1
|
Scott AK, Fodera DM, Yang P, Arter A, Hines AM, Kolluru SS, Zambuto SG, Myers KM, Kamilov US, Odibo AO, Oyen ML. Bioengineering approaches for patient-specific analysis of placenta structure and function. Placenta 2024:S0143-4004(24)00615-5. [PMID: 39153938 DOI: 10.1016/j.placenta.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 08/19/2024]
Abstract
The leading cause of perinatal mortality is fetal growth restriction (FGR), defined as in utero fetal growth below the 10th percentile. Insufficient exchange of oxygen and nutrients at the maternal-fetal interface is associated with FGR. This transport occurs through the vasculature of the placenta, particularly in the terminal villi, where the vascular membranes have a large surface area and are the thinnest. Altered structure of the placenta villi is thought to contribute to decreased oxygen exchange efficiency, however, understanding how the three-dimensional microstructure and properties decrease this efficiency remains a challenge. Here, a novel, multiscale workflow is presented to quantify patient-specific biophysical properties, 3D structural features, and blood flow of the villous tissue. Namely, nanoindentation, optical coherence tomography, and ultrasound imaging were employed to measure the time-dependent material properties of placenta tissue, the 3D structure of villous tissue, and blood flow through the villi to characterize the microvasculature of the placenta at increasing length scales. Quantifying the biophysical properties, the 3D architecture, and blood flow in the villous tissue can be used to infer changes in maternal-fetal oxygen transport at the villous membrane. Overall, this multiscale understanding will advance knowledge of how microvascular changes in the placenta ultimately lead to FGR, opening opportunities for diagnosis and intervention.
Collapse
Affiliation(s)
- Adrienne K Scott
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis MO, USA; Center for Women's Health Engineering, Washington University in St. Louis, St. Louis MO, USA; Center for Regenerative Medicine, Washington University in St. Louis, St. Louis MO, USA
| | - Daniella M Fodera
- Department of Biomedical Engineering, Columbia University, New York NY, USA
| | - Patrick Yang
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis MO, USA; Center for Women's Health Engineering, Washington University in St. Louis, St. Louis MO, USA
| | - Abigail Arter
- Department of Obstetrics and Gynecology, Washington University School of Medicine in St. Louis, St. Louis MO, USA
| | - Amelia M Hines
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis MO, USA; Center for Women's Health Engineering, Washington University in St. Louis, St. Louis MO, USA
| | - Samyuktha S Kolluru
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis MO, USA; Center for Women's Health Engineering, Washington University in St. Louis, St. Louis MO, USA
| | - Samantha G Zambuto
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis MO, USA; Center for Women's Health Engineering, Washington University in St. Louis, St. Louis MO, USA; Department of Obstetrics and Gynecology, Washington University School of Medicine in St. Louis, St. Louis MO, USA
| | - Kristin M Myers
- Department of Mechanical Engineering, Columbia University, New York NY, USA
| | - Ulugbek S Kamilov
- Department of Computer Science & Engineering, Washington University in St. Louis, St. Louis MO, USA; Department of Electrical & Systems Engineering, Washington University in St. Louis, St. Louis MO, USA
| | - Anthony O Odibo
- Department of Obstetrics and Gynecology, Washington University School of Medicine in St. Louis, St. Louis MO, USA
| | - Michelle L Oyen
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis MO, USA; Center for Women's Health Engineering, Washington University in St. Louis, St. Louis MO, USA; Center for Regenerative Medicine, Washington University in St. Louis, St. Louis MO, USA; Department of Obstetrics and Gynecology, Washington University School of Medicine in St. Louis, St. Louis MO, USA.
| |
Collapse
|
2
|
van der Laan KWF, Reesink KD, Lambrichts S, Bitsch NJJE, van der Taelen L, Foulquier S, Delhaas T, Spronck B, Giudici A. Effect of rapid cooling, frozen storage, and thawing on the passive viscoelastic properties and structure of the rat aorta. J Biomech 2024; 171:112190. [PMID: 38897049 DOI: 10.1016/j.jbiomech.2024.112190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 05/21/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024]
Abstract
Biological tissues decay over time after harvesting, which alters their biomechanical properties. This poses logistical challenges for studies investigating passive arterial biomechanics as tissues need to be characterized shortly after excision. Freezing and cryopreservation methods can help alleviate the need for biomechanical testing of fresh tissue in human ex vivo studies. However, these methods tend to eliminate or reduce arterial cell functionality and affect passive biomechanics. Furthermore, their impact on dynamic arterial biomechanics remains unknown despite arterial viscoelastic properties being an integral component contributing to arterial stiffness under in vivo loading conditions. The present study aims to investigate the impact of rapid cooling and subsequent storage at -80 °C on the passive viscoelastic properties of arterial tissue and aid in ascertaining whether this is a suitable method to delay tissue analysis for studies investigating passive arterial biomechanics. Control and frozen abdominal rat aorta segments were quasi-statically and dynamically tested using a biaxial testing set-up. The results were modeled using a constituent-based quasi-linear viscoelastic modeling framework, yielding directional stiffness parameters, individual constituent biomechanical contributions, and a quantification of viscoelastic stiffening under dynamic pressurization conditions. Frozen samples displayed significantly decreased wall thickness, viscoelastic dissipation, viscoelastic stiffening, and significantly decreased circumferential deformation with changes in luminal pressure. Furthermore, frozen samples displayed significantly increased circumferential stiffness, pulse wave velocity, and collagen load bearing. Consequently, these changes should be considered when utilizing this tissue preservation method to delay biomechanical characterization of rat aortic tissue.
Collapse
Affiliation(s)
- Koen W F van der Laan
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Koen D Reesink
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Sara Lambrichts
- Department of Pharmacology & Toxicology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands; MHENS School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | | | - Laura van der Taelen
- Department of Pharmacology & Toxicology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Sébastien Foulquier
- Department of Pharmacology & Toxicology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands; MHENS School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Tammo Delhaas
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands
| | - Bart Spronck
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands; Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, Australia
| | - Alessandro Giudici
- Department of Biomedical Engineering, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, Maastricht, The Netherlands; GROW School for Oncology and Reproduction, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
3
|
Fang S, Duarte-Cordon CA, Fodera DM, Shi L, Chen X, Advincula A, Vink J, Hendon C, Myers KM. Equilibrium Tension and Compression Mechanical Properties of the Human Uterus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.25.591208. [PMID: 38712283 PMCID: PMC11071511 DOI: 10.1101/2024.04.25.591208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
A successful pregnancy relies on the proper cellular, biochemical, and mechanical functions of the uterus. A comprehensive understanding of uterine mechanical properties during pregnancy is key to understanding different gynecological and obstetric disorders such as preterm birth, placenta accreta, leiomyoma, and endometriosis. This study sought to characterize the macro-scale equilibrium material behaviors of the human uterus in non-pregnancy and late pregnancy under both compressive and tensile loading. Fifty human uterine specimens from 16 patients (8 nonpregnant [NP] and 8 pregnant [PG]) were tested using spherical indentation and uniaxial tension coupled with digital image correlation (DIC). A three-level incremental load-hold protocol was applied to both tests. A microstructurally-inspired material model considering fiber architecture was applied to this dataset. Inverse finite element analysis (IFEA) was then performed to generate a single set of mechanical parameters to describe compressive and tensile behaviors. The freeze-thaw effect on uterine macro mechanical properties was also evaluated. PG tissue exhibits decreased overall stiffness and increased fiber network extensibility compared to NP uterine tissue. Under indentation, ground substance compressibility was similar between NP and PG uterine tissue. In tension, the fiber network of the PG uterus was found to be more extensible and dispersed than in nonpregnancy. Lastly, a single freeze-thaw cycle did not systematically alter the macro-scale material behavior of the human uterus.
Collapse
Affiliation(s)
- Shuyang Fang
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | | | - Daniella M Fodera
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Lei Shi
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| | - Xiaowei Chen
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Arnold Advincula
- Department of Obstetrics & Gynecology, Columbia University Irving Medical Center, New York, NY, USA
| | - Joy Vink
- Department of Obstetrics, Gynecology, and Women's Health, John A. Burns School of Medicine, University of Hawai'i at Mānoa, Honolulu, HI, USA
| | - Christine Hendon
- Department of Electrical Engineering, Columbia University, New York, NY, USA
| | - Kristin M Myers
- Department of Mechanical Engineering, Columbia University, New York, NY, USA
| |
Collapse
|
4
|
Martinez-Vidal L, Chighizola M, Berardi M, Alchera E, Locatelli I, Pederzoli F, Venegoni C, Lucianò R, Milani P, Bielawski K, Salonia A, Podestà A, Alfano M. Micro-mechanical fingerprints of the rat bladder change in actinic cystitis and tumor presence. Commun Biol 2023; 6:217. [PMID: 36823431 PMCID: PMC9950451 DOI: 10.1038/s42003-023-04572-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
Tissue mechanics determines tissue homeostasis, disease development and progression. Bladder strongly relies on its mechanical properties to perform its physiological function, but these are poorly unveiled under normal and pathological conditions. Here we characterize the mechanical fingerprints at the micro-scale level of the three tissue layers which compose the healthy bladder wall, and identify modifications associated with the onset and progression of pathological conditions (i.e., actinic cystitis and bladder cancer). We use two indentation-based instruments (an Atomic Force Microscope and a nanoindenter) and compare the micromechanical maps with a comprehensive histological analysis. We find that the healthy bladder wall is a mechanically inhomogeneous tissue, with a gradient of increasing stiffness from the urothelium to the lamina propria, which gradually decreases when reaching the muscle outer layer. Stiffening in fibrotic tissues correlate with increased deposition of dense extracellular matrix in the lamina propria. An increase in tissue compliance is observed before the onset and invasion of the tumor. By providing high resolution micromechanical investigation of each tissue layer of the bladder, we depict the intrinsic mechanical heterogeneity of the layers of a healthy bladder as compared with the mechanical properties alterations associated with either actinic cystitis or bladder tumor.
