1
|
Pasman R, Zhang J, Zaat SAJ, Brul S, Krom BP. A customizable and defined medium supporting culturing of Candida albicans, Staphylococcus aureus, and human oral epithelial cells. Appl Environ Microbiol 2024; 90:e0036024. [PMID: 39072650 PMCID: PMC11337806 DOI: 10.1128/aem.00360-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
Candida albicans, an opportunistic oral pathogen, synergizes with Staphylococcus aureus, allowing bacteria to co-invade and systemically disseminate within the host. Studying human-microbe interactions creates the need for a universal culture medium that supports fungal, bacterial, and human cell culturing, while allowing sensitive analytical approaches such as OMICs and chromatography techniques. In this study, we established a fully defined, customizable adaptation of Dulbecco's modified Eagle medium (DMEM), allowing multi-kingdom culturing of S. aureus, C. albicans, and human oral cell lines, whereas minimal version of DMEM (mDMEM) did not support growth of S. aureus, and neither did supplementation with dextrose, MEM non-essential amino acids, pyruvate, and Glutamax. This new medium composition, designated as "mDMEM-DMP," promoted growth of all tested S. aureus strains. Addition of 25 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) further improved growth, while higher concentrations did not improve growth any further. Higher concentrations of HEPES did result in prolonged stabilization of medium pH. mDMEM-DMP promoted (hyphal) C. albicans monoculturing and co-culturing on both solid and semi-solid surfaces. In contrast to S. aureus, addition of HEPES reduced C. albicans maximum culture optical density (OD). Finally, only buffered mDMEM-DMP (100 mM HEPES) was successful in maintaining the metabolic activity of human oral Ca9-22 and HO1N1 cell lines for 24 hours. Altogether, our findings show that mDMEM-DMP is a versatile and potent culture medium for both microbial and human cell culturing, providing a customizable platform to study human as well as microbial molecular physiology and putative interactions. IMPORTANCE Interaction between microbes and the host are in the center of interest both in disease and in health. In order to study the interactions between microbes of different kingdoms and the host, alternative media are required. Synthetic media are useful as they allow addition of specific components. In addition, well-defined media are required if high-resolution analyses such as metabolomics and proteomics are desired. We describe the development of a synthetic medium to study the interactions between C. albicans, S. aureus, and human oral epithelial cells. Our findings show that mDMEM-DMP is a versatile and potent culture medium for both microbial and human cell culturing, providing a customizable platform to study human as well as microbial molecular physiology and putative interactions.
Collapse
Affiliation(s)
- Raymond Pasman
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Jianbo Zhang
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Sebastian A. J. Zaat
- Department of Medical Microbiology and Infection Prevention, Amsterdam institute for Infection and Immunity, Amsterdam UMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Stanley Brul
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Bastiaan P. Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Free University Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Chantanawilas P, Pahumunto N, Thananimit S, Teanpaisan R. Anticandidal Activity of Various Probiotic Lactobacillus Strains and Their Efficacy Enhanced by Prebiotic Supplementation. Curr Microbiol 2024; 81:271. [PMID: 39012492 DOI: 10.1007/s00284-024-03800-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024]
Abstract
Probiotics and prebiotics have been considered as alternative approaches for promoting health. This study aimed to investigate the anticandidal potential of various probiotic Lactobacillus strains and their cell-free supernatants (CFSs). The study assessed the impact of inulin and some fruits as prebiotics on the growth of selected probiotic strains in relation to their anticandidal activity, production of short-chain fatty acids, total phenolic content, and antioxidant activity. Results revealed variations in anticandidal activity based on the specific strains and forms of probiotics used. Non-adjusted CFSs were the most effective against Candida strains, followed by probiotic cells and adjusted CFSs (pH 7). Lacticaseibacillus rhamnosus SD4, L. rhamnosus SD11 and L. rhamnosus GG displayed the strongest anticandidal activity. Non-adjusted CFSs from L. rhamnosus SD11, L. rhamnosus SD4 and L. paracasei SD1 exhibited notable anticandidal effects. The adjusted CFSs of L. rhamnosus SD11 showed the highest anticandidal activity against all non-albicans Candida (NAC) strains, whereas the others were ineffective. Supplementation of L. rhamnosus SD11 with prebiotics, particularly 2% (w/v) mangosteen, exhibited positive results in promoting probiotic growth, short-chain fatty acids production, total phenolic contents, and antioxidant activity, and the subsequent enhancing anticandidal activity against both C. albicans and NAC strains compared to conditions without prebiotics. In conclusion, both live cells and CFSs of tested strains, particularly L. rhamnosus SD11, exhibited the best anticandidal activity. Prebiotics supplementation, especially mangosteen, enhanced probiotic growth and beneficial metabolites against Candida growth. These finding suggested that probiotics and prebiotic supplementation may be an effective alternative treatment for Candida infections.
Collapse
Affiliation(s)
- Panita Chantanawilas
- Faculty of Dentistry, Department of Oral Diagnostic Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Nuntiya Pahumunto
- Faculty of Dentistry, Department of Oral Diagnostic Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Faculty of Dentistry, Research Center of Excellence for Oral Health, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Suchera Thananimit
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Faculty of Science, Center for Genomics and Bioinformatics Research, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Rawee Teanpaisan
- Faculty of Dentistry, Department of Oral Diagnostic Sciences, Prince of Songkla University, Hat Yai, Songkhla, Thailand.
- Medical Science Research and Innovation Institute, Prince of Songkla University, 15 Karnjanavanich Road, Hat Yai, Songkhla, 90110, Thailand.
| |
Collapse
|
3
|
Hamion G, Aucher W, Mercier A, Tewes F, Menard M, Bertaux J, Girardot M, Imbert C. Insights into betulinic acid as a promising molecule to fight the interkingdom biofilm Staphylococcus aureus-Candida albicans. Int J Antimicrob Agents 2024; 63:107166. [PMID: 38570017 DOI: 10.1016/j.ijantimicag.2024.107166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/18/2024] [Accepted: 03/28/2024] [Indexed: 04/05/2024]
Abstract
The demand for antibiofilm molecules has increased over several years due to their potential to fight biofilm-associated infections, such as those including the interkingdom Staphylococcus aureus-Candida albicans occurring in clinical settings worldwide. Recently, we identified a pentacyclic triterpenoid compound, betulinic acid, from invasive macrophytes, with interesting antibiofilm properties. The aim of the present study was to provide insights into the mechanism of action of betulinic acid against the clinically relevant bi-species S. aureus-C. albicans biofilms. Microscopy examinations, flow cytometry and crystal violet assays confirmed that betulinic acid was effective at damaging mature S. aureus-C. albicans biofilms or inhibiting their formation, reducing biofilm biomass by 70% on average and without microbicidal activity. The results suggested an action of betulinic acid on cell membranes, inducing changes in properties such as composition, hydrophobicity and fluidity as observed in C. albicans, which may hinder the early adhesion step, biofilm growth and the physical interactions of both microbial species. Further results of real-time polymerase chain reaction argued in favour of a reduction in S. aureus-C. albicans physical interaction due to betulinic acid by the modulation of biofilm-related gene expression, as observed in early stages of biofilm formation. This study revealed the potential of betulinic acid as a candidate agent for the prevention and treatment of S. aureus-C. albicans biofilm-related infections.
Collapse
Affiliation(s)
- Guillaume Hamion
- Ecology and Biology of Interactions, University of Poitiers, UMR CNRS 7267, Poitiers, France.
| | - Willy Aucher
- Ecology and Biology of Interactions, University of Poitiers, UMR CNRS 7267, Poitiers, France
| | - Anne Mercier
- Ecology and Biology of Interactions, University of Poitiers, UMR CNRS 7267, Poitiers, France
| | - Frederic Tewes
- Pharmacology of Antimicrobial Agents and Antibioresistance, University of Poitiers, INSERM U1070, Poitiers, France
| | - Maëlenn Menard
- Ecology and Biology of Interactions, University of Poitiers, UMR CNRS 7267, Poitiers, France
| | - Joanne Bertaux
- Ecology and Biology of Interactions, University of Poitiers, UMR CNRS 7267, Poitiers, France
| | - Marion Girardot
- Ecology and Biology of Interactions, University of Poitiers, UMR CNRS 7267, Poitiers, France
| | - Christine Imbert
- Ecology and Biology of Interactions, University of Poitiers, UMR CNRS 7267, Poitiers, France
| |
Collapse
|
4
|
Hernando AV, Sun W, Abitbol T. "You Are What You Eat": How Fungal Adaptation Can Be Leveraged toward Myco-Material Properties. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2300140. [PMID: 38486929 PMCID: PMC10935908 DOI: 10.1002/gch2.202300140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/01/2023] [Indexed: 03/17/2024]
Abstract
Fungi adapt to their surroundings, modifying their behaviors and composition under different conditions like nutrient availability and environmental stress. This perspective examines how a basic understanding of fungal genetics and the different ways that fungi can be influenced by their surroundings can be leveraged toward the production of functional mycelium materials. Simply put, within the constraints of a given genetic script, both the quality and quantity of fungal mycelium are shaped by what they eat and where they grow. These two levers, encompassing their global growth environment, can be turned toward different materials outcomes. The final properties of myco-materials are thus intimately shaped by the conditions of their growth, enabling the design of new biobased and biodegradable material constructions for applications that have traditionally relied on petroleum-based chemicals.This perspective highlights aspects of fungal genetics and environmental adaptation that have potential materials science implications, along the way touching on key studies, both to situate the state of the art within the field and to punctuate the viewpoints of the authors. Finally, this work ends with future perspectives, reinforcing key topics deemed important to consider in emerging myco-materials research.
