatry, Hunan Brain Hospital, 427# Furong Road, Changsha, Hunan 410000, China
| | - Ting Cao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China
| | - Shimeng Jiao
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China
| | - Hui Chen
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China
| | - Chenquan Lin
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China
| | - Hualin Cai
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha 410011, Hunan, China; Institute of Clinical Pharmacy, Central South University, Changsha, Hunan 410011, China; International Research Center for Precision Medicine, Transformative Technology and Software Services, Hunan, China.
| |
Collapse
|
4
|
McGuire MR, Espenshade PJ. PGRMC1: An enigmatic heme-binding protein. Pharmacol Ther 2023; 241:108326. [PMID: 36463977 PMCID: PMC9839567 DOI: 10.1016/j.pharmthera.2022.108326] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
Progesterone Receptor Membrane Component 1 (PGRMC1) is a heme-binding protein that has been implicated in a wide range of cell and tissue functions, including cytochromes P450 activity, heme homeostasis, cancer, female reproduction, and protein quality control. Despite an extensive body of literature, a relative lack of mechanistic insight means that how PGRMC1 functions in these different aspects of biology is largely unknown. This review provides an overview of the PGRMC1 literature, highlighting what information is rigorously supported by experimental evidence and where additional investigation is warranted. The central role of PGRMC1 in supporting cytochrome P450 activity is discussed at length. Building on existing models of PGRMC1 function, a speculative model is proposed using the reviewed literature in which PGRMC1 functions as a heme chaperone to shuttle heme from its site of synthesis in the mitochondrion to other subcellular compartments. By spotlighting knowledge gaps, this review will motivate investigators to better understand this enigmatic protein.
Collapse
Affiliation(s)
- Meredith R McGuire
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peter J Espenshade
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Oncology, Johns Hopkins University School of Medicine, 725 N. Wolfe St., Physiology 107B, Baltimore, MD 21205, USA.
| |
Collapse
|
5
|
Check JH, Check DL. The role of progesterone and the progesterone receptor in cancer: progress in the last 5 years. Expert Rev Endocrinol Metab 2023; 18:5-18. [PMID: 36647582 DOI: 10.1080/17446651.2023.2166487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 01/05/2023] [Indexed: 01/15/2023]
Abstract
INTRODUCTION Patients with various advanced cancers devoid of nuclear progesterone receptors (nPR) have demonstrated increased quality and length of life when treated with the PR modulator mifepristone, which likely works by interacting with membrane PRs (mPR). AREAS COVERED Two immunomodulatory proteins are discussed that seem to play a role in cancers that proliferate whether the malignant tumor is positive or negative for the nPR. These two proteins are the progesterone receptor membrane component-1 (PGRMC-1) and the progesterone-induced blocking factor (PIBF). Both PGRMC-1 and the parent form of PIBF foster increased tumor aggressiveness, whereas splice variants of the 90 kDa form of PIBF inhibit immune response against cancer cells. EXPERT OPINION The marked clinical improvement following 200-300 mg of mifepristone is likely related to blocking PIBF. In the low dosage used, mifepristone likely acts as an agonist for PGRMC-1 protein. Mifepristone may be less effective for cancers positive for the nPR because the nPR may be protective and blocking it may have detrimental effects. Based on this hypothetical model, the development of other potential treatment options to provide even greater efficacy for treating cancer are discussed.
Collapse
Affiliation(s)
- Jerome H Check
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology and Infertility, Cooper Medical School of Rowan University, Camden, New Jersey, USA
- Cooper Institute for Reproductive Hormonal Disorders P.C, Mt. Laurel, New Jersey, USA
| | - Diane L Check
- Cooper Institute for Reproductive Hormonal Disorders P.C, Mt. Laurel, New Jersey, USA
| |
Collapse
|
6
|
Teakel S, Marama M, Aragão D, Tsimbalyuk S, Mackie ERR, Soares da‐Costa TP, Forwood JK, Cahill MA. Structural characterization of a
MAPR
‐related archaeal cytochrome
b
5M
protein. FEBS Lett 2022; 596:2409-2417. [DOI: 10.1002/1873-3468.14471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Sarah Teakel
- School of Dentistry and Medical Sciences Charles Sturt University Wagga Wagga NSW 2678 Australia
| | - Michealla Marama
- School of Animal and Veterinary Sciences Charles Sturt University Wagga Wagga NSW 2678 Australia
| | - David Aragão
- Australian Synchrotron, Australian Nuclear Science and Technology Organisation 800 Blackburn Road Clayton VIC 3168 Australia
- Diamond Light Source, Harwell Science and Innovation Campus Didcot OX11 0DE UK
| | - Sofiya Tsimbalyuk
- School of Dentistry and Medical Sciences Charles Sturt University Wagga Wagga NSW 2678 Australia
| | - Emily R. R. Mackie
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science La Trobe University Bundoora VIC 3086 Australia
- School of Agriculture, Food & Wine and Waite Research Institute, University of Adelaide Waite Campus Glen Osmond SA 5064 Australia
| | - Tatiana P. Soares da‐Costa
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science La Trobe University Bundoora VIC 3086 Australia
- School of Agriculture, Food & Wine and Waite Research Institute, University of Adelaide Waite Campus Glen Osmond SA 5064 Australia
| | - Jade K. Forwood
- School of Dentistry and Medical Sciences Charles Sturt University Wagga Wagga NSW 2678 Australia
| | - Michael A. Cahill
- School of Dentistry and Medical Sciences Charles Sturt University Wagga Wagga NSW 2678 Australia
- The John Curtin School of Medical Research The Australian National University ACT 2601 Australia
| |
Collapse
|
7
|
Abstract
Progesterone receptor membrane component (PGRMC) proteins play important roles in tumor growth, progression, and chemoresistance, of which PGRMC1 is the best characterized. The ancestral member predates the evolution of metazoans, so it is perhaps not surprising that many of the purported actions of PGRMC proteins are rooted in fundamental metabolic processes such as proliferation, apoptosis, and DNA damage responses. Despite mediating some of the actions of progesterone (P4) and being fundamentally required for female fertility, PGRMC1 and PGRMC2 are broadly expressed in most tissues. As such, these proteins likely have both progesterone-dependent and progesterone-independent functions. It has been proposed that PGRMC1 acquired the ability to mediate P4 actions over evolutionary time through acquisition of its cytochrome b5-like heme/sterol-binding domain. Diverse reproductive and nonreproductive diseases associate with altered PGRMC1 expression, epigenetic regulation, or gene silencing mechanisms, some of which include polycystic ovarian disease, premature ovarian insufficiency, endometriosis, Alzheimer disease, and cancer. Although many studies have been completed using transformed cell lines in culture or in xenograft tumor approaches, recently developed transgenic model organisms are offering new insights in the physiological actions of PGRMC proteins, as well as pathophysiological and oncogenic consequences when PGRMC expression is altered. The purpose of this mini-review is to provide an overview of PGRMC proteins in cancer and to offer discussion of where this field must go to solidify PGRMC proteins as central contributors to the oncogenic process.