Collapse
Affiliation(s)
- Laura Martinez-Vidal
- Division of Experimental Oncology/Unit of Urology, IRCCS Ospedale San Raffaele, Milan, 20132, Italy
- Università Vita-Salute San Raffaele, Via Olgettina, 60, Milan, 20132, Italy
| | - M Chighizola
- C.I.Ma.I.Na and Dipartimento di Fisica "Aldo Pontremoli", Università degli Studi di Milano, Milan, 20133, Italy
| | - M Berardi
- Optics11, Amsterdam, The Netherlands
- LaserLab, Department of Physics and Astronomy, VU University, Amsterdam, The Netherlands
| | - E Alchera
- Division of Experimental Oncology/Unit of Urology, IRCCS Ospedale San Raffaele, Milan, 20132, Italy
| | - I Locatelli
- Division of Experimental Oncology/Unit of Urology, IRCCS Ospedale San Raffaele, Milan, 20132, Italy
| | - F Pederzoli
- Division of Experimental Oncology/Unit of Urology, IRCCS Ospedale San Raffaele, Milan, 20132, Italy
- Università Vita-Salute San Raffaele, Via Olgettina, 60, Milan, 20132, Italy
| | - C Venegoni
- Division of Experimental Oncology/Unit of Urology, IRCCS Ospedale San Raffaele, Milan, 20132, Italy
| | - R Lucianò
- Pathology Unit, IRCCS Ospedale San Raffaele, Milan, 20132, Italy
| | - P Milani
- C.I.Ma.I.Na and Dipartimento di Fisica "Aldo Pontremoli", Università degli Studi di Milano, Milan, 20133, Italy
| | | | - A Salonia
- Division of Experimental Oncology/Unit of Urology, IRCCS Ospedale San Raffaele, Milan, 20132, Italy
- Università Vita-Salute San Raffaele, Via Olgettina, 60, Milan, 20132, Italy
| | - A Podestà
- C.I.Ma.I.Na and Dipartimento di Fisica "Aldo Pontremoli", Università degli Studi di Milano, Milan, 20133, Italy.
| | - M Alfano
- Division of Experimental Oncology/Unit of Urology, IRCCS Ospedale San Raffaele, Milan, 20132, Italy.
| |
Collapse
|
5
|
Methodology for estimation of undeformed thickness of arterial tissues. Sci Rep 2023; 13:2816. [PMID: 36797267 PMCID: PMC9935509 DOI: 10.1038/s41598-023-28871-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/25/2023] [Indexed: 02/18/2023] Open
Abstract
Soft tissue sample thickness measurement is one of the major sources of differences between mechanical responses published by different groups. New method for the estimation of unloaded sample thickness of soft tissues is proposed in this study. Ten 30 × 30 mm and ten 20 × 20 mm samples of porcine anterior thoracic aortas were loaded by gradually increased radial force. Their deformed thickness was then recorded in order to generate a pressure-thickness response. Next, the limit pressure to which the response can be considered linear was estimated. Line was fitted to the linear part of the curve and extrapolated towards zero pressure to estimate unloaded thickness (7 kPa fit). For comparison, data near zero pressure were fitted separately and extrapolated towards zero (Near Zero fit). The limit pressure for the linearity of the response was around 7 kPa. The Unloaded thickness for 30 × 30 mm samples was 2.68 ± 0.31 mm and 2.68 ± 0.3 mm for Near Zero fit and 7 kPa fit, respectively. The Unloaded thickness for 20 × 20 mm samples was 2.60 ± 0.35 mm and 2.59 ± 0.35 mm for Near Zero fit and 7 kPa fit, respectively. The median of thickness difference between smaller and larger samples was not found statistically different. Proposed method can estimate unloaded undeformed sample thickness quickly and reliably.
Collapse
|
6
|
Brunet J, Pierrat B, Adrien J, Maire E, Lane BA, Curt N, Bravin A, Laroche N, Badel P. In situ visualization of aortic dissection propagation in notched rabbit aorta using synchrotron X-ray tomography. Acta Biomater 2023; 155:449-460. [PMID: 36343907 DOI: 10.1016/j.actbio.2022.10.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Aortic dissection is a complex, intramural, and dynamic condition involving multiple mechanisms, hence, difficult to observe. In the present study, a controlled in vitro aortic dissection was performed using tension-inflation tests on notched rabbit aortic segments. The mechanical test was combined with conventional (cCT) and synchrotron (sCT) computed tomography for in situ imaging of the macro- and micro-structural morphological changes of the aortic wall during dissection. We demonstrate that the morphology of the notch and the aorta can be quantified in situ at different steps of the aortic dissection, and that the notch geometry correlates with the critical pressure. The phenomena prior to propagation of the notch are also described, for instance the presence of a bulge at the tip of the notch is identified, deforming the remaining wall. Finally, our method allows us to visualize for the first time the propagation of an aortic dissection in real-time with a resolution that has never previously been reached. STATEMENT OF SIGNIFICANCE: With the present study, we investigated the factors leading to the propagation of aortic dissection by reproducing this mechanical process in notched rabbit aortas. Synchrotron CT provided the first visualisation in real-time of an aortic dissection propagation with a resolution that has never previously been reached. The morphology of the intimal tear and aorta was quantified at different steps of the aortic dissection, demonstrating that the early notch geometry correlates with the critical pressure. This quantification is crucial for the development of better criteria identifying patients at risk. Phenomena prior to tear propagation were also described, such as the presence of a bulge at the tip of the notch, deforming the remaining wall.
Collapse
Affiliation(s)
- J Brunet
- Mines Saint-Étienne, Univ Jean Monnet, INSERM, U 1059 Sainbiose, 42023, Saint-Étienne, France; European Synchrotron Radiation Facility (ESRF), Grenoble, France; Department of Mechanical Engineering, University College London, London, UK.
| | - B Pierrat
- Mines Saint-Étienne, Univ Jean Monnet, INSERM, U 1059 Sainbiose, 42023, Saint-Étienne, France.
| | - J Adrien
- Université de Lyon, INSA-Lyon, MATEIS CNRS UMR5510, Villeurbanne, France
| | - E Maire
- Université de Lyon, INSA-Lyon, MATEIS CNRS UMR5510, Villeurbanne, France
| | - B A Lane
- Mines Saint-Étienne, Univ Jean Monnet, INSERM, U 1059 Sainbiose, 42023, Saint-Étienne, France
| | - N Curt
- Mines Saint-Étienne, Univ Jean Monnet, INSERM, U 1059 Sainbiose, 42023, Saint-Étienne, France
| | - A Bravin
- European Synchrotron Radiation Facility (ESRF), Grenoble, France
| | - N Laroche
- Univ Jean Monnet, Mines Saint-Étienne, INSERM, U 1059 Sainbiose, 42023, Saint-Étienne, France
| | - P Badel
- Mines Saint-Étienne, Univ Jean Monnet, INSERM, U 1059 Sainbiose, 42023, Saint-Étienne, France
| |
Collapse
|
7
|
Silva-Verissimo W, El Louali F, Godio-Raboutet Y, Leblond L, Sourdon J, Rapacchi S, Evin M. Traction mechanical characterization of porcine mitral valve annulus. J Biomech 2023; 146:111396. [PMID: 36459849 DOI: 10.1016/j.jbiomech.2022.111396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 11/07/2022] [Accepted: 11/16/2022] [Indexed: 11/21/2022]
Abstract
The Mitral Annulus (MA) is an anisotropic, fibrous, flexible and dynamical structure. While MA dynamics are well documented, its passive mechanical properties remain poorly investigated to complete the design of adequate prostheses. Mechanical properties in traction on four sections of the MA (aortic, left, posterior and right segments) were assessed using a traction test system with a 30 N load cell and pulling jaws for sample fixation. Samples were submitted to a 1.5 N pre-load, 10 pre-conditioning cycles. Three strain rates were tested (5 %/min, 7 %/min and 13 %/min), the first two up to 10 % strain and the last until rupture. High-resolution diffusion-MRI provided microstructural mapping of fractional anisotropy and mean diffusion within muscle and collagen fibres. Ten MA from porcine hearts were excised resulting in 40 tested samples, out of which 28 were frozen prior to testing. Freezing samples significantly increased Young Moduli for all strain rates. No significant differences were found between Young Moduli at different strain rates (fresh samples 2.4 ± 1.1 MPa, 3.8 ± 2.2 MPa and 3.1 ± 1.8 MPa for increasing strain rates in fresh samples), while significant differences were found when comparing aortic with posterior and posterior with lateral (p < 0.012). Aortic segments deformed the most (24.1 ± 9.4 %) while lateral segments endured the highest stress (>0.3 MPa), corresponding to higher collagen fraction (0.46) and fractional anisotropy. Passive machinal properties differed between aortic and lateral segments of the MA. The process of freezing samples altered their mechanical properties. Underlying microstructural differences could be linked to changes in strain response.
Collapse
Affiliation(s)
| | - F El Louali
- Aix Marseille Univ, Univ Gustave Eiffel, LBA, Marseille, France; AP-HM, Marseille, France
| | | | | | - Joevin Sourdon
- Aix-Marseille University, CNRS, CRMBM, Marseille, France
| | - S Rapacchi
- Aix-Marseille University, CNRS, CRMBM, Marseille, France
| | - Morgane Evin
- Aix Marseille Univ, Univ Gustave Eiffel, LBA, Marseille, France.
| |
Collapse
|
8
|
Pukaluk A, Wolinski H, Viertler C, Regitnig P, Holzapfel GA, Sommer G. Changes in the microstructure of the human aortic medial layer under biaxial loading investigated by multi-photon microscopy. Acta Biomater 2022; 151:396-413. [PMID: 35970481 DOI: 10.1016/j.actbio.2022.08.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 11/01/2022]
Abstract
Understanding the correlation between tissue architecture, health status, and mechanical properties is essential for improving material models and developing tissue engineering scaffolds. Since structural-based material models are state of the art, there is an urgent need for experimentally obtained structural parameters. For this purpose, the medial layer of nine human abdominal aortas was simultaneously subjected to equibiaxial loading and multi-photon microscopy. At each loading interval of 0.02, collagen and elastin fibers were imaged based on their second-harmonic generation signal and two-photon excited autofluorescence, respectively. The structural alterations in the fibers were quantified using the parameters of orientation, diameter, and waviness. The results of the mechanical tests divided the sample cohort into the ruptured and non-ruptured, and stiff and non-stiff groups, which were covered by the findings from histological investigations. The alterations in structural parameters provided an explanation for the observed mechanical behavior. In addition, the waviness parameters of both collagen and elastin fibers showed the potential to serve as indicators of tissue strength. The data provided address deficiencies in current material models and bridge multiscale mechanisms in the aortic media. STATEMENT OF SIGNIFICANCE: Available material models can reproduce, but cannot predict, the mechanical behavior of human aortas. This deficiency could be overcome with the help of experimentally validated structural parameters as provided in this study. Simultaneous multi-photon microscopy and biaxial extension testing revealed the microstructure of human aortic media at different stretch levels. Changes in the arrangement of collagen and elastin fibers were quantified using structural parameters such as orientation, diameter and waviness. For the first time, structural parameters of human aortic tissue under continuous loading conditions have been obtained. In particular, the waviness parameters at the reference configuration have been associated with tissue stiffness, brittleness, and the onset of atherosclerosis.
Collapse
Affiliation(s)
- Anna Pukaluk
- Institute of Biomechanics, Graz University of Technology, Austria
| | - Heimo Wolinski
- Institute of Molecular Biosciences, University of Graz, Austria; Field of Excellence BioHealth - University of Graz, Austria
| | | | - Peter Regitnig
- Institute of Pathology, Medical University of Graz, Austria
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, Austria; Department of Structural Engineering, NTNU, Trondheim, Norway
| | - Gerhard Sommer
- Institute of Biomechanics, Graz University of Technology, Austria.
| |
Collapse
|
9
|
Koser J, Chirvi S, Banerjee A, Pintar FA, Hampton C, Kleinberger M. Repeated measures analysis of projectile penetration in porcine legs as a function of storage condition. J Forensic Leg Med 2022; 90:102395. [PMID: 35863258 DOI: 10.1016/j.jflm.2022.102395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/30/2022]
Abstract
Buried blast explosions create small projectiles which can become lodged in the tissue of personnel as far away as hundreds of meters. Without appropriate treatment, these lodged projectiles can become a source of infection and prolonged injury to soldiers in modern combat. Human cadavers can be used as surrogates for living humans for ballistic penetration testing, but human cadavers are frozen during transport and storage. The process of freezing and thawing the tissue before testing may change the biomechanical properties of the tissue. The goal of the current study was to understand penetration threshold differences between fresh, refrigerated, and frozen tissue and investigate factors that may contribute to these differences. A custom-built pneumatic launcher was used to accelerate 3/16″ stainless steel ball bearings toward porcine legs that were either tested fresh, following refrigerated storage, or following frozen storage. A generalized linear mixed model, accounting for within-animal dependence, owing to repeated observations, was found to be the most appropriate for these data and was used for analysis. The "generalized" model accommodated non-continuous observations, provided a straight-forward way to implement the repeated measures, and provided a risk estimate for projectile penetration. Both storage condition (p = 0.48) and leg (p = 0.07) were shown to be not significant and the confidence intervals for those variables were overlapping. As all covariates were found to be non-significant, a single model containing all impacts was used to develop a V50, or velocity at which 50% of impacts are expected to penetrate. From this model, 50% probability of penetration occurs at 137.3 m/s with 95% confidence intervals at 132.0 and 144.0 m/s. In this study, the fresh legs and previously frozen legs allowed penetration at similar velocities indicating that previously frozen legs were acceptable surrogates for fresh legs. This study only compared the penetration threshold in tissues that had been stored in differing conditions. To truly study penetration, more conditions will need to be studied including the effects of projectile mass and material, the effects of projectile shape, and the effects of clothing or protective layers on penetration threshold.