Collapse
Affiliation(s)
- Alicia Vivas Hernando
- Institute of Materials (IMX)École Polytechnique Fédérale de Lausanne (EPFL)Lausanne1015Switzerland
| | - Wenjing Sun
- Institute of Materials (IMX)École Polytechnique Fédérale de Lausanne (EPFL)Lausanne1015Switzerland
| | - Tiffany Abitbol
- Institute of Materials (IMX)École Polytechnique Fédérale de Lausanne (EPFL)Lausanne1015Switzerland
| |
Collapse
|
5
|
Das S, Konwar BK. Inhibiting pathogenicity of vaginal Candida albicans by lactic acid bacteria and MS analysis of their extracellular compounds. APMIS 2024; 132:161-186. [PMID: 38168754 DOI: 10.1111/apm.13365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 11/26/2023] [Indexed: 01/05/2024]
Abstract
Maintaining healthy vaginal microflora post-puberty is critical. In this study we explore the potential of vaginal lactic acid bacteria (LAB) and their extracellular metabolites against the pathogenicity of Candida albicans. The probiotic culture free supernatant (PCFS) from Lactobacillus crispatus, L. gasseri, and L. vaginalis exhibit an inhibitory effect on budding, hyphae, and biofilm formation of C. albicans. LGPCFS manifested the best potential among the LAB PCFS, inhibiting budding for 24 h and restricting hyphae formation post-stimulation. LGPCFS also pre-eminently inhibited biofilm formation. Furthermore, L. gasseri itself grew under RPMI 1640 stimulation suppressing the biofilm formation of C. albicans. The PCFS from the LAB downregulated the hyphal genes of C. albicans, inhibiting the yeast transformation to fungi. Hyphal cell wall proteins HWP1, ALS3, ECE1, and HYR1 and transcription factors BCR1 and CPH1 were downregulated by the metabolites from LAB. Finally, the extracellular metabolome of the LAB was studied by LC-MS/MS analysis. L.gasseri produced the highest antifungal compounds and antibiotics, supporting its best activity against C. albicans. Vaginal LAB and their extracellular metabolites perpetuate C. albicans at an avirulent state. The metabolites produced by these LAB in vitro have been identified, and can be further exploited as a preventive measure against vaginal candidiasis.
Collapse
Affiliation(s)
- Shreaya Das
- Department of MBBT, Tezpur University, Napaam, Assam, India
| | | |
Collapse
|
6
|
Chladek G, Nowak M, Pakieła W, Barszczewska-Rybarek I, Żmudzki J, Mertas A. The Effect of Exposure to Candida Albicans Suspension on the Properties of Silicone Dental Soft Lining Material. MATERIALS (BASEL, SWITZERLAND) 2024; 17:723. [PMID: 38591629 PMCID: PMC10856526 DOI: 10.3390/ma17030723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/19/2024] [Accepted: 01/31/2024] [Indexed: 04/10/2024]
Abstract
While functioning in the oral cavity, denture soft linings (SL) are exposed to contact with the microbiota. Dentures can offer perfect conditions for the multiplication of pathogenic yeast-like fungi, resulting in rapid colonisation of the surface of the materials used. In vitro experiments have also shown that yeast may penetrate SL. This may lead to changes in their initially beneficial functional properties. The aim of this work was to investigate the effect of three months of exposure to a Candida albicans suspension on the mechanical properties of SL material and its bond strength to the denture base polymer, and to additionally verify previous reports of penetration using a different methodology. Specimens of the SL material used were incubated for 30, 60 and 90 days in a suspension of Candida albicans strain (ATCC 10231). Their shore A hardness, tensile strength, and bond strength to acrylic resin were tested. The colonization of the surface and penetration on fractured specimens were analysed with scanning electron and inverted fluorescence microscopes. Exposure to yeast did not affect the mechanical properties. The surfaces of the samples were colonised, especially in crystallized structures of the medium; however, the penetration of hyphae and blastospores into the material was not observed.
Collapse
Affiliation(s)
- Grzegorz Chladek
- Materials Research Laboratory, Faculty of Mechanical Engineering, Silesian University of Technology, 18a Konarskiego Str., 41-100 Gliwice, Poland
| | - Michał Nowak
- Nova Clinic, 22 Jankego Str., 40-612 Katowice, Poland;
| | - Wojciech Pakieła
- Department of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, 18a Konarskiego Str., 41-100 Gliwice, Poland; (W.P.); (J.Ż.)
| | - Izabela Barszczewska-Rybarek
- Department of Physical Chemistry and Technology of Polymers, Faculty of Chemistry, Silesian University of Technology, Strzody 9 Str., 44-100 Gliwice, Poland;
| | - Jarosław Żmudzki
- Department of Engineering Materials and Biomaterials, Faculty of Mechanical Engineering, Silesian University of Technology, 18a Konarskiego Str., 41-100 Gliwice, Poland; (W.P.); (J.Ż.)
| | - Anna Mertas
- Department of Microbiology and Immunology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia in Katowice, 19 Jordana Str., 41-808 Zabrze, Poland;
| |
Collapse
|
7
|
Karni PA, Muraleedharan A, Bhandary S, Mujoo S, Maini AP, Chaturvedi M. Efficacy of Various Herbal Preparations Against Oral Candida: A Lab-Based Study. JOURNAL OF PHARMACY AND BIOALLIED SCIENCES 2024; 16:S265-S267. [PMID: 38595550 PMCID: PMC11000960 DOI: 10.4103/jpbs.jpbs_486_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/22/2023] [Accepted: 09/01/2023] [Indexed: 04/11/2024] Open
Abstract
Aim This research was done to analyze the effectiveness related to herbal chemicals in tackling candidiasis. Materials and Methods Grounded and ethanol-extracted residues of plants like Avicennia marina, Fagonia indica, Portulaca oleracea, Lawsania inermis, Ziziphus spina, Asphodelus tenuifolius, and Salvadora persica were used in the study. The extract was used against candida species, after which the antibacterial as well as cytotoxicity toward the former were evaluated. Results L. inermis and P. oleracea with minimal inhibitory concentration of approx. 10 cenmL had an increased activity against candida species. The preparations of these plants acted against Candida albicans during its stages related to pathogenesis during biofilm production. Superadded infections like in case of bacterial infections along with candida can be difficult to cure. On human RBCs, these plant preparations had no toxicity at their minimum inhibitory concentration level. Conclusion We concluded that, as far as being anti-candida and acting against MDR bacterial infections, preparations of plants were effective as an alternative to allopathic drugs.
Collapse
Affiliation(s)
- Prashant A. Karni
- Department of Prosthodontics and Crown and Bridge, KAHER’S KLE VK Institute of Dental Sciences, Belagavi, Karnataka, India
| | - Aparna Muraleedharan
- Department of Oral Medicine and Radiology, Al Azhar Dental College, Thodupuzha, Kerala, India
| | - Srikala Bhandary
- Department of Pediatric and Preventive Dentistry, AB Shetty Memorial Institute of Dental Sciences, Mangalore, Karnataka, India
| | - Sheetal Mujoo
- Department of Oral Medicine and Radiology, College of Dentistry, Jazan University, Jazan, Saudi Arabia
| | - Anuj Paul Maini
- Department of Oral Medicine and Radiology, Dr. D. Y. Patil Dental College and Hospital, Dr. D. Y. Patil Vidyapeeth, Pimpri, Pune, Maharashtra, India
| | - Mudita Chaturvedi
- Department of Oral and Maxillofacial Pathology, Private Practitioner, Bhopal, Madhya Pradesh, India
| |
Collapse
|
8
|
Montoya C, Kurylec J, Ossa A, Orrego S. Cyclic strain of poly (methyl methacrylate) surfaces triggered the pathogenicity of Candida albicans. Acta Biomater 2023; 170:415-426. [PMID: 37625677 PMCID: PMC10705016 DOI: 10.1016/j.actbio.2023.08.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/21/2023] [Accepted: 08/17/2023] [Indexed: 08/27/2023]
Abstract
Candida albicans is an opportunistic yeast and the primary etiological factor in oral candidiasis and denture stomatitis. The pathogenesis of C. albicans could be triggered by several variables, including environmental, nutritional, and biomaterial surface cues. Specifically, biomaterial interactions are driven by different surface properties, including wettability, stiffness, and roughness. Dental biomaterials experience repetitive (cyclic) stresses from chewing and biomechanical movements. Pathogenic biofilms are formed over these biomaterial surfaces under cyclic strain. This study investigated the effect of the cyclic strain (deformation) of biomaterial surfaces on the virulence of Candida albicans. Candida biofilms were grown over Poly (methyl methacrylate) (PMMA) surfaces subjected to static (no strain) and cyclic strain with different levels (ε˜x=0.1 and 0.2%). To evaluate the biomaterial-biofilm interactions, the biofilm characteristics, yeast-to-hyphae transition, and the expression of virulent genes were measured. Results showed the biofilm biomass and metabolic activity to be significantly higher when Candida adhered to surfaces subjected to cyclic strain compared to static surfaces. Examination of the yeast-to-hyphae transition showed pseudo-hyphae cells (pathogenic) in cyclically strained biomaterial surfaces, whereas static surfaces showed spherical yeast cells (commensal). RNA sequencing was used to determine and compare the transcriptome profiles of cyclically strained and static surfaces. Genes and transcription factors associated with cell adhesion (CSH1, PGA10, and RBT5), biofilm formation (EFG1), and secretion of extracellular matrix (ECM) (CRH1, ADH5, GCA1, and GCA2) were significantly upregulated in the cyclically strained biomaterial surfaces compared to static ones. Genes and transcription factors associated with virulence (UME6 and HGC1) and the secretion of extracellular enzymes (LIP, PLB, and SAP families) were also significantly upregulated in the cyclically strained biomaterial surfaces compared to static. For the first time, this study reveals a biomaterial surface factor triggering the pathogenesis of Candida albicans, which is essential for understanding, controlling, and preventing oral infections. STATEMENT OF SIGNIFICANCE: Fungal infections produced by Candida albicans are a significant contributor to various health conditions. Candida becomes pathogenic when certain environmental conditions change, including temperature, pH, nutrients, and CO2 levels. In addition, surface properties, including wettability, stiffness, and roughness, drive the interactions between Candida and biomaterials. Clinically, Candida adheres to biomaterials that are under repetitive deformation due to body movements. In this work, we revealed that when Candida adhered to biomaterial surfaces subjected to repetitive deformation, the microorganism becomes pathogenic by increasing the formation of biofilms and the expression of virulent factors related to hyphae formation and secretion of enzymes. Findings from this work could aid the development of new strategies for treating fungal infections in medical devices or implanted biomaterials.
