1
|
Kolahi Sadeghi L, Vahidian F, Eterafi M, Safarzadeh E. Gastrointestinal cancer resistance to treatment: the role of microbiota. Infect Agent Cancer 2024; 19:50. [PMID: 39369252 PMCID: PMC11453072 DOI: 10.1186/s13027-024-00605-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 08/20/2024] [Indexed: 10/07/2024] Open
Abstract
The most common illnesses that adversely influence human health globally are gastrointestinal malignancies. The prevalence of gastrointestinal cancers (GICs) is relatively high, and the majority of patients receive ineffective care since they are discovered at an advanced stage of the disease. A major component of the human body is thought to be the microbiota of the gastrointestinal tract and the genes that make up the microbiome. The gut microbiota includes more than 3000 diverse species and billions of microbes. Each of them has benefits and drawbacks and been demonstrated to alter anticancer medication efficacy. Treatment of GIC with the help of the gut bacteria is effective while changes in the gut microbiome which is linked to resistance immunotherapy or chemotherapy. Despite significant studies and findings in this field, more research on the interactions between microbiota and response to treatment in GIC are needed to help researchers provide more effective therapeutic strategies with fewer treatment complication. In this review, we examine the effect of the human microbiota on anti-cancer management, including chemotherapy, immunotherapy, and radiotherapy.
Collapse
Affiliation(s)
- Leila Kolahi Sadeghi
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Fatemeh Vahidian
- Faculty of Medicine, Laval University, Quebec, Canada
- Centre de Recherche de I'Institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Quebec, Canada
| | - Majid Eterafi
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran
- Students' Research Committee, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Elham Safarzadeh
- Cancer Immunology and Immunotherapy Research Center, Ardabil University of Medical Sciences, Ardabil, Iran.
- Department of Microbiology, Parasitology, and Immunology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| |
Collapse
|
2
|
de Paula MC, Carvalho SG, Silvestre ALP, Dos Santos AM, Meneguin AB, Chorilli M. The role of hyaluronic acid in the design and functionalization of nanoparticles for the treatment of colorectal cancer. Carbohydr Polym 2023; 320:121257. [PMID: 37659830 DOI: 10.1016/j.carbpol.2023.121257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/11/2023] [Accepted: 08/01/2023] [Indexed: 09/04/2023]
Abstract
Despite advances in new approaches for colorectal cancer (CRC) therapy, intravenous chemotherapy remains one of the main treatment options; however, it has limitations associated with off-target toxicity, tumor cell resistance due to molecular complexity and CRC heterogeneity, which lead to tumor recurrence and metastasis. In oncology, nanoparticle-based strategies have been designed to avoid systemic toxicity and increase drug accumulation at tumor sites. Hyaluronic acid (HA) has obtained significant attention thanks to its ability to target nanoparticles (NPs) to CRC cells through binding to cluster-determinant-44 (CD44) and hyaluronan-mediated motility (RHAMM) receptors, along with its efficient biological properties of mucoadhesion. This review proposes to discuss the state of the art in HA-based nanoparticulate systems intended for localized treatment of CRC, highlighting the importance of the mucoadhesion and active targeting provided by this polymer. In addition, an overview of CRC will be provided, emphasizing the importance of CD44 and RHAMM receptors in this type of cancer and the current challenges related to this disease, and important concepts about the physicochemical and biological properties of HA will also be addressed. Finally, this review aims to contribute to the advancement of accuracy treatment of CRC by the design of new platforms based on by HA.
Collapse
Affiliation(s)
- Mariana Carlomagno de Paula
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil.
| | - Suzana Gonçalves Carvalho
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil.
| | - Amanda Letícia Polli Silvestre
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil.
| | - Aline Martins Dos Santos
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil.
| | - Andréia Bagliotti Meneguin
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil.
| | - Marlus Chorilli
- Department of Drugs and Pharmaceutics, School of Pharmaceutical Sciences, São Paulo State University (UNESP), 14800-903 Araraquara, SP, Brazil.
| |
Collapse
|
3
|
Chrysostomou D, Roberts LA, Marchesi JR, Kinross JM. Gut Microbiota Modulation of Efficacy and Toxicity of Cancer Chemotherapy and Immunotherapy. Gastroenterology 2023; 164:198-213. [PMID: 36309208 DOI: 10.1053/j.gastro.2022.10.018] [Citation(s) in RCA: 68] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 10/02/2022] [Accepted: 10/16/2022] [Indexed: 01/31/2023]
Abstract
Accumulating evidence supports not only the functional role of the gut microbiome in cancer development and progression but also its role in defining the efficacy and toxicity of chemotherapeutic agents (5-fluorouracil, cyclophosphamide, irinotecan, oxaliplatin, gemcitabine, methotrexate) and immunotherapeutic compounds (anti-programmed death-ligand 1/anti-programmed cell death protein 1 and anti-cytotoxic T-lymphocyte-associated antigen 4). This evidence is supported in numerous in vitro, animal, and clinical studies that highlight the importance of microbial mechanisms in defining therapeutic responses. The microbiome therefore shapes oncologic outcomes and is now being leveraged for the development of novel personalized therapeutic approaches in cancer treatment. However, if the microbiome is to be successfully translated into next-generation oncologic treatments, a new multimodal model of the oncomicrobiome must be conceptualized that incorporates gut microbial cometabolism of pharmacologic agents into cancer care. The objective of this review is therefore to outline the current knowledge of oncologic pharmacomicrobiomics and to describe how the multiparametric functions of the gut microbiome influence treatment response across cancer types. The secondary objective is to propose innovative approaches for modulating the gut microbiome in clinical environments that improve therapy efficacy and diminish toxic effects derived from antineoplastic agents for patient benefit.
Collapse
Affiliation(s)
- Despoina Chrysostomou
- Centre for Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Lauren A Roberts
- Centre for Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Julian R Marchesi
- Centre for Digestive Diseases, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - James M Kinross
- Department of Surgery and Cancer, Imperial College London, London, United Kingdom.
| |
Collapse
|
4
|
Mono-Rhamnolipid Biosurfactants Synthesized by Pseudomonas aeruginosa Detrimentally Affect Colorectal Cancer Cells. Pharmaceutics 2022; 14:pharmaceutics14122799. [PMID: 36559292 PMCID: PMC9782318 DOI: 10.3390/pharmaceutics14122799] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 12/10/2022] [Accepted: 12/11/2022] [Indexed: 12/16/2022] Open
Abstract
Over the past 15 years, glycolipid-type biosurfactant compounds have been postulated as novel, naturally synthesized anticancer agents. This study utilized a recombinant strain of Pseudomonas aeruginosa to biosynthesize a preparation of mono-rhamnolipids that were purified via both liquid and solid-phase extraction, characterized by HPLC-MS, and utilized to treat two colorectal cancer cell lines (HCT-116 and Caco2) and a healthy colonic epithelial cell line CCD-841-CoN. Additionally, the anticancer activity of these mono-rhamnolipids was compared to an alternative naturally derived anticancer agent, Piceatannol. XTT cell viability assays showed that treatment with mono-rhamnolipid significantly reduced the viability of both colorectal cancer cell lines whilst having little effect on the healthy colonic epithelial cell line. At the concentrations tested mono-rhamnolipids were also shown to be more cytotoxic to the colorectal cancer cells than Piceatannol. Staining of mono-rhamnolipid-treated cells with propidium iodine and acridine orange appeared to show that these compounds induced necrosis in both colorectal cancer cell lines. These data provide an early in vitro proof-of-principle for utilizing these compounds either as active pharmaceutical ingredient for the treatment of colorectal cancer or incorporations into nutraceutical formulations to potentially prevent gastrointestinal tract cancer.
Collapse
|
5
|
Chitwood H, Hampton D, Patel R. The effect of amino acid-oral rehydration solution (Enterade®) on chemotherapy related diarrhea and quality of life in solid tumor cancer patients: A non-randomized experimental study. Eur J Oncol Nurs 2022; 60:102186. [PMID: 35970073 DOI: 10.1016/j.ejon.2022.102186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 07/15/2022] [Accepted: 07/27/2022] [Indexed: 12/30/2022]
Abstract
PURPOSE The purpose of this study was to evaluate use of a proprietary amino acid-oral rehydration solution (AA-ORS) known as Enterade® to reduce the severity of chemotherapy related diarrhea (CRD), to improve patient reported Quality of Life (QOL), and to reduce treatment holds, delays, dose modifications, prevention of weight loss, and subjective improvement of associated gastrointestinal mucositis physical symptoms. METHODS An experimental pilot study without randomization in a single population with two separate measurements over time was performed in a National Cancer Institute (NCI) designated cancer center in the South-Central United States. The variables included sociodemographic data, cancer diagnosis, chemotherapy treatment regimens, Common Terminology Criteria for Adverse Events (CTCAE) v5.0 grade of diarrhea, stool consistency using the Bristol Stool Scale, use of antidiarrheals, associated gastrointestinal mucositis symptoms affecting QOL, and QOL measured with the Functional Assessment of Chronic Illness Therapy-Diarrhea survey. RESULTS A total of 22 participants enrolled in the study. Sixteen completed both the pre-survey and post survey. A statistically significant difference was not found between the patient's subjective report of quality of life when comparing pre and post survey responses. There was a statistically significant improvement from baseline in the QOL questions specific to bowel concerns due to diarrhea with a mean pre-survey response score of 35.3 versus a post survey score of 29.2 (p = .003). There was a reduction in the CTCACE grade of diarrhea demonstrating a reduction in the frequency of stools per day (p = .001) and a change in the consistency of stools moving from watery to more formed stools using the Bristol Stool Scale (p = .049). CONCLUSION Use of AA-ORS in this study was found to be useful in the reduction of CRD in patients receiving systemic oncology therapies. This study needs to be replicated with a larger, more inclusive sample size to further support the use of AA-ORS in the reduction of CRD and QOL.