Collapse
Affiliation(s)
- Jared Koser
- Medical College of Wisconsin, Milwaukee, WI, USA; Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA; Marquette University, Milwaukee, WI, USA.
| | - Sajal Chirvi
- Medical College of Wisconsin, Milwaukee, WI, USA; Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA
| | | | - Frank A Pintar
- Medical College of Wisconsin, Milwaukee, WI, USA; Zablocki Veterans Affairs Medical Center, Milwaukee, WI, USA; Marquette University, Milwaukee, WI, USA
| | - Carolyn Hampton
- DEVCOM Army Research Laboratory, Aberdeen Proving Ground, MD, USA
| | | |
Collapse
|
10
|
Pillet B, Badel P, Pierrat B. Effects of cryo-preservation on skeletal muscle tissues mechanical behavior under tensile and peeling tests until rupture. J Mech Behav Biomed Mater 2022; 132:105273. [PMID: 35617821 DOI: 10.1016/j.jmbbm.2022.105273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 04/21/2022] [Accepted: 05/13/2022] [Indexed: 11/18/2022]
Abstract
The most common method to study the mechanical behavior of soft tissue is to test animal specimens, which should be prepared as soon as possible after the death to avoid biological deterioration effects such as rigor mortis. Freezing and cryo-preservation could allow extending the time between procurement and implantation. From a mechanical perspective, tissue preservation could influence mechanical testing results. Therefore, this study focuses on the influence of cryo-preserved samples on their mechanical behavior, especially at the rupture. In order to analyze this aspect, two tests were performed on the porcine abdominal wall. A tensile test to study the elastic behavior of samples and the tensile strength until rupture. A peeling test to more finely investigate the cohesion between muscle fibers. No statistical difference could be observed following tensile test. However, peeling tests between cryo-preserved and control samples showed a clear statistical difference with a p-value of 0.0097 for Gp. Indeed, energy release rate was higher for the Cryo-preserve group than the Control group with Gp = 0.36 ± 0.07 N/mm vs 0.26 ± 0.10 N/mm. This difference suggests that the characterization of rupture energies for muscular tissue should be done without having frozen the samples, even with a cryopreservative agent. These results could also indicate that even if the rupture mode is the same between mechanical tests, a different rupture direction could imply different mechanical preservations for soft tissues. This study could help to understand the difficult mechanical preservation of soft tissues, especially on the rupture behavior. Future studies on skeletal muscles will be necessary to compare our results, especially in peeling.
Collapse
Affiliation(s)
- Baptiste Pillet
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, Etablissement Francais du Sang, INSERM, U 1059 Sainbiose, Centre CIS, F, 42023, Saint-Etienne, France.
| | - Pierre Badel
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, Etablissement Francais du Sang, INSERM, U 1059 Sainbiose, Centre CIS, F, 42023, Saint-Etienne, France
| | - Baptiste Pierrat
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, Etablissement Francais du Sang, INSERM, U 1059 Sainbiose, Centre CIS, F, 42023, Saint-Etienne, France
| |
Collapse
|
11
|
Tuttle TG, Lujan HL, Tykocki NR, DiCarlo SE, Roccabianca S. Remodeling of extracellular matrix in the urinary bladder of paraplegic rats results in increased compliance and delayed fiber recruitment 16 weeks after spinal cord injury. Acta Biomater 2022; 141:280-289. [PMID: 35032719 PMCID: PMC8898290 DOI: 10.1016/j.actbio.2022.01.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/17/2021] [Accepted: 01/07/2022] [Indexed: 01/21/2023]
Abstract
The ability of the urinary bladder to maintain low intravesical pressures while storing urine is key in ensuring proper organ function and highlights the key role that tissue mechanics plays in the lower urinary tract. Loss of supraspinal neuronal connections to the bladder after spinal cord injury can lead to remodeling of the structure of the bladder wall, which may alter its mechanical characteristics. In this study, we investigate if the morphology and mechanical properties of the bladder extracellular matrix are altered in rats 16 weeks after spinal cord injury as compared to animals who underwent sham surgery. We measured and quantified the changes in bladder geometry and mechanical behavior using histological analysis, tensile testing, and constitutive modeling. Our results suggest bladder compliance is increased in paraplegic animals 16 weeks post-injury. Furthermore, constitutive modeling showed that increased distensibility was driven by an increase in collagen fiber waviness, which altered the distribution of fiber recruitment during loading. STATEMENT OF SIGNIFICANCE: The ability of the urinary bladder to store urine under low pressure is key in ensuring proper organ function. This highlights the important role that mechanics plays in the lower urinary tract. Loss of control of neurologic connection to the bladder from spinal cord injury can lead to changes of the structure of the bladder wall, resulting in altered mechanical characteristics. We found that the bladder wall's microstructure in rats 16 weeks after spinal cord injury is more compliant than in healthy animals. This is significant since it is the longest time post-injury analyzed, to date. Understanding the extreme remodeling capabilities of the bladder in pathological conditions is key to inform new possible therapies.
Collapse
Affiliation(s)
- Tyler G Tuttle
- Michigan State University, Department of Mechanical Engineering, 428 S. Shaw Lane, Rm 2555, East Lansing, MI 48824, United States
| | - Heidi L Lujan
- Michigan State University, Department of Physiology, 567 Wilson Rd., Rm 2201, East Lansing, MI 48824, United States
| | - Nathan R Tykocki
- Michigan State University, Department of Pharmacology and Toxicology, 1355 Bogue St., B436 Life Science Building, East Lansing, MI 48824, United States
| | - Stephen E DiCarlo
- Michigan State University, Department of Physiology, 567 Wilson Rd., Rm 2201, East Lansing, MI 48824, United States
| | - Sara Roccabianca
- Michigan State University, Department of Mechanical Engineering, 428 S. Shaw Lane, Rm 2555, East Lansing, MI 48824, United States.
| |
Collapse
|
12
|
Vera L, Muylle S, Van Steenkiste G, Segers P, Decloedt A, Chiers K, van Loon G. Histological and biomechanical properties of systemic arteries in young and old Warmblood horses. PLoS One 2021; 16:e0253730. [PMID: 34252105 PMCID: PMC8274928 DOI: 10.1371/journal.pone.0253730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 06/13/2021] [Indexed: 11/18/2022] Open
Abstract
Arterial rupture is a well-recognized cause of sudden death in horses, which mainly affects older horses. The arterial wall is known to stiffen with age, although the underlying age-related histological and biomechanical changes remain unclear. The purpose of this study was to investigate the effect of aging by histological analysis of the arterial wall and examination of the arterial wall biomechanical properties using an inflation-extension test. Entire circular samples of the proximal and distal aorta, cranial and caudal common carotid, external iliac, femoral and median artery were collected from 6 young (6 years) and 14 old horses (≥15 years). Samples of all arteries were histologically examined and intima media thickness as well as area % of elastin, smooth muscle actin and collagen type I and III were determined. Older horses had a significantly larger intima media thickness and a significantly higher area % of smooth muscle actin compared to young horses. Samples of the proximal and distal aorta, the caudal common carotid and the external iliac artery were mechanically assessed using an in-house developed inflation-extension device with ultrasound analysis. Rupture occurred in a minority of arteries (8/78) at high pressures (between 250-300 mmHg), and mostly occurred in older horses (7/8). Pressure-area, pressure-compliance and pressure-distensibility curves were constructed. A significant difference in the pressure-area curves of the distal aorta, common carotid artery and external iliac artery, the pressure-compliance curves of the proximal aorta and carotid artery and the pressure-distensibility curve of the proximal aorta was observed between young and old horses. Results demonstrate an effect of age on the histological and biomechanical properties of the arterial wall, which might explain why arterial rupture occurs more often in older horses.
Collapse
Affiliation(s)
- Lisse Vera
- Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Equine Cardioteam Ghent University, Ghent University, Merelbeke, Belgium
- * E-mail:
| | - Sofie Muylle
- Department of Morphology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Glenn Van Steenkiste
- Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Equine Cardioteam Ghent University, Ghent University, Merelbeke, Belgium
| | | | - Annelies Decloedt
- Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Equine Cardioteam Ghent University, Ghent University, Merelbeke, Belgium
| | - Koen Chiers
- Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Gunther van Loon
- Department of Large Animal Internal Medicine, Faculty of Veterinary Medicine, Equine Cardioteam Ghent University, Ghent University, Merelbeke, Belgium
| |
Collapse
|
13
|
Behrmann A, Appleman K, Eghtesady P, Bhattacharya S. Tricuspid annulus cinching force under pulmonary hypertensive right ventricle conditions: An ex vivo study. J Biomech 2021; 123:110488. [PMID: 34015740 DOI: 10.1016/j.jbiomech.2021.110488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 10/21/2022]
Abstract
This study investigates the force required to reduce or "cinch" the tricuspid annulus under elevated right ventricular pressures, commonly seen in patients with pulmonary hypertension. Tricuspid regurgitation affects 1.6 million Americans. Approximately 43% of patients who undergo tricuspid valve repair to correct tricuspid regurgitation will develop residual pulmonary hypertension, putting them at risk for developing increased right ventricle pressures. Previous studies have quantified the forces required to cinch the tricuspid annulus by only pressurizing the right ventricle, leaving out forces from the pressurized left ventricle and septal wall unaccounted for. This study pressurized both left and right ventricles of 10 porcine hearts to their normal physiological pressures of 110 mmHg and 30 mmHg respectively, then increased right ventricular pressures to mimic moderate and severe pulmonary hypertension. A suture was anchored around the free wall of the tricuspid annulus with the free end attached to a force transducer. The force transducer was mounted on a slider system which pulled the suture at regular intervals. The cinching force on the tricuspid annulus was quantified with each annular reduction by simulating peak systole condition in both ventricles. The data was compared with only the right ventricle pressurized as previous studies did. There were significant differences in required cinching forces with each increase in right ventricular pressure and between trials that pressurized both ventricles versus only the right ventricle, suggesting adoption of this physiologically improved protocol. We also found with increased cinching of the tricuspid annulus, notable changes occur in the mitral annulus.
