1
|
Zhang Y, Liu X, Feng J, Xie S, Lv J. Ca 2+ enhanced the wastewater treatment performance of microalgal-bacterial consortia: Response of extracellular polymeric substances and bacterial communities. WATER RESEARCH 2025; 277:123298. [PMID: 39970784 DOI: 10.1016/j.watres.2025.123298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/12/2025] [Accepted: 02/13/2025] [Indexed: 02/21/2025]
Abstract
The technology of microalgae-bacteria consortia (MBC) for wastewater treatment is currently facing a variety of challenges. One of the main issues is the construction of structurally and functionally stable symbiont. Ca2+ may be involved in this process, but the underlying mechanism is not well understood. Here the response of MBC to the regulation of Ca2+ was systematically explored from the perspectives of extracellular polymeric substances (EPS) and bacterial communities. The results showed that the exogenous addition of Ca2+ (10-50 mM) not only promoted the production of extracellular polysaccharides and proteins of MBC, but also increased the proportion of some functional groups and components of EPS, such as CO and α-helix. The change of EPS characteristics was conducive to provide more sites for bining Ca2+, which in turn favored the formation of compact MBC via overcoming electrostatic repulsive effect. Besides, the supplementation of Ca2+ favored the recruitment of more EPS-producing bacteria (such as Rhodobacter, Pedobacter, Rhizorhapis, and Sphingopyxis) and indole acetic acid producing bacteria (such as Hydrogenophaga and Agromyces). The enrichment of these functional bacteria not only promoted the adhesion between bacteria and microalgae, but also promoted the growth of symbiotic microalgae, which contributed to the formation of stable large-sized MBC. The change in structure and function of MBC was ultimately reflected in the improved performance in treating municipal wastewater. The findings of this study provided insights into the mechanism underlying the enhanced performance of MBC for wastewater treatment under the influence of Ca2+.
Collapse
Affiliation(s)
- Yi Zhang
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Xudong Liu
- School of Life Science, Shanxi University, Taiyuan, 030006, China; Xinghuacun College of Shanxi University (Shanxi Institute of Brewing Technology and Industry), Taiyuan, 030006, China
| | - Jia Feng
- School of Life Science, Shanxi University, Taiyuan, 030006, China
| | - Shulian Xie
- School of Life Science, Shanxi University, Taiyuan, 030006, China.
| | - Junping Lv
- School of Life Science, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
2
|
Ilhami S, Rahman SNSA, Iqhrammullah M, Hamid Z, Chai YH, Lam MK. Polyhydroxyalkanoates production from microalgae for sustainable bioplastics: A review. Biotechnol Adv 2025; 79:108529. [PMID: 39922510 DOI: 10.1016/j.biotechadv.2025.108529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 12/23/2024] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
Microalgae have emerged as a promising and sustainable source for polyhydroxyalkanoates (PHA), which are increasingly recognized for their potential in bioplastics production. However, the widespread application of microalgae-derived PHA faces challenges related to economic feasibility and scalability. This review provides a comprehensive analysis of recent advancements in the cultivation and optimization of microalgae for PHA production, highlighting the critical role of nutrient limitation, particularly nitrogen and phosphorus, in enhancing PHA accumulation. This review also explores the effectiveness of various cultivation systems, including autotrophic, heterotrophic, and mixotrophic approaches, in maximizing PHA yields. Environmental factors such as light intensity, salinity, and pH are examined for their influence on PHA synthesis pathways. Additionally, it identifies key technical and economic challenges that must be addressed to commercialize microalgae-based bioplastics to fully harness the potential of microalgae in sustainable bioplastic production.
Collapse
Affiliation(s)
- Syarifa Ilhami
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; HICoE-Centre for Biofuel and Biochemical Research, Institute of Sustainable Energy and Resources, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia.
| | - Siti Nur Syaza Abdul Rahman
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; HICoE-Centre for Biofuel and Biochemical Research, Institute of Sustainable Energy and Resources, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia.
| | - Muhammad Iqhrammullah
- Research Center for Marine and Land Bioindustry National Research and Innovation Agency, North Lombok, Indonesia; Postgraduate Program of Public Health, Universitas Muhammadiyah Aceh, Banda Aceh, Indonesia
| | - Zhafran Hamid
- Department of Forestry, Faculty of Forestry, Muhammadiyah University of West Sumatera, Padang 25171, West Sumatera, Indonesia
| | - Yee Ho Chai
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; HICoE-Centre for Biofuel and Biochemical Research, Institute of Sustainable Energy and Resources, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia.
| | - Man Kee Lam
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; HICoE-Centre for Biofuel and Biochemical Research, Institute of Sustainable Energy and Resources, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia.
| |
Collapse
|
3
|
Mikkili I, Gaddirala BVST, Borugadda S, Davuluri SB. Harnessing algal biomass for sustainable energy: cultivation, strain improvement, and biofuel production. Prep Biochem Biotechnol 2024:1-14. [PMID: 39679595 DOI: 10.1080/10826068.2024.2434879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
The world faces pressing environmental challenges, including greenhouse gas emissions, global warming, climate change, and rising sea levels. Alongside, these issues, the depletion of fossil fuels has intensified the search for alternative energy sources. Algal biomass presents a promising long-term solution to these global problems. The quest for sustainable energy has driven significant research into algal biofuels as a viable alternative to fossil fuels. Algae offers several advantages as a feedstock for biofuel production, including high biomass yield, rapid growth rates, cost-effective cultivation, carbon dioxide fixation capabilities, and the potential to grow on non-arable land using non-potable water. This manuscript provides an overview of algal biomass cultivation using renewable feedstocks, identifies potential algal strains for biofuel production, and explores bioengineering advancements in algae. Additionally, strain improvement strategies to enhance biofuel yields are discussed. The review also addresses large-scale algal biomass cultivation for biofuel production, assesses its commercial viability, examines challenges faced by the biofuel industry, and outlines prospects for biofuel production using highly potent algal strains. By overcoming and addressing these challenges, algal biofuels have the potential to become a cornerstone of sustainable energy solutions.
Collapse
Affiliation(s)
- Indira Mikkili
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research, Vadlamudi, Andhra Pradesh, India
| | | | - Sudarsini Borugadda
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research, Vadlamudi, Andhra Pradesh, India
| | - Syam Babu Davuluri
- Department of Biotechnology, Vignan's Foundation for Science, Technology and Research, Vadlamudi, Andhra Pradesh, India
| |
Collapse
|
4
|
Vatanpour V, Salimi Khaligh S, Sertgumec S, Ceylan-Perver G, Yuksekdag A, Yavuzturk Gul B, Altinbas M, Koyuncu I. A review on algal biomass dewatering and recovery of microalgal-based valuable products with different membrane technologies. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123182. [PMID: 39504662 DOI: 10.1016/j.jenvman.2024.123182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/07/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024]
Abstract
Efficient microalgae harvesting and dewatering are critical processes for a range of applications, including the production of raw materials, nutritional supplements, pharmaceuticals, sustainable biofuels, and wastewater treatment. The optimization of these processes poses significant challenges due to the need for high efficiency and sustainability while managing costs and energy consumption. This review comprehensively addresses these challenges by focusing on the development and application of various membrane filtration technologies specifically designed for the effective harvesting and dewatering of algal biomass. Membrane filtration has emerged as a predominant method due to its ability to handle large volumes of microalgae with relatively low energy requirements. This review systematically examines the different membrane-based technologies and their effectiveness in recovering valuable components from algal biomass, such as lipids, proteins, and carbohydrates. The discussion begins with an overview of the physical characteristics of microalgae and their cultivation conditions, which are critical for understanding how these factors influence the performance of membrane filtration processes. Key aspects such as the features of algal cells, the presence of algal organic matter, and transparent exopolymer particles are explored in detail. The review also delves into various strategies for improving membrane antifouling properties, which are essential for maintaining the efficiency and longevity of the filtration systems. In addition, the advantages and disadvantages of different membrane techniques are reviewed, highlighting their respective performance in separating microalgae and dewatering. Finally, the review offers insights into future research directions and technological advancements that could further enhance the efficiency and sustainability of microalgae processing. This comprehensive evaluation aims to provide a thorough understanding of current membrane technologies, their applications, and the ongoing developments necessary to overcome existing limitations and improve overall process performance.