Collapse
Affiliation(s)
- James K Pru
- Correspondence: James K. Pru, PhD, Program in Reproductive Biology, Department of Animal Science, University of Wyoming, Laramie, WY, USA.
| |
Collapse
|
8
|
Zinovkin DA, Lyzikova YA, Nadyrov EA, Petrenyov DR, Yuzugulen J, Pranjol MZI. Gamma-ray irradiation modulates PGRMC1 expression and the number of CD56+ and FoxP3+ cells in the tumor microenvironment of endometrial endometrioid adenocarcinoma. Radiat Oncol J 2022; 39:324-333. [PMID: 34986554 PMCID: PMC8743460 DOI: 10.3857/roj.2021.00472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/17/2021] [Indexed: 11/18/2022] Open
Abstract
Purpose Although the conventional gamma ray brachytherapy has been successful in treating endometrioid endometrial adenocarcinoma (EC), the molecular and cellular mechanisms of this anti-tumorigenic response remain unclear. Therefore, we investigated whether gamma ray irradiation induces changes in the number of FoxP3+ T-regulatory lymphocytes (Tregs), CD56+ natural killer cells (NK), and the expression of progesterone receptor membrane component 1 (PGRMC1) in the tumor microenvironment (TME). Materials and Methods According to the inclusion criteria, 127 cases were selected and grouped into irradiation-treated (Rad+) and control (underwent surgery) groups and analyzed using immunohistochemistry. Predictive prognostic values were analyzed using Mann-Whitney U test, ROC analysis, relative risk, log-rank, Spearman rank tests and multivariate Cox’s regression. Results We observed significant differences (p < 0.001) between the radiation-treated patients and the control groups in FoxP3+ Tregs numbers, CD56+ NK cells and PGRMC1 expression. Gamma ray induced a 3.71- and 3.39-fold increase in the infiltration of FoxP3+ cells, CD56+ NK cells, respectively and 0.0034-fold change in PGRMC1 expression. Univariate and multivariate analyses revealed predictive role of the parameters. In the irradiated patients’ group, inverted correlations between clinical unfavorable outcome, FoxP3+ Tregs and CD56+ NK cells were observed. Conclusion Our results suggest an immune-modulating role, specifically by increasing immune cell infiltration, of gamma radiation in the TME which may potentially be utilized as biomarkers in prognostic values.
Collapse
Affiliation(s)
| | | | | | | | - Jale Yuzugulen
- Faculty of Pharmacy, Eastern Mediterranean University, Famagusta, North Cyprus
| | | |
Collapse
|
9
|
The PGRMC1 Antagonist AG-205 Inhibits Synthesis of Galactosylceramide and Sulfatide. Cells 2021; 10:cells10123520. [PMID: 34944026 PMCID: PMC8700550 DOI: 10.3390/cells10123520] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 02/05/2023] Open
Abstract
Sulfatide synthesis in the human renal cancer cell line SMKT-R3 was strongly inhibited in the presence of low µM concentrations of AG-205, a progesterone receptor membrane component 1 (PGRMC1) antagonist. This was also the case in Chinese hamster ovary (CHO) cells stably transfected with UDP-galactose: ceramide galactosyltransferase and cerebroside sulfotransferase, the two enzymes required for sulfatide synthesis. In CHO cells synthesizing galactosylceramide but not sulfatide, galactosylceramide was also strongly reduced, suggesting an effect at the level of galactolipid synthesis. Notably, AG-205 inhibited galactosylceramide synthesis to a similar extent in wild type CHO cells and cells that lack PGRMC1 and/or PGRMC2. In vitro enzyme activity assays showed that AG-205 is an inhibitor of UDP-galactose: ceramide galactosyltransferase, but not cerebroside sulfotransferase. This study shows that PGRMC1 is only one of several targets of AG-205 and should be used with caution, especially in studies using cells synthesizing galactosylceramide and sulfatide.
Collapse
|
10
|
Solairaja S, Ramalingam S, Dunna NR, Venkatabalasubramanian S. Progesterone Receptor Membrane Component 1 and Its Accomplice: Emerging Therapeutic Targets in Lung Cancer. Endocr Metab Immune Disord Drug Targets 2021; 22:601-611. [PMID: 34847852 DOI: 10.2174/1871530321666211130145542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/13/2021] [Accepted: 10/28/2021] [Indexed: 12/24/2022]
Abstract
Progesterone receptor membrane component 1 (PGRMC1) is a trans-membrane evolutionarily conserved protein with a cytochrome b5 like heme/steroid binding domain. PGRMC1 clinical levels are strongly suggested to correlate with poor patient survival and lung cancer prognosis. PGRMC1 has been reported to possess pleiotropic functions, such as participating in cellular and membrane trafficking, steroid hormone signaling, cholesterol metabolism and steroidogenesis, glycolysis and mitochondrial energy metabolism, heme transport and homeostasis, neuronal movement and synaptic function, autophagy, anti-apoptosis, stem cell survival and the list is still expanding. PGRMC1 mediates its pleiotropic functions through its ability to interact with multiple binding partners, such as epidermal growth factor receptor (EGFR), sterol regulatory element binding protein cleavage activating protein (SCAP), insulin induced gene-1 protein (Insig-1), heme binding proteins (hepcidin, ferrochelatase and cyp450 members), plasminogen activator inhibitor 1 RNA binding protein (PAIR-BP1). In this review, we provide a comprehensive overview of PGRMC1 and its associated pleiotropic functions that are indispensable for lung cancer promotion and progression, suggesting it as a prospective therapeutic target for intervention. Notably, we have compiled and reported various preclinical studies wherein prospective agonists and antagonists had been tested against PGRMC1 expressing cancer cell lines, suggesting it as a prospective therapeutic target for cancer intervention.