Collapse
Affiliation(s)
- Carolina Montoya
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, United States
| | - Julia Kurylec
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, United States
| | - Alex Ossa
- Production Engineering Department, School of Engineering, Universidad EAFIT, Medellín, Colombia
| | - Santiago Orrego
- Department of Oral Health Sciences, Kornberg School of Dentistry, Temple University, Philadelphia, PA, United States; Bioengineering Department, College of Engineering, Temple University, Philadelphia, PA, United States.
| |
Collapse
|
9
|
Sadanandan B, Vijayalakshmi V, Ashrit P, Babu UV, Sharath Kumar LM, Sampath V, Shetty K, Joglekar AP, Awaknavar R. Aqueous spice extracts as alternative antimycotics to control highly drug resistant extensive biofilm forming clinical isolates of Candida albicans. PLoS One 2023; 18:e0281035. [PMID: 37315001 DOI: 10.1371/journal.pone.0281035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/31/2023] [Indexed: 06/16/2023] Open
Abstract
Candida albicans form biofilm by associating with biotic and abiotic surfaces. Biofilm formation by C. albicans is relevant and significant as the organisms residing within, gain resistance to conventional antimycotics and are therefore difficult to treat. This study targeted the potential of spice-based antimycotics to control C. albicans biofilms. Ten clinical isolates of C. albicans along with a standard culture MTCC-3017 (ATCC-90028) were screened for their biofilm-forming ability. C. albicans M-207 and C. albicans S-470 were identified as high biofilm formers by point inoculation on Trypticase Soy Agar (TSA) medium as they formed a lawn within 16 h and exhibited resistance to fluconazole and caspofungin at 25 mcg and 8 mcg respectively. Aqueous and organic spice extracts were screened for their antimycotic activity against C. albicans M-207 and S-470 by agar and disc diffusion and a Zone of Inhibition was observed. Minimal Inhibitory Concentration was determined based on growth absorbance and cell viability measurements. The whole aqueous extract of garlic inhibited biofilms of C. albicans M-207, whereas whole aqueous extracts of garlic, clove, and Indian gooseberry were effective in controlling C. albicans S-470 biofilm within 12 h of incubation. The presence of allicin, ellagic acid, and gallic acid as dominant compounds in the aqueous extracts of garlic, clove, and Indian gooseberry respectively was determined by High-Performance Thin Layer Chromatography and Liquid Chromatography-Mass Spectrometry. The morphology of C. albicans biofilm at different growth periods was also determined through bright field microscopy, phase contrast microscopy, and fluorescence microscopy. The results of this study indicated that the alternate approach in controlling high biofilm-forming, multi-drug resistant clinical isolates of C. albicans M-207 and S-470 using whole aqueous extracts of garlic, clove, and Indian gooseberry is a safe, potential, and cost-effective one that can benefit the health care needs with additional effective therapeutics to treat biofilm infections.
Collapse
Affiliation(s)
- Bindu Sadanandan
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, Karnataka, India
| | | | - Priya Ashrit
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, Karnataka, India
| | - Uddagiri Venkanna Babu
- Department of Phytochemistry, Research and Development, The Himalaya Drug Company, Bengaluru, Karnataka, India
| | | | - Vasulingam Sampath
- Department of Phytochemistry, Research and Development, The Himalaya Drug Company, Bengaluru, Karnataka, India
| | - Kalidas Shetty
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, United States of America
| | | | - Rashmi Awaknavar
- Department of Biotechnology, M S Ramaiah Institute of Technology, Bengaluru, Karnataka, India
| |
Collapse
|
10
|
Jamaluddin, Riyanti EI, Mubarik NR, Listanto E. Construction of Novel Yeast Strains from Candida tropicalis KBKTI 10.5.1 and Saccharomyces cerevisiae DBY1 to Improve the Performance of Ethanol Production Using Lignocellulosic Hydrolysate. Trop Life Sci Res 2023; 34:81-107. [PMID: 38144374 PMCID: PMC10735269 DOI: 10.21315/tlsr2023.34.2.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/19/2022] [Indexed: 12/26/2023] Open
Abstract
Increased consumption of xylose-glucose and yeast tolerance to lignocellulosic hydrolysate are the keys to the success of second-generation bioethanol production. Candida tropicalis KBKTI 10.5.1 is a new isolated strain that has the ability to ferment xylose. In contrast to Saccharomyces cerevisiae DBY1 which only can produce ethanol from glucose fermentation. The research objective is the application of the genome shuffling method to increase the performance of ethanol production using lignocellulosic hydrolysate. Mutants were selected on xylose and glucose substrates separately and using random amplified polymorphic DNA (RAPD) analysis. The ethanol production using lignocellulosic hydrolysate by parents and mutants was evaluated using a batch fermentation system. Concentrations of ethanol, residual sugars, and by-products such as glycerol, lactate and acetate were measured using HPLC machine equipped with Hiplex H for carbohydrate column and a refraction index detector (RID). Ethanol produced by Fcs1 and Fcs4 mutants on acid hydrolysate increased by 26.58% and 24.17% from parent DBY1, by 14.94% and 21.84% from parent KBKTI 10.5.1. In contrast to the increase in ethanol production on alkaline hydrolysate, Fcs1 and Fcs4 mutants only experienced an increase in ethanol production by 1.35% from the parent KBKTI 10.5.1. Ethanol productivity by Fcs1 and Fcs4 mutants on acid hydrolysate reached 0.042 g/L/h and 0.044 g/L/h. The recombination of the genomes of different yeast species resulted in novel yeast strains that improved resistance performance and ethanol production on lignocellulosic hydrolysates.
Collapse
Affiliation(s)
- Jamaluddin
- Graduate School of IPB University, IPB University, Jl. Raya Dramaga, Kampus IPB Dramaga Bogor 16680 West Java, Indonesia
| | - Eny Ida Riyanti
- National Research and Innovation Agency (BRIN), Jl. Tentara Pelajar No 3A, Bogor 16111, Indonesia
| | - Nisa Rachmania Mubarik
- Department of Biology, Faculty of Mathematics and Natural Science, IPB University, Jl. Raya Dramaga, Kampus IPB Dramaga, Bogor 16680 West Java, Indonesia
| | - Edy Listanto
- National Research and Innovation Agency (BRIN), Jl. Tentara Pelajar No 3A, Bogor 16111, Indonesia
| |
Collapse
|
11
|
Harun WH, Zulaila CO, Fahim A, Allah NU. The synergistic effects of hydroxychavicol and amphotericin B towards yeast-hyphae transition and the germination of Candida albicans. J Taibah Univ Med Sci 2023; 18:967-975. [PMID: 36866244 PMCID: PMC9972399 DOI: 10.1016/j.jtumed.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 12/19/2022] [Accepted: 02/08/2023] [Indexed: 02/22/2023] Open
Abstract
Objectives Dimorphic transformation from yeast cells to hyphae is considered one of the major virulence factors of candidal species. The development of antifungal resistance against several candida diseases has led researchers to find plant derived alternatives. We aimed to determine the effect of hydroxychavicol (HC), Amphotericin B (AMB), and their combination (HC + AMB) on the transition and germination of oral Candida species. Methods The antifungal susceptibility of hydroxychavicol (HC) and Amphotericin B (AMB) separately and in a mixture (HC + AMB) against Candida albicans ATCC 14053, Candida parapsilosis ATCC 22019, Candida tropicalis ATCC 13803, and Candida dubliniensis ATCC MYA-2975 was determined by broth microdilution technique. Minimal Inhibitory Concentration was calculated based on the CLSI protocols. The MIC50, fractional inhibitory concentration (FIC) index, and IC50 were also determined. The IC50 values were used as the treatment concentration of HC, AMB, and HC + AMB to study the effect of antifungal inhibition on yeast hypha transition (gemination). The germ tube formation percentage of candida species was calculated at several intervals using a colorimetric assay. Results The MIC50 range of HC alone against Candida species was between 120-240 µg per mL while that of AMB was between 2-8 µg per mL, respectively. The combination of HC + AMB at 1:1 and 2:1 demonstrated the strongest synergistic activity against C. albicans with an FIC index of 0.07. Moreover, within the first hour of treatment, the total percentage of germinating cells was significantly reduced by 79% (p < 0.05). Conclusion The combination of HC + AMB displayed synergism and inhibited C. albicans hyphal growth. HC + AMB combination slowed the germination process and exhibited consistent prolonged effect up to 3 h post-treatment. The results of this study will pave the way for potential in vivo studies.