Collapse
Affiliation(s)
- Vahid Vatanpour
- Department of Applied Chemistry, Faculty of Chemistry, Kharazmi University, 15719-14911, Tehran, Iran; National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey.
| | - Soodeh Salimi Khaligh
- Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Simge Sertgumec
- Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Gamze Ceylan-Perver
- Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Ayse Yuksekdag
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Bahar Yavuzturk Gul
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Mahmut Altinbas
- Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey
| | - Ismail Koyuncu
- National Research Center on Membrane Technologies, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey; Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469, Istanbul, Turkey.
| |
Collapse
|
5
|
Nguyen DT, Johir MAH, Mahlia TMI, Silitonga AS, Zhang X, Liu Q, Nghiem LD. Microalgae-derived biolubricants: Challenges and opportunities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176759. [PMID: 39393688 DOI: 10.1016/j.scitotenv.2024.176759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/24/2024] [Accepted: 10/04/2024] [Indexed: 10/13/2024]
Abstract
Lubricants are indispensable in the modern economy for controlling friction and wear across many industries. Traditional lubricants are derived from petroleum crude and can cause significant ecological impact if released into the environment. Microalgae have emerged as a potential alternative to petroleum crude for producing renewable and environmentally friendly biolubricants. This review systematically assesses recent developments in microalgal-based biolubricant production, including tribological performance, microalgae selection, cultivation, harvesting, lipid and polysaccharide extraction and conversion to biolubricants, and market development. Compared to petroleum-based lubricants in terms of tribological properties, biolubricants are compatible with most emerging applications, such as electric vehicles and wind turbines. Nevertheless, they are less thermally and chemically stable, thus, may not be suitable for some traditional applications such as internal combustion engines. Literature data corroborated in this study reveals an urgent need for further research to scale up microalgae production and lower the cost of biomass harvesting. While technologies for converting microalgae-derived lipids to biolubricants appear to be well established, additional work is necessary to also utilize polysaccharides as another key ingredient for producing biolubricants, especially for low-temperature applications. Extraction methods are well established but further research is also needed to reduce the ecological impact, especially to utilize green solvents and reduce solvent consumption. Additionally, future research should delve into the use of nanoparticles as effective additives to obtain microalgae-based biolubricants with superior properties. Finally, it is essential to standardize the labeling system of biolubricants to establish a global market.
Collapse
Affiliation(s)
- Duong T Nguyen
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Md Abu Hasan Johir
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - T M Indra Mahlia
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - A S Silitonga
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Xiaolei Zhang
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia; School of Environmental & Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai 200444, China
| | - Qiang Liu
- School of Environmental & Chemical Engineering, Shanghai University, No. 99 Shangda Road, Shanghai 200444, China
| | - Long D Nghiem
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia.
| |
Collapse
|
6
|
Lemos MFL. Beyond Earth: Harnessing Marine Resources for Sustainable Space Colonization. Mar Drugs 2024; 22:481. [PMID: 39590761 PMCID: PMC11595546 DOI: 10.3390/md22110481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/16/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
The quest for sustainable space exploration and colonization is a challenge in its infancy, which faces scarcity of resources and an inhospitable environment. In recent years, advancements in space biotechnology have emerged as potential solutions to the hurdles of prolonged space habitation. Taking cues from the oceans, this review focuses on the sundry types of marine organisms and marine-derived chemicals that have the potential of sustaining life beyond planet Earth. It addresses how marine life, including algae, invertebrates, and microorganisms, may be useful in bioregenerative life support systems, food production, pharmaceuticals, radiation shielding, energy sources, materials, and other applications in space habitats. With the considerable and still unexplored potential of Earth's oceans that can be employed in developing space colonization, we allow ourselves to dream of the future where people can expand to other planets, not only surviving but prospering. Implementing the blend of marine and space sciences is a giant leap toward fulfilling man's age-long desire of conquering and colonizing space, making it the final frontier.
Collapse
Affiliation(s)
- Marco F L Lemos
- MARE-Marine and Environmental Sciences Centre, ARNET-Aquatic Research Network Associated Laboratory, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal
| |
Collapse
|
7
|
Zhuang LL, Qian W, Wang X, Wang T, Zhang J. General performance, kinetic modification, and key regulating factor recognition of microalgae-based sulfonamide removal. JOURNAL OF HAZARDOUS MATERIALS 2024; 475:134891. [PMID: 38878437 DOI: 10.1016/j.jhazmat.2024.134891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/14/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024]
Abstract
Sulfonamides have been widely detected in water treatment plants. Advanced wastewater treatment for sulfonamide removal based on microalgal cultivation can reduce the ecological risk after discharge, achieve carbon fixation, and simultaneously recover bioresource. However, the general removal performance, key factors and their impacts, degradation kinetics, and potential coupling technologies have not been systematically summarized. To guide the construction and enhance the efficient performance of the purification system, this study summarizes the quantified characteristics of sulfonamide removal based on more than 100 groups of data from the literature. The biodegradation potential of sulfonamides from different subclasses and their toxicity to microalgae were statistically analyzed; therefore, a preferred option for further application was proposed. The mechanisms by which the properties of both sulfonamides and microalgae affect sulfonamide removal were comprehensively summarized. Thereafter, multiple principles for choosing optimal microalgae were proposed from the perspective of engineering applications. Considering the microalgal density and growth status, a modified antibiotic removal kinetic model was proposed with significant physical meaning, thereby resulting in an optimal fit. Based on the mechanism and regulating effect of key factors on sulfonamide removal, sensitive and feasible factors (e.g., water quality regulation, other than initial algal density) and system coupling were screened to guide engineering applications. Finally, we suggested studying the long-term removal performance of antibiotics at environmentally relevant concentrations and toxicity interactions for further research.
Collapse
Affiliation(s)
- Lin-Lan Zhuang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, Shandong 266237, China.
| | - Weiyi Qian
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Xiaoxiong Wang
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Tong Wang
- School of Ecological & Environmental Sciences, East China Normal University, 500 Dongchuan Rd., Shanghai 200241, China.
| | - Jian Zhang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, Shandong 266237, China; College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, 88 Wenhua East Road, Jinan, Shandong 250014, China
| |
Collapse
|
8
|
Tomar RS, Rai-Kalal P, Jajoo A. Enhancing bioremediation potential of microalgae Chlorella vulgaris and Scenedesmus acutus by NaCl for pyrene degradation. Biodegradation 2024; 35:687-699. [PMID: 38416268 DOI: 10.1007/s10532-024-10071-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/18/2024] [Indexed: 02/29/2024]
Abstract
Microalgae are increasingly recognized as promising organisms for bioremediation of organic pollutants. This study investigates the potential of enhancing the bioremediation efficiency of pyrene (PYR), a polycyclic aromatic hydrocarbon (PAH), through NaCl induced physiological and biochemical alterations in two microalgae species, Chlorella vulgaris and Scenedesmus acutus. Our findings reveal significant improvement in PYR removal when these microalgae were cultivated in the presence of 0.1% NaCl where PYR removal increased from 54 to 74% for C. vulgaris and from 26 to 75% for S. acutus. However, it was observed that NaCl induced stress had varying effects on the two species. While C. vulgaris exhibited increased PYR removal, it experienced reduced growth and biomass production, as well as lower photosynthetic efficiency when exposed to PYR and PYR + NaCl. In contrast, S. acutus displayed better growth and biomass accumulation under PYR + NaCl conditions, making it a more efficient candidate for enhancing PYR bioremediation in the presence of NaCl. In addition to assessing growth and biochemical content, we also investigated stress biomarkers, such as lipid peroxidation, polyphenol and proline contents. These findings suggest that S. acutus holds promise as an alternative microalgae species for PYR removal in the presence of NaCl, offering potential advantages in terms of bioremediation efficiency and ecological sustainability. This study highlights the importance of understanding the physiological and biochemical responses of microalgae to environmental stressors, which can be harnessed to optimize bioremediation strategies for the removal of organic pollutants like PYR.