Collapse
Affiliation(s)
- Solaipriya Solairaja
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur Campus, Tamil Nadu, Chennai-603203. India
| | - Satish Ramalingam
- Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur Campus, Tamil Nadu, Chennai-603203. India
| | - Nageswara Rao Dunna
- Cancer Genomics Laboratory, Department of Biotechnology, School of Chemical and Biotechnology, SASTRA - Deemed University, Thanjavur 613 401. India
| | | |
Collapse
|
11
|
Peluso JJ, Pru JK. Progesterone Receptor Membrane Component (PGRMC)1 and PGRMC2 and Their Roles in Ovarian and Endometrial Cancer. Cancers (Basel) 2021; 13:cancers13235953. [PMID: 34885064 PMCID: PMC8656518 DOI: 10.3390/cancers13235953] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 01/02/2023] Open
Abstract
Cancers of the female reproductive tract are both lethal and highly prevalent. For example, the five-year survival rate of women diagnosed with ovarian cancer is still less than 50%, and endometrial cancer is the fourth most common cancer in women with > 65,000 new cases in the United States in 2020. Among the many genes already established as key participants in ovarian and endometrial oncogenesis, progesterone receptor membrane component (PGRMC)1 and PGRMC2 have gained recent attention given that there is now solid correlative information supporting a role for at least PGRMC1 in enhancing tumor growth and chemoresistance. The expression of PGRMC1 is significantly increased in both ovarian and endometrial cancers, similar to that reported in other cancer types. Xenograft studies using human ovarian and endometrial cancer cell lines in immunocompromised mice demonstrate that reduced expression of PGRMC1 results in tumors that grow substantially slower. While the molecular underpinnings of PGRMCs' mechanisms of action are not clearly established, it is known that PGRMCs regulate survival pathways that attenuate stress-induced cell death. The objective of this review is to provide an overview of what is known about the roles that PGRMC1 and PGRMC2 play in ovarian and endometrial cancers, particularly as related to the mechanisms through which they regulate mitosis, apoptosis, chemoresistance, and cell migration.
Collapse
Affiliation(s)
- John J. Peluso
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA
- Department of Obstetrics and Gynecology, University of Connecticut Health Center, Farmington, CT 06030, USA
- Correspondence: ; +1-860-679-2860
| | - James K. Pru
- Department of Animal Science, Program in Reproductive Biology, University of Wyoming, Laramie, WY 82071, USA;
| |
Collapse
|
12
|
Check JH, Check DL. A Hypothetical Model Suggesting Some Possible Ways That the Progesterone Receptor May Be Involved in Cancer Proliferation. Int J Mol Sci 2021; 22:ijms222212351. [PMID: 34830233 PMCID: PMC8621132 DOI: 10.3390/ijms222212351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 11/05/2021] [Accepted: 11/08/2021] [Indexed: 12/22/2022] Open
Abstract
Cancer and the fetal-placental semi-allograft share certain characteristics, e.g., rapid proliferation, the capacity to invade normal tissue, and, related to the presence of antigens foreign to the host, the need to evade immune surveillance. Many present-day methods to treat cancer use drugs that can block a key molecule that is important for one or more of these characteristics and thus reduce side effects. The ideal molecule would be one that is essential for both the survival of the fetus and malignant tumor, but not needed for normal cells. There is a potential suitable candidate, the progesterone induced blocking factor (PIBF). The parent 90 kilodalton (kDa) form seems to be required for cell-cycle regulation, required by both the fetal-placental unit and malignant tumors. The parent form may be converted to splice variants that help both the fetus and tumors escape immune surveillance, especially in the fetal and tumor microenvironment. Evidence suggests that membrane progesterone receptors are involved in PIBF production, and indeed there has been anecdotal evidence that progesterone receptor antagonists, e.g., mifepristone, can significantly improve longevity and quality of life, with few side effects.
Collapse
Affiliation(s)
- Jerome H. Check
- Department of Obstetrics and Gynecology, Division of Reproductive Endocrinology & Infertility, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
- Cooper Institute for Reproductive Hormonal Disorders, P.C., Mt. Laurel, NJ 08054, USA;
- Correspondence: ; Tel.: +1-215-635-4156; Fax: +1-215-635-2304
| | - Diane L. Check
- Cooper Institute for Reproductive Hormonal Disorders, P.C., Mt. Laurel, NJ 08054, USA;
| |
Collapse
|
13
|
Bai Y, Ludescher M, Poschmann G, Stühler K, Wyrich M, Oles J, Franken A, Rivandi M, Abramova A, Reinhardt F, Ruckhäberle E, Niederacher D, Fehm T, Cahill MA, Stamm N, Neubauer H. PGRMC1 Promotes Progestin-Dependent Proliferation of Breast Cancer Cells by Binding Prohibitins Resulting in Activation of ERα Signaling. Cancers (Basel) 2021; 13:cancers13225635. [PMID: 34830790 PMCID: PMC8615993 DOI: 10.3390/cancers13225635] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022] Open
Abstract
Simple Summary Combined menopausal hormone therapy is associated with increased breast cancer risk in postmenopausal women. In our previous studies, progesterone receptor membrane component 1 (PGRMC1) was shown to play a role in progestins’ elicitation of enhanced proliferation of breast cancer cells. Here we describe a potential mechanism by which PGRMC1 contributes to breast cancer progression via interaction with prohibitins, inhibiting their function as transcriptional repressors. This facilitates estrogen receptor alpha (ERα) transcriptional activity and enhances oncogenic signaling upon treatment with certain progestins, including norethisterone and dydrogesterone. Our data underline the contribution of PGRMC1 to especially hormone receptor positive breast cancer pathogenesis and demonstrate the need for further studies to understand its role in cancer. Abstract In previous studies, we reported that progesterone receptor membrane component 1 (PGRMC1) is implicated in progestin signaling and possibly associated with increased breast cancer risk upon combined hormone replacement therapy. To gain mechanistic insight, we searched for potential PGRMC1 interaction partners upon progestin treatment by co-immunoprecipitation and mass spectrometry. The interactions with the identified partners were further characterized with respect to PGRMC1 phosphorylation status and with emphasis on the crosstalk between PGRMC1 and estrogen receptor α (ERα). We report that PGRMC1 overexpression resulted in increased proliferation of hormone receptor positive breast cancer cell lines upon treatment with a subgroup of progestins including norethisterone and dydrogesterone that promote PGRMC1-phosphorylation on S181. The ERα modulators prohibitin-1 (PHB1) and prohibitin-2 (PHB2) interact with PGRMC1 in dependency on S181-phosphorylation upon treatment with the same progestins. Moreover, increased interaction between PGRMC1 and PHBs correlated with decreased binding of PHBs to ERα and subsequent ERα activation. Inhibition of either PGRMC1 or ERα abolished this effect. In summary, we provide strong evidence that activated PGRMC1 associates with PHBs, competitively removing them from ERα, which then can develop its transcriptional activities on target genes. This study emphasizes the role of PGRMC1 in a key breast cancer signaling pathway which may provide a new avenue to target hormone-dependent breast cancer.
Collapse
Affiliation(s)
- Yingxue Bai
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Merowingerplatz 1a, 40225 Duesseldorf, Germany; (Y.B.); (M.L.); (M.W.); (J.O.); (A.F.); (M.R.); (A.A.); (F.R.); (E.R.); (D.N.); (T.F.)
| | - Marina Ludescher
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Merowingerplatz 1a, 40225 Duesseldorf, Germany; (Y.B.); (M.L.); (M.W.); (J.O.); (A.F.); (M.R.); (A.A.); (F.R.); (E.R.); (D.N.); (T.F.)
| | - Gereon Poschmann
- Institute for Molecular Medicine, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany; (G.P.); (K.S.)
| | - Kai Stühler
- Institute for Molecular Medicine, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany; (G.P.); (K.S.)