Collapse
Affiliation(s)
- Holly Chitwood
- University of Kentucky, College of Nursing, College of Nursing Building, 751 Rose Street, Lexington, KY, 40536, USA; University of Kentucky, College of Medicine, Department of Internal Medicine, Medical Oncology, Markey Cancer Center, 800 Rose Street, Lexington, KY, 40536, USA.
| | - Debra Hampton
- University of Kentucky, College of Nursing, College of Nursing Building, 751 Rose Street, Lexington, KY, 40536, USA.
| | - Reema Patel
- University of Kentucky, College of Medicine, Department of Internal Medicine, Medical Oncology, Markey Cancer Center, 800 Rose Street, Lexington, KY, 40536, USA.
| |
Collapse
|
6
|
Callaghan B, Twigg MS, Baccile N, Van Bogaert INA, Marchant R, Mitchell CA, Banat IM. Microbial sophorolipids inhibit colorectal tumour cell growth in vitro and restore haematocrit in Apc min+/- mice. Appl Microbiol Biotechnol 2022; 106:6003-6016. [PMID: 35965289 PMCID: PMC9467956 DOI: 10.1007/s00253-022-12115-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/28/2022]
Abstract
Abstract
Sophorolipids are glycolipid biosurfactants consisting of a carbohydrate sophorose head with a fatty acid tail and exist in either an acidic or lactonic form. Sophorolipids are gaining interest as potential cancer chemotherapeutics due to their inhibitory effects on a range of tumour cell lines. Currently, most anti-cancer studies reporting the effects of sophorolipids have focused on lactonic preparations with the effects of acidic sophorolipids yet to be elucidated. We produced a 94% pure acidic sophorolipid preparation which proved to be non-toxic to normal human colonic and lung cells. In contrast, we observed a dose-dependent reduction in viability of colorectal cancer lines treated with the same preparation. Acidic sophorolipids induced apoptosis and necrosis, reduced migration, and inhibited colony formation in all cancer cell lines tested. Furthermore, oral administration of 50 mg kg−1 acidic sophorolipids over 70 days to Apcmin+/− mice was well tolerated and resulted in an increased haematocrit, as well as reducing splenic size and red pulp area. Oral feeding did not affect tumour numbers or sizes in this model. This is the first study to show that acidic sophorolipids dose-dependently and specifically reduces colon cancer cell viability in addition to reducing tumour-associated bleeding in the Apcmin+/− mouse model. Key points • Acidic sophorolipids are produced by yeast species such as Starmerella bombicola. • Acidic sophorolipids selectively killed colorectal cells with no effect on healthy gut epithelia. • Acidic sophorolipids reduced tumour-associated gut bleed in a colorectal mouse model. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s00253-022-12115-6.
Collapse
Affiliation(s)
- Breedge Callaghan
- School of Biomedical Sciences, Ulster University, Coleraine, BT52 1SA, UK
| | - Matthew S Twigg
- School of Biomedical Sciences, Ulster University, Coleraine, BT52 1SA, UK
| | - Niki Baccile
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Collège de France UMR 7574, Chimie de La Matière Condensée de Paris, UMR 7574, 75005, Paris, France
| | - Inge N A Van Bogaert
- Centre for Synthetic Biology, Department of Biotechnology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Roger Marchant
- School of Biomedical Sciences, Ulster University, Coleraine, BT52 1SA, UK
| | | | - Ibrahim M Banat
- School of Biomedical Sciences, Ulster University, Coleraine, BT52 1SA, UK.
| |
Collapse
|
7
|
Colorectal Cancer Chemoprevention by S-Allyl Cysteine–Caffeic Acid Hybrids: In Vitro Biological Activity and In Silico Studies. Sci Pharm 2022. [DOI: 10.3390/scipharm90030040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Conventional chemotherapy for colorectal cancer (CRC) gives only a small increase in patient survival, since it is often diagnosed at late stages, when the tumor has disseminated to other organs. Moreover, it is common to observe that malignant cells may acquire resistance to conventional chemotherapies through different mechanisms, including reducing drug activation or accumulation (by enhancing efflux), inducing alterations in molecular targets, and inhibiting the DNA damage response, among other strategies. Considering these facts, the discovery of new molecules with therapeutic potential has become an invaluable tool in chemoprevention. In this context, we previously evaluated two hybrids (SAC-CAFA-MET and SAC-CAFA-PENT) that exhibited selective cytotoxicity against SW480 cells, with better results than the conventional chemotherapeutic agent (5-fluorouracil; 5-FU). Here, we investigated the possible mechanisms of these molecules in greater depth, to identify whether they could be valuable therapeutic scaffolds in the search for new molecules with chemopreventive potential for the treatment of CRC. Both compounds reduced ROS formation, which could be related to antioxidant effects. Further evaluations showed that SAC-CAFA-MET induces cell death independent of caspases and the tumor-suppressor protein p53, but probably mediated by the negative regulation of the pro-apoptotic Bcl-2. In addition, the lack of activation of caspase-8 and the positive regulation of caspase-3 induced by SAC-CAFA-PENT suggest that this compound acts through an apoptotic mechanism, probably initiated by intrinsic pathways. Furthermore, the downregulation of IL-6 by SAC-CAFA-PENT suggests that it also induces a significant anti-inflammatory process. In addition, docking studies would suggest caspase-3 modulation as the primary mechanism by which SAC-CAFA-PENT elicits apoptosis in SW480human colorectal adenocarcinoma cells. Meanwhile, density functional theory (DFT) calculations suggest that both hybrids would produce effects in the modulation of ROS in SW480 cells via the hydrogen atom transfer (HAT) pathway. The present work notes that SAC-CAFA-MET and SAC-CAFA-PENT could be potential candidates for further investigations in the search for potential chemopreventive agents.
Collapse
|
8
|
Moreno-Q G, Herrera-R A, Yepes AF, Naranjo TW, Cardona-G W. Proapoptotic Effect and Molecular Docking Analysis of Curcumin-Resveratrol Hybrids in Colorectal Cancer Chemoprevention. Molecules 2022; 27:3486. [PMID: 35684424 PMCID: PMC9181936 DOI: 10.3390/molecules27113486] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/18/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022] Open
Abstract
Different hybrids based on curcumin and resveratrol were previously synthesized and characterized by spectroscopic techniques. The most active molecules (3a, 3e, 3i, and 3k) were evaluated in vitro as an approach to determine the possible mechanism of action of the hybrids. The results indicated that the evaluated curcumin/resveratrol hybrids induce mitochondrial instability in SW620 and SW480 cells. Moreover, these molecules caused a loss in membrane integrity, suggesting an apoptotic process mediated by caspases after the treatment with compounds 3i (SW480) and 3k (SW620). In addition, the results suggest that the mechanism of action of the hybrids could be independent of the p53 status. Furthermore, hybrids 3e and 3i caused G0/G1 phase arrest, which highlights the potential of these molecules not only as cytotoxic but also as cytostatic compounds. Hybrids 3e and 3i caused a negative modulation of the matrix metalloproteinase 7 (MMP7) on SW480 cells. These curcumin resveratrol hybrids could be potential candidates for further investigations in the search for potential chemopreventive agents, even in those cases with resistance to conventional chemotherapy because of the lack of p53 expression or function. Molecular docking simulations showed that compounds 3e, 3i, and 3k bind efficiently to proapoptotic human caspases 3/7 proteins, as well as human MMP-7 and p53, which, in turn, could explain at the molecular level the in vitro cytotoxic effect of these compounds in SW480 and SW620 colon cancer cell lines.
Collapse
Affiliation(s)
- Gustavo Moreno-Q
- Chemistry of Colombian Plants Group, Institute of Chemistry, Faculty of Exact and Natural Sciences, University of Antioquia (UdeA), Calle 70 No. 52-21, Medellin 050010, Colombia; (G.M.-Q.); (A.F.Y.)
| | - Angie Herrera-R
- Chemistry of Colombian Plants Group, Institute of Chemistry, Faculty of Exact and Natural Sciences, University of Antioquia (UdeA), Calle 70 No. 52-21, Medellin 050010, Colombia; (G.M.-Q.); (A.F.Y.)
- Medical and Experimental Mycology Group, Corporación para Investigaciones Biológicas, Medellin 050034, Colombia;
| | - Andres F. Yepes
- Chemistry of Colombian Plants Group, Institute of Chemistry, Faculty of Exact and Natural Sciences, University of Antioquia (UdeA), Calle 70 No. 52-21, Medellin 050010, Colombia; (G.M.-Q.); (A.F.Y.)
| | - Tonny W. Naranjo
- Medical and Experimental Mycology Group, Corporación para Investigaciones Biológicas, Medellin 050034, Colombia;
- School of Health Sciences, Pontifical Bolivarian University, Medellin 050034, Colombia
| | - Wilson Cardona-G
- Chemistry of Colombian Plants Group, Institute of Chemistry, Faculty of Exact and Natural Sciences, University of Antioquia (UdeA), Calle 70 No. 52-21, Medellin 050010, Colombia; (G.M.-Q.); (A.F.Y.)
| |
Collapse
|
9
|
Was H, Borkowska A, Bagues A, Tu L, Liu JYH, Lu Z, Rudd JA, Nurgali K, Abalo R. Mechanisms of Chemotherapy-Induced Neurotoxicity. Front Pharmacol 2022; 13:750507. [PMID: 35418856 PMCID: PMC8996259 DOI: 10.3389/fphar.2022.750507] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 03/02/2022] [Indexed: 12/15/2022] Open
Abstract
Since the first clinical trials conducted after World War II, chemotherapeutic drugs have been extensively used in the clinic as the main cancer treatment either alone or as an adjuvant therapy before and after surgery. Although the use of chemotherapeutic drugs improved the survival of cancer patients, these drugs are notorious for causing many severe side effects that significantly reduce the efficacy of anti-cancer treatment and patients’ quality of life. Many widely used chemotherapy drugs including platinum-based agents, taxanes, vinca alkaloids, proteasome inhibitors, and thalidomide analogs may cause direct and indirect neurotoxicity. In this review we discuss the main effects of chemotherapy on the peripheral and central nervous systems, including neuropathic pain, chemobrain, enteric neuropathy, as well as nausea and emesis. Understanding mechanisms involved in chemotherapy-induced neurotoxicity is crucial for the development of drugs that can protect the nervous system, reduce symptoms experienced by millions of patients, and improve the outcome of the treatment and patients’ quality of life.
Collapse
Affiliation(s)
- Halina Was
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
| | - Agata Borkowska
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Ana Bagues
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain.,High Performance Research Group in Experimental Pharmacology (PHARMAKOM-URJC), URJC, Alcorcón, Spain.,Unidad Asociada I+D+i del Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Longlong Tu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Julia Y H Liu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Zengbing Lu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - John A Rudd
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.,The Laboratory Animal Services Centre, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia.,Department of Medicine Western Health, University of Melbourne, Melbourne, VIC, Australia.,Regenerative Medicine and Stem Cells Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, VIC, Australia
| | - Raquel Abalo
- Área de Farmacología y Nutrición, Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), Alcorcón, Spain.,Unidad Asociada I+D+i del Instituto de Química Médica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain.,High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut-URJC), URJC, Alcorcón, Spain.,Grupo de Trabajo de Ciencias Básicas en Dolor y Analgesia de la Sociedad Española del Dolor, Madrid, Spain
| |
Collapse
|
10
|
Dong A, Huang YW, Yearsley M, Oshima K, Chen X, Yu J, Wang LS. Dietary supplementation with black raspberries prolongs survival in Apc Min/+ mice. FOOD FRONTIERS 2022; 2:324-328. [PMID: 35360278 DOI: 10.1002/fft2.115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
A diet supplemented with freeze-dried black raspberries (BRBs) has been demonstrated to modulate various biochemical and physiological pathways in both colorectal cancer (CRC) patients and ApcMin/+ mice, which are utilized to model CRC. These changes have been previously shown to exert beneficial chemopreventive effects against CRC, with outcomes such as reduction of adenoma development and inflammation. This study aimed to assess whether these effects manifest in a meaningful change in survival rates by comparing these rates between ApcMin/+ mice administered a 5% BRB-supplemented diet or a control AIN-76A diet. Percent survival over days elapsed was assessed in order to determine a median length of survival for each group of mice. Significant increases in survival rates with consumption of the BRB diet versus the control diet were demonstrated in both male and female mouse study groups. Male and female control groups were also compared in order to reduce confounding due to the sex of the mice; the difference in survival rates between male and female mice was not significant (p = 0.07, *p < 0.05), as male mice lived for a median of 143 days and females for 194 days. The results of this study suggest that administration of a BRB-supplemented diet may potentially prolong the lifespan and increase survival rates of colorectal cancer patients.