Collapse
Affiliation(s)
- Rupal Singh Tomar
- School of Life Sciences, Devi Ahilya University, Indore, India.
- Department of Biology, Saint Louis University, St. Louis, MO, USA.
| | | | - Anjana Jajoo
- School of Life Sciences, Devi Ahilya University, Indore, India
- School of Biotechnology, Devi Ahilya University, Indore, India
| |
Collapse
|
9
|
Dammak M, Ben Hlima H, Fendri I, Smaoui S, Abdelkafi S. Tetraselmis species for environmental sustainability: biology, water bioremediation, and biofuel production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34247-0. [PMID: 39060891 DOI: 10.1007/s11356-024-34247-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 07/02/2024] [Indexed: 07/28/2024]
Abstract
With increasing demand of fossil fuels and water pollution and their environmental impacts, marine green microalgae have gained special attention in both scientific and industrial fields. This is due to their fast growth in non-arable lands with high photosynthetic activity, their metabolic plasticity, as well as their high CO2 capture capacity. Tetraselmis species, green and eukaryotic microalgae, are not only considered as a valuable source of biomolecules including pigments, lipids, and starch but also widely used in biotechnological applications. Tetraselmis cultivation for high-value biomolecules and industrial use was demonstrated to be a non-cost-effective strategy because of its low demand in nutrients, such as phosphorus and nitrogen. Recently, phycoremediation of wastewater rich in nutrients, chemicals, and heavy metals has become an efficient and economic-alternative that allows the detoxification of waters and induces mechanisms in algal cells for biomolecules rich-energy synthesis to regulate their metabolic pathways. This review aims to shed light on Tetraselmis species for their different culture conditions and metabolites bioaccumulation, as well as their human health and environmental applications. Additionally, phycoremediation of contaminants associated to biofuel production in Tetraselmis cells and their different intracellular and extracellular mechanisms have also been investigated.
Collapse
Affiliation(s)
- Mouna Dammak
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Département de Génie Biologique, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax, Tunisia
| | - Hajer Ben Hlima
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Département de Génie Biologique, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax, Tunisia
| | - Imen Fendri
- Laboratory of Microbial, Enzymatic Biotechnology and Biomolecules (LBMEB), Center of Biotechnology of Sfax, University of Sfax, Road of Sidi Mansour Km 6, P. O. Box 1177, 3018, Sfax, Tunisia
| | - Slim Smaoui
- Laboratoire de Biotechnologie des Plantes Appliquée À l'Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, 3038, Sfax, Tunisia
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Equipe de Biotechnologie des Algues, Département de Génie Biologique, Ecole Nationale d'Ingénieurs de Sfax, Université de Sfax, 3038, Sfax, Tunisia.
| |
Collapse
|
10
|
Ali SS, Hassan LHS, El-Sheekh M. Microalgae-mediated bioremediation: current trends and opportunities-a review. Arch Microbiol 2024; 206:343. [PMID: 38967670 DOI: 10.1007/s00203-024-04052-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/05/2024] [Accepted: 06/14/2024] [Indexed: 07/06/2024]
Abstract
Environmental pollution poses a critical global challenge, and traditional wastewater treatment methods often prove inadequate in addressing the complexity and scale of this issue. On the other hand, microalgae exhibit diverse metabolic capabilities that enable them to remediate a wide range of pollutants, including heavy metals, organic contaminants, and excess nutrients. By leveraging the unique metabolic pathways of microalgae, innovative strategies can be developed to effectively remediate polluted environments. Therefore, this review paper highlights the potential of microalgae-mediated bioremediation as a sustainable and cost-effective alternative to conventional methods. It also highlights the advantages of utilizing microalgae and algae-bacteria co-cultures for large-scale bioremediation applications, demonstrating impressive biomass production rates and enhanced pollutant removal efficiency. The promising potential of microalgae-mediated bioremediation is emphasized, presenting a viable and innovative alternative to traditional treatment methods in addressing the global challenge of environmental pollution. This review identifies the opportunities and challenges for microalgae-based technology and proposed suggestions for future studies to tackle challenges. The findings of this review advance our understanding of the potential of microalgae-based technology wastewater treatment.
Collapse
Affiliation(s)
- Sameh S Ali
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Lamiaa H S Hassan
- Faculty of Science, Menoufia University, Shebin El-kom, 32511, Egypt
| | - Mostafa El-Sheekh
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
11
|
Rawindran H, Alam MM, Sahrin NT, Raksasat R, Leong WH, Liew CS, Supramaniam U, Lim JW, Usman A, Tong WY, Suresh S, Khoo KS. Recent advancements in harnessing biodiesel from microalgae through attached growth systems. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2024; 58:103205. [DOI: 10.1016/j.bcab.2024.103205] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
12
|
Lin MW, Lin CS, Chen YT, Huang SQ, Yang YC, Zhang WX, Chiu WH, Lin CH, Kuo CM. Continuous microalgal culture module and method of culturing microalgae containing macular pigment. BIORESOURCE TECHNOLOGY 2024; 401:130714. [PMID: 38641299 DOI: 10.1016/j.biortech.2024.130714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/21/2024]
Abstract
This study established and investigated continuous macular pigment (MP) production with a lutein (L):zeaxanthin (Z) ratio of 4-5:1 by an MP-rich Chlorella sp. CN6 mutant strain in a continuous microalgal culture module. Chlorella sp. CN6 was cultured in a four-stage module for 10 days. The microalgal culture volume increased to 200 L in the first stage (6 days). Biomass productivity increased to 0.931 g/L/day with continuous indoor white light irradiation during the second stage (3 days). MP content effectively increased to 8.29 mg/g upon continuous, indoor white light and blue light-emitting diode irradiation in the third stage (1 day), and the microalgal biomass and MP concentrations were 8.88 g/L and 73.6 mg/L in the fourth stage, respectively. Using a two-step MP extraction process, 80 % of the MP was recovered with a high purity of 93 %, and its L:Z ratio was 4-5:1.
Collapse
Affiliation(s)
- Meng-Wei Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Chih-Sheng Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan; Center for Intelligent Drug Systems and Smart Bio-systems (IDS(2)B), National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Yu-Tso Chen
- Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan City 320, Taiwan
| | - Shao-Qian Huang
- Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan City 320, Taiwan
| | - Yi-Chun Yang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Wen-Xin Zhang
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Wei-Hong Chiu
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Cheng-Han Lin
- Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Chiu-Mei Kuo
- Department of Chemical Engineering, Chung Yuan Christian University, Taoyuan City 320, Taiwan.
| |
Collapse
|
13
|
Bhatnagar P, Gururani P, Parveen A, Gautam P, Chandra Joshi N, Tomar MS, Nanda M, Vlaskin MS, Kumar V. Algae: A promising and sustainable protein-rich food ingredient for bakery and dairy products. Food Chem 2024; 441:138322. [PMID: 38190793 DOI: 10.1016/j.foodchem.2023.138322] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/09/2023] [Accepted: 12/27/2023] [Indexed: 01/10/2024]
Abstract
The consumer demand for protein rich foods urges the exploration for novel products of natural origin. Algae can be considered as a gold mine of different bioactive compounds, among which protein is distributed in significant amounts i.e., around 30% and can even reach to 55-60% in some cyanobacteria. Bakery and dairy products are extensively consumed worldwide due to product diversification and innovation. However, incorporation of algae biomass can lead to the development of green colour and fishy flavour that usually is not accepted in such products. Therefore, isolation and application of algae-derived proteins opens a new door for food industry. The present review provides a comprehensive understanding of incorporation of algae as a protein-rich ingredient in bakery and dairy products. The paper provides a deep insight for all the possible recent trends related to production and extraction of algae proteins accompanied by their incorporation in bakery and dairy foods.