Collapse
Affiliation(s)
- Wan H.A.W. Harun
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia,Corresponding address: Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Che O.N. Zulaila
- Department of Oral and Craniofacial Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, Malaysia
| | - Ayesha Fahim
- Department of Oral Biology, University College of Dentistry, University of Lahore, Lahore, Pakistan
| | - Nasar U.M. Allah
- Department of Periodontics, Foundation University College of Dentistry and Hospital, Foundation University Islamabad, Islamabad, Pakistan
| |
Collapse
|
12
|
Poon Y, Hui M. Inhibitory effect of lactobacilli supernatants on biofilm and filamentation of Candida albicans, Candida tropicalis, and Candida parapsilosis. Front Microbiol 2023; 14:1105949. [PMID: 36860488 PMCID: PMC9969145 DOI: 10.3389/fmicb.2023.1105949] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/20/2023] [Indexed: 02/15/2023] Open
Abstract
Introduction Probiotic Lactobacillus strains had been investigated for the potential to protect against infection caused by the major fungal pathogen of human, Candida albicans. Besides antifungal activity, lactobacilli demonstrated a promising inhibitory effect on biofilm formation and filamentation of C. albicans. On the other hand, two commonly isolated non-albicans Candida species, C. tropicalis and C. parapsilosis, have similar characteristics in filamentation and biofilm formation with C. albicans. However, there is scant information of the effect of lactobacilli on the two species. Methods In this study, biofilm inhibitory effects of L. rhamnosus ATCC 53103, L. plantarum ATCC 8014, and L. acidophilus ATCC 4356 were tested on the reference strain C. albicans SC5314 and six bloodstream isolated clinical strains, two each of C. albicans, C. tropicalis, and C. parapsilosis. Results and Discussion Cell-free culture supernatants (CFSs) of L. rhamnosus and L. plantarum significantly inhibited in vitro biofilm growth of C. albicans and C. tropicalis. L. acidophilus, conversely, had little effect on C. albicans and C. tropicalis but was more effective on inhibiting C. parapsilosis biofilms. Neutralized L. rhamnosus CFS at pH 7 retained the inhibitory effect, suggesting that exometabolites other than lactic acid produced by the Lactobacillus strain might be accounted for the effect. Furthermore, we evaluated the inhibitory effects of L. rhamnosus and L. plantarum CFSs on the filamentation of C. albicans and C. tropicalis strains. Significantly less Candida filaments were observed after co-incubating with CFSs under hyphae-inducing conditions. Expressions of six biofilm-related genes (ALS1, ALS3, BCR1, EFG1, TEC1, and UME6 in C. albicans and corresponding orthologs in C. tropicalis) in biofilms co-incubated with CFSs were analyzed using quantitative real-time PCR. When compared to untreated control, the expressions of ALS1, ALS3, EFG1, and TEC1 genes were downregulated in C. albicans biofilm. In C. tropicalis biofilms, ALS3 and UME6 were downregulated while TEC1 was upregulated. Taken together, the L. rhamnosus and L. plantarum strains demonstrated an inhibitory effect, which is likely mediated by the metabolites secreted into culture medium, on filamentation and biofilm formation of C. albicans and C. tropicalis. Our finding suggested an alternative to antifungals for controlling Candida biofilm.
Collapse
|
13
|
Metabolic Plasticity of Candida albicans in Response to Different Environmental Conditions. J Fungi (Basel) 2022; 8:jof8070723. [PMID: 35887478 PMCID: PMC9322845 DOI: 10.3390/jof8070723] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/07/2022] [Accepted: 07/09/2022] [Indexed: 02/04/2023] Open
Abstract
The ubiquitous commensal Candida albicans, part of the human microbiota, is an opportunistic pathogen able to cause a wide range of diseases, from cutaneous mycoses to life-threatening infections in immunocompromised patients. Candida albicans adapts to different environments and survives long-time starvation. The ability to switch from yeast to hyphal morphology under specific environmental conditions is associated with its virulence. Using hydrogen nuclear magnetic resonance spectroscopy, we profiled the intracellular and extracellular metabolome of C. albicans kept in water, yeast extract–peptone–dextrose (YPD), and M199 media, at selected temperatures. Experiments were carried out in hypoxia to mimic a condition present in most colonized niches and fungal infection sites. Comparison of the intracellular metabolites measured in YPD and M199 at 37 °C highlighted differences in specific metabolic pathways: (i) alanine, aspartate, glutamate metabolism, (ii) arginine and proline metabolism, (iii) glycerolipid metabolism, attributable to the diverse composition of the media. Moreover, we hypothesized that the subtle differences in the M199 metabolome, observed at 30 °C and 37 °C, are suggestive of modifications propaedeutic to a subsequent transition from yeast to hyphal form. The analysis of the metabolites’ profiles of C. albicans allows envisaging a molecular model to better describe its ability to sense and adapt to environmental conditions.
Collapse
|
14
|
Yeast-Mycelial Dimorphism in Pichia pastoris SMD1168 Is Triggered by Nutritional and Environmental Factors. Curr Microbiol 2022; 79:190. [PMID: 35556178 DOI: 10.1007/s00284-022-02884-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 04/20/2022] [Indexed: 11/03/2022]
Abstract
This study reports, for the first time, morphological transition from yeast-like to filamentous form, normally associated with pathogenicity/increased protein secretion, in Pichia pastoris SMD1168 strain. The response was recorded in response to nutritional and environmental cues. The factors affecting this switch were extracellular pH (under nitrogen starvation conditions), carbon and nitrogen source under nitrogen- and carbon-limiting conditions respectively. Under nitrogen-limiting conditions, addition of fructose and sucrose in the culture medium induced filamentous morphology in a segregated form whereas addition of galactose led to a mixture of yeast and the filamentous form of the cells. Under carbon-limiting conditions, isoleucine and proline forced a filamentous form whereas glycine, valine, alanine and phenylalanine promoted yeast-like morphology. Similar dimorphic shift was also displayed by a recombinant methanol slow utilizing (Muts) strain (SMD-GCSF Muts) producing human granulocyte colony-stimulating factor in response to change in the initial inoculum level. Analysis of the extracellular metabolome by GC-MS indicated that several amino acids (leucine, proline, tyrosine), carboxylic acids (phenylacetic-, propanoic acid), alcohols and butylamine were present at different levels in the culture broth of the two morphological forms. High accumulation of proline and butylamine was seen in the extracellular culture filtrate of the filamentous form of the yeast. Presence of quorum-sensing molecules (phenylethyl alcohol, dodecanol) suggested complex network of pathways involved in this morphological transition.
Collapse
|
15
|
Whitman RE, Whipple KM, Plummer CE, Beatty SSK. What is your diagnosis? Corneal scrape cytology from a horse. Vet Clin Pathol 2022; 52 Suppl 2:142-145. [PMID: 35445435 DOI: 10.1111/vcp.13077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 08/16/2021] [Accepted: 09/21/2021] [Indexed: 11/30/2022]
Affiliation(s)
- Rachel E Whitman
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | | | - Caryn E Plummer
- Small Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA.,Large Animal Clinical Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| | - Sarah S K Beatty
- Department of Comparative, Diagnostic, and Population Medicine, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA.,Antech Diagnostics, Fountain Valley, CA, USA
| |
Collapse
|
16
|
Anggraini D, Ota N, Shen Y, Tang T, Tanaka Y, Hosokawa Y, Li M, Yalikun Y. Recent advances in microfluidic devices for single-cell cultivation: methods and applications. LAB ON A CHIP 2022; 22:1438-1468. [PMID: 35274649 DOI: 10.1039/d1lc01030a] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Single-cell analysis is essential to improve our understanding of cell functionality from cellular and subcellular aspects for diagnosis and therapy. Single-cell cultivation is one of the most important processes in single-cell analysis, which allows the monitoring of actual information of individual cells and provides sufficient single-cell clones and cell-derived products for further analysis. The microfluidic device is a fast-rising system that offers efficient, effective, and sensitive single-cell cultivation and real-time single-cell analysis conducted either on-chip or off-chip. Here, we introduce the importance of single-cell cultivation from the aspects of cellular and subcellular studies. We highlight the materials and structures utilized in microfluidic devices for single-cell cultivation. We further discuss biological applications utilizing single-cell cultivation-based microfluidics, such as cellular phenotyping, cell-cell interactions, and omics profiling. Finally, present limitations and future prospects of microfluidics for single-cell cultivation are also discussed.
Collapse
Affiliation(s)
- Dian Anggraini
- Division of Materials Science, Nara Institute of Science and Technology, Nara 630-0192, Japan.
| | - Nobutoshi Ota
- Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yigang Shen
- Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Tao Tang
- Division of Materials Science, Nara Institute of Science and Technology, Nara 630-0192, Japan.
| | - Yo Tanaka
- Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoichiroh Hosokawa
- Division of Materials Science, Nara Institute of Science and Technology, Nara 630-0192, Japan.
| | - Ming Li
- School of Engineering, Macquarie University, Sydney 2122, Australia.
| | - Yaxiaer Yalikun
- Division of Materials Science, Nara Institute of Science and Technology, Nara 630-0192, Japan.
- Center for Biosystems Dynamics Research (BDR), RIKEN, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
17
|
Del Rio M, Radicioni MB, Mello ÉO, Ribeiro SFF, Taveira GB, Carvalho AO, de la Canal L, Gomes VM, Regente M. A plant mannose-binding lectin and fluconazole: key targets combination against Candida albicans. J Appl Microbiol 2022; 132:4310-4320. [PMID: 35332971 DOI: 10.1111/jam.15544] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/19/2022] [Accepted: 03/22/2022] [Indexed: 12/01/2022]
Abstract
AIMS This study aimed to evaluate the combined effect of a mannose-binding lectin Helja with fluconazole (FLC) on Candida albicans and to get insights about the joint action mechanism. METHODS AND RESULTS The fungal growth was assessed following the optical density at 630 nm. Fungal cell morphology and nucleus integrity were analyzed by flow cytometry and confocal laser scanning microscopy using Calcofluor White (CFW) and 4',6-diamidino-2-phenylindole (DAPI) staining, respectively. The basis of Helja+FLC action on cell wall and plasma membrane was analyzed using perturbing agents. The Helja+FLC combination exhibited an inhibitory effect of fungal growth about three times greater than the sum of both compounds separately and inhibited fungal morphological plasticity, an important virulence attribute associated with drug resistance. Cells treated with Helja+FLC showed morphological changes, nucleus disintegration and formation of multimera structures, leading to cell collapse. CONCLUSIONS Our findings indicate that the Helja+FLC combination exhibited a potent antifungal activity based on their simultaneous action on different microbial cell targets. SIGNIFICANCE AND IMPACT OF STUDY The combination of a natural protein with conventional drugs might be helpful for the design of effective therapeutic strategies against Candida, contributing to minimize the development of drug resistance and host cell toxicity.