- Molecular Proteomics Laboratory, BMFZ, Heinrich Heine University Duesseldorf, Universitaetsstr. 1, 40225 Duesseldorf, Germany
| | - Martine Wyrich
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Merowingerplatz 1a, 40225 Duesseldorf, Germany; (Y.B.); (M.L.); (M.W.); (J.O.); (A.F.); (M.R.); (A.A.); (F.R.); (E.R.); (D.N.); (T.F.)
| | - Julia Oles
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Merowingerplatz 1a, 40225 Duesseldorf, Germany; (Y.B.); (M.L.); (M.W.); (J.O.); (A.F.); (M.R.); (A.A.); (F.R.); (E.R.); (D.N.); (T.F.)
| | - André Franken
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Merowingerplatz 1a, 40225 Duesseldorf, Germany; (Y.B.); (M.L.); (M.W.); (J.O.); (A.F.); (M.R.); (A.A.); (F.R.); (E.R.); (D.N.); (T.F.)
| | - Mahdi Rivandi
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Merowingerplatz 1a, 40225 Duesseldorf, Germany; (Y.B.); (M.L.); (M.W.); (J.O.); (A.F.); (M.R.); (A.A.); (F.R.); (E.R.); (D.N.); (T.F.)
| | - Anna Abramova
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Merowingerplatz 1a, 40225 Duesseldorf, Germany; (Y.B.); (M.L.); (M.W.); (J.O.); (A.F.); (M.R.); (A.A.); (F.R.); (E.R.); (D.N.); (T.F.)
| | - Florian Reinhardt
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Merowingerplatz 1a, 40225 Duesseldorf, Germany; (Y.B.); (M.L.); (M.W.); (J.O.); (A.F.); (M.R.); (A.A.); (F.R.); (E.R.); (D.N.); (T.F.)
| | - Eugen Ruckhäberle
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Merowingerplatz 1a, 40225 Duesseldorf, Germany; (Y.B.); (M.L.); (M.W.); (J.O.); (A.F.); (M.R.); (A.A.); (F.R.); (E.R.); (D.N.); (T.F.)
| | - Dieter Niederacher
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Merowingerplatz 1a, 40225 Duesseldorf, Germany; (Y.B.); (M.L.); (M.W.); (J.O.); (A.F.); (M.R.); (A.A.); (F.R.); (E.R.); (D.N.); (T.F.)
| | - Tanja Fehm
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Merowingerplatz 1a, 40225 Duesseldorf, Germany; (Y.B.); (M.L.); (M.W.); (J.O.); (A.F.); (M.R.); (A.A.); (F.R.); (E.R.); (D.N.); (T.F.)
| | - Michael A. Cahill
- School of Dentistry and Medical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia;
- ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Canberra, ACT 2601, Australia
| | - Nadia Stamm
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Merowingerplatz 1a, 40225 Duesseldorf, Germany; (Y.B.); (M.L.); (M.W.); (J.O.); (A.F.); (M.R.); (A.A.); (F.R.); (E.R.); (D.N.); (T.F.)
- Correspondence: (N.S.); (H.N.); Tel.: +49-211-81-06026 (H.N.)
| | - Hans Neubauer
- Department of Obstetrics and Gynecology, University Hospital and Medical Faculty of the Heinrich-Heine University Duesseldorf, Merowingerplatz 1a, 40225 Duesseldorf, Germany; (Y.B.); (M.L.); (M.W.); (J.O.); (A.F.); (M.R.); (A.A.); (F.R.); (E.R.); (D.N.); (T.F.)
- Correspondence: (N.S.); (H.N.); Tel.: +49-211-81-06026 (H.N.)
| |
Collapse
|
14
|
Therapeutic Targeting of Cancer Stem Cells in Lung, Head and Neck, and Bladder Cancers. Cancers (Basel) 2021; 13:cancers13205098. [PMID: 34680249 PMCID: PMC8534162 DOI: 10.3390/cancers13205098] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/29/2021] [Accepted: 10/06/2021] [Indexed: 01/06/2023] Open
Abstract
Simple Summary Effective cancer treatment hinges upon overcoming therapeutic resistance mechanisms that allow for the continued proliferation of cancer cell subpopulations. Exposure to pharmacotherapy invariably leads to resistance as tumor cells with selected advantageous features evade destruction and alter the tumor composition. Cancer stem cells (CSCs) with features of plasticity that allow for regeneration and differentiation are particularly responsible for this phenomenon. Advances in tumor biology and molecular signaling have highlighted their role in neoplastic initiation, invasion, and maintenance. Novel strategies to direct therapy against these tumor cell subpopulations have the potential to dramatically alter tumor response and change the course of cancer care. Abstract Resistance to cancer therapy remains a significant obstacle in treating patients with various solid malignancies. Exposure to current chemotherapeutics and targeted agents invariably leads to therapy resistance, heralding the need for novel agents. Cancer stem cells (CSCs)—a subpopulation of tumor cells with capacities for self-renewal and multi-lineage differentiation—represent a pool of therapeutically resistant cells. CSCs often share physical and molecular characteristics with the stem cell population of the human body. It remains challenging to selectively target CSCs in therapeutically resistant tumors. The generation of CSCs and induction of therapeutic resistance can be attributed to several deregulated critical growth regulatory signaling pathways such as WNT/β-catenin, Notch, Hippo, and Hedgehog. Beyond growth regulatory pathways, CSCs also change the tumor microenvironment and resist endogenous immune attack. Thus, CSCs can interfere with each stage of carcinogenesis from malignant transformation to the onset of metastasis to tumor recurrence. A thorough review of novel targeted agents to act against CSCs is fundamental for advancing cancer treatment in the setting of both intrinsic and acquired resistance.
Collapse
|
15
|
Thieffry C, Van Wynendaele M, Aynaci A, Maja M, Dupuis C, Loriot A, Marbaix E, Henriet P. AG-205 Upregulates Enzymes Involved in Cholesterol Biosynthesis and Steroidogenesis in Human Endometrial Cells Independently of PGRMC1 and Related MAPR Proteins. Biomolecules 2021; 11:1472. [PMID: 34680104 PMCID: PMC8533447 DOI: 10.3390/biom11101472] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 12/27/2022] Open
Abstract
An inappropriate response to progestogens in the human endometrium can result in fertility issues and jeopardize progestin-based treatments against pathologies such as endometriosis. PGRMC1 can mediate progesterone response in the breast and ovaries but its endometrial functions remain unknown. AG-205 is an alleged PGRMC1 inhibitor but its specificity was recently questioned. We added AG-205 in the cultures of two endometrial cell lines and performed a transcriptomic comparison. AG-205 significantly increased expression of genes coding enzymes of the cholesterol biosynthetic pathway or of steroidogenesis. However, these observations were not reproduced with cells transfected with siRNA against PGRMC1 or its related proteins (MAPRs). Furthermore, AG-205 retained its ability to increase expression of selected target genes even when expression of PGRMC1 or all MAPRs was concomitantly downregulated, indicating that neither PGRMC1 nor any MAPR is required to mediate AG-205 effect. In conclusion, although AG-205 has attractive effects encouraging its use to develop therapeutic strategies, for instance against breast cancer, our study delivers two important warning messages. First, AG-205 is not specific for PGRMC1 or other MAPRs and its mechanisms of action remain unclear. Second, due to its effects on genes involved in steroidogenesis, its use may increase the risk for endometrial pathologies resulting from imbalanced hormones concentrations.