Collapse
Affiliation(s)
- Pooja Bhatnagar
- Algal Research and Bioenergy Laboratory, Department of Food Science and Technology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
| | - Prateek Gururani
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India.
| | - Afreen Parveen
- Algal Research and Bioenergy Laboratory, Department of Food Science and Technology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
| | - Pankaj Gautam
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
| | - Naveen Chandra Joshi
- Division of Research & Innovation, Uttaranchal University Dehradun, Uttarakhand, 248007, India
| | - Mahipal Singh Tomar
- Department of Food Process Engineering, National Institute of Technology, Rourkela, 769008, India
| | - Manisha Nanda
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
| | - Mikhail S Vlaskin
- Joint Institute for High Temperatures of the Russian Academy of Sciences, Moscow 125412, Russian Federation
| | - Vinod Kumar
- Algal Research and Bioenergy Laboratory, Department of Food Science and Technology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India; Peoples' Friendship University of Russia (RUDN University), Moscow 117198, Russian Federation.
| |
Collapse
|
14
|
Udaypal, Goswami RK, Mehariya S, Verma P. Advances in microalgae-based carbon sequestration: Current status and future perspectives. ENVIRONMENTAL RESEARCH 2024; 249:118397. [PMID: 38309563 DOI: 10.1016/j.envres.2024.118397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/02/2024] [Accepted: 01/30/2024] [Indexed: 02/05/2024]
Abstract
The advancement in carbon dioxide (CO2) sequestration technology has received significant attention due to the adverse effects of CO2 on climate. The mitigation of the adverse effects of CO2 can be accomplished through its conversion into useful products or renewable fuels. In this regard, microalgae is a promising candidate due to its high photosynthesis efficiency, sustainability, and eco-friendly nature. Microalgae utilizes CO2 in the process of photosynthesis and generates biomass that can be utilized to produce various valuable products such as supplements, chemicals, cosmetics, biofuels, and other value-added products. However, at present microalgae cultivation is still restricted to producing value-added products due to high cultivation costs and lower CO2 sequestration efficiency of algal strains. Therefore, it is very crucial to develop novel techniques that can be cost-effective and enhance microalgal carbon sequestration efficiency. The main aim of the present manuscript is to explain how to optimize microalgal CO2 sequestration, integrate valuable product generation, and explore novel techniques like genetic manipulations, phytohormones, quantum dots, and AI tools to enhance the efficiency of CO2 sequestration. Additionally, this review provides an overview of the mass flow of different microalgae and their biorefinery, life cycle assessment (LCA) for achieving net-zero CO2 emissions, and the advantages, challenges, and future perspectives of current technologies. All of the reviewed approaches efficiently enhance microalgal CO2 sequestration and integrate value-added compound production, creating a green and economically profitable process.
Collapse
Affiliation(s)
- Udaypal
- Bioprocess and Bioenergy Laboratory (BPBEL), Department of Microbiology, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Rahul Kumar Goswami
- Bioprocess and Bioenergy Laboratory (BPBEL), Department of Microbiology, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India
| | - Sanjeet Mehariya
- Algal Technology Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, Doha, 2713, Qatar
| | - Pradeep Verma
- Bioprocess and Bioenergy Laboratory (BPBEL), Department of Microbiology, Central University of Rajasthan, Bandarsindri, Kishangarh, Ajmer, Rajasthan, 305817, India.
| |
Collapse
|
15
|
Syed T, Krujatz F, Ihadjadene Y, Mühlstädt G, Hamedi H, Mädler J, Urbas L. A review on machine learning approaches for microalgae cultivation systems. Comput Biol Med 2024; 172:108248. [PMID: 38493599 DOI: 10.1016/j.compbiomed.2024.108248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 02/15/2024] [Accepted: 03/06/2024] [Indexed: 03/19/2024]
Abstract
Microalgae plays a crucial role in biomass production within aquatic environments and are increasingly recognized for their potential in generating biofuels, biomaterials, bioactive compounds, and bio-based chemicals. This growing significance is driven by the need to address imminent global challenges such as food and fuel shortages. Enhancing the value chain of bio-based products necessitates the implementation of an advanced screening and monitoring system. This system is crucial for tailoring and optimizing the cultivation conditions, ensuring the lucrative and efficient production of the final desired product. This, in turn, underscores the necessity for robust predictive models to accurately emulate algae growth in different conditions during the initial cultivation phase and simulate their subsequent processing in the downstream stage. In pursuit of these objectives, diverse mechanistic and machine learning-based methods have been independently employed to model and optimize microalgae processes. This review article thoroughly examines the techniques delineated in the literature for modeling, predicting, and monitoring microalgal biomass across various applications such as bioenergy, pharmaceuticals, and the food industry. While highlighting the merits and limitations of each method, we delve into the realm of newly emerging hybrid approaches and conduct an exhaustive survey of this evolving methodology. The challenges currently impeding the practical implementation of hybrid techniques are explored, and drawing inspiration from successful applications in other machine-learning-assisted fields, we review various plausible solutions to overcome these obstacles.
Collapse
Affiliation(s)
- Tehreem Syed
- Institute of Automation, Technische Universität Dresden, 01062, Saxony, Germany
| | - Felix Krujatz
- Faculty of Natural and Environmental Sciences, University of Applied Sciences Zittau/Görlitz, 02763, Zittau, Germany; Institute of Natural Materials Technology, Technische Universität Dresden, 01069, Saxony, Germany
| | - Yob Ihadjadene
- Institute of Natural Materials Technology, Technische Universität Dresden, 01069, Saxony, Germany
| | | | - Homa Hamedi
- Institute of Process Engineering and Environmental Technology, Technische Universität Dresden, 01062, Saxony, Germany
| | - Jonathan Mädler
- Institute of Process Engineering and Environmental Technology, Technische Universität Dresden, 01062, Saxony, Germany.
| | - Leon Urbas
- Institute of Automation, Technische Universität Dresden, 01062, Saxony, Germany; Institute of Process Engineering and Environmental Technology, Technische Universität Dresden, 01062, Saxony, Germany
| |
Collapse
|
16
|
Gaysina LA. Influence of pH on the Morphology and Cell Volume of Microscopic Algae, Widely Distributed in Terrestrial Ecosystems. PLANTS (BASEL, SWITZERLAND) 2024; 13:357. [PMID: 38337891 PMCID: PMC10857513 DOI: 10.3390/plants13030357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
Terrestrial algae are a group of photosynthetic organisms that can survive in extreme conditions. pH is one of the most important factors influencing the distribution of algae in both aquatic and terrestrial ecosystems. The impact of different pH levels on the cell volume and other morphological characteristics of authentic and reference strains of Chlorella vulgaris, Bracteacoccus minor, Pseudoccomyxa simplex, Chlorococcum infusionum, and Vischeria magna were studied. Chlorella vulgaris, Pseudoccomyxa simplex, and Vischeria magna were the most resistant species, retaining their morphology in the range of pH 4-11.5 and pH 3.5-11, respectively. The change in pH towards acidic and alkaline levels caused an increase in the volume of Pseudoccomixa simplex and Vischeria magna cells, according to a polynomial regression model. The volume of Chlorella vulgaris cells increased from a low to high pH according to a linear regression model. Changes in pH levels did not have a significant impact on the volume of Bracteacoccus minor and Chlorococcum infusionum cells. Low and high levels of pH caused an increase in oil-containing substances in Vischeria magna and Bracteacoccus minor cells. Our study revealed a high resistance of the studied species to extreme pH levels, which allows for us to recommend these strains for broader use in biotechnology and conservation studies of natural populations.