Collapse
Affiliation(s)
- Andrew Behrmann
- Department of Biology, Southeast Missouri State University, Cape Girardeau, MO 63701, USA.
| | - Kate Appleman
- Department of Biology, Southeast Missouri State University, Cape Girardeau, MO 63701, USA.
| | - Pirooz Eghtesady
- Pediatric Cardiothoracic Surgery, Washington University School of Medicine in St. Louis, 660 S Euclid Ave, St. Louis, MO 63110, USA.
| | - Shamik Bhattacharya
- Department of Engineering and Technology, Southeast Missouri State University, One University Plaza, Cape Girardeau, MO 63701, USA.
| |
Collapse
|
14
|
Cunnane CV, Croghan SM, Walsh MT, Cunnane EM, Davis NF, Flood HD, Mulvihill JJE. Cryopreservation of porcine urethral tissue: Storage at -20°C preserves the mechanical, failure and geometrical properties. J Mech Behav Biomed Mater 2021; 119:104516. [PMID: 33932753 DOI: 10.1016/j.jmbbm.2021.104516] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 03/23/2021] [Accepted: 04/07/2021] [Indexed: 12/21/2022]
Abstract
Cryopreservation is required to preserve the native properties of tissue for prolonged periods of time. In this study, we evaluate the impact that 4 different cryopreservation protocols have on porcine urethral tissue, to identify a protocol that best preserves the native properties of the tissue. The cryopreservation protocols include storage in cryoprotective agents at -20 °C and -80 °C with a slow, gradual, and fast reduction in temperature. To evaluate the effects of cryopreservation, the tissue is mechanically characterised in uniaxial tension and the mechanical properties, failure mechanics, and tissue dimensions are compared fresh and following cryopreservation. The mechanical response of the tissue is altered following cryopreservation, yet the elastic modulus from the high stress, linear region of the Cauchy stress - stretch curves is unaffected by the freezing process. To further investigate the change in mechanical response following cryopreservation, the stretch at different tensile stress values was evaluated, which revealed that storage at -20 °C is the only protocol that does not significantly alter the mechanical properties of the tissue compared to the fresh samples. Conversely, the ultimate tensile strength and the stretch at failure were relatively unaffected by the freezing process, regardless of the cryopreservation protocol. However, there were alterations to the tissue dimensions following cryopreservation that were significantly different from the fresh samples for the tissue stored at -80 °C. Therefore, any study intent on preserving the mechanical, failure, and geometric properties of urethral tissue during cryopreservation should do so by freezing samples at -20 °C, as storage at -80 °C is shown here to significantly alter the tissue properties.
Collapse
Affiliation(s)
- Connor V Cunnane
- BioSciBer, Biomaterials Cluster, Bernal Institute, University of Limerick, Limerick, Ireland; School of Engineering, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland
| | | | - Michael T Walsh
- BioSciBer, Biomaterials Cluster, Bernal Institute, University of Limerick, Limerick, Ireland; School of Engineering, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland; Health Research Institute, University of Limerick, Limerick, Ireland
| | | | - Niall F Davis
- Department of Urology, Beaumont Hospital, Dublin, Ireland; Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland (RCSI), Dublin, Ireland
| | - Hugh D Flood
- Class Medical Limited, Unit 1 D, Annacotty Business Park, Co. Limerick, Ireland
| | - John J E Mulvihill
- BioSciBer, Biomaterials Cluster, Bernal Institute, University of Limerick, Limerick, Ireland; School of Engineering, Faculty of Science and Engineering, University of Limerick, Limerick, Ireland; Health Research Institute, University of Limerick, Limerick, Ireland.
| |
Collapse
|
15
|
Fang S, McLean J, Shi L, Vink JSY, Hendon CP, Myers KM. Anisotropic Mechanical Properties of the Human Uterus Measured by Spherical Indentation. Ann Biomed Eng 2021; 49:1923-1942. [PMID: 33880632 DOI: 10.1007/s10439-021-02769-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 03/26/2021] [Indexed: 12/11/2022]
Abstract
The mechanical function of the uterus is critical for a successful pregnancy. During gestation, uterine tissue grows and stretches to many times its size to accommodate the growing fetus, and it is hypothesized the magnitude of uterine tissue stretch triggers the onset of contractions. To establish rigorous mechanical testing protocols for the human uterus in hopes of predicting tissue stretch during pregnancy, this study measures the anisotropic mechanical properties of the human uterus using optical coherence tomography (OCT), instrumented spherical indentation, and video extensometry. In this work, we perform spherical indentation and digital image correlation to obtain the tissue's force and deformation response to a ramp-hold loading regimen. We translate previously reported fiber architecture, measured via optical coherence tomography, into a constitutive fiber composite material model to describe the equilibrium material behavior during indentation. We use an inverse finite element method integrated with a genetic algorithm (GA) to fit the material model to our experimental data. We report the mechanical properties of human uterine specimens taken across different anatomical locations and layers from one non-pregnant (NP) and one pregnant (PG) patient; both patients had pathological uterine tissue. Compared to NP uterine tissue, PG tissue has a more dispersed fiber distribution and equivalent stiffness material parameters. In both PG and NP uterine tissue, the mechanical properties differ significantly between anatomical locations.
Collapse
Affiliation(s)
- Shuyang Fang
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
| | - James McLean
- Department of Electrical Engineering, Columbia University, New York, NY, 10027, USA
| | - Lei Shi
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA
| | - Joy-Sarah Y Vink
- Department of Obstetrics and Gynecology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Christine P Hendon
- Department of Electrical Engineering, Columbia University, New York, NY, 10027, USA
| | - Kristin M Myers
- Department of Mechanical Engineering, Columbia University, New York, NY, 10027, USA.
| |
Collapse
|
16
|
In Vivo Aortic Magnetic Resonance Elastography in Abdominal Aortic Aneurysm: A Validation in an Animal Model. Invest Radiol 2021; 55:463-472. [PMID: 32520516 DOI: 10.1097/rli.0000000000000660] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Using maximum diameter of an abdominal aortic aneurysm (AAA) alone for management can lead to delayed interventions or unnecessary urgent repairs. Abdominal aortic aneurysm stiffness plays an important role in its expansion and rupture. In vivo aortic magnetic resonance elastography (MRE) was developed to spatially measure AAA stiffness in previous pilot studies and has not been thoroughly validated and evaluated for its potential clinical value. This study aims to evaluate noninvasive in vivo aortic MRE-derived stiffness in an AAA porcine model and investigate the relationships between MRE-derived AAA stiffness and (1) histopathology, (2) uniaxial tensile test, and (3) burst testing for assessing MRE's potential in evaluating AAA rupture risk. MATERIALS AND METHODS Abdominal aortic aneurysm was induced in 31 Yorkshire pigs (n = 226 stiffness measurements). Animals were randomly divided into 3 cohorts: 2-week, 4-week, and 4-week-burst. Aortic MRE was sequentially performed. Histopathologic analyses were performed to quantify elastin, collagen, and mineral densities. Uniaxial tensile test and burst testing were conducted to measure peak stress and burst pressure for assessing the ultimate wall strength. RESULTS Magnetic resonance elastography-derived AAA stiffness was significantly higher than the normal aorta. Significant reduction in elastin and collagen densities as well as increased mineralization was observed in AAAs. Uniaxial tensile test and burst testing revealed reduced ultimate wall strength. Magnetic resonance elastography-derived aortic stiffness correlated to elastin density (ρ = -0.68; P < 0.0001; n = 60) and mineralization (ρ = 0.59; P < 0.0001; n = 60). Inverse correlations were observed between aortic stiffness and peak stress (ρ = -0.32; P = 0.0495; n = 38) as well as burst pressure (ρ = -0.55; P = 0.0116; n = 20). CONCLUSIONS Noninvasive in vivo aortic MRE successfully detected aortic wall stiffening, confirming the extracellular matrix remodeling observed in the histopathologic analyses. These mural changes diminished wall strength. Inverse correlation between MRE-derived aortic stiffness and aortic wall strength suggests that MRE-derived stiffness can be a potential biomarker for clinically assessing AAA wall status and rupture potential.
Collapse
|
17
|
Isolation and characterization of extracellular vesicle subpopulations from tissues. Nat Protoc 2021; 16:1548-1580. [PMID: 33495626 DOI: 10.1038/s41596-020-00466-1] [Citation(s) in RCA: 218] [Impact Index Per Article: 72.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/16/2020] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles (EVs) are lipid bilayered membrane structures released by all cells. Most EV studies have been performed by using cell lines or body fluids, but the number of studies on tissue-derived EVs is still limited. Here, we present a protocol to isolate up to six different EV subpopulations directly from tissues. The approach includes enzymatic treatment of dissociated tissues followed by differential ultracentrifugation and density separation. The isolated EV subpopulations are characterized by electron microscopy and RNA profiling. In addition, their protein cargo can be determined with mass spectrometry, western blot and ExoView. Tissue-EV isolation can be performed in 22 h, but a simplified version can be completed in 8 h. Most experiments with the protocol have used human melanoma metastases, but the protocol can be applied to other cancer and non-cancer tissues. The procedure can be adopted by researchers experienced with cell culture and EV isolation.
Collapse
|
18
|
Laurence DW, Homburg H, Yan F, Tang Q, Fung KM, Bohnstedt BN, Holzapfel GA, Lee CH. A pilot study on biaxial mechanical, collagen microstructural, and morphological characterizations of a resected human intracranial aneurysm tissue. Sci Rep 2021; 11:3525. [PMID: 33568740 PMCID: PMC7876029 DOI: 10.1038/s41598-021-82991-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 01/25/2021] [Indexed: 02/08/2023] Open
Abstract
Intracranial aneurysms (ICAs) are focal dilatations that imply a weakening of the brain artery. Incidental rupture of an ICA is increasingly responsible for significant mortality and morbidity in the American’s aging population. Previous studies have quantified the pressure-volume characteristics, uniaxial mechanical properties, and morphological features of human aneurysms. In this pilot study, for the first time, we comprehensively quantified the mechanical, collagen fiber microstructural, and morphological properties of one resected human posterior inferior cerebellar artery aneurysm. The tissue from the dome of a right posterior inferior cerebral aneurysm was first mechanically characterized using biaxial tension and stress relaxation tests. Then, the load-dependent collagen fiber architecture of the aneurysm tissue was quantified using an in-house polarized spatial frequency domain imaging system. Finally, optical coherence tomography and histological procedures were used to quantify the tissue’s microstructural morphology. Mechanically, the tissue was shown to exhibit hysteresis, a nonlinear stress-strain response, and material anisotropy. Moreover, the unloaded collagen fiber architecture of the tissue was predominantly aligned with the testing Y-direction and rotated towards the X-direction under increasing equibiaxial loading. Furthermore, our histological analysis showed a considerable damage to the morphological integrity of the tissue, including lack of elastin, intimal thickening, and calcium deposition. This new unified characterization framework can be extended to better understand the mechanics-microstructure interrelationship of aneurysm tissues at different time points of the formation or growth. Such specimen-specific information is anticipated to provide valuable insight that may improve our current understanding of aneurysm growth and rupture potential.
Collapse
Affiliation(s)
- Devin W Laurence
- Biomechanics and Biomaterials Design Laboratory (BBDL), School of Aerospace and Mechanical Engineering, The University of Oklahoma, 865 Asp Ave., Felgar Hall 219C, Norman, 73019, USA
| | - Hannah Homburg
- Department of Neurosurgery, The University of Oklahoma Health Sciences Center, Oklahoma City, 73104, USA
| | - Feng Yan
- Biophotonic Imaging Laboratory, Stephenson School of Biomedical Engineering, The University of Oklahoma, Norman, 73019, USA
| | - Qinggong Tang
- Biophotonic Imaging Laboratory, Stephenson School of Biomedical Engineering, The University of Oklahoma, Norman, 73019, USA
| | - Kar-Ming Fung
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, 73104, USA.,Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, 73104, USA
| | - Bradley N Bohnstedt
- Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Gerhard A Holzapfel
- Institute of Biomechanics, Graz University of Technology, 8010, Graz, Austria.,Department of Structural Engineering, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Chung-Hao Lee
- Biomechanics and Biomaterials Design Laboratory (BBDL), School of Aerospace and Mechanical Engineering, The University of Oklahoma, 865 Asp Ave., Felgar Hall 219C, Norman, 73019, USA. .,Institute for Biomedical Engineering, Science and Technology, The University of Oklahoma, Norman, OK, 73019, USA.
| |
Collapse
|
19
|
Vitásek R, Gossiho D, Polzer S. Sources of inconsistency in mean mechanical response of abdominal aortic aneurysm tissue. J Mech Behav Biomed Mater 2020; 115:104274. [PMID: 33421951 DOI: 10.1016/j.jmbbm.2020.104274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/20/2020] [Accepted: 12/12/2020] [Indexed: 10/22/2022]
Abstract
INTRODUCTION There is a striking difference in the reported mean response of abdominal aortic aneurysm tissue in academic literature depending on the type of tests (uniaxial vs biaxial) performed. In this paper, the hypothesis variability caused by differences in experimental protocols is explored using porcine aortic tissue as a substitute for aneurysmal tissue. METHODS Nine samples of porcine aorta were created and both uniaxial and biaxial tests were performed. Three effects were investigated. (i) Effect of sample (non) preconditioning, (ii) effect of objective function used (normalised vs non-normalised), and (iii) effect of chosen procedure used for mean response calculation: constant averaging (CA) vs fit to averaged response (FAR) vs fit to all data (FAD). Both the overall shape of mean curve and mean initial stiffness were compared. RESULTS (i) Non-preconditioning led to a much stiffer response, and initial stiffness was about three times higher for a non-preconditioned response based on uniaxial data compared to a preconditioned biaxial response. (ii) CA led to a much stiffer response compared to FAR and FAD procedures which gave similar results. (iii) Normalised objective function produced a mean response with six times lower initial stiffness and more pronounced nonlinearity compared to non-normalised objective function. DISCUSSION It is possible to reproduce a mechanically inconsistent response purely by using the chosen experimental protocol. Non-preconditioned data from failure tests should be used for FE simulation of the elastic response of aneurysms. CA should not be used to obtain a mean response.