Collapse
Affiliation(s)
- Athena Dong
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin
| | - Yi-Wen Huang
- Department of Obstetrics and Gynecology, Medical College of Wisconsin
| | | | | | - Xiao Chen
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin
| | - Jianhua Yu
- Department of Hematology & Hematopoietic Cell Transplantation, City of Hope National Medical Center and Beckman Research Institute
| | - Li-Shu Wang
- Division of Hematology and Oncology, Department of Medicine, Medical College of Wisconsin
| |
Collapse
|
11
|
Moschen AR, Sammy Y, Marjenberg Z, Heptinstall AB, Pooley N, Marczewska AM. The Underestimated and Overlooked Burden of Diarrhea and Constipation in Cancer Patients. Curr Oncol Rep 2022; 24:861-874. [PMID: 35325401 DOI: 10.1007/s11912-022-01267-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/10/2022] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW This review aims to summarize and discuss the diverse causes of two major gastrointestinal dysfunction symptoms, diarrhea and constipation, in cancer patients. We also discuss short- and long-term clinical, economic, and humanistic consequences, including the impact on cancer treatment regimens and patient quality of life, highlighting the limitations of the literature. RECENT FINDINGS Diarrhea and constipation as a result of cancer and its treatment can risk the success of anti-cancer therapies by requiring treatment delay or withdrawal, and imposes a substantial humanistic burden in patients with cancer. Despite its importance and frequency, gastrointestinal side effects may be overlooked due to the focus on cancer treatment, and the impact on patients may be underestimated. Additionally, the burden reported may not fully reflect current cancer management, particularly the true impact of economic consequences. A full understanding of the burden of diarrhea and constipation in patients with cancer is required, including broad evaluation of clinical considerations, the patient experience, and an updated assessment of economic burden. This would improve caregivers' appreciation of the impact of gastrointestinal dysfunction and aid the prioritization of future research efforts.
Collapse
|
12
|
Aldahhan R, Almohazey D, Khan FA. Emerging trends in the application of gold nanoformulations in colon cancer diagnosis and treatment. Semin Cancer Biol 2021; 86:1056-1065. [PMID: 34843989 DOI: 10.1016/j.semcancer.2021.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 10/01/2021] [Accepted: 11/24/2021] [Indexed: 12/21/2022]
Abstract
Colorectal cancer is one of the most aggressive types of cancer with about two million new cases and one million deaths in 2020. The side effects of the available chemotherapies and the possibility of developing resistance against treatment highlight the importance of developing new therapeutic options. The development in the field of nanotechnology have introduced the application of nanoparticles (NPs) as a promising approach in the diagnosis and treatments of colorectal cancer and other types of cancer. Gold nanoparticles (AuNPs) are currently one of the most studied materials as they possess unique tunable properties allowing them to play a role in colorectal cancer bioimaging, diagnosis, and therapy. The high surface-to-volume ratio of AuNPs mediates their utilization in drug delivery as well as functionalization to provide specific targeting. Moreover, depending on their physical properties (size, shape), AuNPs can be modified to fit the intended application. However, there are contradictory results around the pharmacokinetics of AuNPs including their biodistribution, clearance, and toxicity. This variation of opinions is most likely due to the development of different AuNPs that vary in shape, size, and surface chemistry, in addition to the conditions under which each research was carried out. The conflicting data represent a challenge in the clinical use of AuNPs suggesting the need to understand the toxicity, fate, and long-term exposure of AuNPs in vivo. Thus, there is an unmet need for the establishment of a publicly available data base for extensive analysis. In this review, we discuss the recent advances in AuNP applications in the treatment and diagnosis of colorectal cancer, mechanisms of action, and clinical challenges.
Collapse
Affiliation(s)
- Razan Aldahhan
- Department of Stem Cell Research, Institute for Research & Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam, 31441, Saudi Arabia
| | - Dana Almohazey
- Department of Stem Cell Research, Institute for Research & Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam, 31441, Saudi Arabia
| | - Firdos Alam Khan
- Department of Stem Cell Research, Institute for Research & Medical Consultations, Imam Abdulrahman Bin Faisal University, Post Box No. 1982, Dammam, 31441, Saudi Arabia.
| |
Collapse
|
13
|
Impact of chemotherapy-induced enteric nervous system toxicity on gastrointestinal mucositis. Curr Opin Support Palliat Care 2021; 14:293-300. [PMID: 32769620 DOI: 10.1097/spc.0000000000000515] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW Chemotherapy is a first-line treatment for many cancers; however, its use is hampered by a long list of side-effects. Gastrointestinal mucositis is a common and debilitating side-effect of anticancer therapy contributing to dose reductions, delays and cessation of treatment, greatly impacting clinical outcomes. The underlying pathophysiology of gastrointestinal mucositis is complex and likely involves several overlapping inflammatory, secretory and neural mechanisms, yet research investigating the role of innervation in gastrointestinal mucositis is scarce. This review provides an overview of the current literature surrounding chemotherapy-induced enteric neurotoxicity and discusses its implications on gastrointestinal mucositis. RECENT FINDINGS Damage to the intrinsic nervous system of the gastrointestinal tract, the enteric nervous system (ENS), occurs following chemotherapeutic administration, leading to altered gastrointestinal functions. Chemotherapeutic drugs have various mechanisms of actions on the ENS. Oxidative stress, direct toxicity and inflammation have been identified as mechanisms involved in chemotherapy-induced ENS damage. Enteric neuroprotection has proven to be beneficial to reduce gastrointestinal dysfunction in animal models of oxaliplatin-induced enteric neuropathy. SUMMARY Understanding of the ENS role in chemotherapy-induced mucositis requires further investigation and might lead to the development of more effective therapeutic interventions for prevention and treatment of chemotherapy-induced gastrointestinal side-effects.
Collapse
|
14
|
Khan FA, Aldahhan R, Almohazey D. Impact of gold nanoparticles on colon cancer treatment and diagnosis. Nanomedicine (Lond) 2021; 16:779-782. [PMID: 33739149 DOI: 10.2217/nnm-2021-0043] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Firdos Alam Khan
- Department of Stem Cell Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Razan Aldahhan
- Department of Stem Cell Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Dana Almohazey
- Department of Stem Cell Research, Institute for Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| |
Collapse
|
15
|
Storey S, Zhang Z, Luo X, Von Ah D, Metzger M, Zhang J, Jakka A, Huang K. Association of Comorbid Diabetes With Clinical Outcomes and Healthcare Utilization in Colorectal Cancer Survivors. Oncol Nurs Forum 2021; 48:195-206. [PMID: 33600395 DOI: 10.1188/21.onf.195-206] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVES To compare clinical outcomes and healthcare utilization in colorectal cancer (CRC) survivors with and without diabetes. SAMPLE & SETTING CRC survivors (N = 3,287) were identified from a statewide electronic health record database using International Classification of Diseases (ICD) codes. Data were extracted on adults aged 21 years or older with an initial diagnosis of stage II or III CRC with diabetes present before CRC diagnosis or no diagnosis of diabetes (control). METHODS & VARIABLES ICD codes were used to extract diabetes diagnosis and clinical outcome variables. Healthcare utilization was determined by encounter type. Data were analyzed using descriptive statistics, multivariable logistic, and Cox regression. RESULTS CRC survivors with diabetes were more likely to develop anemia and infection than CRC survivors without diabetes. In addition, CRC survivors with diabetes were more likely to utilize emergency resources sooner than CRC survivors without diabetes. IMPLICATIONS FOR NURSING Oncology nurses can facilitate the early identification of high-risk survivor groups, reducing negative clinical outcomes and unnecessarily high healthcare resource utilization in CRC survivors with diabetes.
Collapse
Affiliation(s)
| | | | - Xiao Luo
- Indiana University-Purdue University Indianapolis
| | | | | | | | | | | |
Collapse
|
16
|
Huangteerakul C, Aung HM, Thosapornvichai T, Duangkaew M, Jensen AN, Sukrong S, Ingkaninan K, Jensen LT. Chemical-Genetic Interactions of Bacopa monnieri Constituents in Cells Deficient for the DNA Repair Endonuclease RAD1 Appear Linked to Vacuolar Disruption. Molecules 2021; 26:1207. [PMID: 33668176 PMCID: PMC7956252 DOI: 10.3390/molecules26051207] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/18/2021] [Accepted: 02/22/2021] [Indexed: 01/18/2023] Open
Abstract
Colorectal cancer is a common cancer worldwide and reduced expression of the DNA repair endonuclease XPF (xeroderma pigmentosum complementation group F) is associated with colorectal cancer. Bacopa monnieri extracts were previously found to exhibit chemical-genetic synthetic lethal effects in a Saccharomyces cerevisiae model of colorectal cancer lacking Rad1p, a structural and functional homologue of human XPF. However, the mechanisms for B. monnieri extracts to limit proliferation and promote an apoptosis-like event in RAD1 deleted yeast was not elucidated. Our current analysis has revealed that B. monnieri extracts have the capacity to promote mutations in rad1∆ cells. In addition, the effects of B. monnieri extracts on rad1∆ yeast is linked to disruption of the vacuole, similar to the mammalian lysosome. The absence of RAD1 in yeast sensitizes cells to the effects of vacuole disruption and the release of proteases. The combined effect of increased DNA mutations and release of vacuolar contents appears to induce an apoptosis-like event that is dependent on the meta-caspase Yca1p. The toxicity of B. monnieri extracts is linked to sterol content, suggesting saponins may be involved in limiting the proliferation of yeast cells. Analysis of major constituents from B. monnieri identified a chemical-genetic interaction between bacopasaponin C and rad1∆ yeast. Bacopasaponin C may have potential as a drug candidate or serve as a model for the development of analogs for the treatment of colorectal cancer.