Collapse
Affiliation(s)
- Charlotte Thieffry
- CELL Unit, de Duve Institute and Université Catholique de Louvain, B-1200 Brussels, Belgium; (C.T.); (M.V.W.); (A.A.); (M.M.); (C.D.); (E.M.)
| | - Marie Van Wynendaele
- CELL Unit, de Duve Institute and Université Catholique de Louvain, B-1200 Brussels, Belgium; (C.T.); (M.V.W.); (A.A.); (M.M.); (C.D.); (E.M.)
| | - Asena Aynaci
- CELL Unit, de Duve Institute and Université Catholique de Louvain, B-1200 Brussels, Belgium; (C.T.); (M.V.W.); (A.A.); (M.M.); (C.D.); (E.M.)
| | - Mauriane Maja
- CELL Unit, de Duve Institute and Université Catholique de Louvain, B-1200 Brussels, Belgium; (C.T.); (M.V.W.); (A.A.); (M.M.); (C.D.); (E.M.)
| | - Caroline Dupuis
- CELL Unit, de Duve Institute and Université Catholique de Louvain, B-1200 Brussels, Belgium; (C.T.); (M.V.W.); (A.A.); (M.M.); (C.D.); (E.M.)
| | - Axelle Loriot
- GEPI Unit, de Duve Institute and Université Catholique de Louvain, B-1200 Brussels, Belgium;
| | - Etienne Marbaix
- CELL Unit, de Duve Institute and Université Catholique de Louvain, B-1200 Brussels, Belgium; (C.T.); (M.V.W.); (A.A.); (M.M.); (C.D.); (E.M.)
- Pathology Department, Cliniques Universitaires Saint-Luc, B-1200 Brussels, Belgium
| | - Patrick Henriet
- CELL Unit, de Duve Institute and Université Catholique de Louvain, B-1200 Brussels, Belgium; (C.T.); (M.V.W.); (A.A.); (M.M.); (C.D.); (E.M.)
| |
Collapse
|
16
|
Wang T, Ashrafi A, Modareszadeh P, Deese AR, Chacon Castro MDC, Alemi PS, Zhang L. An Analysis of the Multifaceted Roles of Heme in the Pathogenesis of Cancer and Related Diseases. Cancers (Basel) 2021; 13:4142. [PMID: 34439295 PMCID: PMC8393563 DOI: 10.3390/cancers13164142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/08/2021] [Accepted: 08/13/2021] [Indexed: 12/28/2022] Open
Abstract
Heme is an essential prosthetic group in proteins and enzymes involved in oxygen utilization and metabolism. Heme also plays versatile and fascinating roles in regulating fundamental biological processes, ranging from aerobic respiration to drug metabolism. Increasing experimental and epidemiological data have shown that altered heme homeostasis accelerates the development and progression of common diseases, including various cancers, diabetes, vascular diseases, and Alzheimer's disease. The effects of heme on the pathogenesis of these diseases may be mediated via its action on various cellular signaling and regulatory proteins, as well as its function in cellular bioenergetics, specifically, oxidative phosphorylation (OXPHOS). Elevated heme levels in cancer cells intensify OXPHOS, leading to higher ATP generation and fueling tumorigenic functions. In contrast, lowered heme levels in neurons may reduce OXPHOS, leading to defects in bioenergetics and causing neurological deficits. Further, heme has been shown to modulate the activities of diverse cellular proteins influencing disease pathogenesis. These include BTB and CNC homology 1 (BACH1), tumor suppressor P53 protein, progesterone receptor membrane component 1 protein (PGRMC1), cystathionine-β-synthase (CBS), soluble guanylate cyclase (sGC), and nitric oxide synthases (NOS). This review provides an in-depth analysis of heme function in influencing diverse molecular and cellular processes germane to disease pathogenesis and the modes by which heme modulates the activities of cellular proteins involved in the development of cancer and other common diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Li Zhang
- Department of Biological Sciences, The University of Texas at Dallas, Richardson, TX 75080, USA; (T.W.); (A.A.); (P.M.); (A.R.D.); (M.D.C.C.C.); (P.S.A.)
| |
Collapse
|
17
|
Lee SR, Lee JG, Heo JH, Jo SL, Ryu J, Kim G, Yon JM, Lee MS, Lee GS, An BS, Shin HJ, Woo DC, Baek IJ, Hong EJ. Loss of PGRMC1 Delays the Progression of Hepatocellular Carcinoma via Suppression of Pro-Inflammatory Immune Responses. Cancers (Basel) 2021; 13:cancers13102438. [PMID: 34069911 PMCID: PMC8157610 DOI: 10.3390/cancers13102438] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Progesterone receptor membrane component 1 (PGRMC1) and epidermal growth factor receptor (EGFR) are highly expressed in various cancers. Here, we first analyzed two sets of clinical data and found that the levels of PGRMC1 and EGFR in hepatocellular carcinomas (HCCs) were both inversely correlated with the survival of HCC patients. Accordingly, by using a carcinogen-induced mouse model of HCC, we found that Pgrmc1 knockout suppressed HCC development and extended the lifespan of HCC-bearing mice. In the acute setting of high-dose carcinogen administration, Pgrmc1 knockout was associated with increases in hepatic necrosis and decreases in the production of the pro-inflammatory cytokine IL-6. Indeed, silencing of Pgrmc1 in murine macrophages suppressed IL-6 production and NF-κB activity, and this process was significantly mediated by EGFR. Our study shows that Pgrmc1 affects the development of HCCs by regulating the EGFR-mediated inflammatory responses. Pgrmc1 may serve as a biomarker and a therapeutic target of HCC. Abstract Pgrmc1 is a non-canonical progesterone receptor related to the lethality of various types of cancer. PGRMC1 has been reported to exist in co-precipitated protein complexes with epidermal growth factor receptor (EGFR), which is considered a useful therapeutic target in hepatocellular carcinoma (HCC). Here, we investigated whether Pgrmc1 is involved in HCC progression. In clinical datasets, PGRMC1 transcription level was positively correlated with EGFR levels; importantly, PGRMC1 level was inversely correlated with the survival duration of HCC patients. In a diethylnitrosamine (DEN)-induced murine model of HCC, the global ablation of Pgrmc1 suppressed the development of HCC and prolonged the survival of HCC-bearing mice. We further found that increases in hepatocyte death and suppression of compensatory proliferation in the livers of DEN-injured Pgrmc1-null mice were concomitant with decreases in nuclear factor κB (NF-κB)-dependent production of interleukin-6 (IL-6). Indeed, silencing of Pgrmc1 in murine macrophages led to reductions in NF-κB activity and IL-6 production. We found that the anti-proinflammatory effect of Pgrmc1 loss was mediated by reductions in EGFR level and its effect was not observed after exposure of the EGFR inhibitor erlotinib. This study reveals a novel cooperative role of Pgrmc1 in supporting the EGFR-mediated development of hepatocellular carcinoma, implying that pharmacological suppression of Pgrmc1 may be a useful strategy in HCC treatment.