Collapse
Affiliation(s)
- Radek Vitásek
- Department of Applied Mechanics, VSB-Technical University of Ostrava, 17.listopadu 2172/15, Ostrava-Poruba, 708 00, Czech Republic.
| | - Didier Gossiho
- Department of Biomedical Engineering, University of Iowa, 5605 Seamans Center, Iowa City, IA, 52242, USA
| | - Stanislav Polzer
- Department of Applied Mechanics, VSB-Technical University of Ostrava, 17.listopadu 2172/15, Ostrava-Poruba, 708 00, Czech Republic
| |
Collapse
|
20
|
Walsh DR, Lynch JJ, O' Connor DT, Newport DT, Mulvihill JJE. Mechanical and structural characterisation of the dural venous sinuses. Sci Rep 2020; 10:21763. [PMID: 33303894 PMCID: PMC7729903 DOI: 10.1038/s41598-020-78694-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 11/26/2020] [Indexed: 12/27/2022] Open
Abstract
The dural venous sinuses play an integral role in draining venous blood from the cranial cavity. As a result of the sinuses anatomical location, they are of significant importance when evaluating the mechanopathology of traumatic brain injury (TBI). Despite the importance of the dural venous sinuses in normal neurophysiology, no mechanical analyses have been conducted on the tissues. In this study, we conduct mechanical and structural analysis on porcine dural venous sinus tissue to help elucidate the tissues’ function in healthy and diseased conditions. With longitudinal elastic moduli values ranging from 33 to 58 MPa, we demonstrate that the sinuses exhibit higher mechanical stiffness than that of native dural tissue, which may be of interest to the field of TBI modelling. Furthermore, by employing histological staining and a colour deconvolution protocol, we show that the sinuses have a collagen-dominant extracellular matrix, with collagen area fractions ranging from 84 to 94%, which likely explains the tissue’s large mechanical stiffness. In summary, we provide the first investigation of the dural venous sinus mechanical behaviour with accompanying structural analysis, which may aid in understanding TBI mechanopathology.
Collapse
Affiliation(s)
- Darragh R Walsh
- Bernal Institute, University of Limerick, Limerick, Ireland.,School of Engineering, University of Limerick, Limerick, Ireland
| | - James J Lynch
- Bernal Institute, University of Limerick, Limerick, Ireland.,School of Engineering, University of Limerick, Limerick, Ireland
| | - David T O' Connor
- Bernal Institute, University of Limerick, Limerick, Ireland.,School of Engineering, University of Limerick, Limerick, Ireland.,Health Research Institute, University of Limerick, Limerick, Ireland
| | - David T Newport
- Bernal Institute, University of Limerick, Limerick, Ireland.,School of Engineering, University of Limerick, Limerick, Ireland
| | - John J E Mulvihill
- Bernal Institute, University of Limerick, Limerick, Ireland. .,School of Engineering, University of Limerick, Limerick, Ireland. .,Health Research Institute, University of Limerick, Limerick, Ireland.
| |
Collapse
|
21
|
Burkert J, Kochová P, Tonar Z, Cimrman R, Blassová T, Jashari R, Fiala R, Špatenka J. The time has come to extend the expiration limit of cryopreserved allograft heart valves. Cell Tissue Bank 2020; 22:161-184. [PMID: 32583302 DOI: 10.1007/s10561-020-09843-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 06/13/2020] [Indexed: 12/12/2022]
Abstract
Despite the wide choice of commercial heart valve prostheses, cryopreserved semilunar allograft heart valves (C-AHV) are required, and successfully transplanted in selected groups of patients. The expiration limit (EL) criteria have not been defined yet. Most Tissue Establishments (TE) use the EL of 5 years. From physiological, functional, and surgical point of view, the morphology and mechanical properties of aortic and pulmonary roots represent basic features limiting the EL of C-AHV. The aim of this work was to review methods of AHV tissue structural analysis and mechanical testing from the perspective of suitability for EL validation studies. Microscopic structure analysis of great arterial wall and semilunar leaflets tissue should clearly demonstrate cells as well as the extracellular matrix components by highly reproducible and specific histological staining procedures. Quantitative morphometry using stereological grids has proved to be effective, as the exact statistics was feasible. From mechanical testing methods, tensile test was the most suitable. Young's moduli of elasticity, ultimate stress and strain were shown to represent most important AHV tissue mechanical characteristics, suitable for exact statistical analysis. C-AHV are prepared by many different protocols, so as each TE has to work out own EL for C-AHV.
Collapse
Affiliation(s)
- Jan Burkert
- Department of Transplantation and Tissue Banking, Czech National Allograft Heart Valve Bank, Department of Cardiovascular Surgery, Motol University Hospital, and Second Faculty of Medicine Charles University in Prague, V Úvalu 84, 150 06, Prague, Czech Republic
| | - Petra Kochová
- Department of Transplantation and Tissue Banking, Czech National Allograft Heart Valve Bank, Department of Cardiovascular Surgery, Motol University Hospital, and Second Faculty of Medicine Charles University in Prague, V Úvalu 84, 150 06, Prague, Czech Republic. .,NTIS - New Technologies for the Information Society, Faculty of Applied Sciences, University of West Bohemia, Technická 8, Pilsen, Czech Republic.
| | - Zbyněk Tonar
- NTIS - New Technologies for the Information Society, Faculty of Applied Sciences, University of West Bohemia, Technická 8, Pilsen, Czech Republic.,Department of Histology and Embryology, Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, Karlovarská 48, 301 66, Pilsen, Czech Republic
| | - Robert Cimrman
- NTIS - New Technologies for the Information Society, Faculty of Applied Sciences, University of West Bohemia, Technická 8, Pilsen, Czech Republic
| | - Tereza Blassová
- Department of Histology and Embryology, Biomedical Centre, Faculty of Medicine in Pilsen, Charles University in Prague, Karlovarská 48, 301 66, Pilsen, Czech Republic
| | - Ramadan Jashari
- European Homograft Bank, Saint-Jean Clinic, Rue du Meridien 100, 1210, Brussels, Belgium
| | - Radovan Fiala
- Department of Transplantation and Tissue Banking, Czech National Allograft Heart Valve Bank, Department of Cardiovascular Surgery, Motol University Hospital, and Second Faculty of Medicine Charles University in Prague, V Úvalu 84, 150 06, Prague, Czech Republic
| | - Jaroslav Špatenka
- Department of Transplantation and Tissue Banking, Czech National Allograft Heart Valve Bank, Department of Cardiovascular Surgery, Motol University Hospital, and Second Faculty of Medicine Charles University in Prague, V Úvalu 84, 150 06, Prague, Czech Republic
| |
Collapse
|
22
|
Dahis D, Azhari H. Speed of Sound and Attenuation Temperature Dependence of Bovine Brain: Ex Vivo Study. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2020; 39:1175-1186. [PMID: 31868251 DOI: 10.1002/jum.15203] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/30/2019] [Accepted: 11/30/2019] [Indexed: 06/10/2023]
Abstract
OBJECTIVES Brain treatments using focused ultrasound (FUS) offer a new range of noninvasive transcranial therapies. The acoustic energy deposition during these procedures may induce a temperature elevation in the tissue; therefore, noninvasive thermal monitoring is essential. Magnetic resonance imaging is the current adopted monitoring modality, but its high operational costs and limited availability may hinder the accessibility to FUS treatments. Aiming at the development of a thermometric ultrasound (US) method for the brain, the specific objective of this investigation was to study the acoustic thermal response of the speed of sound (SOS) and attenuation coefficient (AC) of different brain tissues: namely white matter (WM) and cortical matter. METHODS Sixteen ex vivo bovine brain samples were investigated. These included 7 WM and 9 cortical matter samples. The samples were gradually heated to about 45°C and then repeatedly scanned while cooling using a computerized US system in the through-transmission mode. The temperature was simultaneously registered with thermocouples. From the scans, the normalized SOS and AC for both tissues were calculated. RESULTS The results demonstrated a characteristic cooldown temporal behavior for the normalized AC and SOS curves, which were related to the temperature. The SOS curves enabled clear differentiation between the tissue types but depicted more scattered trajectories for the WM tissue. As for the AC curves, the WM depicted a linear behavior in relation to the temperature. However, both tissue types had rather similar temperature patterns. CONCLUSIONS These findings may contribute to the development of a US temperature-monitoring method during FUS procedures.
Collapse
Affiliation(s)
- Daniel Dahis
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| | - Haim Azhari
- Department of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
23
|
Salinas SD, Clark MM, Amini R. The effects of -80 °C short-term storage on the mechanical response of tricuspid valve leaflets. J Biomech 2020; 98:109462. [PMID: 31718820 DOI: 10.1016/j.jbiomech.2019.109462] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 10/23/2019] [Accepted: 10/24/2019] [Indexed: 11/19/2022]
Abstract
Mechanical testing of soft tissues would ideally rely on using fresh specimens. In the event that fresh tissues are not readily available, alternative measures, such as storing fresh specimens at -80 °C, could be considered. Previous studies have shown that changes in the mechanical properties of the tissues due to freezing could be tissue-dependent. Prior to our study, however, such information was not available for the tricuspid valve leaflets. As such, for the first time, we examined whether fresh porcine specimens tested in a biaxial tensile machine would offer comparable results after being frozen at -80 °C. The stress-strain response of the tricuspid valve leaflets displayed no major deviation of the post-frozen leaflets as compared to fresh leaflets. We further compared the radial and circumferential strains as an indicator of deformation at similar stress states in fresh and thawed tissues, and we did not find any significant differences. Ice formation within the extra cellular matrix may modify the collagen fiber configuration, resulting in a slight change in the mechanical response. Nevertheless, our results indicated such a small deviation was negligible, thus enabling the possibility of using frozen porcine tricuspid valve specimens for future research.