Collapse
Affiliation(s)
- Lira A. Gaysina
- Department of Bioecology and Biological Education, M. Akmullah Bashkir State Pedagogical University, 450008 Ufa, Russia;
- All-Russian Research Institute of Phytopathology, 143050 Bolshye Vyazemy, Russia
| |
Collapse
|
17
|
Jiao H, Tsigkou K, Elsamahy T, Pispas K, Sun J, Manthos G, Schagerl M, Sventzouri E, Al-Tohamy R, Kornaros M, Ali SS. Recent advances in sustainable hydrogen production from microalgae: Mechanisms, challenges, and future perspectives. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 270:115908. [PMID: 38171102 DOI: 10.1016/j.ecoenv.2023.115908] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/05/2024]
Abstract
The depletion of fossil fuel reserves has resulted from their application in the industrial and energy sectors. As a result, substantial efforts have been dedicated to fostering the shift from fossil fuels to renewable energy sources via technological advancements in industrial processes. Microalgae can be used to produce biofuels such as biodiesel, hydrogen, and bioethanol. Microalgae are particularly suitable for hydrogen production due to their rapid growth rate, ability to thrive in diverse habitats, ability to resolve conflicts between fuel and food production, and capacity to capture and utilize atmospheric carbon dioxide. Therefore, microalgae-based biohydrogen production has attracted significant attention as a clean and sustainable fuel to achieve carbon neutrality and sustainability in nature. To this end, the review paper emphasizes recent information related to microalgae-based biohydrogen production, mechanisms of sustainable hydrogen production, factors affecting biohydrogen production by microalgae, bioreactor design and hydrogen production, advanced strategies to improve efficiency of biohydrogen production by microalgae, along with bottlenecks and perspectives to overcome the challenges. This review aims to collate advances and new knowledge emerged in recent years for microalgae-based biohydrogen production and promote the adoption of biohydrogen as an alternative to conventional hydrocarbon biofuels, thereby expediting the carbon neutrality target that is most advantageous to the environment.
Collapse
Affiliation(s)
- Haixin Jiao
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Konstantina Tsigkou
- Department of Chemical Engineering, University of Patras, 1 Karatheodori str, Patras 26504, Greece
| | - Tamer Elsamahy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Konstantinos Pispas
- Department of Chemical Engineering, University of Patras, 1 Karatheodori str, Patras 26504, Greece
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Georgios Manthos
- Department of Chemical Engineering, University of Patras, 1 Karatheodori str, Patras 26504, Greece
| | - Michael Schagerl
- Department of Functional and Evolutionary Ecology, University of Vienna, Djerassiplatz 1, Vienna A-1030, Austria.
| | - Eirini Sventzouri
- Department of Chemical Engineering, University of Patras, 1 Karatheodori str, Patras 26504, Greece
| | - Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Michael Kornaros
- Department of Chemical Engineering, University of Patras, 1 Karatheodori str, Patras 26504, Greece
| | - Sameh S Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| |
Collapse
|
18
|
Sartori RB, Deprá MC, Dias RR, Fagundes MB, Zepka LQ, Jacob-Lopes E. The Role of Light on the Microalgae Biotechnology: Fundamentals, Technological Approaches, and Sustainability Issues. Recent Pat Biotechnol 2024; 18:22-51. [PMID: 38205773 DOI: 10.2174/1872208317666230504104051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 01/12/2024]
Abstract
Light energy directly affects microalgae growth and productivity. Microalgae in natural environments receive light through solar fluxes, and their duration and distribution are highly variable over time. Consequently, microalgae must adjust their photosynthetic processes to avoid photo limitation and photoinhibition and maximize yield. Considering these circumstances, adjusting light capture through artificial lighting in the main culture systems benefits microalgae growth and induces the production of commercially important compounds. In this sense, this review provides a comprehensive study of the role of light in microalgae biotechnology. For this, we present the main fundamentals and reactions of metabolism and metabolic alternatives to regulate photosynthetic conversion in microalgae cells. Light conversions based on natural and artificial systems are compared, mainly demonstrating the impact of solar radiation on natural systems and lighting devices, spectral compositions, periodic modulations, and light fluxes when using artificial lighting systems. The most commonly used photobioreactor design and performance are shown herein, in addition to a more detailed discussion of light-dependent approaches in these photobioreactors. In addition, we present the principal advances in photobioreactor projects, focusing on lighting, through a patent-based analysis to map technological trends. Lastly, sustainability and economic issues in commercializing microalgae products were presented.
Collapse
Affiliation(s)
- Rafaela Basso Sartori
- Bioprocess Intensification Group, Federal University of Santa Maria, Roraima Avenue, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Mariany Costa Deprá
- Bioprocess Intensification Group, Federal University of Santa Maria, Roraima Avenue, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Rosangela Rodrigues Dias
- Bioprocess Intensification Group, Federal University of Santa Maria, Roraima Avenue, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Mariane Bittencourt Fagundes
- Bioprocess Intensification Group, Federal University of Santa Maria, Roraima Avenue, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Leila Queiroz Zepka
- Bioprocess Intensification Group, Federal University of Santa Maria, Roraima Avenue, 1000, 97105-900, Santa Maria, RS, Brazil
| | - Eduardo Jacob-Lopes
- Bioprocess Intensification Group, Federal University of Santa Maria, Roraima Avenue, 1000, 97105-900, Santa Maria, RS, Brazil
| |
Collapse
|
19
|
Rawat J, Pande V. Abiotic factors improving fatty acid profiling of freshwater indigenous microalgae isolated from Kumaun region of Uttarakhand, India. Braz J Microbiol 2023; 54:2961-2977. [PMID: 37943485 PMCID: PMC10689662 DOI: 10.1007/s42770-023-01146-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 10/04/2023] [Indexed: 11/10/2023] Open
Abstract
Microalgae have grabbed huge attention as a potential feedstock for biofuel production in response to the rise in energy consumption and the energy crisis. In the present study, indigenous microalgal strains were isolated from four freshwater lakes in the Kumaun region, Uttarakhand, India. Based on growth and lipid profiles, the four best-performing isolates were selected for further experiments. Initial identification of isolates was done by morphological observations, which were further validated by molecular identification using ITS sequencing. The screened cultures were subjected to abiotic stress conditions (varying concentrations of nitrogen and different temperatures) to monitor the biomass, lipid accumulation, and biochemical compositions (chlorophyll and carotenoids). The quantification of fatty acids was checked via gas chromatographic analysis. The strains were identified as KU_MA3 Chlamydopodium starrii, KU_MA4 Tetradesmus nygaardii, KU_MA5 Desmodesmus intermedius, and KU_MA6 Tetradesmus nygaardii. KU_MA3 Chlamydopodium starrii showed the best results in terms of growth and lipid production at 21 °C and 0.37 g/L NaNO2 concentration. The percentage of fatty acid methyl esters (FAMEs) attained >80% and met the standard for biodiesel properties. The strain has the potential to attain higher biomass and accumulate higher lipid content, and after some more studies, it can be used for upscaling processes and large-scale biodiesel production.