Collapse
Affiliation(s)
- Chananya Huangteerakul
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (C.H.); (H.M.A.); (T.T.)
| | - Hsu Mon Aung
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (C.H.); (H.M.A.); (T.T.)
| | - Thitipa Thosapornvichai
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (C.H.); (H.M.A.); (T.T.)
| | - Marisa Duangkaew
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
| | - Amornrat Naranuntarat Jensen
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand;
- Center of Excellence on Environmental Health and Toxicology (EHT), Bangkok 10400, Thailand
| | - Suchada Sukrong
- Research Unit of DNA Barcoding of Thai Medicinal Plants, Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok 10400, Thailand;
| | - Kornkanok Ingkaninan
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences and Center of Excellence for Innovation in Chemistry, Naresuan University, Phitsanulok 65000, Thailand;
| | - Laran T. Jensen
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok 10400, Thailand; (C.H.); (H.M.A.); (T.T.)
| |
Collapse
|
17
|
Nardini P, Pini A, Bessard A, Duchalais E, Niccolai E, Neunlist M, Vannucchi MG. GLP-2 Prevents Neuronal and Glial Changes in the Distal Colon of Mice Chronically Treated with Cisplatin. Int J Mol Sci 2020; 21:ijms21228875. [PMID: 33238628 PMCID: PMC7700273 DOI: 10.3390/ijms21228875] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/19/2020] [Accepted: 11/21/2020] [Indexed: 12/20/2022] Open
Abstract
Cisplatin is a chemotherapeutic agent widely used for the treatment of solid cancers. Its administration is commonly associated with acute and chronic gastrointestinal dysfunctions, likely related to mucosal and enteric nervous system (ENS) injuries, respectively. Glucagon-like peptide-2 (GLP-2) is a pleiotropic hormone exerting trophic/reparative activities on the intestine, via antiapoptotic and pro-proliferating pathways, to guarantee mucosal integrity, energy absorption and motility. Further, it possesses anti-inflammatory properties. Presently, cisplatin acute and chronic damages and GLP-2 protective effects were investigated in the mouse distal colon using histological, immunohistochemical and biochemical techniques. The mice received cisplatin and the degradation-resistant GLP-2 analog ([Gly2]GLP-2) for 4 weeks. Cisplatin-treated mice showed mucosal damage, inflammation, IL-1β and IL-10 increase; decreased number of total neurons, ChAT- and nNOS-immunoreactive (IR) neurons; loss of SOX-10-IR cells and reduced expression of GFAP- and S100β-glial markers in the myenteric plexus. [Gly2]GLP-2 co-treatment partially prevented mucosal damage and counteracted the increase in cytokines and the loss of nNOS-IR and SOX-10-IR cells but not that of ChAT-IR neurons. Our data demonstrate that cisplatin causes mucosal injuries, neuropathy and gliopathy and that [Gly2]GLP-2 prevents these injuries, partially reducing mucosal inflammation and inducing ENS remodeling. Hence, this analog could represent an effective strategy to overcome colonic injures induced by cisplatin.
Collapse
Affiliation(s)
- Patrizia Nardini
- Histology and Embryology Research Unit, Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (P.N.); (A.P.); (E.N.)
| | - Alessandro Pini
- Histology and Embryology Research Unit, Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (P.N.); (A.P.); (E.N.)
| | - Anne Bessard
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, University of Nantes, 44035 Nantes, France; (A.B.); (E.D.); (M.N.)
| | - Emilie Duchalais
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, University of Nantes, 44035 Nantes, France; (A.B.); (E.D.); (M.N.)
| | - Elena Niccolai
- Histology and Embryology Research Unit, Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (P.N.); (A.P.); (E.N.)
| | - Michel Neunlist
- Inserm, TENS, The Enteric Nervous System in Gut and Brain Diseases, IMAD, University of Nantes, 44035 Nantes, France; (A.B.); (E.D.); (M.N.)
| | - Maria Giuliana Vannucchi
- Histology and Embryology Research Unit, Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy; (P.N.); (A.P.); (E.N.)
- Correspondence: ; Tel.: +39-055-275-8152
| |
Collapse
|
18
|
Dai Q, Yan H, Wu X, Liu Y, Huang F, Dong X. Effectiveness and safety of adjunctive traditional Chinese medicine therapy for constipation after cancer chemotherapy: A protocol for systematic review and meta-analysis. Medicine (Baltimore) 2020; 99:e21770. [PMID: 32846805 PMCID: PMC7447467 DOI: 10.1097/md.0000000000021770] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 07/15/2020] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND As an alternative for constipation after cancer chemotherapy, Chinese medicine has gradually attracted the attention of clinicians based on the theory of syndrome differentiation and treatment. However, due to the lack of evidence-based medical evidence, the author designed the program to evaluate the effectiveness and safety of Chinese medicine. METHODS From the beginning to August 2020, 8 electronic databases will be searched. Two of our researchers will independently conduct research selection, data extraction, and risk assessment of bias. We will use Review Manager 5.3 software for meta-analysis and heterogeneity assessment. In addition, we will use the grading of recommendations assessment, development, and evaluation to evaluate the evidence quality. RESULTS This study will demonstrate an evidence-based review of traditional Chinese medicine (TCM) for constipation after cancer chemotherapy. CONCLUSION The study will provide clear evidence to assess the effectiveness and side effects of TCM for constipation after cancer chemotherapy. TRIAL REGISTRATION NUMBER INPLASY202070027.
Collapse
Affiliation(s)
| | - Hang Yan
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu
| | - Xiaoping Wu
- Graduate School of China Academy of Chinese Medical Sciences, Dongzhimen, Dongcheng District, Beijing, China
| | | | - Fei Huang
- Clinical Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu
| | | |
Collapse
|
19
|
Styrylcoumarin 7-SC2 induces apoptosis in SW480 human colon adenocarcinoma cells and inhibits azoxymethane-induced aberrant crypt foci formation in BALB/c mice. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02487-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
20
|
Aghamiri S, Jafarpour A, Malekshahi ZV, Mahmoudi Gomari M, Negahdari B. Targeting siRNA in colorectal cancer therapy: Nanotechnology comes into view. J Cell Physiol 2019; 234:14818-14827. [PMID: 30919964 DOI: 10.1002/jcp.28281] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Revised: 11/23/2018] [Accepted: 11/30/2018] [Indexed: 02/06/2023]
Abstract
Colorectal cancer (CRC) is known as one of the most important causes of death and mortality worldwide. Although several efforts have been made for finding new therapies, no achievements have been made in this area. Multidrug resistance (MDR) mechanisms are one of the key factors that could lead to the failure of chemotherapy. Moreover, it has been shown that various chemotherapy drugs are associated with several side effects. Hence, it seems that finding new drugs or new therapeutic platforms is required. Among different therapeutic approaches, utilization of nanoparticles (NPs) for targeting a variety of molecules such as siRNAs are associated with good results for the treatment of CRC. Targeting siRNA-mediated NPs could turn off the effects of oncogenes and MDR-related genes. In the current study, we summarized various siRNAs targeted by NPs which could be used for the treatment of CRC. Moreover, we highlighted other routes such as liposome for targeting siRNAs in CRC therapy.
Collapse
Affiliation(s)
- Shahin Aghamiri
- Student Research Committee, Department of Medical Biotechnology, School of Advanced Technology in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Jafarpour
- Virology Division, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Ziba Veisi Malekshahi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Mahmoudi Gomari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Sanz-Paris A, Martinez-García M, Martinez-Trufero J, Lambea-Sorrosal J, Calvo-Gracia F, López-Alaminos ME. Oligomeric Enteral Nutrition in Undernutrition, due to Oncology Treatment-Related Diarrhea. Systematic Review and Proposal of An Algorithm of Action. Nutrients 2019; 11:nu11081888. [PMID: 31412681 PMCID: PMC6722903 DOI: 10.3390/nu11081888] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 08/09/2019] [Accepted: 08/09/2019] [Indexed: 12/19/2022] Open
Abstract
Oncology treatment-related diarrhea and malnutrition appear together in oncological patients because of the disease itself, or the treatments that are administered for it. Therefore it is essential to carry out a nutritional treatment. Enteral nutrition formulas, containing peptides and medium chain triglycerides, can facilitate absorption in cases of malabsorption. There are few references to the use of enteral nutrition in the clinical society guidelines of patient management with oncology treatment-related diarrhea (OTRD). A bibliographic review of the studies with oligomeric enteral nutrition in OTRD found only nine studies with chemotherapy (all with the same oligomeric formula in which oral mucositis improves, while the rest of the outcomes show different results), and eight studies with radiotherapy (with different products and very heterogeneous results). We hereby present our action algorithm to supplement the diet of OTRD patients with an oligomeric enteral nutrition formula. The first step is the nutritional assessment, followed by the assessment of the functional capacity of the patient’s intestine. With these two aspects evaluated, the therapeutic possibilities available vary in degrees of complexity: These will range from the usual dietary recommendations, to supplementation with oral oligomeric enteral nutrition, along with complete enteral nutrition with oligomeric formula, and up to potentially total parenteral nutrition.
Collapse
Affiliation(s)
- Alejandro Sanz-Paris
- Department of Endocrinology and Nutrition, Miguel Servet Hospital, 50009 Zaragoza, Spain.
- Instituto de Investigación Sanitaria Aragón (IIS Aragon), 50009 Zaragoza, Spain.
| | - María Martinez-García
- Department of Endocrinology and Nutrition, Miguel Servet Hospital, 50009 Zaragoza, Spain
| | | | | | - Fernando Calvo-Gracia
- Department of Endocrinology and Nutrition, University Clinic Hospital, 50009 Zaragoza, Spain
| | | |
Collapse
|
22
|
Guthrie L, Kelly L. Bringing microbiome-drug interaction research into the clinic. EBioMedicine 2019; 44:708-715. [PMID: 31151933 PMCID: PMC6604038 DOI: 10.1016/j.ebiom.2019.05.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/03/2019] [Accepted: 05/03/2019] [Indexed: 12/14/2022] Open
Abstract
Our understanding of the scope and clinical relevance of gut microbiota metabolism of drugs is limited to relatively few biotransformations targeting a subset of therapeutics. Translating microbiome research into the clinic requires, in part, a mechanistic and predictive understanding of microbiome-drug interactions. This review provides an overview of microbiota chemistry that shapes drug efficacy and toxicity. We discuss experimental and computational approaches that attempt to bridge the gap between basic and clinical microbiome research. We highlight the current landscape of preclinical research focused on identifying microbiome-based biomarkers of patient drug response and we describe clinical trials investigating approaches to modulate the microbiome with the goal of improving drug efficacy and safety. We discuss approaches to aggregate clinical and experimental microbiome features into predictive models and review open questions and future directions toward utilizing the gut microbiome to improve drug safety and efficacy.