Collapse
Affiliation(s)
- Samuel D Salinas
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio, United States.
| | - Margaret M Clark
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio, United States.
| | - Rouzbeh Amini
- Department of Biomedical Engineering, The University of Akron, Akron, Ohio, United States.
| |
Collapse
|
24
|
Duginski GA, Ross CJ, Laurence DW, Johns CH, Lee CH. An investigation of the effect of freezing storage on the biaxial mechanical properties of excised porcine tricuspid valve anterior leaflets. J Mech Behav Biomed Mater 2019; 101:103438. [PMID: 31542570 PMCID: PMC8008703 DOI: 10.1016/j.jmbbm.2019.103438] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/27/2019] [Accepted: 09/15/2019] [Indexed: 01/03/2023]
Abstract
The atrioventricular heart valve (AHV) leaflets are critical to the facilitation of proper unidirectional blood flow through the heart. Previously, studies have been conducted to understand the tissue mechanics of healthy AHV leaflets to inform the development of valve-specific computational models and replacement materials for use in diagnosing and treating valvular heart disease. Generally, these studies involved biaxial mechanical testing of the AHV leaflet tissue specimens to extract relevant mechanical properties. Most of those studies considered freezing-based storage systems based on previous findings for other connective tissues such as aortic tissue or skin. However, there remains no study that specifically examines the effects of freezing storage on the characterized mechanical properties of the AHV leaflets. In this study, we aimed to address this gap in knowledge by performing biaxial mechanical characterizations of the tricuspid valve anterior leaflet (TVAL) tissue both before and after a 48-h freezing period. Primary findings of this study include: (i) a statistically insignificant change in the tissue extensibilities, with the frozen tissues being slightly stiffer and more anisotropic than the fresh tissues; and (ii) minimal variations in the stress relaxation behaviors between the fresh and frozen tissues, with the frozen tissues demonstrating slightly lessened relaxation. The findings from this study suggested that freezing-based storage does not significantly impact the observed mechanical properties of one of the five AHV leaflets-the TVAL. The results from this study are useful for reaffirming the experimental methodologies in the previous studies, as well as informing the tissue preservation methods of future investigations of AHV leaflet mechanics.
Collapse
Affiliation(s)
- Grace A Duginski
- Biomechanics and Biomaterials Design Laboratory (BBDL), School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK, 73019, USA.
| | - Colton J Ross
- Biomechanics and Biomaterials Design Laboratory (BBDL), School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK, 73019, USA.
| | - Devin W Laurence
- Biomechanics and Biomaterials Design Laboratory (BBDL), School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK, 73019, USA.
| | - Cortland H Johns
- Biomechanics and Biomaterials Design Laboratory (BBDL), School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK, 73019, USA.
| | - Chung-Hao Lee
- Biomechanics and Biomaterials Design Laboratory (BBDL), School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK, 73019, USA; Institute for Biomedical Engineering, Science and Technology, School of Aerospace and Mechanical Engineering (IBEST), The University of Oklahoma, Norman, OK, 73019, USA.
| |
Collapse
|
25
|
Kelly NP, Flood HD, Hoey DA, Kiely PA, Giri SK, Coffey JC, Walsh MT. Direct mechanical characterization of prostate tissue-a systematic review. Prostate 2019; 79:115-125. [PMID: 30225866 DOI: 10.1002/pros.23718] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/21/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Direct mechanical characterization of tissue is the application of engineering techniques to biological tissue to ascertain stiffness or elasticity, which can change in response to disease states. A number of papers have been published on the application of these techniques to prostate tissue with a range of results reported. There is a marked variability in the results depending on testing techniques and disease state of the prostate tissue. We aimed to clarify the utility of direct mechanical characterization of prostate tissue in identifying disease states. METHODS A systematic review of the published literature regarding direct mechanical characterization of prostate tissue was undertaking according to PRISMA guidelines. RESULTS A variety of testing methods have been used, including compression, indentation, and tensile testing, as well as some indirect testing techniques, such as shear-wave elastography. There is strong evidence of significant stiffness differences between cancerous and non-cancerous prostate tissue, as well as correlations with prostate cancer stage. There is a correlation with increasing prostate stiffness and increasing lower urinary tract symptoms in patients with benign prostate hyperplasia. There is a wide variation in the testing methods and protocols used in the literature making direct comparison between papers difficult. Most studies utilise ex-vivo or cadaveric tissue, while none incorporate in vivo testing. CONCLUSION Direct mechanical assessment of prostate tissue permits a better understanding of the pathological and physiological changes that are occurring within the tissue. Further work is needed to include prospective and in vivo data to aid medical device design and investigate non-surgical methods of managing prostate disease.
Collapse
Affiliation(s)
- Niall P Kelly
- Department of Urology, University Hospital Limerick, Limerick, Ireland
- Graduate Entry Medical School, University of Limerick, Limerick, Ireland
- BioScience BioEngineering Research (BioSciBER), Health Research Institute (HRI), Bernal Institute, School of Engineering, University of Limerick, Limerick, Ireland
| | - Hugh D Flood
- Department of Urology, University Hospital Limerick, Limerick, Ireland
| | - David A Hoey
- Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland
- Advanced Materials and Bioengineering Research Centre, Trinity College Dublin & RCSI, Dublin, Ireland
| | - Patrick A Kiely
- Graduate Entry Medical School, University of Limerick, Limerick, Ireland
- BioScience BioEngineering Research (BioSciBER), Health Research Institute (HRI), Bernal Institute, School of Engineering, University of Limerick, Limerick, Ireland
| | - Subhasis K Giri
- Department of Urology, University Hospital Limerick, Limerick, Ireland
| | - J Calvin Coffey
- Graduate Entry Medical School, University of Limerick, Limerick, Ireland
| | - Michael T Walsh
- BioScience BioEngineering Research (BioSciBER), Health Research Institute (HRI), Bernal Institute, School of Engineering, University of Limerick, Limerick, Ireland
| |
Collapse
|
26
|
Wilczek P, Paulina G, Karolina J, Martyna M, Grazyna W, Roman M, Aldona M, Anna S, Aneta S. Biomechanical and morphological stability of acellular scaffolds for tissue-engineered heart valves depends on different storage conditions. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:106. [PMID: 29971508 PMCID: PMC6028870 DOI: 10.1007/s10856-018-6106-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 06/14/2018] [Indexed: 06/08/2023]
Abstract
Currently available bioprosthetic heart valves have been successfully used clinically; however, they have several limitations. Alternatively, tissue-engineering techniques can be used. However, there are limited data concerning the impact of storage conditions of scaffolds on their biomechanics and morphology. The aim of this study was to determine the effect of different storage conditions on the biomechanics and morphology of pulmonary valve dedicated for the acellular scaffold preparation to achieve optimal conditions to obtain stable heart valve prostheses. Scaffold can then be used for the construction of tissue-engineered heart valve, for this reason evaluation of these parameters can determine the success of the clinical application this type of bioprosthesis. Pulmonary heart valves were collected from adult porcines. Materials were divided into five groups depending on the storage conditions. Biomechanical tests were performed, both the static tensile test, and examination of viscoelastic properties. Extracellular matrix morphology was evaluated using transmission electron microscopy and immunohistochemistry. Tissue stored at 4 °C exhibited a higher modulus of elasticity than the control (native) and fresh acellular, which indicated the stiffening of the tissue and changes of the viscoelastic properties. Such changes were not observed in the radial direction. Percent strain was not significantly different in the study groups. The storage conditions affected the acellularization efficiency and tissue morphology. To the best of our knowledge, this study is the first that attributes the mechanical properties of pulmonary valve tissue to the biomechanical changes in the collagen network due to different storage conditions. Storage conditions of scaffolds for tissue-engineered heart valves may have a significant impact on the haemodynamic and clinical effects of the used bioprostheses.
Collapse
Affiliation(s)
- Piotr Wilczek
- Heart Prosthesis Institute, Bioengineering Laboratory, Wolnosci 345A, 41-800, Zabrze, Poland.
| | - Gach Paulina
- Heart Prosthesis Institute, Bioengineering Laboratory, Wolnosci 345A, 41-800, Zabrze, Poland
| | - Jendryczko Karolina
- Heart Prosthesis Institute, Bioengineering Laboratory, Wolnosci 345A, 41-800, Zabrze, Poland
| | - Marcisz Martyna
- Heart Prosthesis Institute, Bioengineering Laboratory, Wolnosci 345A, 41-800, Zabrze, Poland
| | - Wilczek Grazyna
- Department of Animal Physiology and Ecotoxicology, Faculty of Biology and Environmental Protection, University of Silesia, Bankowa 9, 40-007, Katowice, Poland
| | - Major Roman
- Institute of Metallurgy and Materials Science, Reymonta 24, 30-059, Krakow, Poland
| | - Mzyk Aldona
- Institute of Metallurgy and Materials Science, Reymonta 24, 30-059, Krakow, Poland
| | - Sypien Anna
- Institute of Metallurgy and Materials Science, Reymonta 24, 30-059, Krakow, Poland
| | - Samotus Aneta
- Heart Prosthesis Institute, Bioengineering Laboratory, Wolnosci 345A, 41-800, Zabrze, Poland
| |
Collapse
|
27
|
Quantification and comparison of the mechanical properties of four human cardiac valves. Acta Biomater 2017; 54:345-355. [PMID: 28336153 DOI: 10.1016/j.actbio.2017.03.026] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 02/21/2017] [Accepted: 03/16/2017] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Although having the same ability to permit unidirectional flow within the heart, the four main valves-the mitral valve (MV), aortic (AV), tricuspid (TV) and pulmonary (PV) valves-experience different loading conditions; thus, they exhibit different structural integrity from one another. Most research on heart valve mechanics have been conducted mainly on MV and AV or an individual valve, but none quantify and compare the mechanical and structural properties among the four valves from the same aged patient population whose death was unrelated to cardiovascular disease. METHODS A total of 114 valve leaflet samples were excised from 12 human cadavers whose death was unrelated to cardiovascular disease (70.1±3.7years old). Tissue mechanical and structural properties were characterized by planar biaxial mechanical testing and histological methods. The experimental data were then fitted with a Fung-type constitutive model. RESULTS The four valves differed substantially in thickness, degree of anisotropy, and stiffness. The leaflets of the left heart (the AV leaflets and the anterior mitral leaflets, AML) were significantly stiffer and less compliant than their counterparts in the right heart. TV leaflets were the most extensible and isotropic, while AML and AV leaflets were the least extensible and the most anisotropic. Age plays a significant role in the reduction of leaflet stiffness and extensibility with nearly straightened collagen fibers observed in the leaflet samples from elderly groups (65years and older). CONCLUSIONS Results from 114 human leaflet samples not only provided a baseline quantification of the mechanical properties of aged human cardiac valves, but also offered a better understanding of the age-dependent differences among the four valves. It is hoped that the experimental data collected and the associated constitutive models in this study can facilitate future studies of valve diseases, treatments and the development of interventional devices. STATEMENT OF SIGNIFICANCE Most research on heart valve mechanics have been conducted mainly on mitral and aortic valves or an individual valve, but none quantify and compare the mechanical and structural properties among the four valves from the same relatively healthy elderly patient population. In this study, the mechanical and microstructural properties of 114 leaflets of aortic, mitral, pulmonary and tricuspid valves from 12 human cadaver hearts were mechanically tested, analyzed and compared. Our results not only provided a baseline quantification of the mechanical properties of aged human valves, but a age range between patients (51-87years) also offers a better understanding of the age-dependent differences among the four valves. It is hoped that the obtained experimental data and associated constitutive parameters can facilitate studies of valve diseases, treatments and the development of interventional devices.