Collapse
Affiliation(s)
- Sang R. Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea; (S.R.L.); (J.H.H.); (S.L.J.); (J.R.); (H.-J.S.)
| | - Jong Geol Lee
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.G.L.); (G.K.); (J.-M.Y.); (D.-C.W.)
| | - Jun H. Heo
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea; (S.R.L.); (J.H.H.); (S.L.J.); (J.R.); (H.-J.S.)
| | - Seong Lae Jo
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea; (S.R.L.); (J.H.H.); (S.L.J.); (J.R.); (H.-J.S.)
| | - Jihoon Ryu
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea; (S.R.L.); (J.H.H.); (S.L.J.); (J.R.); (H.-J.S.)
| | - Globinna Kim
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.G.L.); (G.K.); (J.-M.Y.); (D.-C.W.)
| | - Jung-Min Yon
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.G.L.); (G.K.); (J.-M.Y.); (D.-C.W.)
| | - Myeong Sup Lee
- Department of Biomedical Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Geun-Shik Lee
- College of Veterinary Medicine, Kangwon National University, Chuncheon, Gangwon 24341, Korea;
| | - Beum-Soo An
- Department of Biomaterials Science, College of Natural Resources & Life Science, Pusan National University, Miryang, Gyeongsangnam 50463, Korea;
| | - Hyun-Jin Shin
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea; (S.R.L.); (J.H.H.); (S.L.J.); (J.R.); (H.-J.S.)
| | - Dong-Cheol Woo
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.G.L.); (G.K.); (J.-M.Y.); (D.-C.W.)
| | - In-Jeoung Baek
- Department of Convergence Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea; (J.G.L.); (G.K.); (J.-M.Y.); (D.-C.W.)
- Correspondence: (I.-J.B.); (E.-J.H.); Tel.: +82-2-3010-2798 (I.-J.B.); +82-42-821-6781 (E.-J.H.); Fax: +82-2-3010-4197 (I.-J.B.); +82-42-821-8903 (E.-J.H.)
| | - Eui-Ju Hong
- College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Korea; (S.R.L.); (J.H.H.); (S.L.J.); (J.R.); (H.-J.S.)
- Correspondence: (I.-J.B.); (E.-J.H.); Tel.: +82-2-3010-2798 (I.-J.B.); +82-42-821-6781 (E.-J.H.); Fax: +82-2-3010-4197 (I.-J.B.); +82-42-821-8903 (E.-J.H.)
| |
Collapse
|
18
|
Progesterone receptor membrane component 1 regulates lipid homeostasis and drives oncogenic signaling resulting in breast cancer progression. Breast Cancer Res 2020; 22:75. [PMID: 32660617 PMCID: PMC7359014 DOI: 10.1186/s13058-020-01312-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 06/30/2020] [Indexed: 01/05/2023] Open
Abstract
Background PGRMC1 (progesterone receptor membrane component 1) is a highly conserved heme binding protein, which is overexpressed especially in hormone receptor-positive breast cancer and plays an important role in breast carcinogenesis. Nevertheless, little is known about the mechanisms by which PGRMC1 drives tumor progression. The aim of our study was to investigate the involvement of PGRMC1 in cholesterol metabolism to detect new mechanisms by which PGRMC1 can increase lipid metabolism and alter cancer-related signaling pathways leading to breast cancer progression. Methods The effect of PGRMC1 overexpression and silencing on cellular proliferation was examined in vitro and in a xenograft mouse model. Next, we investigated the interaction of PGRMC1 with enzymes involved in the cholesterol synthesis pathway such as CYP51, FDFT1, and SCD1. Further, the impact of PGRMC1 expression on lipid levels and expression of enzymes involved in lipid homeostasis was examined. Additionally, we assessed the role of PGRMC1 in key cancer-related signaling pathways including EGFR/HER2 and ERα signaling. Results Overexpression of PGRMC1 resulted in significantly enhanced proliferation. PGRMC1 interacted with key enzymes of the cholesterol synthesis pathway, alters the expression of proteins, and results in increased lipid levels. PGRMC1 also influenced lipid raft formation leading to altered expression of growth receptors in membranes of breast cancer cells. Analysis of activation of proteins revealed facilitated ERα and EGFR activation and downstream signaling dependent on PGRMC1 overexpression in hormone receptor-positive breast cancer cells. Depletion of cholesterol and fatty acids induced by statins reversed this growth benefit. Conclusion PGRMC1 may mediate proliferation and progression of breast cancer cells potentially by altering lipid metabolism and by activating key oncogenic signaling pathways, such as ERα expression and activation, as well as EGFR signaling. Our present study underlines the potential of PGRMC1 as a target for anti-cancer therapy.
Collapse
|
19
|
Terzaghi L, Banco B, Groppetti D, Dall'Acqua PC, Giudice C, Pecile A, Grieco V, Lodde V, Luciano AM. Progesterone receptor membrane component 1 (PGRMC1) expression in canine mammary tumors: A preliminary study. Res Vet Sci 2020; 132:101-107. [PMID: 32544632 DOI: 10.1016/j.rvsc.2020.06.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/24/2020] [Accepted: 06/03/2020] [Indexed: 11/26/2022]
Abstract
Canine mammary tumors (CMT) represent the most common neoplasms in female dogs and their diagnosis and classification relies on histopathological examination. Recently, PGRMC1 has been considered to be a putative biomarker for diagnosis and prognosis in many human cancers as it is expressed in a wide variety of tumors. This study represents the first description of PGRMC1 expression in CMT. PGRMC1 expression was initially assessed by immunohistochemistry in healthy or hyperplastic tissues and in four major histopathological types of CMT: simple and complex adenomas and carcinomas. PGRMC1 staining was represented by a scoring system that considered the percentage of positive cells and staining intensity. PGRMC1 expression was defined as either weak, moderate or strong. In healthy and hyperplastic tissues almost 100% of the epithelial cells stained intensely for PGRMC1. Adenomas showed similar features but with a more variable intensity. In tubular areas of adenocarcinomas, a lower percentage of epithelial cells (30-60%) stained for PGRMC1 with a weak intensity. Both the percentage of cells and intensity of PGRMC1 staining became progressively negative in the solid parts of the tumor. Western blot analysis of healthy and neoplastic mammary tissue (carcinomas samples) revealed the presence of the 25 kDa PGRMC1 band in both types of tissue, while the 50 kDa form was mainly detected in the healthy counterpart. This study reveals that PGRMC1 is expressed in CMT and its expression pattern changes depending on the pattern of growth of CMT. Further studies are now needed to determine PGRMC1's putative role and usefulness for typing and prognosis of different CMT subtypes.