Collapse
Affiliation(s)
- Leah Guthrie
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, United States of America
| | - Libusha Kelly
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, United States of America; Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, United States of America.
| |
Collapse
|
23
|
Chok KC, Ng CH, Koh RY, Ng KY, Chye SM. The potential therapeutic actions of melatonin in colorectal cancer. Horm Mol Biol Clin Investig 2019; 39:hmbci-2019-0001. [DOI: 10.1515/hmbci-2019-0001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2019] [Accepted: 04/01/2019] [Indexed: 12/24/2022]
Abstract
Abstract
Colorectal cancer (CRC) is the third most common cancer and lethal disease worldwide. Melatonin, an indoleamine produced in pineal gland, shows anticancer effects on a variety of cancers, especially CRC. After clarifying the pathophysiology of CRC, the association of circadian rhythm with CRC, and the relationship between shift work and the incidence of CRC is reviewed. Next, we review the role of melatonin receptors in CRC and the relationship between inflammation and CRC. Also included is a discussion of the mechanism of gene regulation, control of cell proliferation, apoptosis, autophagy, antiangiogenesis and immunomodulation in CRC by melatonin. A review of the drug synergy of melatonin with other anticancer drugs suggests its usefulness in combination therapy. In summary, the information compiled may serve as comprehensive reference for the various mechanisms of action of melatonin against CRC, and as a guide for the design of future experimental research and for advancing melatonin as a therapeutic agent for CRC.
Collapse
Affiliation(s)
- Kian Chung Chok
- School of Health Sciences, International Medical University , Kuala Lumpur , Malaysia
| | - Chew Hee Ng
- School of Pharmacy, International Medical University , Kuala Lumpur , Malaysia
| | - Rhun Yian Koh
- School of Health Sciences, International Medical University , Kuala Lumpur , Malaysia
| | - Khuen Yen Ng
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia , Selangor , Malaysia
| | - Soi Moi Chye
- School of Health Sciences, International Medical University , Kuala Lumpur , Malaysia , Phone: +6032731 7220; Fax: +60386567229
| |
Collapse
|
24
|
Aung HM, Huangteerakul C, Panvongsa W, Jensen AN, Chairoungdua A, Sukrong S, Jensen LT. Interrogation of ethnomedicinal plants for synthetic lethality effects in combination with deficiency in the DNA repair endonuclease RAD1 using a yeast cell-based assay. JOURNAL OF ETHNOPHARMACOLOGY 2018; 223:10-21. [PMID: 29777901 DOI: 10.1016/j.jep.2018.05.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/10/2018] [Accepted: 05/11/2018] [Indexed: 06/08/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plant materials used in this study were selected based on the ethnobotanical literature. Plants have either been utilized by Thai practitioners as alternative treatments for cancer or identified to exhibit anti-cancer properties. AIM OF THE STUDY To screen ethnomedicinal plants using a yeast cell-based assay for synthetic lethal interactions with cells deleted for RAD1, the yeast homologue of human ERCC4 (XPF) MATERIALS AND METHODS: Ethanolic extracts from thirty-two species of medicinal plants utilized in Thai traditional medicine were screened for synthetic lethal/sick interactions using a yeast cell-based assay. Cell growth was compared between the parental strain and rad1∆ yeast following exposure to select for specific toxicity of plant extracts. Candidate extracts were further examined for the mode of action using genetic and biochemical approaches. RESULTS Screening a library of ethanolic extracts from medicinal plants identified Bacopa monnieri and Colubrina asiatica as having synthetic lethal effects in the rad1∆ cells but not the parental strain. Synthetic lethal effects for B. monneiri extracts were more apparent and this plant was examined further. Genetic analysis indicates that pro-oxidant activities and defective excision repair pathways do not significantly contribute to enhanced sensitivity to B. monneiri extracts. Exposure to B. monneiri extracts resulted in nuclear fragmentation and elevated levels of ethidium bromide staining in rad1∆ yeast suggesting promotion of an apoptosis-like event. Growth inhibition also observed in the human Caco-2 cell line suggesting the effects of B. monnieri extracts on both yeast and human cells may be similar. CONCLUSIONS B. monneiri extracts may have utility in treatment of colorectal cancers that exhibit deficiency in ERCC4 (XPF).
Collapse
Affiliation(s)
- Hsu Mon Aung
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok Thailand
| | | | - Wittaya Panvongsa
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand; Excellent Center for Drug Discovery (ECDD), Mahidol University, Bangkok, Thailand
| | - Amornrat N Jensen
- Department of Pathobiology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Arthit Chairoungdua
- Toxicology Graduate Program, Faculty of Science, Mahidol University, Bangkok, Thailand; Excellent Center for Drug Discovery (ECDD), Mahidol University, Bangkok, Thailand; Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand.
| | - Suchada Sukrong
- Department of Pharmacognosy and Pharmaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Laran T Jensen
- Department of Biochemistry, Faculty of Science, Mahidol University, Bangkok Thailand.
| |
Collapse
|
25
|
|
26
|
Stojanovska V, McQuade RM, Fraser S, Prakash M, Gondalia S, Stavely R, Palombo E, Apostolopoulos V, Sakkal S, Nurgali K. Oxaliplatin-induced changes in microbiota, TLR4+ cells and enhanced HMGB1 expression in the murine colon. PLoS One 2018; 13:e0198359. [PMID: 29894476 PMCID: PMC5997344 DOI: 10.1371/journal.pone.0198359] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Accepted: 05/17/2018] [Indexed: 02/07/2023] Open
Abstract
Oxaliplatin is a platinum-based chemotherapeutic used for cancer treatment. Its use associates with peripheral neuropathies and chronic gastrointestinal side-effects. Oxaliplatin induces immunogenic cell death by provoking the presentation of damage associated molecular patterns. The damage associated molecular patterns high-mobility group box 1 (HMGB1) protein exerts pro-inflammatory cytokine-like activity and binds to toll-like receptors (namely TLR4). Gastrointestinal microbiota may influence chemotherapeutic efficacy and contribute to local and systemic inflammation. We studied effects of oxaliplatin treatment on 1) TLR4 and high-mobility group box 1 expression within the colon; 2) gastrointestinal microbiota composition; 3) inflammation within the colon; 4) changes in Peyer's patches and mesenteric lymph nodes immune populations in mice. TLR4+ cells displayed pseudopodia-like extensions characteristic of antigen sampling co-localised with high-mobility group box 1 -overexpressing cells in the colonic lamina propria from oxaliplatin-treated animals. Oxaliplatin treatment caused significant reduction in Parabacteroides and Prevotella1, but increase in Prevotella2 and Odoribacter bacteria at the genus level. Downregulation of pro-inflammatory cytokines and chemokines in colon samples, a reduction in macrophages and dendritic cells in mesenteric lymph nodes were found after oxaliplatin treatment. In conclusion, oxaliplatin treatment caused morphological changes in TLR4+ cells, increase in gram-negative microbiota and enhanced HMGB1 expression associated with immunosuppression in the colon.
Collapse
Affiliation(s)
- Vanesa Stojanovska
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Rachel M. McQuade
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Sarah Fraser
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Monica Prakash
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Shakuntla Gondalia
- Centre for Human Psychopharmacology, Swinburne University of Technology, Hawthorn, Melbourne, Victoria, Australia
| | - Rhian Stavely
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Enzo Palombo
- Department of Chemistry and Biotechnology, Swinburne University of Technology, Hawthorn, Melbourne, Victoria, Australia
| | - Vasso Apostolopoulos
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Samy Sakkal
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
| | - Kulmira Nurgali
- College of Health and Biomedicine, Institute for Health and Sport, Victoria University, Melbourne, Victoria, Australia
- Department of Medicine Western Health, The University of Melbourne, Regenerative Medicine and Stem Cells Program, Australian Institute for Musculoskeletal Science (AIMSS), Melbourne, Victoria, Australia
| |
Collapse
|
27
|
Guthrie L, Gupta S, Daily J, Kelly L. Human microbiome signatures of differential colorectal cancer drug metabolism. NPJ Biofilms Microbiomes 2017; 3:27. [PMID: 29104759 PMCID: PMC5665930 DOI: 10.1038/s41522-017-0034-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 09/06/2017] [Accepted: 09/26/2017] [Indexed: 12/12/2022] Open
Abstract
It is well appreciated that microbial metabolism of drugs can influence treatment efficacy. Microbial β-glucuronidases in the gut can reactivate the excreted, inactive metabolite of irinotecan, a first-line chemotherapeutic for metastatic colorectal cancer. Reactivation causes adverse drug responses, including severe diarrhea. However, a direct connection between irinotecan metabolism and the composition of an individual’s gut microbiota has not previously been made. Here, we report quantitative evidence of inter-individual variability in microbiome metabolism of the inactive metabolite of irinotecan to its active form. We identify a high turnover microbiota metabotype with potentially elevated risk for irinotecan-dependent adverse drug responses. We link the high turnover metabotype to unreported microbial β-glucuronidases; inhibiting these enzymes may decrease irinotecan-dependent adverse drug responses in targeted subsets of patients. In total, this study reveals metagenomic mining of the microbiome, combined with metabolomics, as a non-invasive approach to develop biomarkers for colorectal cancer treatment outcomes. Differences in the microbial populations in the gut may help predict the likelihood of adverse reactions to a drug used to treat bowel cancer. Libusha Kelly, Leah Guthrie, and colleagues at Albert Einstein College of Medicine in New York examined the undesirable reactivation of the chemotherapy drug irinotecan by microbial enzymes in the gut. They identified an association between specific forms of microbial metabolic activity and drug metabolism. Sampling the microbial population of a patient’s gut may therefore offer a relatively non-invasive way to identify biomarkers predicting the likelihood of adverse reactions due to microbial metabolism. The research also suggests that using drugs to inhibit the activity of specific microbial enzymes in the gut might improve the outcome of some treatments. Modifying the microbial population prior to treatment may be another option.