Collapse
|
28
|
Aho JM, Nenadic IZ, Aristizabal S, Wigle DA, Tschumperlin DJ, Urban MW. Use of Shear Wave Ultrasound Vibrometry for Detection of Simulated Esophageal Malignancy in Ex Vivo Porcine Esophagi. Biomed Phys Eng Express 2016; 2:065002. [PMID: 28948043 PMCID: PMC5609727 DOI: 10.1088/2057-1976/2/6/065002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Esophageal cancer is a malignant neoplasm with poor outcomes. Determination of local disease progression is a major determining factor in treatment modality, radiation dose, radiation field and subsequent surgical therapy. Discrimination of true tumor extent is difficult given the similarity of soft tissues of the malignancy compared to non-malignant tissues using current imaging modalities. A possible method to discriminate between these tissues may be to exploit mechanical properties to diagnostic advantage, as malignant tissues tend to be stiffer relative to normal adjacent tissue. Shear waves propagate faster in stiffer tissues relative to softer tissues. This may be measured by using ultrasound based shear wave vibrometry. In this method, acoustic radiation force is used to create a shear wave in the tissue of interest and ultrafast ultrasound imaging is used to track the propagating wave to measure the wave velocity and estimate the shear moduli. In this study we created simulated malignant lesions (1.5 cm length) using radiofrequency ablation in ex vivo esophageal samples with varied progression (partial thickness n = 4, and full thickness n = 5) and used normal regions of the same esophageal specimen as controls. Shear wave vibrometry was used to measure shear wave group velocity and shear wave phase velocity in the ex vivo specimens. These values were used to estimate shear moduli using an elastic shear wave model and elastic and viscoelastic Lamb wave models. Our results show that the group and phase velocities increase due to both full and mucosal ablation, and that discrimination may be provided by higher order analysis using viscoelastic Lamb wave fitting. This technique may have application for determination of extent of early esophageal malignancy and warrants further investigation using in vivo approaches to determine performance compared to current imaging modalities.
Collapse
Affiliation(s)
- Johnathon M. Aho
- Division of General Thoracic Surgery, Department of Surgery, Mayo Clinic College of Medicine, Rochester, MN 55905
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Ivan Z. Nenadic
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Sara Aristizabal
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Dennis A. Wigle
- Division of General Thoracic Surgery, Department of Surgery, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Daniel J. Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Matthew W. Urban
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, MN 55905
- Department of Radiology, Mayo Clinic College of Medicine, Rochester, MN 55905
| |
Collapse
|
29
|
van Geemen D, Soares ALF, Oomen PJA, Driessen-Mol A, Janssen-van den Broek MWJT, van den Bogaerdt AJ, Bogers AJJC, Goumans MJTH, Baaijens FPT, Bouten CVC. Age-Dependent Changes in Geometry, Tissue Composition and Mechanical Properties of Fetal to Adult Cryopreserved Human Heart Valves. PLoS One 2016; 11:e0149020. [PMID: 26867221 PMCID: PMC4750936 DOI: 10.1371/journal.pone.0149020] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 01/26/2016] [Indexed: 11/18/2022] Open
Abstract
There is limited information about age-specific structural and functional properties of human heart valves, while this information is key to the development and evaluation of living valve replacements for pediatric and adolescent patients. Here, we present an extended data set of structure-function properties of cryopreserved human pulmonary and aortic heart valves, providing age-specific information for living valve replacements. Tissue composition, morphology, mechanical properties, and maturation of leaflets from 16 pairs of structurally unaffected aortic and pulmonary valves of human donors (fetal-53 years) were analyzed. Interestingly, no major differences were observed between the aortic and pulmonary valves. Valve annulus and leaflet dimensions increase throughout life. The typical three-layered leaflet structure is present before birth, but becomes more distinct with age. After birth, cell numbers decrease rapidly, while remaining cells obtain a quiescent phenotype and reside in the ventricularis and spongiosa. With age and maturation-but more pronounced in aortic valves-the matrix shows an increasing amount of collagen and collagen cross-links and a reduction in glycosaminoglycans. These matrix changes correlate with increasing leaflet stiffness with age. Our data provide a new and comprehensive overview of the changes of structure-function properties of fetal to adult human semilunar heart valves that can be used to evaluate and optimize future therapies, such as tissue engineering of heart valves. Changing hemodynamic conditions with age can explain initial changes in matrix composition and consequent mechanical properties, but cannot explain the ongoing changes in valve dimensions and matrix composition at older age.
Collapse
Affiliation(s)
- Daphne van Geemen
- Soft Tissue Biomechanics & Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Ana L. F. Soares
- Soft Tissue Biomechanics & Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Pim J. A. Oomen
- Soft Tissue Biomechanics & Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Anita Driessen-Mol
- Soft Tissue Biomechanics & Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | | | - Antoon J. van den Bogaerdt
- Heart Valve Bank Rotterdam, Department of Cardio-Thoracic Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Ad J. J. C. Bogers
- Heart Valve Bank Rotterdam, Department of Cardio-Thoracic Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Cardio-Thoracic Surgery, Erasmus University Medical Center, Rotterdam, Netherlands
| | | | - Frank P. T. Baaijens
- Soft Tissue Biomechanics & Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Carlijn V. C. Bouten
- Soft Tissue Biomechanics & Engineering, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
- Institute for Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, Netherlands
| |
Collapse
|
30
|
Oomen P, Loerakker S, van Geemen D, Neggers J, Goumans MJ, van den Bogaerdt A, Bogers A, Bouten C, Baaijens F. Age-dependent changes of stress and strain in the human heart valve and their relation with collagen remodeling. Acta Biomater 2016; 29:161-169. [PMID: 26537200 DOI: 10.1016/j.actbio.2015.10.044] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 10/18/2015] [Accepted: 10/28/2015] [Indexed: 10/22/2022]
Abstract
In order to create tissue-engineered heart valves with long-term functionality, it is essential to fully understand collagen remodeling during neo-tissue formation. Collagen remodeling is thought to maintain mechanical tissue homeostasis. Yet, the driving factor of collagen remodeling remains unidentified. In this study, we determined the collagen architecture and the geometric and mechanical properties of human native semilunar heart valves of fetal to adult age using confocal microscopy, micro-indentation and inverse finite element analysis. The outcomes were used to predict age-dependent changes in stress and stretch in the heart valves via finite element modeling. The results indicated that the circumferential stresses are different between the aortic and pulmonary valve, and, moreover, that the stress increases considerably over time in the aortic valve. Strikingly, relatively small differences were found in stretch with time and between the aortic and pulmonary valve, particularly in the circumferential direction, which is the main determinant of the collagen fiber stretch. Therefore, we suggest that collagen remodeling in the human heart valve maintains a stretch-driven homeostasis. Next to these novel insights, the unique human data set created in this study provides valuable input for the development of numerical models of collagen remodeling and optimization of tissue engineering. STATEMENT OF SIGNIFICANCE Annually, over 280,000 heart valve replacements are performed worldwide. Tissue engineering has the potential to provide valvular disease patients with living valve substitutes that can last a lifetime. Valve functionality is mainly determined by the collagen architecture. Hence, understanding collagen remodeling is crucial for creating tissue-engineered valves with long-term functionality. In this study, we determined the structural and material properties of human native heart valves of fetal to adult age to gain insight into the mechanical stimuli responsible for collagen remodeling. The age-dependent evolutionary changes in mechanical state of the native valve suggest that collagen remodeling in heart valves is a stretch-driven process.
Collapse
|
31
|
Caro-Bretelle A, Gountsop P, Ienny P, Leger R, Corn S, Bazin I, Bretelle F. Effect of sample preservation on stress softening and permanent set of porcine skin. J Biomech 2015; 48:3135-41. [DOI: 10.1016/j.jbiomech.2015.07.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/09/2015] [Accepted: 07/11/2015] [Indexed: 10/23/2022]
|
32
|
Shahmansouri N, Cartier R, Mongrain R. Characterization of the toughness and elastic properties of fresh and cryopreserved arteries. J Biomech 2015; 48:2205-9. [PMID: 25911252 DOI: 10.1016/j.jbiomech.2015.03.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/12/2015] [Accepted: 03/27/2015] [Indexed: 10/23/2022]
Abstract
Surgical interventions are used to manage severe complications of heart valve diseases and to prevent the eventual rupture of an aortic aneurysm. Soft-tissue allografts, xenografts, and prosthetic grafts are used in these interventions; however, there are pre-surgical difficulties and post-surgical complications in using these grafts. One of these is the rupture potential of cryopreserved allografts at the time of transplantation and/or after the thawing process for the cryopreserved tissue. Moreover, a number of clinical observations report the patency of prosthetic grafts and aneurysm of cryopreserved allografts after the transplantation. This work aims to study the effect of cryopreservation on the resistance of arterial tissue to crack growth and propagation; we examined the biomechanical parameters which could be used in designing more efficient prosthetic grafts. Investigation of the toughness properties can also be helpful to understand the failure mechanisms of pathological arterial tissues. The toughness and biaxial tensile properties of the post-cryopreserved and fresh arteries have been examined.
Collapse
Affiliation(s)
- Nastaran Shahmansouri
- Department of Mechanical Engineering, McGill University, Montréal, Québec, Canada H3A 0C3; Montreal Heart Institute, Montréal, Québec, Canada H1T 1C
| | | | - Rosaire Mongrain
- Department of Mechanical Engineering, McGill University, Montréal, Québec, Canada H3A 0C3; Montreal Heart Institute, Montréal, Québec, Canada H1T 1C.
| |
Collapse
|
33
|
Determining the influence of calcification on the failure properties of abdominal aortic aneurysm (AAA) tissue. J Mech Behav Biomed Mater 2015; 42:154-67. [DOI: 10.1016/j.jmbbm.2014.11.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Revised: 10/21/2014] [Accepted: 11/03/2014] [Indexed: 11/20/2022]
|
34
|
Delgadillo JOV, Delorme S, Thibault F, DiRaddo R, Hatzikiriakos SG. Large Deformation Characterization of Porcine Thoracic Aortas: Inverse Modeling Fitting of Uniaxial and Biaxial Tests. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/jbise.2015.810069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
O’Leary SA, Doyle BJ, McGloughlin TM. The impact of long term freezing on the mechanical properties of porcine aortic tissue. J Mech Behav Biomed Mater 2014; 37:165-73. [DOI: 10.1016/j.jmbbm.2014.04.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 04/21/2014] [Accepted: 04/27/2014] [Indexed: 11/26/2022]
|
36
|
O׳Leary SA, Kavanagh EG, Grace PA, McGloughlin TM, Doyle BJ. The biaxial mechanical behaviour of abdominal aortic aneurysm intraluminal thrombus: Classification of morphology and the determination of layer and region specific properties. J Biomech 2014; 47:1430-7. [DOI: 10.1016/j.jbiomech.2014.01.041] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 12/29/2013] [Accepted: 01/18/2014] [Indexed: 10/25/2022]
|
37
|
Wang R, Raykin J, Li H, Gleason RL, Brewster LP. Differential mechanical response and microstructural organization between non-human primate femoral and carotid arteries. Biomech Model Mechanobiol 2014; 13:1041-51. [PMID: 24532266 DOI: 10.1007/s10237-014-0553-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 01/08/2014] [Indexed: 01/13/2023]
Abstract
Unique anatomic locations and physiologic functions predispose different arteries to varying mechanical responses and pathologies. However, the underlying causes of these mechanical differences are not well understood. The objective of this study was to first identify structural differences in the arterial matrix that would account for the mechanical differences between healthy femoral and carotid arteries and second to utilize these structural observations to perform a microstructurally motivated constitutive analysis. Femoral and carotid arteries were subjected to cylindrical biaxial loading and their microstructure was quantified using two-photon microscopy. The femoral arteries were found to be less compliant than the carotid arteries at physiologic loads, consistent with previous studies, despite similar extracellular compositions of collagen and elastin ([Formula: see text]). The femoral arteries exhibited significantly less circumferential dispersion of collagen fibers ([Formula: see text]), despite a similar mean fiber alignment direction as the carotid arteries. Elastin transmural distribution, in vivo axial stretch, and opening angles were also found to be distinctly different between the arteries. Lastly, we modeled the arteries' mechanical behaviors using a microstructural-based, distributed collagen fiber constitutive model. With this approach, the material parameters of the model were solved using the experimental microstructural observations. The findings of this study support an important role for microstructural organization in arterial stiffness.