Collapse
Affiliation(s)
- Jyoti Rawat
- Department of Biotechnology, Kumaun University, Sir J. C. Bose Technical Campus Bhimtal (Nainital), Nainital, India
| | - Veena Pande
- Department of Biotechnology, Kumaun University, Sir J. C. Bose Technical Campus Bhimtal (Nainital), Nainital, India.
| |
Collapse
|
20
|
Zheng M, Li H, Guo X, Chen B, Wang M. A semi-continuous efficient strategy for removing phosphorus and nitrogen from eel aquaculture wastewater using the self-flocculating microalga Desmodesmus sp. PW1. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 346:118970. [PMID: 37716168 DOI: 10.1016/j.jenvman.2023.118970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/29/2023] [Accepted: 09/09/2023] [Indexed: 09/18/2023]
Abstract
The phosphorus content in eel aquaculture wastewater exceeds the discharge standard, and the amount of wastewater discharged is substantial. Therefore, there is an urgent need to explore an economical and efficient method of treating aquaculture wastewater. This study explored the use of Desmodesmus sp. PW1, a type of microalgae, to treat eel aquaculture wastewater. By optimizing the conditions, Desmodesmus sp. PW1 achieved a total phosphorus (TP) removal efficiency of 92.3%, as well as total nitrogen (TN) and ammonia nitrogen (NH4+-N) removal efficiency of 99%, using a photoperiod of 24:0, a temperature of 25 °C, and an inoculation amount of 15%. Furthermore, Desmodesmus sp. PW1 demonstrated a high self-flocculating efficiency (>90%) within 100 min of settling, which facilitated biomass recovery. Subsequently, a semi-continuous treatment process mode was established with a sewage renewal rate of 90%. The results showed that after four rounds of sewage renewal operations, the microalgae biomass in the sewage treatment system could be maintained between 160.0 and 220.0 mg/L, and the average removal rate of TP was 0.13 mg/(L * h). The lipid content of algae cells collected in the semi-continuous treatment system for eel aquaculture wastewater was as high as 36.5%, and the biodiesel properties met the biodiesel standards authorized by Europe and the United States. Overall, this study provides an economical and effective strategy for converting wastewater into high-value microalgae products.
Collapse
Affiliation(s)
- Mingmin Zheng
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117,China
| | - Huixian Li
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Xu Guo
- College of Life Science, Fujian Normal University, Fuzhou 350117, China
| | - Bilian Chen
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117,China
| | - Mingzi Wang
- College of Life Science, Fujian Normal University, Fuzhou 350117, China; Engineering Research Center of Industrial Microbiology, Ministry of Education, Fujian Normal University, Fuzhou 350117,China.
| |
Collapse
|
21
|
Mahmood T, Hussain N, Shahbaz A, Mulla SI, Iqbal HMN, Bilal M. Sustainable production of biofuels from the algae-derived biomass. Bioprocess Biosyst Eng 2023; 46:1077-1097. [PMID: 36331626 PMCID: PMC10345032 DOI: 10.1007/s00449-022-02796-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/30/2022] [Indexed: 11/06/2022]
Abstract
The worldwide fossil fuel reserves are rapidly and continually being depleted as a result of the rapid increase in global population and rising energy sector needs. Fossil fuels should not be used carelessly since they produce greenhouse gases, air pollution, and global warming, which leads to ecological imbalance and health risks. The study aims to discuss the alternative renewable energy source that is necessary to meet the needs of the global energy industry in the future. Both microalgae and macroalgae have great potential for several industrial applications. Algae-based biofuels can surmount the inadequacies presented by conventional fuels, thereby reducing the 'food versus fuel' debate. Cultivation of algae can be performed in all three systems; closed, open, and hybrid frameworks from which algal biomass is harvested, treated and converted into the desired biofuels. Among these, closed photobioreactors are considered the most efficient system for the cultivation of algae. Different types of closed systems can be employed for the cultivation of algae such as stirred tank photobioreactor, flat panel photobioreactor, vertical column photobioreactor, bubble column photobioreactor, and horizontal tubular photobioreactor. The type of cultivation system along with various factors, such as light, temperature, nutrients, carbon dioxide, and pH affect the yield of algal biomass and hence the biofuel production. Algae-based biofuels present numerous benefits in terms of economic growth. Developing a biofuel industry based on algal cultivation can provide us with a lot of socio-economic advantages contributing to a publicly maintainable result. This article outlines the third-generation biofuels, how they are cultivated in different systems, different influencing factors, and the technologies for the conversion of biomass. The benefits provided by these new generation biofuels are also discussed. The development of algae-based biofuel would not only change environmental pollution control but also benefit producers' economic and social advancement.
Collapse
Affiliation(s)
- Tehreem Mahmood
- Department of Biotechnology, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Nazim Hussain
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Areej Shahbaz
- Center for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Sikandar I Mulla
- Department of Biochemistry, School of Allied Health Sciences, REVA University, Bangalore, 560064, India
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849, Monterrey, Mexico
| | - Muhammad Bilal
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60695, Poznan, Poland.
| |
Collapse
|
22
|
Efremenko E, Senko O, Stepanov N, Aslanli A, Maslova O, Lyagin I. Quorum Sensing as a Trigger That Improves Characteristics of Microbial Biocatalysts. Microorganisms 2023; 11:1395. [PMID: 37374897 DOI: 10.3390/microorganisms11061395] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Quorum sensing (QS) of various microorganisms (bacteria, fungi, microalgae) today attracts the attention of researchers mainly from the point of view of clarifying the biochemical basics of this general biological phenomenon, establishing chemical compounds that regulate it, and studying the mechanisms of its realization. Such information is primarily aimed at its use in solving environmental problems and the development of effective antimicrobial agents. This review is oriented on other aspects of the application of such knowledge; in particular, it discusses the role of QS in the elaboration of various prospective biocatalytic systems for different biotechnological processes carried out under aerobic and anaerobic conditions (synthesis of enzymes, polysaccharides, organic acids, etc.). Particular attention is paid to the biotechnological aspects of QS application and the use of biocatalysts, which have a heterogeneous microbial composition. The priorities of how to trigger a quorum response in immobilized cells to maintain their long-term productive and stable metabolic functioning are also discussed. There are several approaches that can be realized: increase in cell concentration, introduction of inductors for synthesis of QS-molecules, addition of QS-molecules, and provoking competition between the participants of heterogeneous biocatalysts, etc.).
Collapse
Affiliation(s)
- Elena Efremenko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| | - Olga Senko
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| | - Nikolay Stepanov
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| | - Aysel Aslanli
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| | - Olga Maslova
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| | - Ilya Lyagin
- Faculty of Chemistry, Lomonosov Moscow State University, Lenin Hills 1/3, 119991 Moscow, Russia
| |
Collapse
|
23
|
Kim S, Im H, Yu J, Kim K, Kim M, Lee T. Biofuel production from Euglena: Current status and techno-economic perspectives. BIORESOURCE TECHNOLOGY 2023; 371:128582. [PMID: 36610485 DOI: 10.1016/j.biortech.2023.128582] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 01/02/2023] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Sustainable aviation fuels (SAFs) can contribute reduce greenhouse gas emissions compared to conventional fuel. With the increasing SAFs demand, various generations of resources have been shifted from the 1st generation (oil crops), the 2nd generation (agricultural waste), to the 3rd generation (microalgae). Microalgae are the most suitable feedstock for jet biofuel production than other resources because of their productivity and capability to capture carbon dioxide. However, microalgae-based biofuel has a limitation of high freezing point. Recently, a jet biofuel derived from Euglena wax ester has been paying attention due to its low freezing point. Challenges still remain to enhance production yields in both upstream and downstream processes. Studies on downstream processes as well as techno-economic analysis on biofuel production using Euglena are highly limited to date. Economic aspects for the biofuel production will be ensured via valorization of industrial byproducts such as food wastes.