Collapse
Affiliation(s)
- Leah Guthrie
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Sanchit Gupta
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Johanna Daily
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| | - Libusha Kelly
- Department of Systems and Computational Biology, Albert Einstein College of Medicine, Bronx, NY 10461 USA.,Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY 10461 USA
| |
Collapse
|
28
|
Escalante J, McQuade RM, Stojanovska V, Nurgali K. Impact of chemotherapy on gastrointestinal functions and the enteric nervous system. Maturitas 2017; 105:23-29. [DOI: 10.1016/j.maturitas.2017.04.021] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 04/25/2017] [Indexed: 02/07/2023]
|
29
|
Loupakis F, Stein A, Ychou M, Hermann F, Salud A, Österlund P. A Review of Clinical Studies and Practical Guide for the Administration of Triplet Chemotherapy Regimens with Bevacizumab in First-line Metastatic Colorectal Cancer. Target Oncol 2017; 11:293-308. [PMID: 26687849 PMCID: PMC4901088 DOI: 10.1007/s11523-015-0400-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Colorectal cancer is the third most common cancer worldwide. A significant proportion of patients presents with unresectable metastatic disease or develops metachronous metastases following surgical resection of the primary tumor. The prognosis of the disease has improved over the past two decades, with extended multimodality treatment options and the development of increasingly intensified chemotherapy regimens that now typically include targeted biologics. A recent advance in therapy is a treatment regimen composed of three chemotherapeutic agents (i.e., triplet chemotherapy: 5-fluorouracil [5-FU]/leucovorin [LV], oxaliplatin, and irinotecan; FOLFOXIRI) in combination with the vascular endothelial growth factor inhibitor bevacizumab. This regimen has been shown to elicit significantly improved objective response rates and median progression-free survival compared with 5-FU/LV and irinotecan in combination with bevacizumab. However, triplet chemotherapy has been associated with increased rates of chemotherapy-related adverse events, and treatment-emergent adverse events should be properly managed to minimize treatment interruption or discontinuation. We present herein a review of clinical studies evaluating the safety and efficacy of FOLFOXIRI with bevacizumab in metastatic colorectal cancer, and propose a practical guide for the management of adverse events associated with the regimen. ![]()
Collapse
Affiliation(s)
- Fotios Loupakis
- Istituto Toscano Tumori, U.O. Oncologia Medica 2 Universitaria, Azienda Ospedaliero-Universitaria Pisana, Via Roma, 67, 56126, Pisa, Italy.
| | - Alexander Stein
- University Cancer Center Hamburg, University of Hamburg, Hamburg, Germany
| | - Marc Ychou
- ICM Val d'Aurelle, 34000, Montpellier, France
| | | | - Antonieta Salud
- Department of Medical Oncology, Arnau de Vilanova University Hospital, Lleida, Spain
| | - Pia Österlund
- Department of Oncology, Helsinki University Central Hospital, Helsinki, Finland
| |
Collapse
|
30
|
Yan Z, Feng J, Peng J, Lai Z, Zhang L, Jin Y, Yang H, Chen W, Lin J. Chloroform extract of Hedyotis diffusa Willd inhibits viability of human colorectal cancer cells via suppression of AKT and ERK signaling pathways. Oncol Lett 2017; 14:7923-7930. [PMID: 29344237 DOI: 10.3892/ol.2017.7245] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Accepted: 08/01/2017] [Indexed: 12/13/2022] Open
Abstract
Hedyotis diffusa Willd (HDW) is a widely used traditional Chinese medicine in clinical therapy to treat various types of cancer, including colorectal cancer (CRC), but its effective polar fractions and functional mechanisms remain unclear. The aim of the present study was to determine the most effective extract of HDW and to investigate its effects on the regulation of CRC cell proliferation and apoptosis, as well as to investigate the underlying molecular mechanisms. The results demonstrated that the chloroform extract of HDW (CEHDW) exhibited the most anticancer ability. Furthermore, results of the MTT assay, colony formation, carboxyfluorescein diacetate succinimidyl ester assay and annexin V/propidium iodide staining suggested that CEHDW significantly inhibits proliferation and promotes apoptosis in the SW620 CRC cell line. Additionally, reverse transcription-polymerase chain reaction and western blot analysis demonstrated that CEHDW treatment downregulated the expression of Survivin, proliferating cell nuclear antigen, Cyclin D1, cyclin-dependent kinase 4 and B-cell lymphoma 2 (Bcl-2), and upregulated the expression of Bcl-2-associated X protein at the mRNA and protein levels. CEHDW also decreased the phosphorylation of protein kinase B (AKT) and extracellular-signal-regulated kinase (ERK), which indicated that the suppression of the AKT and ERK signaling pathways may be one of the underlying molecular mechanisms by which CEHDW exhibited its anticancer effect. Thus, CEHDW may be a promising agent for anticancer therapy.
Collapse
Affiliation(s)
- Zhaokun Yan
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, Fujian 350122, P.R. China
| | - Jianyu Feng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, Fujian 350122, P.R. China
| | - Jun Peng
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, Fujian 350122, P.R. China
| | - Zijun Lai
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, Fujian 350122, P.R. China
| | - Ling Zhang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, Fujian 350122, P.R. China
| | - Yiyi Jin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, Fujian 350122, P.R. China
| | - Hong Yang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, Fujian 350122, P.R. China
| | - Wujin Chen
- The Affiliated People's Hospital of Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian 350004, P.R. China
| | - Jiumao Lin
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, Fujian 350122, P.R. China.,Fujian Key Laboratory of Integrative Medicine on Geriatrics, Fujian University of Traditional Chinese Medicine, Minhou Shangjie, Fuzhou, Fujian 350122, P.R. China
| |
Collapse
|
31
|
Borghi-Pangoni FB, Junqueira MV, de Souza Ferreira SB, Silva LL, Rabello BR, de Castro LV, Baesso ML, Diniz A, Caetano W, Bruschi ML. Preparation and characterization of bioadhesive system containing hypericin for local photodynamic therapy. Photodiagnosis Photodyn Ther 2017; 19:284-297. [DOI: 10.1016/j.pdpdt.2017.06.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 06/17/2017] [Accepted: 06/28/2017] [Indexed: 12/21/2022]
|
32
|
McQuade RM, Stojanovska V, Donald EL, Rahman AA, Campelj DG, Abalo R, Rybalka E, Bornstein JC, Nurgali K. Irinotecan-Induced Gastrointestinal Dysfunction Is Associated with Enteric Neuropathy, but Increased Numbers of Cholinergic Myenteric Neurons. Front Physiol 2017. [PMID: 28642718 PMCID: PMC5462962 DOI: 10.3389/fphys.2017.00391] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Gastrointestinal dysfunction is a common side-effect of chemotherapy leading to dose reductions and treatment delays. These side-effects may persist up to 10 years post-treatment. A topoisomerase I inhibitor, irinotecan (IRI), commonly used for the treatment of colorectal cancer, is associated with severe acute and delayed-onset diarrhea. The long-term effects of IRI may be due to damage to enteric neurons innervating the gastrointestinal tract and controlling its functions. Balb/c mice received intraperitoneal injections of IRI (30 mg/kg−1) 3 times a week for 14 days, sham-treated mice received sterile water (vehicle) injections. In vivo analysis of gastrointestinal transit via serial x-ray imaging, facal water content, assessment of gross morphological damage and immunohistochemical analysis of myenteric neurons were performed at 3, 7 and 14 days following the first injection and at 7 days post-treatment. Ex vivo colonic motility was analyzed at 14 days following the first injection and 7 days post-treatment. Mucosal damage and inflammation were found following both short and long-term treatment with IRI. IRI-induced neuronal loss and increases in the number and proportion of ChAT-IR neurons and the density of VAChT-IR fibers were associated with changes in colonic motility, gastrointestinal transit and fecal water content. These changes persisted in post-treatment mice. Taken together this work has demonstrated for the first time that IRI-induced inflammation, neuronal loss and altered cholinergic expression is associated with the development of IRI-induced long-term gastrointestinal dysfunction and diarrhea.
Collapse
Affiliation(s)
- Rachel M McQuade
- College of Health and Biomedicine, Victoria UniversityMelbourne, VIC, Australia
| | - Vanesa Stojanovska
- College of Health and Biomedicine, Victoria UniversityMelbourne, VIC, Australia
| | - Elizabeth L Donald
- College of Health and Biomedicine, Victoria UniversityMelbourne, VIC, Australia
| | - Ahmed A Rahman
- College of Health and Biomedicine, Victoria UniversityMelbourne, VIC, Australia
| | - Dean G Campelj
- College of Health and Biomedicine, Victoria UniversityMelbourne, VIC, Australia.,Institute of Sport, Exercise and Active Living, Victoria UniversityMelbourne, VIC, Australia.,Australian Institute of Musculoskeletal Science, Western HealthMelbourne, VIC, Australia
| | - Raquel Abalo
- Área de Farmacología y Nutrición y Unidad Asociada al Instituto de Química Médica y al Instituto de Investigación en Ciencias de la Alimentación del Consejo Superior de Investigaciones Científicas, Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor, Universidad Rey Juan CarlosAlcorcón, Spain
| | - Emma Rybalka
- College of Health and Biomedicine, Victoria UniversityMelbourne, VIC, Australia.,Institute of Sport, Exercise and Active Living, Victoria UniversityMelbourne, VIC, Australia.,Australian Institute of Musculoskeletal Science, Western HealthMelbourne, VIC, Australia
| | - Joel C Bornstein
- Department of Physiology, Melbourne UniversityMelbourne, VIC, Australia
| | - Kulmira Nurgali
- College of Health and Biomedicine, Victoria UniversityMelbourne, VIC, Australia
| |
Collapse
|
33
|
Abalo R, Uranga JA, Pérez-García I, de Andrés R, Girón R, Vera G, López-Pérez AE, Martín-Fontelles MI. May cannabinoids prevent the development of chemotherapy-induced diarrhea and intestinal mucositis? Experimental study in the rat. Neurogastroenterol Motil 2017; 29. [PMID: 27686064 DOI: 10.1111/nmo.12952] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 08/24/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND The antineoplastic drug 5-fluoruracil (5-FU) is a pirimidine analog, which frequently induces potentially fatal diarrhea and mucositis. Cannabinoids reduce gastrointestinal motility and secretion and might prevent 5-FU-induced gut adverse effects. Here, we asked whether cannabinoids may prevent diarrhea and mucositis induced by 5-FU in the rat. METHODS Male Wistar rats received vehicle or the non-selective cannabinoid agonist WIN 55,212-2 (WIN; 0.5 mg kg-1 injection-1 , 1 injection day-1 , 4 consecutive days) by intraperitoneal (ip) route; on the first 2 days, animals received also saline or 5-FU (150 mg kg-1 injection-1 , cumulative dose of 300 mg kg-1 ). Gastrointestinal motor function was radiographically studied after barium contrast intragastric administration on experimental days 1 and 4. Structural alterations of the stomach, small intestine and colon were histologically studied on day 4. PAS staining and immunohistochemistry for Ki67, chromogranin A and CD163 were used to detect secretory, proliferating, and endocrine cells, and activated macrophages respectively. KEY RESULTS As shown radiographically, 5-FU induced significant gastric emptying delay (on days 1 and 4) and diarrhea (on day 4). WIN did not significantly alter the motility curves obtained for either control or 5-FU-treated animals but tended to reduce the severity of 5-FU-induced diarrhea and increased permanence of barium from day 1 to the beginning of day 4 in 5-FU-treated animals. 5-FU-induced mucositis was severe and not counteracted by WIN. CONCLUSIONS AND INFERENCES 5-FU-induced diarrhea, but not mucositis, was partly prevented by WIN at a low dose. Cannabinoids might be useful to prevent chemotherapy-induced diarrhea.