Collapse
Affiliation(s)
- Ruoya Wang
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA,
| | | | | | | | | |
Collapse
|
38
|
Bhattacharya S, Pham T, He Z, Sun W. Tension to passively cinch the mitral annulus through coronary sinus access: an ex vivo study in ovine model. J Biomech 2014; 47:1382-8. [PMID: 24607007 DOI: 10.1016/j.jbiomech.2014.01.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 01/22/2014] [Accepted: 01/23/2014] [Indexed: 11/29/2022]
Abstract
INTRODUCTION The transcatheter mitral valve repair (TMVR) technique utilizes a stent to cinch a segment of the mitral annulus (MA) and reduces mitral regurgitation. The cinching mechanism results in reduction of the septal-lateral distance. However, the mechanism has not been characterized completely. In this study, a method was developed to quantify the relation between cinching tension and MA area in an ex vivo ovine model. METHOD The cinching tension was measured from a suture inserted within the coronary sinus (CS) vessel with one end tied to the distal end of the vessel and the other end exited to the CS ostium where it was attached to a force transducer on a linear stage. The cinching tension, MA area, septal-lateral (S-L) and commissure-commissure (C-C) diameters and leakage was simultaneously measured in normal and dilated condition, under a hydrostatic left ventricular pressure of 90 mm Hg. RESULTS The MA area was increased up to 22.8% after MA dilation. A mean tension of 2.1 ± 0.5 N reduced the MA area by 21.3 ± 5.6% and S-L diameter by 24.2 ± 5.3%. Thus, leakage was improved by 51.7 ± 16.2% following restoration of normal MA geometry. CONCLUSION The cinching tension generated by the suture acts as a compensation force in MA reduction, implying the maximum tension needed to be generated by annuloplasty device to restore normal annular size. The relationship between cinching tension and the corresponding MA geometry will contribute to the development of future TMVR devices and understanding of myocardial contraction function.
Collapse
Affiliation(s)
- Shamik Bhattacharya
- Tissue Mechanics Laboratory Biomedical Engineering Program and Department of Mechanical Engineering University of Connecticut, Storrs, CT 06269, United States
| | - Thuy Pham
- Tissue Mechanics Laboratory Biomedical Engineering Program and Department of Mechanical Engineering University of Connecticut, Storrs, CT 06269, United States
| | - Zhaoming He
- Department of Mechanical Engineering Texas Tech University, Lubbock, TX 79409, United States
| | - Wei Sun
- Tissue Mechanics Laboratory Biomedical Engineering Program and Department of Mechanical Engineering University of Connecticut, Storrs, CT 06269, United States.
| |
Collapse
|
39
|
Pham T, Sun W. Material properties of aged human mitral valve leaflets. J Biomed Mater Res A 2013; 102:2692-703. [PMID: 24039052 DOI: 10.1002/jbm.a.34939] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 08/01/2013] [Accepted: 08/26/2013] [Indexed: 11/08/2022]
Abstract
This study aimed to characterize the mechanical properties of aged human anterior mitral leaflets (AML) and posterior mitral leaflets (PML). The AML and PML samples from explanted human hearts (n = 21, mean age of 82.62 ± 8.77-years-old) were subjected to planar biaxial mechanical tests. The material stiffness, extensibility, and degree of anisotropy of the leaflet samples were quantified. The microstructure of the samples was assessed through histology. Both the AML and PML samples exhibited a nonlinear and anisotropic behavior with the circumferential direction being stiffer than the radial direction. The AML samples were significantly stiffer than the PML samples in both directions, suggesting that they should be modeled with separate sets of material properties in computational studies. Histological analysis indicated the changes in the tissue elastic constituents, including the fragmented and disorganized elastin network, the presence of fibrosis and proteoglycan/glycosaminoglycan infiltration and calcification, suggesting possible valvular degenerative characteristics in the aged human leaflet samples. Overall, stiffness increased and areal strain decreased with calcification severity. In addition, leaflet tissues from hypertensive individuals also exhibited a higher stiffness and low areal strain than normotensive individuals. There are significant differences in the mechanical properties of the two human mitral valve leaflets from this advanced age group. The morphologic changes in the tissue composition and structure also infer the structural and functional difference between aged human valves and those of animals.
Collapse
Affiliation(s)
- Thuy Pham
- Tissue Mechanics Laboratory, Department of Mechanical Engineering, Biomedical Engineering Program, University of Connecticut, Storrs, Connecticut, 06269
| | | |
Collapse
|
40
|
Soares ALF, van Geemen D, van den Bogaerdt AJ, Oomens CWJ, Bouten CVC, Baaijens FPT. Mechanics of the pulmonary valve in the aortic position. J Mech Behav Biomed Mater 2013; 29:557-67. [PMID: 24035437 DOI: 10.1016/j.jmbbm.2013.07.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 07/02/2013] [Accepted: 07/04/2013] [Indexed: 01/09/2023]
Abstract
Mathematical models can provide valuable information to assess and evaluate the mechanical behavior and remodeling of native tissue. A relevant example when studying collagen remodeling is the Ross procedure because it involves placing the pulmonary autograft in the more demanding aortic valve mechanical environment. The objective of this study was therefore to assess and evaluate the mechanical differences between the aortic valve and pulmonary valve and the remodeling that may occur in the pulmonary valve when placed in the aortic position. The results from biaxial tensile tests of pairs of human aortic and pulmonary valves were compared and used to determine the parameters of a structurally based constitutive model. Finite element analyzes were then performed to simulate the mechanical response of both valves to the aortic diastolic load. Additionally, remodeling laws were applied to assess the remodeling of the pulmonary valve leaflet to the new environment. The pulmonary valve showed to be more extensible and less anisotropic than the aortic valve. When exposed to aortic pressure, the pulmonary leaflet appeared to remodel by increasing its thickness and reorganizing its collagen fibers, rotating them toward the circumferential direction.
Collapse
Affiliation(s)
- A L F Soares
- Eindhoven University of Technology, Eindhoven, The Netherlands.
| | | | | | | | | | | |
Collapse
|
41
|
Cabrera MS, Oomens CWJ, Bouten CVC, Bogers AJJC, Hoerstrup SP, Baaijens FPT. Mechanical analysis of ovine and pediatric pulmonary artery for heart valve stent design. J Biomech 2013; 46:2075-81. [PMID: 23849135 DOI: 10.1016/j.jbiomech.2013.04.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 03/31/2013] [Accepted: 04/28/2013] [Indexed: 11/26/2022]
Abstract
Transcatheter heart valve replacement is an attractive and promising technique for congenital as well as acquired heart valve disease. In this procedure, the replacement valve is mounted in a stent that is expanded at the aimed valve position and fixated by clamping. However, for this technique to be appropriate for pediatric patients, the material properties of the host tissue need to be determined to design stents that can be optimized for this particular application. In this study we performed equibiaxial tensile tests on four adult ovine pulmonary artery walls and compared the outcomes with one pediatric pulmonary artery. Results show that the pediatric pulmonary artery was significantly thinner (1.06 ± 0.36 mm (mean ± SD)) than ovine tissue (2.85 ± 0.40 mm), considerably stiffer for strain values that exceed the physiological conditions (beyond 50% strain in the circumferential and 60% in the longitudinal direction), more anisotropic (with a significant difference in stiffness between the longitudinal and circumferential directions beyond 60% strain) and presented stronger non-linear stress-strain behavior at equivalent strains (beyond 26% strain) compared to ovine tissue. These discrepancies suggest that stents validated and optimized using the ovine pre-clinical model might not perform satisfactorily in pediatric patients. The material parameters derived from this study may be used to develop stent designs for both applications using computational models.
Collapse
Affiliation(s)
- M S Cabrera
- Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| | | | | | | | | | | |
Collapse
|
42
|
Comparison of methods used to measure the thickness of soft tissues and their influence on the evaluation of tensile stress. J Biomech 2013; 46:1955-60. [DOI: 10.1016/j.jbiomech.2013.05.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 05/04/2013] [Accepted: 05/08/2013] [Indexed: 11/20/2022]
|
43
|
Hemmasizadeh A, Autieri M, Darvish K. Multilayer material properties of aorta determined from nanoindentation tests. J Mech Behav Biomed Mater 2012; 15:199-207. [PMID: 23123343 PMCID: PMC3597096 DOI: 10.1016/j.jmbbm.2012.06.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 06/05/2012] [Accepted: 06/12/2012] [Indexed: 10/28/2022]
Abstract
In a wide range of biomechanical modeling of aorta from traumatic injury to stent grafts, the arterial wall has been considered as a single homogeneous layer vessel, ignoring the fact that arteries are composed of distinct anatomical layers with different mechanical characteristics. In this study, using a custom-made nanoindentation technique, changes in the mechanical properties of porcine thoracic aorta wall in the radial direction were characterized using a quasi-linear viscoelastic model. Two layers of equal thickness were mechanically distinguishable in descending aorta based on the radial variations in the instantaneous Young's modulus E and reduced relaxation function G(t). Overall, comparison of E and G(∞) of the outer half (70.27±2.47 kPa and 0.35±0.01) versus the inner half (60.32±1.65 kPa and 0.33±0.01) revealed that the outer half was stiffer and showed less relaxation. The results were used to explain local mechanisms of deformation, force transmission, tear propagation and failure in arteries.
Collapse
Affiliation(s)
- Ali Hemmasizadeh
- Department of Mechanical Engineering, College of Engineering, Temple University, 1947N. 12th Street, Philadelphia, PA 19122, USA
| | - Michael Autieri
- Department of Physiology, School of Medicine, Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Kurosh Darvish
- Department of Mechanical Engineering, College of Engineering, Temple University, 1947N. 12th Street, Philadelphia, PA 19122, USA
| |
Collapse
|
44
|
Kochová P, Kuncová J, Svíglerová J, Cimrman R, Miklíková M, Liška V, Tonar Z. The contribution of vascular smooth muscle, elastin and collagen on the passive mechanics of porcine carotid arteries. Physiol Meas 2012; 33:1335-51. [PMID: 22813960 DOI: 10.1088/0967-3334/33/8/1335] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The main components responsible for the mechanical behavior of the arterial wall are collagen, elastin, and smooth muscle cells (SMCs) in the medial layer. We determined the structural and mechanical changes in porcine carotid arteries after administration of Triton® X-100, elastase, and collagenase using the inflation-deflation test. The arteries were intraluminarly pressurized from 0 to 200 mmHg, and the outer diameter of the artery was measured. The pressure-strain elastic modulus was determined based on the pressure/diameter ratio. The intima-media thickness, wall thickness, thickness of the tunica adventitia layer, and the area fractions of SMCs, elastin, and collagen within the arterial wall (A(A)(SMC/elastin/collagen, wall)) were measured using stereological methods. The relative changes in the relevant components of the treated samples were as follows: the decrease in A(A)(SMC, wall) after administration of Triton® X-100 was 11% ± 7%, the decrease in A(A)(elastin, wall) after administration of elastase was 40% ± 22%, and the decrease in A(A)(collagen, wall) after the application of collagenase was 51% ± 22%. The Triton® X-100 treatment led to a decrease in the SMC content that was associated with enlargement of the arterial wall (outer diameter) for pressures up to 120 mmHg, and with mechanical stiffening of the arterial wall at higher pressures. Elastase led to a decrease in the elastin content that was associated with enlargement of the arterial wall, but not with stiffening or softening. Collagenase led to a decrease in collagen content that was associated with a change in the stiffness of the arterial wall, although the exact contribution of mechanical loading and the duration of treatment (enlargement) could not be quantified.
Collapse
Affiliation(s)
- P Kochová
- New Technologies Research Centre, University of West Bohemia, Univerzitní 8, 306 14 Pilsen, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|