Collapse
Affiliation(s)
- Marianela Del Rio
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Funes 3250, 7600, Mar del Plata, Argentina
| | - Melisa B Radicioni
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Funes 3250, 7600, Mar del Plata, Argentina
| | - Érica O Mello
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, 28013-602, Campos dos Goytacazes, RJ, Brazil
| | - Suzanna F F Ribeiro
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, 28013-602, Campos dos Goytacazes, RJ, Brazil
| | - Gabriel B Taveira
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, 28013-602, Campos dos Goytacazes, RJ, Brazil
| | - André O Carvalho
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, 28013-602, Campos dos Goytacazes, RJ, Brazil
| | - Laura de la Canal
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Funes 3250, 7600, Mar del Plata, Argentina
| | - Valdirene M Gomes
- Laboratório de Fisiologia e Bioquímica de Microrganismos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, 28013-602, Campos dos Goytacazes, RJ, Brazil
| | - Mariana Regente
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Funes 3250, 7600, Mar del Plata, Argentina
| |
Collapse
|
18
|
Kumpakha R, Gordon DM. Inhibition of morphological transition and hyphae extension in Candida spp. by occidiofungin. J Appl Microbiol 2021; 132:3038-3048. [PMID: 34941005 DOI: 10.1111/jam.15425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 12/05/2021] [Accepted: 12/20/2021] [Indexed: 11/28/2022]
Abstract
AIMS To assess the efficacy of the antifungal, occidiofungin, against Candida albicans and Candida tropicalis morphological transformation. METHODS AND RESULTS Susceptibility assays and morphological data were used to demonstrate that occidiofungin effectively targets C. albicans and C. tropicalis undergoing morphological transformation. Susceptibility assays found that cell sensitivity to occidiofungin varied with the media conditions used for morphological switching. Microscopy data showed that occidiofungin inhibited hyphae formation when added at the time of morphological induction and hyphal extension when added within the first hour following hyphae induction. Immunoblot analysis demonstrated that occidiofungin addition prevented activation of Cek1p MAPK signalling. CONCLUSIONS The data indicated that the antimicrobial compound, occidiofungin, effectively targets hyphae elongation in Candida spp. and suggests the biological target of occidiofungin is necessary for the morphological changes associated with yeast-to-hyphae switching. SIGNIFICANCE AND IMPACT OF THE STUDY Findings from this study demonstrated that occidiofungin effectively targets the invasive growth of dimorphic Candida which suggests this compound may also inhibit the heterogenous population of cells present in a clinical setting. This presents occidiofungin as a promising candidate for the treatment of Candida associated infections.
Collapse
Affiliation(s)
- Rabina Kumpakha
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| | - Donna M Gordon
- Department of Biological Sciences, Mississippi State University, Mississippi State, Mississippi, USA
| |
Collapse
|
19
|
Iracane E, Vega-Estévez S, Buscaino A. On and Off: Epigenetic Regulation of C. albicans Morphological Switches. Pathogens 2021; 10:pathogens10111463. [PMID: 34832617 PMCID: PMC8619191 DOI: 10.3390/pathogens10111463] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/03/2021] [Accepted: 11/05/2021] [Indexed: 01/08/2023] Open
Abstract
The human fungal pathogen Candida albicans is a dimorphic opportunistic pathogen that colonises most of the human population without creating any harm. However, this fungus can also cause life-threatening infections in immunocompromised individuals. The ability to successfully colonise different host niches is critical for establishing infections and pathogenesis. C. albicans can live and divide in various morphological forms critical for its survival in the host. Indeed, C. albicans can grow as both yeast and hyphae and can form biofilms containing hyphae. The transcriptional regulatory network governing the switching between these different forms is complex but well understood. In contrast, non-DNA based epigenetic modulation is emerging as a crucial but still poorly studied regulatory mechanism of morphological transition. This review explores our current understanding of chromatin-mediated epigenetic regulation of the yeast to hyphae switch and biofilm formation. We highlight how modification of chromatin structure and non-coding RNAs contribute to these morphological transitions.
Collapse
|
20
|
Mare AD, Ciurea CN, Man A, Mareș M, Toma F, Berța L, Tanase C. In Vitro Antifungal Activity of Silver Nanoparticles Biosynthesized with Beech Bark Extract. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10102153. [PMID: 34685961 PMCID: PMC8538873 DOI: 10.3390/plants10102153] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/04/2021] [Accepted: 10/07/2021] [Indexed: 05/08/2023]
Abstract
Biosynthesis is a green method for the synthesis of silver nanoparticles (AgNPs). This study aimed to assess the antifungal activity of two silver nanoparticle solutions, synthesized using beech bark extract (BBE) and acetate and nitrate silver salts (AgNP Acetate BBE and AgNP Nitrate BBE), their influence on biofilm production, their potential synergistic effects with fluconazole, on different Candida spp., and their influence on virulence factors of C. albicans (germ tube production, gene expression for ALS3, SAP2, HSP70). Both the AgNP BBEs presented different minimum inhibitory concentrations for all the studied Candida spp., but biofilm production was inhibited only for C. albicans and C. guilliermondii. The growth rates of all the studied Candida spp. were inhibited in the presence of both AgNP BBEs, except for C. auris. Synergistic activity was observed for C. parapsilosis and C. guilliermondii, for different combinations of fluconazole with both the AgNP BBEs. The germ tube production of C. albicans was slightly inhibited by the AgNP BBEs. Only AgNP Acetate BBE was able to down-regulate the expression of SAP2. Overall, we can conclude that, even if more studies are necessary, AgNPs synthesized with beech bark extract might be an interesting alternative to classic antifungal treatments.
Collapse
Affiliation(s)
- Anca Delia Mare
- Department of Microbiology, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, 38 Gheorghe Marinescu Street, 540139 Târgu Mureș, Romania; (A.D.M.); (F.T.)
| | - Cristina Nicoleta Ciurea
- Department of Microbiology, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, 38 Gheorghe Marinescu Street, 540139 Târgu Mureș, Romania; (A.D.M.); (F.T.)
- Doctoral School, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mureș, 38 Gheorghe Marinescu Street, 540139 Târgu Mureș, Romania
- Correspondence: (C.N.C.); (A.M.); Tel.: +40-759083638 (C.N.C.); +40-745350520 (A.M.)
| | - Adrian Man
- Department of Microbiology, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, 38 Gheorghe Marinescu Street, 540139 Târgu Mureș, Romania; (A.D.M.); (F.T.)
- Correspondence: (C.N.C.); (A.M.); Tel.: +40-759083638 (C.N.C.); +40-745350520 (A.M.)
| | - Mihai Mareș
- Laboratory of Antimicrobial Chemotherapy, Ion Ionescu de la Brad University of Life Sciences, 8 Aleea Mihail Sadoveanu, 700489 Iași, Romania;
| | - Felicia Toma
- Department of Microbiology, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, 38 Gheorghe Marinescu Street, 540139 Târgu Mureș, Romania; (A.D.M.); (F.T.)
| | - Lavinia Berța
- Department of General and Inorganic Chemistry, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, 38 Gheorghe Marinescu Street, 540139 Târgu Mureș, Romania;
| | - Corneliu Tanase
- Department of Pharmaceutical Botany, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology of Târgu Mureș, 38 Gheorghe Marinescu Street, 540139 Târgu Mureș, Romania;
| |
Collapse
|
21
|
Temperatures Outside the Optimal Range for Helicobacter pylori Increase Its Harboring within Candida Yeast Cells. BIOLOGY 2021; 10:biology10090915. [PMID: 34571792 PMCID: PMC8472035 DOI: 10.3390/biology10090915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 12/23/2022]
Abstract
Simple Summary Helicobacter pylori is associated with the development of diverse gastric pathologies. This bacterium has been shown to invade yeast to protect itself from environmental factors such as changes in pH, the presence of antibiotics or variations in nutrients that affect their viability. However, intra-yeast H. pylori has been reported from other sources, including food, or when the storage temperature is outside the optimal growth range for H. pylori, which is 30–37 °C. It is necessary to continue investigating the environmental factors that participate in the entry of the bacteria into yeast. In this work, it was evaluated whether temperature changes promote the entry of H. pylori into Candida and whether this endosymbiosis favors bacterial viability. It was observed that H. pylori significantly increased its invasiveness to yeast when these two microorganisms were co-cultured under 40 °C. The results support that H. pylori invades yeasts to protect itself from stressful environments, favoring its viability in these environments. In addition, it can be suggested that this microorganism would use yeast as a transmission vehicle, thereby contributing to its dissemination in the population. However, the latter still needs to be confirmed. Abstract Helicobacter pylori is capable of entering into yeast, but the factors driving this endosymbiosis remain unknown. This work aimed to determine if temperatures outside the optimal range for H. pylori increase its harboring within Candida. H. pylori strains were co-cultured with Candida strains in Brucella broth supplemented with 5% fetal bovine serum and incubated at 4, 25, 37 or 40 °C. After co-culturing, yeasts containing bacteria-like bodies (Y-BLBs) were observed by optical microscopy, and the bacterium were identified as H. pylori by FISH. The H. pylori 16S rRNA gene was amplified from the total DNA of Y-BLBs. The viability of intra-yeast H. pylori cells was confirmed using a viability assay. All H. pylori strains were capable of entering into all Candida strains assayed. The higher percentages of Y-BLBs are obtained at 40 °C with any of the Candida strains. H pylori also increased its harboring within yeast in co-cultures incubated at 25 °C when compared to those incubated at 37 °C. In conclusion, although H. pylori grew significantly at 40 °C, this temperature increased its harboring within Candida. The endosymbiosis between both microorganisms is strain-dependent and permits bacterial cells to remain viable under the stressing environmental conditions assayed.