Collapse
Affiliation(s)
- Sunah Kim
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Hyungjoon Im
- Institute for Environment and Energy, Pusan National University, Busan 46241, Republic of Korea
| | - Jaecheul Yu
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea; Institute for Environment and Energy, Pusan National University, Busan 46241, Republic of Korea
| | - Keunho Kim
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Minjeong Kim
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Taeho Lee
- Department of Civil and Environmental Engineering, Pusan National University, Busan 46241, Republic of Korea.
| |
Collapse
|
24
|
Nordio R, Delgado FJ, Sánchez-Zurano A, Hernandez JG, Rodríguez-Miranda E, Guzmán JL, Lafarga T, Acién G. Long-term assessment of the nutrient recovery capacity and biomass productivity of Scenedesmus almeriensis in raceway reactors using unprocessed urban wastewater. BIORESOURCE TECHNOLOGY 2023; 369:128374. [PMID: 36423751 DOI: 10.1016/j.biortech.2022.128374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
The present work aims to assess the treatment of unprocessed urban wastewater using the microalga Scenedesmus almeriensis. Two 12 m3 raceway reactors, one supplemented by wastewater and the second by chemical fertilizer, operating outdoors in a semi-continuous mode, were used for eight months. Results suggested that S. almeriensis can be produced in wastewater without affecting the photosynthetic apparatus reaching a productivity of 13 g·m-2·day-1 on average in both the systems. Furthermore, the nutrient content in terms of nitrogen, phosphorous and chemical oxygen demand of the wastewater was reduced under the European limitations during most of the period, with an average removal rate of 2.2, 0.2 and 3.0 g·m-2·day-1 respectively. Therefore, raceways demonstrated a high potential for microalgal production and successful biotreatment, proving robust and reliable. Finally, the effect of environmental conditions on biomass productivity of the clean system was evaluated in a model with high accuracy (R2 = 0.9, p = 0.0002).
Collapse
Affiliation(s)
- Rebecca Nordio
- Department of Chemical Engineering, Universidad de Almería, E04120 Almería, Spain; CIESOL Solar Energy Research Centre, Joint Centre University of Almería-CIEMAT, 04120 Almería, Spain.
| | | | - Ana Sánchez-Zurano
- Department of Chemical Engineering, Universidad de Almería, E04120 Almería, Spain; CIESOL Solar Energy Research Centre, Joint Centre University of Almería-CIEMAT, 04120 Almería, Spain
| | | | | | - José Luis Guzmán
- CIESOL Solar Energy Research Centre, Joint Centre University of Almería-CIEMAT, 04120 Almería, Spain; Department of Informatics, Universidad de Almería, ceiA3, E04120 Almería, Spain
| | - Tomás Lafarga
- Department of Chemical Engineering, Universidad de Almería, E04120 Almería, Spain; CIESOL Solar Energy Research Centre, Joint Centre University of Almería-CIEMAT, 04120 Almería, Spain
| | - Gabriel Acién
- Department of Chemical Engineering, Universidad de Almería, E04120 Almería, Spain; CIESOL Solar Energy Research Centre, Joint Centre University of Almería-CIEMAT, 04120 Almería, Spain
| |
Collapse
|
25
|
Barciela P, Carpena M, Li NY, Liu C, Jafari SM, Simal-Gandara J, Prieto MA. Macroalgae as biofactories of metal nanoparticles; biosynthesis and food applications. Adv Colloid Interface Sci 2023; 311:102829. [PMID: 36603300 DOI: 10.1016/j.cis.2022.102829] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 12/29/2022]
Abstract
Nanotechnology has opened a new frontier in recent years, capable of providing new ways of controlling and structuring products with greater market value and offering significant opportunities for the development of innovative applications in food processing, preservation, and packaging. Macroalgae (MAG) are the major photoautotrophic group of living beings known as a potential source of secondary metabolites, namely phenolic compounds, pigments, and polysaccharides. Biosynthesis based on the abilities of MAG as "nanobiofactories" targets the use of algal secondary metabolites as reducing agents to stabilize nanoparticles (NPs). Nowadays, most of the studies are focused on the use of metal (Ag, Au) and metal-oxide (CuO, ZnO) NPs derived from algae. The eco-friendly biosynthesis of metal NPs reduces the cost and production time and increases their biocompatibility, due to the presence of bioactive compounds in MAG, making them suitable for a wide variety of applications. These compounds have been attributed to the antimicrobial and antioxidant properties responsible for their application through innovative technologies such as nanoencapsulation, nanocomposites, or biosensors in the food industry. Nevertheless, toxicity is a key factor that should be considered, so the applicable regulation needs to guarantee the safe use of metal NPs. Consequently, the aim of this review will be to compile the available information on MAG-mediated metal NPs, their biosynthesis, and potential food applications.
Collapse
Affiliation(s)
- P Barciela
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain.
| | - M Carpena
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain.
| | - Ning-Yang Li
- College of Food Science and Engineering, Shandong Agricultural University, Tai'an 271018, PR China.
| | - Chao Liu
- Key Laboratory of Novel Food Resources Processing, Ministry of Agriculture and Rural Affairs/Key Laboratory of Agro-Products Processing Technology of Shandong Province/Institute of Agro-Food Science and Technology, Shandong Academy of Agricultural Sciences, 202 Gongye North Road, Jinan 250100, PR China.
| | - S M Jafari
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain; Department of Food Materials and Process Design Engineering, Gorgan University of Agricultural Science and Natural Resources, Gorgan, Iran; College of Food Science and Technology, Hebei Agricultural University, Baoding, 071001, PR China.
| | - J Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain.
| | - M A Prieto
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain; Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolonia, 5300-253 Bragança, Portugal.
| |
Collapse
|
26
|
Ma Z, Cheah WY, Ng IS, Chang JS, Zhao M, Show PL. Microalgae-based biotechnological sequestration of carbon dioxide for net zero emissions. Trends Biotechnol 2022; 40:1439-1453. [PMID: 36216714 DOI: 10.1016/j.tibtech.2022.09.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/26/2022] [Accepted: 09/06/2022] [Indexed: 11/05/2022]
Abstract
Excessive carbon dioxide (CO2) emissions into the atmosphere have become a dire threat to the human race and environmental sustainability. The ultimate goal of net zero emissions requires combined efforts on CO2 sequestration (natural sinks, biomass fixation, engineered approaches) and reduction in CO2 emissions while delivering economic growth (CO2 valorization for a circular carbon bioeconomy, CCE). We discuss microalgae-based CO2 biosequestration, including flue gas cultivation, biotechnological approaches for enhanced CO2 biosequestration, technological innovations for microalgal cultivation, and CO2 valorization/biofuel productions. We highlight challenges to current practices and future perspectives with the goal of contributing to environmental sustainability, net zero emissions, and the CCE.
Collapse
Affiliation(s)
- Zengling Ma
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China
| | - Wai Yan Cheah
- Centre of Research in Development, Social and Environment (SEEDS), Faculty of Social Sciences and Humanities, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor Darul Ehsan, Malaysia
| | - I-Son Ng
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| | - Jo-Shu Chang
- Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan.
| | - Min Zhao
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China.
| | - Pau Loke Show
- Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
27
|
Mohammadi FS, Arabian D. Optimization of
Chlorella vulgaris
cultivation grown in waste molasses syrup using mixture design. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Fahimeh Sadat Mohammadi
- Department of Bioscience and Biotechnology Malek Ashtar University of Technology Tehran Iran
| | - Daryush Arabian
- Faculty of Applied Science Malek Ashtar University of Technology Tehran Iran
| |
Collapse
|
28
|
Briones-Baez MF, Aguilera-Vazquez L, Rangel-Valdez N, Martinez-Salazar AL, Zuñiga C. Multi-Objective Optimization of Microalgae Metabolism: An Evolutive Algorithm Based on FBA. Metabolites 2022; 12:metabo12070603. [PMID: 35888727 PMCID: PMC9325016 DOI: 10.3390/metabo12070603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 12/07/2022] Open
Abstract
Studies enabled by metabolic models of different species of microalgae have become significant since they allow us to understand changes in their metabolism and physiological stages. The most used method to study cell metabolism is FBA, which commonly focuses on optimizing a single objective function. However, recent studies have brought attention to the exploration of simultaneous optimization of multiple objectives. Such strategies have found application in optimizing biomass and several other bioproducts of interest; they usually use approaches such as multi-level models or enumerations schemes. This work proposes an alternative in silico multiobjective model based on an evolutionary algorithm that offers a broader approximation of the Pareto frontier, allowing a better angle for decision making in metabolic engineering. The proposed strategy is validated on a reduced metabolic network of the microalgae Chlamydomonas reinhardtii while optimizing for the production of protein, carbohydrates, and CO2 uptake. The results from the conducted experimental design show a favorable difference in the number of solutions achieved compared to a classic tool solving FBA.