Collapse
Affiliation(s)
- Laura Terzaghi
- Reproductive and Developmental Biology Laboratory, Department of Health, Animal Science and Food Safety, University of Milan, Milan, Italy
| | - Barbara Banco
- Department of Veterinary Medicine, University of Milan, Milan, Italy
| | - Debora Groppetti
- Department of Veterinary Medicine, University of Milan, Milan, Italy
| | - Priscila C Dall'Acqua
- Department of Preventive Medicine and Animal Reproduction, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal, Brazil; Laboratory of Reproductive Physiology, School of Veterinary Medicine, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Chiara Giudice
- Department of Veterinary Medicine, University of Milan, Milan, Italy
| | - Alessandro Pecile
- Department of Veterinary Medicine, University of Milan, Milan, Italy
| | - Valeria Grieco
- Department of Veterinary Medicine, University of Milan, Milan, Italy
| | - Valentina Lodde
- Reproductive and Developmental Biology Laboratory, Department of Health, Animal Science and Food Safety, University of Milan, Milan, Italy
| | - Alberto M Luciano
- Reproductive and Developmental Biology Laboratory, Department of Health, Animal Science and Food Safety, University of Milan, Milan, Italy.
| |
Collapse
|
20
|
Protein complexes including PGRMC1 and actin-associated proteins are disrupted by AG-205. Biochem Biophys Res Commun 2020; 524:64-69. [DOI: 10.1016/j.bbrc.2019.12.108] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 12/20/2019] [Indexed: 12/18/2022]
|
21
|
Zhao Y, Ruan X. Identification of PGRMC1 as a Candidate Oncogene for Head and Neck Cancers and Its Involvement in Metabolic Activities. Front Bioeng Biotechnol 2020; 7:438. [PMID: 31970154 PMCID: PMC6960204 DOI: 10.3389/fbioe.2019.00438] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/10/2019] [Indexed: 12/18/2022] Open
Abstract
Progesterone Receptor Membrane Component 1 (PGRMC1/Sigma-2 receptor) is located on chromosome Xq21 and encodes a haem-containing protein that interacts with epidermal growth factor receptor (EGFR) and cytochromes P450, with function in tumor proliferation and chemoresistance. Although the over-expression of PGRMC1 reported in many different types of human cancers, systematic analysis of its oncogenic role of PGRMC1 has not been performed for any cancer. In this work, we analyzed the transcriptomics, genomics, and clinical data of 498 head-neck squamous cell carcinoma (HNSC) samples from the public-accessible database, The Cancer Genome Atlas (TCGA). The Cox regression was performed to calculate the hazard ratio (HR) of PGRMC1 expression as a prognosis feature for overall survival (OS). Our results demonstrated that PGRMC1 expression served as a predictor for worse OS (HR = 1.95, P = 0.0005) in head-neck squamous cell carcinoma. And the over-expression of PGRMC1 was strongly correlated with various metabolic process activity as well as cancer metastasis and cell proliferation features in human head-neck squamous cell carcinoma patient's cohort. Besides, the over-expression and unfavorable prognosis value of PGRMC1 were also observed in many other cancer types. This study provides insights into the potential oncogenic functional significance of PGRMC1 in cancer research.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| | - Xiangyan Ruan
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
22
|
Li X, Ruan X, Gu M, Mueck AO. PGRMC1 can trigger estrogen-dependent proliferation of breast cancer cells: estradiol vs. equilin vs. ethinylestradiol. Climacteric 2019; 22:483-488. [PMID: 30862292 DOI: 10.1080/13697137.2019.1582624] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Objective: Previous studies have shown that progesterone receptor membrane component 1 (PGRMC1) expressed in breast cancer tissue can predict a worse prognosis for breast cancer patients. Moreover, we demonstrated that PGRMC1 can increase the proliferation of progestogens. However, the role of PGRMC1 in terms of estrogen-induced proliferation and comparing different estrogens is still unclear. Methods: Non-transfected and PGRMC1-transfected T-47D cells were stimulated with estradiol (E2), with equilin (EQ), or with ethinylestradiol (EE) at 1, 10, and 100 nmol/l. Increase of proliferation was compared with a control (without estrogens) and with the estrogen-induced stimulation in empty vector cells vs. PGRMC1-transfected cells. Results: The empty vector cells showed significant proliferation (12-15%) with all three estrogens only at the highest concentration, with no relevant differences between the estrogens. PGRMC1-transfected cells showed about three-fold higher proliferation (29-66%), whereby E2 elicited the strongest and EE the lowest proliferating effects, significantly lower compared to E2 and also compared to EQ. No significant differences were seen between E2 and EQ. Conclusions: PGRMC1 increases strongly the estrogen-dependent breast cell proliferation. The proliferating effects of EE may be lower compared to E2 and EQ. This could have importance in comparing hormone therapy and contraception. Thus, PGRMC1 not only could predict the risk using progestogens but also of different estrogens.
Collapse
Affiliation(s)
- X Li
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University , Beijing , China
| | - X Ruan
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University , Beijing , China.,Department of Women's Health, University Women's Hospital and Research Center for Women's Health, University of Tuebingen , Tuebingen , Germany
| | - M Gu
- Department of Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University , Beijing , China
| | - A O Mueck
- Department of Gynecological Endocrinology, Beijing Obstetrics and Gynecology Hospital, Capital Medical University , Beijing , China.,Department of Women's Health, University Women's Hospital and Research Center for Women's Health, University of Tuebingen , Tuebingen , Germany
| |
Collapse
|
23
|
Lee SR, Kwon SW, Kaya P, Lee YH, Lee JG, Kim G, Lee GS, Baek IJ, Hong EJ. Loss of progesterone receptor membrane component 1 promotes hepatic steatosis via the induced de novo lipogenesis. Sci Rep 2018; 8:15711. [PMID: 30356113 PMCID: PMC6200820 DOI: 10.1038/s41598-018-34148-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Accepted: 08/01/2018] [Indexed: 12/18/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) results from triglyceride accumulation within the liver and some of them advances to non-alcoholic steatohepatitis (NASH). It is important to note that in NAFLD development, hepatic de novo lipogenesis (DNL) derives from excess carbohydrates and fats under a condition of excess energy through β-oxidation. As a main regulator for DNL, sterol regulatory element-binding protein 1 (Srebp-1) forms complex with progesterone receptor membrane component 1 (Pgrmc1). To investigate whether Pgrmc1 may have a notable effect on DNL via SREBP-1 activation, we generated Pgrmc1 knockout (KO) mice and fed a high fat diet for one month. High-fat-fed Pgrmc1 KO mice showed a substantial increase in levels of hepatic TG accumulation, and they were predisposed to NAFLD when compared to WT mice. Loss of Pgrmc1 increased mature SREBP-1 protein level, suggesting that induction of hepatic steatosis in Pgrmc1 KO mice might be triggered by de novo lipogenesis. Moreover, Pgrmc1 KO mice were also more vulnerable to early stage of NASH, showing high levels of alanine aminotransferase, obesity-linked pro-inflammatory cytokines, and fibrosis markers. This is interesting because Pgrmc1 involves with the first step in regulating the hepatic de novo lipogenesis under an excess energy condition.