Collapse
|
22
|
Bhuiyan MAB, Sultana N, Mahmud NU, Kader MA, Hassan O, Chang T, Islam T, Akanda AM. Characterization of Pestalotiopsis sp. causing gray leaf spot in coconut (Cocos nucifera L.) in Bangladesh. J Basic Microbiol 2021; 61:1085-1097. [PMID: 34490920 DOI: 10.1002/jobm.202100253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/15/2021] [Accepted: 08/24/2021] [Indexed: 11/11/2022]
Abstract
Coconut (Cocos nucifera L.) is one of the most important fruit trees in Bangladesh. This tree is susceptible to various pathogens. Among them, a fungus was consistently isolated from gray leaf spot symptom in coconut. This study aimed to isolate, characterize, and find the management strategies of the causal fungus of gray leaf spot disease in coconut. Both morphological and molecular characters identified the pathogen as Pestalotiopsis sp. for the first time in Bangladesh. Artificial inoculation of this fungus showed symptoms similar to those previously observed in the field. Cross-inoculation test suggests that Pestalotiopsis sp. has a wide host range. The infection process of Pestalotiopsis sp. started at 2 h after inoculation (hai) with the formation of germ tube followed by the formation of infection hyphae, which penetrated directly into the host at 6 hai. Gray leaf spot symptom was developed at 120 hai. Numerous conidia developed from the acervuli at 168 hai. These conidia acted as the source of inocula for secondary infection. The optimum temperature for the growth of Pestalotiopsis sp. was 25°C, however, the growth of Pestalotiopsis sp. ceased at 15°C and 35°C. This pathogen was completely inhibited by Autostin 50 WDG (carbendazim) at 100 ppm. Trichoderma viride (Pb-7) was found as the potential biocontrol agent against Pestalotiopsis sp. These findings could contribute to describing the disease cycle and epidemiology of Pestalotiopsis sp. that would ultimately require to undertake effective control measures against this pathogen.
Collapse
Affiliation(s)
- Md Abdullahil Baki Bhuiyan
- Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Nasrin Sultana
- Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Nur U Mahmud
- Institute of Biotechnology and Genetics Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Md Abdul Kader
- Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Oliul Hassan
- Department of Ecology & Environmental System, College of Ecology & Environmental Science, Kyungpook National University, Daegu, South Korea
| | - Taehyun Chang
- Department of Ecology & Environmental System, College of Ecology & Environmental Science, Kyungpook National University, Daegu, South Korea
| | - Tofazzal Islam
- Institute of Biotechnology and Genetics Engineering (IBGE), Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Abdul M Akanda
- Department of Plant Pathology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| |
Collapse
|
23
|
Teevan-Hanman C, O’Shea P. Candida albicans exhibit two classes of cell surface binding sites for serum albumin defined by their affinity, abundance and prospective role in interkingdom signalling. PLoS One 2021; 16:e0254593. [PMID: 34280221 PMCID: PMC8289007 DOI: 10.1371/journal.pone.0254593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 06/28/2021] [Indexed: 11/19/2022] Open
Abstract
Serum albumin binding to the yeast form of Candida albicans is described. Two populations of binding site are identified using two complementary spectroscopic techniques: an extrinsic fluorescent probe, 3-hexa-decanoyl-7-hydrocoumarin ([HEXCO) added to the C. albicans yeast cell surface that records the electrostatic surface potential and so responds to the surface binding of serum albumin and secondly a light scattering technique that reveals how albumin modulates aggregation of the yeast population. The albumin binding sites are found to possess different binding affinities and relative abundance leading to different total binding capacities. These are characterized as a receptor population with high affinity binding (Kd ~ 17 μM) but relatively low abundance and a separate population with high abundance but much lower affinity (Kd ~ 364 μM). The low-affinity binding sites are shown to be associated with the yeast cell aggregation. These values are found be dependent on the C. albicans strain and the nature of the culture media; some examples of these effects are explored. The possible physiological consequences of the presence of these sites are speculated in terms of evading the host's immune response, biofilm formation and possible interkingdom signaling processes.
Collapse
Affiliation(s)
- Claire Teevan-Hanman
- Faculty of Health & Medicine, Lancaster University, Lancaster, England, United Kingdom
| | - Paul O’Shea
- Faculty of Health & Medicine, Lancaster University, Lancaster, England, United Kingdom
- * E-mail:
| |
Collapse
|
24
|
Fusco A, Savio V, Donniacuo M, Perfetto B, Donnarumma G. Antimicrobial Peptides Human Beta-Defensin-2 and -3 Protect the Gut During Candida albicans Infections Enhancing the Intestinal Barrier Integrity: In Vitro Study. Front Cell Infect Microbiol 2021; 11:666900. [PMID: 34178720 PMCID: PMC8223513 DOI: 10.3389/fcimb.2021.666900] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/17/2021] [Indexed: 12/24/2022] Open
Abstract
The intestinal mucosa is composed of a monolayer of epithelial cells, which is highly polarized and firmly united to each other thanks to the presence of proteins complexes, called Tight junctions (TJs). Alteration of the mucus layer and TJs causes an increase in intestinal permeability, which can lead to a microbial translocation and systemic disorders. Candida albicans, in addition to its role of commensal, is an opportunistic pathogen responsible for disseminated candidiasis, especially in immunocompromised subjects where the dysbiosis leads to damage of the intestinal mucosal barrier . In this work, we used a line of intestinal epithelial cells able to stably express the genes that encodes human beta defensin-2 (HBD-2) and -3 (HBD-3) to monitor the invasion of C. albicans in vitro. Defensins are a group of antimicrobial peptides (AMPs) found in different living organisms, and are involved in the first line of defense in the innate immune response against pathogens. The results obtained show that the presence of antimicrobial peptides improves the expression of TJs and increases the Trans Epithelial Electrical Resistence value. In addition, the invasive ability of C. albicans in transfected cells is significantly reduced, as well as the expression levels of genes involved in the apoptotic pathway. Through the study of interaction between antimicrobial peptides and microbiota we will be able in the future to better understand the mechanisms by which they exert the host defense function against intestinal pathogens.
Collapse
Affiliation(s)
- Alessandra Fusco
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Vittoria Savio
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Maria Donniacuo
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Brunella Perfetto
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Giovanna Donnarumma
- Department of Experimental Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| |
Collapse
|
25
|
Smułek W, Burlaga N, Hricovíni M, Medveďová A, Kaczorek E, Hricovíniová Z. Evaluation of surface active and antimicrobial properties of alkyl D-lyxosides and alkyl L-rhamnosides as green surfactants. CHEMOSPHERE 2021; 271:129818. [PMID: 33736217 DOI: 10.1016/j.chemosphere.2021.129818] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/23/2021] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
The use of carbohydrates, as a part of surface-active compounds, has been studied due to their biodegradability and nontoxic profile. A series of alkyl glycosides containing d-lyxose and l-rhamnose with alkyl chains of 8-12 carbon atoms were investigated. The effects of structural variations on their physico-chemical and biological properties have been evaluated for a detailed understanding of their properties. Alkyl glycosides were tested on their toxicity against bacterial cells of the genus Pseudomonas (MTT assay), microbiological adhesion to hydrocarbons (MATH assay), cell surface hydrophobicity (Congo red assay), cell membrane permeability (crystal violet assay), and bacterial biofilm formation. Furthermore, their antifungal activity against two pathogenic microorganisms Candida albicans and Aspergillus niger was investigated using the disc diffusion method. Toxicological studies revealed that compounds could reduce the metabolic activity of bacterial cells only moderately but they increased the hydrophobicity of cell surface in Pseudomonas strains. In addition, alkyl glycosides changed the permeability of the cell membranes to the level of 30-40% for this strain. The compounds with an even number of carbon atoms in their alkyl chain promoted stronger bacterial biofilm formation on the glass surface. All studied derivatives demonstrated very strong antifungal activity against fungus A. niger but very small effect against C. albicans. Overall, the results showed that long-chain alkyl glycosides could be considered as inexpensive, biocompatible, nontoxic agents, and serve for the surface design to avoid bacterial adhesion as an alternative solution to antibiotic treatment.
Collapse
Affiliation(s)
- Wojciech Smułek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Ul. Berdychowo 4, 60-965, Poznan, Poland.
| | - Natalia Burlaga
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Ul. Berdychowo 4, 60-965, Poznan, Poland
| | - Michal Hricovíni
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská Cesta 9, SK-845 38, Bratislava, Slovak Republic
| | - Alžbeta Medveďová
- Department of Nutrition and Food Assessment, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinského 9, SK-812, Bratislava, Slovakia
| | - Ewa Kaczorek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Ul. Berdychowo 4, 60-965, Poznan, Poland
| | - Zuzana Hricovíniová
- Institute of Chemistry, Slovak Academy of Sciences, Dúbravská Cesta 9, SK-845 38, Bratislava, Slovak Republic
| |
Collapse
|
26
|
Keller B, Kuder H, Visscher C, Siesenop U, Kamphues J. Yeasts in Liquid Swine Diets: Identification Methods, Growth Temperatures and Gas-Formation Potential. J Fungi (Basel) 2020; 6:E337. [PMID: 33291632 PMCID: PMC7761980 DOI: 10.3390/jof6040337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/19/2020] [Accepted: 12/02/2020] [Indexed: 12/30/2022] Open
Abstract
Liquid feed is susceptible to microbiological growth. Yeasts are said to cause sudden death in swine due to intestinal gas formation. As not all animals given high yeast content feed fall ill, growth and gas formation potential at body temperature were investigated as possible causally required properties. The best identification method for these environmental yeasts should be tested beforehand. Yeasts derived from liquid diets without (LD - S) and liquid diets with maize silage (LD + S) were examined biochemically (ID32C-test) and with MALDI-TOF with direct smear (DS) and an extraction method (EX). Growth temperature and gas-forming potential were measured. With MALDI-EX, most yeast isolates were identified: Candida krusei most often in LD - S, and C. lambica most often in LD + S, significantly more than in LD - S. Larger colonies, 58.75% of all yeast isolates, were formed at 25 °C rather than at 37 °C; 17.5% of all isolates did not grow at 37 °C at all. Most C. krusei isolates formed high gas amounts within 24 h, whereas none of the C. lambica, C. holmii and most other isolates did. The gas pressure formed by yeast isolates varied more than tenfold. Only a minority of the yeasts were able to produce gas at temperatures common in the pig gut.