Collapse
Affiliation(s)
- R Abalo
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Madrid, Alcorcón, Spain.,Unidad Asociada I+D+i al Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC), Madrid, Spain.,Unidad Asociada I+D+i al Instituto de Química Médica, IQM (CSIC), Madrid, Spain.,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL), Madrid, Spain
| | - J A Uranga
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Madrid, Alcorcón, Spain.,Unidad Asociada I+D+i al Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC), Madrid, Spain.,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL), Madrid, Spain
| | - I Pérez-García
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Madrid, Alcorcón, Spain
| | - R de Andrés
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Madrid, Alcorcón, Spain
| | - R Girón
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Madrid, Alcorcón, Spain.,Unidad Asociada I+D+i al Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC), Madrid, Spain.,Unidad Asociada I+D+i al Instituto de Química Médica, IQM (CSIC), Madrid, Spain.,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL), Madrid, Spain
| | - G Vera
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Madrid, Alcorcón, Spain.,Unidad Asociada I+D+i al Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC), Madrid, Spain.,Unidad Asociada I+D+i al Instituto de Química Médica, IQM (CSIC), Madrid, Spain.,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL), Madrid, Spain
| | - A E López-Pérez
- Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL), Madrid, Spain.,Unidad del Dolor, Servicio de Anestesiología, Hospital General Universitario Gregorio Marañón (HGUGM), Madrid, Spain
| | - M I Martín-Fontelles
- Departamento de Ciencias Básicas de la Salud, Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Madrid, Alcorcón, Spain.,Unidad Asociada I+D+i al Instituto de Investigación en Ciencias de la Alimentación, CIAL (CSIC), Madrid, Spain.,Unidad Asociada I+D+i al Instituto de Química Médica, IQM (CSIC), Madrid, Spain.,Grupo de Excelencia Investigadora URJC-Banco de Santander-Grupo Multidisciplinar de Investigación y Tratamiento del Dolor (i+DOL), Madrid, Spain
| |
Collapse
|
34
|
McQuade RM, Carbone SE, Stojanovska V, Rahman A, Gwynne RM, Robinson AM, Goodman CA, Bornstein JC, Nurgali K. Role of oxidative stress in oxaliplatin-induced enteric neuropathy and colonic dysmotility in mice. Br J Pharmacol 2016; 173:3502-3521. [PMID: 27714760 PMCID: PMC5120153 DOI: 10.1111/bph.13646] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 09/18/2016] [Accepted: 09/19/2016] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND AND PURPOSE Oxaliplatin is a platinum-based chemotherapeutic drug used as a first-line therapy for colorectal cancer. However, its use is associated with severe gastrointestinal side-effects resulting in dose limitations and/or cessation of treatment. In this study, we tested whether oxidative stress, caused by chronic oxaliplatin treatment, induces enteric neuronal damage and colonic dysmotility. EXPERIMENTAL APPROACH Oxaliplatin (3 mg·kg-1 per day) was administered in vivo to Balb/c mice intraperitoneally three times a week. The distal colon was collected at day 14 of treatment. Immunohistochemistry was performed in wholemount preparations of submucosal and myenteric ganglia. Neuromuscular transmission was studied by intracellular electrophysiology. Circular muscle tone was studied by force transducers. Colon propulsive activity studied in organ bath experiments and faeces were collected to measure water content. KEY RESULTS Chronic in vivo oxaliplatin treatment resulted in increased formation of reactive oxygen species (O2 -), nitration of proteins, mitochondrial membrane depolarisation resulting in the release of cytochrome c, loss of neurons, increased inducible NOS expression and apoptosis in both the submucosal and myenteric plexuses of the colon. Oxaliplatin treatment enhanced NO-mediated inhibitory junction potentials and altered the response of circular muscles to the NO donor, sodium nitroprusside. It also reduced the frequency of colonic migrating motor complexes and decreased circular muscle tone, effects reversed by the NO synthase inhibitor, Nω-Nitro-L-arginine. CONCLUSION AND IMPLICATIONS Our study is the first to provide evidence that oxidative stress is a key player in enteric neuropathy and colonic dysmotility leading to symptoms of chronic constipation observed in oxaliplatin-treated mice.
Collapse
Affiliation(s)
- Rachel M McQuade
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Simona E Carbone
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Vanesa Stojanovska
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Ahmed Rahman
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Rachel M Gwynne
- Department of Physiology, Melbourne University, Melbourne, Australia
| | - Ainsley M Robinson
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Craig A Goodman
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Joel C Bornstein
- Department of Physiology, Melbourne University, Melbourne, Australia
| | - Kulmira Nurgali
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia
| |
Collapse
|
35
|
McQuade RM, Stojanovska V, Abalo R, Bornstein JC, Nurgali K. Chemotherapy-Induced Constipation and Diarrhea: Pathophysiology, Current and Emerging Treatments. Front Pharmacol 2016; 7:414. [PMID: 27857691 PMCID: PMC5093116 DOI: 10.3389/fphar.2016.00414] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/19/2016] [Indexed: 12/12/2022] Open
Abstract
Gastrointestinal (GI) side-effects of chemotherapy are a debilitating and often overlooked clinical hurdle in cancer management. Chemotherapy-induced constipation (CIC) and Diarrhea (CID) present a constant challenge in the efficient and tolerable treatment of cancer and are amongst the primary contributors to dose reductions, delays and cessation of treatment. Although prevalence of CIC is hard to estimate, it is believed to affect approximately 16% of cancer patients, whilst incidence of CID has been estimated to be as high as 80%. Despite this, the underlying mechanisms of both CID and CIC remain unclear, but are believed to result from a combination of intersecting mechanisms including inflammation, secretory dysfunctions, GI dysmotility and alterations in GI innervation. Current treatments for CIC and CID aim to reduce the severity of symptoms rather than combating the pathophysiological mechanisms of dysfunction, and often result in worsening of already chronic GI symptoms or trigger the onset of a plethora of other side-effects including respiratory depression, uneven heartbeat, seizures, and neurotoxicity. Emerging treatments including those targeting the enteric nervous system present promising avenues to alleviate CID and CIC. Identification of potential targets for novel therapies to alleviate chemotherapy-induced toxicity is essential to improve clinical outcomes and quality of life amongst cancer sufferers.
Collapse
Affiliation(s)
- Rachel M McQuade
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne VIC, Australia
| | - Vanesa Stojanovska
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne VIC, Australia
| | - Raquel Abalo
- Área de Farmacología y Nutrición, Universidad Rey Juan CarlosMadrid, Spain; Grupo de Excelencia Investigadora URJC, Banco de Santander Grupo Multidisciplinar de Investigación y Tratamiento del Dolor, Universidad Rey Juan CarlosMadrid, Spain; Unidad Asociada al Instituto de Química Médica del Consejo Superior de Investigaciones CientíficasMadrid, Spain; Unidad Asociada al Instituto de Investigación en Ciencias de la Alimentación del Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Joel C Bornstein
- Department of Physiology, University of Melbourne, Melbourne VIC, Australia
| | - Kulmira Nurgali
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne VIC, Australia
| |
Collapse
|
36
|
Robinson AM, Stojanovska V, Rahman AA, McQuade RM, Senior PV, Nurgali K. Effects of Oxaliplatin Treatment on the Enteric Glial Cells and Neurons in the Mouse Ileum. J Histochem Cytochem 2016; 64:530-45. [PMID: 27389702 PMCID: PMC5006136 DOI: 10.1369/0022155416656842] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/06/2016] [Indexed: 12/17/2022] Open
Abstract
Oxaliplatin, currently used for treatment of colorectal and other cancers, causes severe gastrointestinal side effects, including nausea, vomiting, diarrhea, and constipation that are attributed to mucosal damage. However, delayed onset and long-term persistence of these side effects suggest that damage to the enteric nervous system (ENS) regulating physiological function of the gastrointestinal tract may also occur. The ENS comprises myenteric and submucosal neurons and enteric glial cells (EGCs). This study aimed to investigate the effects of oxaliplatin treatment on enteric neurons and EGCs within the mouse ileum. BALB/c mice received repeated intraperitoneal injections of oxaliplatin (3 mg/kg, 3 injections/week). Tissues were collected 3, 7, 14, and 21 days from the commencement of treatment. Decreases in glial fibrillary acidic protein-immunoreactive (IR) EGCs and protein gene product 9.5/β-Tubulin III-IR neurons as well as increase in s100β-IR EGCs after chronic oxaliplatin administration were observed in both the myenteric and submucosal plexi. Changes in EGCs were further observed in cross-sections of the ileum at day 14 and confirmed by Western blotting. Alterations in EGCs correlated with loss of myenteric and submucosal neurons in the ileum from oxaliplatin-treated mice. These changes to the ENS may contribute to the mechanisms underlying gastrointestinal side effects associated with oxaliplatin treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Kulmira Nurgali
- Kulmira Nurgali, Western Centre for Health Research & Education, Sunshine Hospital, 176 Furlong Road, St Albans, VIC 3021, Australia.
| |
Collapse
|
37
|
Kawczyk-Krupka A, Latos W, Latos M, Czuba ZP, Sieroń A. ALA-induced photodynamic effect on viability, apoptosis and secretion of S100 protein, secreted by colon cancer cells in vitro. Photodiagnosis Photodyn Ther 2016; 15:218-27. [PMID: 27469201 DOI: 10.1016/j.pdpdt.2016.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 07/18/2016] [Accepted: 07/24/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND S100 protein is a proven prognostic factor in cancers. In colorectal cancers, its secretion correlates with clinical stage of the disease. Photodynamic therapy (PDT) is used as a supporting therapy in treatment of this particular cancer. The main aim of our study was to estimate the effect of photodynamic therapy with 5-aminolevulinic acid (ALA) in sublethal doses (ALA-PDT) on the secretion of S100 protein by colon cancer cells. METHODS Investigations were performed on two colon cancer cell lines. The SW480 cell line is a culture containing locally malignant cancer. The SW620 line is characterized by high metastatic activity. Each line was exposed to different concentrations of photosensitizer's precursor-ALA, and various level of light radiation. Afterwards, cell viability, using MTT and LDH assays and apoptosis of both lines was assessed. Then measurement of S100 protein concentration was performed using a 2-step enzyme immunoassay. RESULTS After application of ALA PDT the S100 protein concentration was reduced by 27% in SW480 cell line and by 30% in SW620 cell line. At the same time there has been no increase in the concentration of S100 protein in cells exposed to the light alone. It was demonstrated that the more aggressive line SW620 releases higher levels of S100 proteins in comparison with the line SW480. CONCLUSION The outcome of this study presented beneficial effect of ALA-PDT on persistent colon cancer cells. This therapy leads to decrease of S100 protein concentration in both colon cancer cell lines: SW480 and SW620.