Collapse
Affiliation(s)
- Sang R Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Sun Woo Kwon
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Pelin Kaya
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Young Ho Lee
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jong Geol Lee
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Globinna Kim
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea
| | - Geun-Shik Lee
- College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - In-Jeoung Baek
- Department of Convergence Medicine, University of Ulsan College of Medicine, Asan Medical Center, Seoul, 05505, Republic of Korea.
| | - Eui-Ju Hong
- College of Veterinary Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
24
|
Mandilaras V, Vernon M, Meryet-Figuière M, Karakasis K, Lambert B, Poulain L, Oza A, Denoyelle C, Lheureux S. Updates and current challenges in microRNA research for personalized medicine in ovarian cancer. Expert Opin Biol Ther 2017. [DOI: 10.1080/14712598.2017.1340935] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Victoria Mandilaras
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Mégane Vernon
- INSERM U1086 “ANTICIPE” (Interdisciplinary Research Unit for Cancers Prevention and Treatment, Axis BioTICLA “Biology and Innovative Therapeutics for Ovarian Cancers”), Normandie Univ, UNICAEN, Caen, France
- Comprehensive Cancer Centre François Baclesse, UNICANCER, Caen, France
| | - Matthieu Meryet-Figuière
- INSERM U1086 “ANTICIPE” (Interdisciplinary Research Unit for Cancers Prevention and Treatment, Axis BioTICLA “Biology and Innovative Therapeutics for Ovarian Cancers”), Normandie Univ, UNICAEN, Caen, France
- Comprehensive Cancer Centre François Baclesse, UNICANCER, Caen, France
| | - Katherine Karakasis
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Bernard Lambert
- INSERM U1086 “ANTICIPE” (Interdisciplinary Research Unit for Cancers Prevention and Treatment, Axis BioTICLA “Biology and Innovative Therapeutics for Ovarian Cancers”), Normandie Univ, UNICAEN, Caen, France
- Comprehensive Cancer Centre François Baclesse, UNICANCER, Caen, France
- Délégation régionale de Normandie, CNRS, Caen, France
| | - Laurent Poulain
- INSERM U1086 “ANTICIPE” (Interdisciplinary Research Unit for Cancers Prevention and Treatment, Axis BioTICLA “Biology and Innovative Therapeutics for Ovarian Cancers”), Normandie Univ, UNICAEN, Caen, France
- Comprehensive Cancer Centre François Baclesse, UNICANCER, Caen, France
| | - Amit Oza
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| | - Christophe Denoyelle
- INSERM U1086 “ANTICIPE” (Interdisciplinary Research Unit for Cancers Prevention and Treatment, Axis BioTICLA “Biology and Innovative Therapeutics for Ovarian Cancers”), Normandie Univ, UNICAEN, Caen, France
- Comprehensive Cancer Centre François Baclesse, UNICANCER, Caen, France
| | - Stephanie Lheureux
- Division of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, Toronto, Canada
| |
Collapse
|
25
|
Abstract
A complex PGRMC1-centred regulatory system controls multiple cell functions. Although PGRMC1 is phosphorylated at several positions, we do not understand the mechanisms regulating its function. PGRMC1 is the archetypal member of the membrane associated progesterone receptor (MAPR) family. Phylogentic comparison of MAPR proteins suggests that the ancestral metazoan "PGRMC-like" MAPR gene resembled PGRMC1/PGRMC2, containing the equivalents of PGRMC1 Y139 and Y180 SH2 target motifs. It later acquired a CK2 site with phosphoacceptor at S181. Separate PGRMC1 and PGRMC2 genes with this "PGRMC-like" structure diverged after the separation of vertebrates from protochordates. Terrestrial tetrapods possess a novel proline-rich PGRMC1 SH3 target motif centred on P64 which in mammals is augmented by a phosphoacceptor at PGRMC1 S54, and in primates by an additional S57 CK2 site. All of these phosphoacceptors are phosphorylated in vivo. This study suggests that an increasingly sophisticated system of PGRMC1-modulated multicellular functional regulation has characterised animal evolution since Precambrian times.
Collapse
|
26
|
Cahill MA, Jazayeri JA, Catalano SM, Toyokuni S, Kovacevic Z, Richardson DR. The emerging role of progesterone receptor membrane component 1 (PGRMC1) in cancer biology. Biochim Biophys Acta Rev Cancer 2016; 1866:339-349. [PMID: 27452206 DOI: 10.1016/j.bbcan.2016.07.004] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 07/17/2016] [Accepted: 07/19/2016] [Indexed: 01/09/2023]
Abstract
Progesterone receptor membrane component 1 (PGRMC1) is a multi-functional protein with a heme-binding moiety related to that of cytochrome b5, which is a putative progesterone receptor. The recently solved PGRMC1 structure revealed that heme-binding involves coordination by a tyrosinate ion at Y113, and induces dimerization which is stabilized by hydrophobic stacking of heme on adjacent monomers. Dimerization is required for association with cytochrome P450 (cyP450) enzymes, which mediates chemoresistance to doxorubicin and may be responsible for PGRMC1's anti-apoptotic activity. Here we review the multiple attested involvement of PGRMC1 in diverse functions, including regulation of cytochrome P450, steroidogenesis, vesicle trafficking, progesterone signaling and mitotic spindle and cell cycle regulation. Its wide range of biological functions is attested to particularly by its emerging association with cancer and progesterone-responsive female reproductive tissues. PGRMC1 exhibits all the hallmarks of a higher order nexus signal integration hub protein. It appears capable of acting as a detector that integrates information from kinase/phosphatase pathways with heme and CO levels and probably redox status.
Collapse
Affiliation(s)
- Michael A Cahill
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia.
| | - Jalal A Jazayeri
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW 2678, Australia
| | - Susan M Catalano
- Cognition Therapeutics Inc., Pittsburgh, PA 15203, United States
| | - Shinya Toyokuni
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Japan
| | - Zaklina Kovacevic
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Des R Richardson
- Molecular Pharmacology and Pathology Program, Department of Pathology and Bosch Institute, University of Sydney, Sydney, New South Wales 2006, Australia.
| |
Collapse
|