Collapse
Affiliation(s)
- Birgit Keller
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany; (H.K.); (C.V.); (J.K.)
| | - Henrike Kuder
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany; (H.K.); (C.V.); (J.K.)
| | - Christian Visscher
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany; (H.K.); (C.V.); (J.K.)
| | - Ute Siesenop
- Institute for Microbiology, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany;
| | - Josef Kamphues
- Institute for Animal Nutrition, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany; (H.K.); (C.V.); (J.K.)
| |
Collapse
|
27
|
Preventing Candida albicans biofilm formation using aromatic-rich piperazines. Bioorg Med Chem 2020; 28:115810. [PMID: 33091849 DOI: 10.1016/j.bmc.2020.115810] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/04/2020] [Accepted: 10/05/2020] [Indexed: 10/23/2022]
Abstract
The global increase in microbial resistance is an imminent threat to public health. Effective treatment of infectious diseases now requires new antimicrobial therapies. We report herein the discovery of aromatic-rich piperazines that inhibit biofilm formation by C. albicans. 22 piperazines, including 16 novel ones, were prepared efficiently using a combination of solid- and solution phase synthesis. The most potent compound prevents morphological switching under several hypha-inducing conditions and reduces C. albicans' ability to adhere to epithelial cells. These processes are essential to the development of Candida biofilms, which are associated with its increased resistance to immune defenses and antifungal agents.
Collapse
|
28
|
Vazquez-Munoz R, Lopez FD, Lopez-Ribot JL. Bismuth Nanoantibiotics Display Anticandidal Activity and Disrupt the Biofilm and Cell Morphology of the Emergent Pathogenic Yeast Candida auris. Antibiotics (Basel) 2020; 9:E461. [PMID: 32751405 PMCID: PMC7460268 DOI: 10.3390/antibiotics9080461] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 01/08/2023] Open
Abstract
Candida auris is an emergent multidrug-resistant pathogenic yeast, which forms biofilms resistant to antifungals, sanitizing procedures, and harsh environmental conditions. Antimicrobial nanomaterials represent an alternative to reduce the spread of pathogens-including yeasts-regardless of their drug-resistant profile. Here we have assessed the antimicrobial activity of easy-to-synthesize bismuth nanoparticles (BiNPs) against the emergent multidrug-resistant yeast Candida auris, under both planktonic and biofilm growing conditions. Additionally, we have examined the effect of these BiNPs on cell morphology and biofilm structure. Under planktonic conditions, BiNPs MIC values ranged from 1 to 4 µg mL-1 against multiple C. auris strains tested, including representatives of all different clades. Regarding the inhibition of biofilm formation, the calculated BiNPs IC50 values ranged from 5.1 to 113.1 µg mL-1. Scanning electron microscopy (SEM) observations indicated that BiNPs disrupted the C. auris cell morphology and the structure of the biofilms. In conclusion, BiNPs displayed strong antifungal activity against all strains of C. auris under planktonic conditions, but moderate activity against biofilm growth. BiNPs may potentially contribute to reducing the spread of C. auris strains at healthcare facilities, as sanitizers and future potential treatments. More research on the antimicrobial activity of BiNPs is warranted.
Collapse
Affiliation(s)
- Roberto Vazquez-Munoz
- Department of Biology, and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Fernando D. Lopez
- School of Engineering, The University of Texas at Austin, Austin, TX 78712, USA;
| | - Jose L. Lopez-Ribot
- Department of Biology, and South Texas Center for Emerging Infectious Diseases, The University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
29
|
Mba IE, Nweze EI. Mechanism of Candida pathogenesis: revisiting the vital drivers. Eur J Clin Microbiol Infect Dis 2020; 39:1797-1819. [PMID: 32372128 DOI: 10.1007/s10096-020-03912-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022]
Abstract
Candida is the most implicated fungal pathogen in the clinical setting. Several factors play important roles in the pathogenesis of Candida spp. Multiple transcriptional circuits, morphological and phenotypic switching, biofilm formation, tissue damaging extracellular hydrolytic enzymes, metabolic flexibility, genome plasticity, adaptation to environmental pH fluctuation, robust nutrient acquisition system, adherence and invasions (mediated by adhesins and invasins), heat shock proteins (HSPs), cytolytic proteins, escape from phagocytosis, evasion from host immune system, synergistic coaggregation with resident microbiota, resistance to antifungal agents, and the ability to efficiently respond to multiple stresses are some of the major pathogenic determinants of Candida species. The existence of multiple connections, in addition to the interactions and associations among all of these factors, are distinctive features that play important roles in the establishment of Candida infections. This review describes all the underlying factors and mechanisms involved in Candida pathogenesis by evaluating pathogenic determinants of Candida species. It reinforces the already available pool of data on the pathogenesis of Candida species by providing a clear and simplified understanding of the most important factors implicated in the pathogenesis of Candida species. The Candida pathogenesis network, an illustration linking all the major determinants of Candida pathogenesis, is also presented. Taken together, they will further improve our current understanding of how these factors modulate virulence and consequent infection(s). Development of new antifungal drugs and better therapeutic approaches to candidiasis can be achieved in the near future with continuing progress in the understanding of the mechanisms of Candida pathogenesis.
Collapse
|
30
|
Greco G, Di Piazza S, Chan J, Zotti M, Hanna R, Gheno E, Zekiy AO, Pasquale C, De Angelis N, Amaroli A. Newly formulated 5% 5-aminolevulinic acid photodynamic therapy on Candida albicans. Photodiagnosis Photodyn Ther 2020; 29:101575. [PMID: 31614222 DOI: 10.1016/j.pdpdt.2019.10.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/16/2019] [Accepted: 10/07/2019] [Indexed: 01/10/2023]
Abstract
BACKGROUND A large number of systemic diseases can be linked to oral candida pathogenicity. The global trend of invasive candidiasis has increased progressively and is often accentuated by increasing Candida albicans resistance to the most common antifungal medications. Photodynamic therapy (PDT) is a promising therapeutic approach for oral microbial infections. A new formulation of 5-aminolevulinic acid (5%ALA) in a thermosetting gel (t) (5%ALA-PTt) was patented and recently has become available on the market. However, its antimicrobial properties, whether mediated or not by PDT, are not yet known. In this work we characterised them. METHODS We isolated a strain of C. albicans from plaques on the oral mucus membrane of an infected patient. Colonies of this strain were exposed for 1 24 h, to 5%ALA-PTt, 5%ALA-PTt buffered to pH 6.5 (the pH of the oral mucosa) (5%ALA-PTtb) or not exposed (control). The 1 h-exposed samples were also irradiated at a wavelength of 630 nm with 0.14 watts (W) and 0.37 W/cm2 for 7 min at a distance of <1 mm. RESULTS AND CONCLUSION The 5% ALA-PTt preparation was shown to be effective in reducing the growth of biofilm and inoculum of C. albicans. This effect seems to be linked to the intrinsic characteristics of 5%ALA-TPt, such acidic pH and the induction of free radical production. This outcome was significantly enhanced by the effect of PDT at relatively short incubation and irradiation times, which resulted in growth inhibition of both treated biofilm and inoculum by ∼80% and ∼95%, respectively.
Collapse
Affiliation(s)
- Giuseppe Greco
- Laboratory of Mycology, Department of Earth, Environmental and Life Sciences, University of Genoa, Genoa, Italy.
| | - Simone Di Piazza
- Laboratory of Mycology, Department of Earth, Environmental and Life Sciences, University of Genoa, Genoa, Italy
| | - Jiemei Chan
- Laser Therapy Centre, Department of Surgical and Diagnostic Sciences, University of Genoa, Genoa, Italy
| | - Mirca Zotti
- Laboratory of Mycology, Department of Earth, Environmental and Life Sciences, University of Genoa, Genoa, Italy
| | - Reem Hanna
- Laser Therapy Centre, Department of Surgical and Diagnostic Sciences, University of Genoa, Genoa, Italy; Department of Oral Surgery, Dental Institute, King's College Hospital NHS Foundation Trust, Denmark Hill, London, SE5 9RS, UK
| | - Ezio Gheno
- Laser Therapy Centre, Department of Surgical and Diagnostic Sciences, University of Genoa, Genoa, Italy; Dental Clinical Research Center, Dentistry School, Fluminense Federal University, Rua São Paulo, 28, Campus do Valonguinho Centro, Niterói, RJ, 24020 150, Brazil
| | - Angelina O Zekiy
- Department of Orthopedic Dentistry, Sechenov First Moscow State Medical University, Trubetzkaya St., 8, Bd. 2, 119991, Moscow, Russian Federation
| | - Claudio Pasquale
- Laser Therapy Centre, Department of Surgical and Diagnostic Sciences, University of Genoa, Genoa, Italy
| | - Nicola De Angelis
- Laser Therapy Centre, Department of Surgical and Diagnostic Sciences, University of Genoa, Genoa, Italy; Faculty of Dentistry, University of Technologi MARA, Sungai Buloh Campus, Jalan Hospital, 47000 Sungai Buloh, Selangor, Malaysia
| | - Andrea Amaroli
- Laser Therapy Centre, Department of Surgical and Diagnostic Sciences, University of Genoa, Genoa, Italy; Department of Orthopedic Dentistry, Sechenov First Moscow State Medical University, Trubetzkaya St., 8, Bd. 2, 119991, Moscow, Russian Federation.