Collapse
Affiliation(s)
- Monica Fabiola Briones-Baez
- TECNM/Instituto Tecnológico de Ciudad Madero, División de Estudios de Posgrado e Investigación, Los Mangos 89440, Mexico; (M.F.B.-B.); (L.A.-V.)
| | - Luciano Aguilera-Vazquez
- TECNM/Instituto Tecnológico de Ciudad Madero, División de Estudios de Posgrado e Investigación, Los Mangos 89440, Mexico; (M.F.B.-B.); (L.A.-V.)
| | - Nelson Rangel-Valdez
- CONACyT—TECNM/Instituto Tecnológico de Ciudad Madero, División de Estudios de Posgrado e Investigación, Los Mangos 89440, Mexico;
| | - Ana Lidia Martinez-Salazar
- TECNM/Instituto Tecnológico de Ciudad Madero, División de Estudios de Posgrado e Investigación, Los Mangos 89440, Mexico; (M.F.B.-B.); (L.A.-V.)
- Correspondence:
| | - Cristal Zuñiga
- Department of Biology, San Diego State University, 5500 Campanile Drive, San Diego, CA 92182, USA;
| |
Collapse
|
29
|
Khor JG, Lim HR, Chia WY, Chew KW. Automated cultivation system for microalgae: Growth factors and control. CURRENT NUTRITION & FOOD SCIENCE 2022. [DOI: 10.2174/1573401318666220421132428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Microalgae have been a hot research topic due to their various biorefinery applications, particularly microalgae as potential alternative nutraceuticals and supplements have a large and rapidly growing market. However, the commercial production is limited due to high processing cost, low efficiency, and scale up of biomass production.
Objective:
It is important to control the microalgae cultivation system with optimal parameters to maximize the biomass productivity. The growth factors including pH, temperature, light intensity, salinity, and nutrients are discussed as these can significantly affect the cultivation. To monitor and control these in real-time, an automated system incorporating advanced digital technologies like sensors, controllers, artificial intelligence (AI), and Internet of Things (IoT) could be applied.
Conclusion:
This perspective provides insights on the implementation of an automated microalgae cultivation system which improves the productivity, effectiveness, and efficiency.
Collapse
Affiliation(s)
- Jiun Gia Khor
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor Darul Ehsan, Malaysia
| | - Hooi Ren Lim
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Wen Yi Chia
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Kit Wayne Chew
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor Darul Ehsan, Malaysia
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| |
Collapse
|
30
|
Udayan A, Pandey AK, Sirohi R, Sreekumar N, Sang BI, Sim SJ, Kim SH, Pandey A. Production of microalgae with high lipid content and their potential as sources of nutraceuticals. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2022; 22:1-28. [PMID: 35095355 PMCID: PMC8783767 DOI: 10.1007/s11101-021-09784-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/07/2021] [Indexed: 05/05/2023]
Abstract
In the current global scenario, the world is under a serious dilemma due to the increasing human population, industrialization, and urbanization. The ever-increasing need for fuels and increasing nutritional problems have made a serious concern on the demand for nutrients and renewable and eco-friendly fuel sources. Currently, the use of fossil fuels is creating ecological and economic problems. Microalgae have been considered as a promising candidate for high-value metabolites and alternative renewable energy sources. Microalgae offer several advantages such as rapid growth rate, efficient land utilization, carbon dioxide sequestration, ability to cultivate in wastewater, and most importantly, they do not participate in the food crop versus energy crop dilemma or debate. An efficient microalgal biorefinery system for the production of lipids and subsequent byproduct for nutraceutical applications could well satisfy the need. But, the current microalgal cultivation systems for the production of lipids and nutraceuticals do not offer techno-economic feasibility together with energy and environmental sustainability. This review article has its main focus on the production of lipids and nutraceuticals from microalgae, covering the current strategies used for lipid production and the major high-value metabolites from microalgae and their nutraceutical importance. This review also provides insights on the future strategies for enhanced microalgal lipid production and subsequent utilization of microalgal biomass. GRAPHICAL ABSTRACT
Collapse
Affiliation(s)
- Aswathy Udayan
- Department of Chemical Engineering, Hanyang University, Seoul, South Korea
| | - Ashutosh Kumar Pandey
- School of Civil and Environmental Engineering, Yonsei University, Seoul, South Korea
| | - Ranjna Sirohi
- Department of Chemical and Biological Engineering, Korea University, Seoul, South Korea
- Centre for Energy and Environmental Sustainability, Lucknow, Uttar Pradesh 226 029 India
| | - Nidhin Sreekumar
- Accubits Invent, Accubits Technologies Inc., Thiruvananthapuram, Kerala 695 004 India
| | - Byoung-In Sang
- Department of Chemical Engineering, Hanyang University, Seoul, South Korea
| | - Sung Jun Sim
- Department of Chemical and Biological Engineering, Korea University, Seoul, South Korea
| | - Sang Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul, South Korea
| | - Ashok Pandey
- Centre for Energy and Environmental Sustainability, Lucknow, Uttar Pradesh 226 029 India
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, Uttar Pradesh 226 001 India
| |
Collapse
|
31
|
Ali S, Paul Peter A, Chew KW, Munawaroh HSH, Show PL. Resource recovery from industrial effluents through the cultivation of microalgae: A review. BIORESOURCE TECHNOLOGY 2021; 337:125461. [PMID: 34198241 DOI: 10.1016/j.biortech.2021.125461] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 06/13/2023]
Abstract
Industrial effluents such as pharmaceutical residues, pesticides, dyes, and metal processes holds abundant value-added products (VAPs), where its recovery has become essential. The purpose of such recovery is for sustainable treatment, which is an approach that considers the economic, social, and environmental aspects. Microalgae with its potential in the recovery process from effluents, can reduce energy usage of waste management strategies and regenerate nutrients such as carbon, phosphorus, and nitrogen. Microalgae cultures offer the use of inorganic materials by microalgae for their growth and the help of bacteria to produce biomass, thus, resulting in the absence of secondary emissions due to its ability to eliminate volatile organic compounds. Moreover, recovered bioactive compounds are transformed into bioethanol, bio-fertilizers, biopolymer, health supplements and animal feed. Therefore, it is significant to focus on an economical and efficient utilization of microalgae in recovering nutrients that can be further used in various commercial applications.
Collapse
Affiliation(s)
- Shazia Ali
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Angela Paul Peter
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia
| | - Kit Wayne Chew
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, 43900 Sepang, Selangor Darul Ehsan, Malaysia; College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Heli Siti Halimatul Munawaroh
- Study Program of Chemistry, Department of Chemistry Education, Universitas Pendidikan Indonesia, Jalan Dr. Setiabudhi 229, Bandung 40154, Indonesia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
32
|
A critical perspective on the scope of interdisciplinary approaches used in fourth-generation biofuel production. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102436] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|