Collapse
Affiliation(s)
- Aleksandra Kawczyk-Krupka
- School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Batorego 15, 41-902, Bytom, Poland.
| | - Wojciech Latos
- Center for Laser Diagnostics and Therapy, Specialist Hospital No 2 Batorego 15, 41-902, Bytom, Poland
| | - Magdalena Latos
- School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice Department of Microbiology and Immunology, 19 Jordana St., 41-808 Zabrze, Poland
| | - Zenon P Czuba
- School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice Department of Microbiology and Immunology, 19 Jordana St., 41-808 Zabrze, Poland
| | - Aleksander Sieroń
- School of Medicine with the Division of Dentistry in Zabrze, Medical University of Silesia in Katowice, Department of Internal Medicine, Angiology and Physical Medicine, Center for Laser Diagnostics and Therapy, Batorego 15, 41-902, Bytom, Poland
| |
Collapse
|
38
|
Carbone SE, Jovanovska V, Brookes SJH, Nurgali K. Electrophysiological and morphological changes in colonic myenteric neurons from chemotherapy-treated patients: a pilot study. Neurogastroenterol Motil 2016; 28:975-84. [PMID: 26909894 PMCID: PMC5215581 DOI: 10.1111/nmo.12795] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 01/14/2016] [Indexed: 02/06/2023]
Abstract
BACKGROUND Patients receiving anticancer chemotherapy experience a multitude of gastrointestinal side-effects. However, the causes of these symptoms are uncertain and whether these therapeutics directly affect the enteric nervous system is unknown. Our aim was to determine whether the function and morphology of myenteric neurons are altered in specimens of the colon from chemotherapy-treated patients. METHODS Colon specimens were compared from chemotherapy-treated and non-treated patients following colorectal resections for removal of carcinoma. Intracellular electrophysiological recordings from myenteric neurons and immunohistochemistry were performed in whole mount preparations. KEY RESULTS Myenteric S neurons from chemotherapy-treated patients were hyperexcitable; more action potentials (11.4 ± 9.4, p < 0.05) were fired in response to depolarising current pulses than in non-treated patients (1.4 ± 0.5). The rheobase and the threshold to evoke action potentials were significantly lower for neurons from chemotherapy-treated patients compared to neurons from non-treated patients (p < 0.01). Fast excitatory postsynaptic potential reversal potential was more positive in neurons from chemotherapy-treated patients (p < 0.05). An increase in the number of neurons with translocation of Hu protein from the cytoplasm to the nucleus was observed in specimens from chemotherapy-treated patients (103 ± 25 neurons/mm(2) , 37.2 ± 7.0%, n = 8) compared to non-treated (26 ± 5 neurons/mm(2) , 11.9 ± 2.7%, n = 12, p < 0.01). An increase in the soma size of neuronal nitric oxide synthase-immunoreactive neurons was also observed in these specimens. CONCLUSIONS & INFERENCES This is the first study suggesting functional and structural changes in human myenteric neurons in specimens of colon from patients receiving anticancer chemotherapy. These changes may contribute to the causation of gastrointestinal symptoms experienced by chemotherapy-treated patients.
Collapse
Affiliation(s)
- S. E. Carbone
- Centre for Chronic DiseaseCollege of Health and BiomedicineVictoria UniversityMelbourneVICAustralia
| | - V. Jovanovska
- Centre for Chronic DiseaseCollege of Health and BiomedicineVictoria UniversityMelbourneVICAustralia
| | - S. J. H. Brookes
- Discipline of Human Physiology and Centre for NeuroscienceFlinders UniversityAdelaideSAAustralia
| | - K. Nurgali
- Centre for Chronic DiseaseCollege of Health and BiomedicineVictoria UniversityMelbourneVICAustralia
| |
Collapse
|
39
|
Sorensen JC, Cheregi BD, Timpani CA, Nurgali K, Hayes A, Rybalka E. Mitochondria: Inadvertent targets in chemotherapy-induced skeletal muscle toxicity and wasting? Cancer Chemother Pharmacol 2016; 78:673-83. [PMID: 27167634 DOI: 10.1007/s00280-016-3045-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 04/20/2016] [Indexed: 12/19/2022]
Abstract
Chemotherapy has been associated with increased mitochondrial reactive oxygen species production, mitochondrial dysfunction and skeletal muscle atrophy leading to severe patient clinical complications including skeletal muscle fatigue, insulin resistance and wasting. The exact mechanisms behind this skeletal muscle toxicity are largely unknown, and as such co-therapies to attenuate chemotherapy-induced side effects are lacking. Here, we review the current literature describing the clinical manifestations and molecular origins of chemotherapy-induced myopathy with a focus on the mitochondria as the target organelle via which chemotherapeutic agents establish toxicity. We explore the likely mechanisms through which myopathy is induced, using the anthracycline doxorubicin, and the platinum-based alkylating agent oxaliplatin, as examples. Finally, we recommend directions for future research and outline the potential significance of these proposed directions.
Collapse
Affiliation(s)
- James C Sorensen
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, 8001, Australia.,Australian Institute of Musculoskeletal Science, Western Health, Melbourne, 3021, Australia
| | - Beatrice D Cheregi
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, 8001, Australia
| | - Cara A Timpani
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, 8001, Australia.,Australian Institute of Musculoskeletal Science, Western Health, Melbourne, 3021, Australia
| | - Kulmira Nurgali
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, 8001, Australia
| | - Alan Hayes
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, 8001, Australia.,Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, 8001, Australia.,Australian Institute of Musculoskeletal Science, Western Health, Melbourne, 3021, Australia
| | - Emma Rybalka
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, 8001, Australia. .,Institute of Sport, Exercise and Active Living (ISEAL), Victoria University, Melbourne, 8001, Australia. .,Australian Institute of Musculoskeletal Science, Western Health, Melbourne, 3021, Australia.
| |
Collapse
|
40
|
Kawczyk-Krupka A, Sieroń-Stołtny K, Latos W, Czuba Z, Kwiatek B, Potempa M, Wasilewska K, Król W, Stanek A. ALA-induced photodynamic effect on vitality, apoptosis, and secretion of vascular endothelial growth factor (VEGF) by colon cancer cells in normoxic environment in vitro. Photodiagnosis Photodyn Ther 2016; 13:308-315. [DOI: 10.1016/j.pdpdt.2015.09.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 08/24/2015] [Accepted: 09/08/2015] [Indexed: 12/27/2022]
|
41
|
Screening and In Vitro Evaluation of Mucoadhesive Thermoresponsive System Containing Methylene Blue for Local Photodynamic Therapy of Colorectal Cancer. Pharm Res 2015; 33:776-91. [DOI: 10.1007/s11095-015-1826-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 11/03/2015] [Indexed: 12/22/2022]
|
42
|
Photodynamic therapy in colorectal cancer treatment--The state of the art in preclinical research. Photodiagnosis Photodyn Ther 2015; 13:158-174. [PMID: 26238625 DOI: 10.1016/j.pdpdt.2015.07.175] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 05/31/2015] [Accepted: 07/23/2015] [Indexed: 02/07/2023]
Abstract
BACKGROUND Photodynamic therapy (PDT) is used in many different oncologic fields. Also in gastroenterology, where have been a few attempts to treat both the premalignant lesion and advanced colorectal cancer (CRC). This review aims to give a general overview of preclinical photodynamic studies related to CRC cells and animal studies of photodynamic effects related to CRC treatment to emphasize their potential in study of PDT mechanism, safety and efficiency to translate these results into clinical benefit in CRC treatment. MATERIALS AND METHOD Literature on in vitro preclinical photodynamic studies related to CRC cells and animal studies of photodynamic effects related to CRC treatment with the fallowing medical subject headings search terms: colorectal cancer, photodynamic therapy, photosensitizer(s), in vitro, cell culture(s), in vivo, animal experiment(s). The articles were selected by their relevance to the topic. RESULTS The majority of preclinical studies concerning possibility of PDT application in colon and rectal cancer is focused on phototoxic action of photosensitizers toward cultured colorectal tumor cells in vitro. The purposes of animal experiments are usually elucidation of mechanisms of observed photodynamic effects in scale of organism, estimation of PDT safety and efficiency and translation of these results into clinical benefit. CONCLUDING REMARKS In vitro photodynamic studies and animal experiments can be useful for studies of mechanisms and efficiency of photodynamic method as a start point on PDT clinical research. The primary disadvantage of in vitro experiments is a risk of over-interpretation of their results during extrapolation to the entire CRC.
Collapse
|
43
|
Kawczyk-Krupka A, Bugaj AM, Latos W, Wawrzyniec K, Oleś P, Mertas A, Czuba Z, Król W, Sieroń-Stołtny K, Sieroń A. ALA-mediated photodynamic effect on apoptosis induction and secretion of macrophage migration inhibitory factor (MIF) and of monocyte chemotactic protein (MCP-1) by colon cancer cells in normoxia and in hypoxia-like conditions in vitro. Photodiagnosis Photodyn Ther 2015; 12:27-35. [DOI: 10.1016/j.pdpdt.2014.12.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2014] [Revised: 12/28/2014] [Accepted: 12/29/2014] [Indexed: 10/24/2022]
|
44
|
Stojanovska V, Sakkal S, Nurgali K. Platinum-based chemotherapy: gastrointestinal immunomodulation and enteric nervous system toxicity. Am J Physiol Gastrointest Liver Physiol 2015; 308:G223-32. [PMID: 25501548 DOI: 10.1152/ajpgi.00212.2014] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The efficacy of chemotherapeutic treatment of colorectal cancer is challenged by severe gastrointestinal side effects, which include nausea, vomiting, constipation, and diarrhea. These symptoms can persist long after the treatment has been ceased. An emerging concept is the ability of platinum-based drugs to stimulate immunity, which is in contrast to conventional chemotherapeutic agents that are immunosuppressive. Here, we review the immunomodulatory aspects of platinum-based anticancer chemotherapeutics and their impact on gastrointestinal innervation. Given the bidirectional communication between the enteric nervous system and gastrointestinal immune system; exploring the consequences of platinum-induced immunogenicity will facilitate better understanding of gut dysfunction caused by chemotherapeutic agents. We propose that the development of future successful chemotherapeutics should rely on targeting the mechanisms underlying long-term gastrointestinal side effects.
Collapse
Affiliation(s)
- Vanesa Stojanovska
- College of Health and Biomedicine, Victoria University, Western Centre for Health, Research and Education, St Albans, Victoria, Australia
| | - Samy Sakkal
- College of Health and Biomedicine, Victoria University, Western Centre for Health, Research and Education, St Albans, Victoria, Australia
| | - Kulmira Nurgali
- College of Health and Biomedicine, Victoria University, Western Centre for Health, Research and Education, St Albans, Victoria, Australia
| |
Collapse
|