| |
Collapse
|
31
|
Del Rio M, de la Canal L, Pinedo M, Mora-Montes HM, Regente M. Effects of the binding of a Helianthus annuus lectin to Candida albicans cell wall on biofilm development and adhesion to host cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 58:152875. [PMID: 30884454 DOI: 10.1016/j.phymed.2019.152875] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 02/16/2019] [Accepted: 02/23/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND In our previous study, we isolated and characterized a lectin called Helja from Helianthus annuus (sunflower) and then, in a further study, demonstrated its antifungal activity against Candida spp. Since Candida infections are a major health concern due to the increasing emergence of antifungal resistant strains, the search for new antifungal agents offers a promising opportunity for improving the treatment strategies against candidiasis. PURPOSE The aim of this work was to get insights about the mechanism of action of Helja, an antifungal lectin of H. annuus, and to explore its ability to inhibit Candida albicans biofilm development and adherence to buccal epithelial cells (BEC). STUDY DESIGN/METHODS Yeast viability was evaluated by Evans Blue uptake and counting of colony forming units (CFU). The yeast cell integrity was assessed using Calcofluor White (CFW) as a cell wall perturbing agent and sorbitol as osmotic protectant. The induction of oxidative stress was evaluated using 3,3'-diaminobenzidine (DAB) for detection of hydrogen peroxide. The adherence was determined by counting the yeast cells attached to BEC after methylene blue staining. The biofilms were developed on polystyrene microplates, visualized by confocal laser scanning microscopy and the viable biomass was quantified by CFU counting. The binding lectin-Candida was assessed using Helja conjugated to fluorescein isothiocyanate (Helja-FITC) and simultaneous staining with CFW. The cellular surface hydrophobicity (CSH) was determined using a microbial adhesion to hydrocarbons method. RESULTS C. albicans cells treated with 0.1 µg/µl of Helja showed a drastic decrease in yeast survival. The lectin affected the fungal cell integrity, induced the production of hydrogen peroxide and inhibited the morphological transition from yeast to filamentous forms. Helja caused a significant reduction of adherent cells and a decrease in biofilm biomass and coverage area. The treatment with the protein also reduced the surface hydrophobicity of fungal cells. We show the binding of Helja-FITC to yeast cells distributed as a thin outer layer to the CFW signal, and this interaction was displaced by mannose and Concanavalin A. CONCLUSION The results demonstrate the interaction of Helja with the mannoproteins of C. albicans cell wall, the disruption of the cell integrity, the induction of oxidative stress, the inhibition of the morphological transition from yeast to filamentous forms and the fungal cell viability loss. The binding Helja-Candida also provides a possible explanation of the lectin effect on cell adherence, biofilm development and CSH, relevant features related to virulence of the pathogen.
Collapse
Affiliation(s)
- Marianela Del Rio
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Funes 3250, Mar del Plata 7600, Argentina.
| | - Laura de la Canal
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Funes 3250, Mar del Plata 7600, Argentina.
| | - Marcela Pinedo
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Funes 3250, Mar del Plata 7600, Argentina.
| | - Héctor M Mora-Montes
- Departamento de Biología, Universidad de Guanajuato, Noria Alta s/n, col. Noria Alta, Guanajuato, Gto. C.P. 36050, Mexico.
| | - Mariana Regente
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Funes 3250, Mar del Plata 7600, Argentina.
| |
Collapse
|
32
|
Murugesh J, Annigeri RG, Mangala GK, Mythily PH, Chandrakala J. Evaluation of the antifungal efficacy of different concentrations of Curcuma longa on Candida albicans: An in vitro study. J Oral Maxillofac Pathol 2019; 23:305. [PMID: 31516248 PMCID: PMC6714268 DOI: 10.4103/jomfp.jomfp_200_18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background Candidal infections have increased significantly in denture wearers, especially in immunocompromised patients. The increase in resistance to existing antifungal drugs and number of patients at risk, in conjunction with the restricted number of commercially available antifungal drugs that still present many side effects, are the cause for this problem. These limitations emphasize the need to develop new and more effective antifungal agents with lesser side effects. Materials and Methods The present study was undertaken to investigate the possible antifungal action of the alcoholic extract of different concentrations of Curcuma longa on four dilutions of Candida albicans (1:10, 1:20, 1:40 and 1:80) and to determine its minimum inhibitory concentration (MIC) and minimum fungicidal concentration using Sabouraud's agar medium. Results There was complete inhibition of the growth of all four dilutions of Candida at a concentration of 800 μl which is considered as the MIC of alcoholic extract of turmeric on C. albicans, and the minimum fungicidal concentration was at 1600 μl. Conclusion This study indicates a potent antifungal action of C. longa against C. albicans.
Collapse
Affiliation(s)
- Jeevitha Murugesh
- Department of Oral Medicine and Radiology, Government Dental College and Research Institute, Bengaluru, Karnataka, India
| | - Rajeshwari G Annigeri
- Department of Oral Medicine and Radiology, College of Dental Sciences, Davangere, Karnataka, India
| | - G K Mangala
- Department of Microbiology, JJMMC, Davangere, Karnataka, India
| | - P Hema Mythily
- Department of Oral and Maxillofacial Surgery, Government Dental College and Research Institute, Bengaluru, Karnataka, India
| | - J Chandrakala
- Department of Oral Pathology and Microbiology, Government Dental College and Research Institute, Bengaluru, Karnataka, India
| |
Collapse
|
33
|
Cold atmospheric pressure plasma jet modulates Candida albicans virulence traits. CLINICAL PLASMA MEDICINE 2017. [DOI: 10.1016/j.cpme.2017.06.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Muthamil S, Pandian SK. Inhibitory effect of Murraya koenigii against Candida albicans virulence and biofilm development. Biologia (Bratisl) 2016. [DOI: 10.1515/biolog-2016-0044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
35
|
Silva FC, Marto JM, Salgado A, Machado P, Silva AN, Almeida AJ. Nystatin and lidocaine pastilles for the local treatment of oral mucositis. Pharm Dev Technol 2016; 22:266-274. [DOI: 10.1080/10837450.2016.1221424] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Filipa Cosme Silva
- Hospital de Santa Maria, Serviço de Gestão Técnico-Farmacêutica, Centro Hospitalar Lisboa Norte, EPE, Lisbon, Portugal
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Joana M. Marto
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Salgado
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Paula Machado
- Laboratório de Controlo Microbiológico, ADEIM, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - Alexandra N. Silva
- Laboratório de Controlo Microbiológico, ADEIM, Faculty of Pharmacy, Universidade de Lisboa, Lisboa, Portugal
| | - António J. Almeida
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
36
|
The Absence of N-Acetyl-D-glucosamine Causes Attenuation of Virulence of Candida albicans upon Interaction with Vaginal Epithelial Cells In Vitro. BIOMED RESEARCH INTERNATIONAL 2015; 2015:398045. [PMID: 26366412 PMCID: PMC4558442 DOI: 10.1155/2015/398045] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Revised: 06/15/2015] [Accepted: 07/28/2015] [Indexed: 11/28/2022]
Abstract
To better understand the molecular events underlying vulvovaginal candidiasis, we established an in vitro system. Immortalized vaginal epithelial cells were infected with live, yeast form C. albicans and C. albicans cultured in the same medium without vaginal epithelial cells were used as control. In both cases a yeast to hyphae transition was robustly induced. Whole transcriptome sequencing was used to identify specific gene expression changes in C. albicans. Numerous genes leading to a yeast to hyphae transition and hyphae specific genes were upregulated in the control hyphae and the hyphae in response to vaginal epithelial cells. Strikingly, the GlcNAc pathway was exclusively triggered by vaginal epithelial cells. Functional analysis in our in vitro system revealed that the GlcNAc biosynthesis is involved in the adherence to, and the ability to kill, vaginal epithelial cells in vitro, thus indicating the key role for this pathway in the virulence of C. albicans upon vulvovaginal candidiasis.
Collapse
|
37
|
Perera J, Weerasekera M, Kottegoda N. Slow release anti-fungal skin formulations based on citric acid intercalated layered double hydroxides nanohybrids. Chem Cent J 2015; 9:27. [PMID: 26023319 PMCID: PMC4446550 DOI: 10.1186/s13065-015-0106-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Accepted: 05/14/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND During the past few decades, the occurrence of superficial fungal infections has rapidly increased. As the fungal infections take longer time to get cured, concepts such as designing drugs with extended persistence and controlled release have gained attention. In this context, nanotechnology has been identified as the latest technological revolution which has opened up new pathways for designing new therapeutic materials. Out of the many available nano-structures layered double hydroxides have gained increased scientific attention in applications as slow and controlled release drug formulations. This study focuses on the encapsulation of citric acid which has anti-fungal properties into a Mg-Al- layered double hydroxide (LDH) in order to be used as slow release topical skin formulations. RESULTS Citrate ions were encapsulated into Mg-Al LDH using one step co-precipitation reaction. The successful intercalation of citrate ions into the layered structure has been proved referring to the expansion in the interlayer spacing as observed by the shift in the basal peak of the powder X-ray diffraction pattern. Fourier transform infra-red spectroscopy data suggests the change in the electron density around the carboxylate groups of the citrate ion thus providing evidences for formation of encapsulated hybrid composite. The resulting nanohybrid has been then, introduced into a general body cream formulation containing cocoa-butter. Both citrate LDH and the resulting body cream formulations demonstrated prolonged slow release characteristics up to 8 h in aqueous medium under different pH values (3, 4, and 5) compared to quick and fast release of pure citric acid. It was observed that the slow reelase was most efficient at low pH values. The encapsulation between the nano-layers and citrate ions are the key to the slow release characteristics. The body cream has been tested for the anti-fungal activity against three common Candida species (C. albicans, C. glabrata, C. tropicalis). The novel nanohybrid has shown an improved activity and slow release characteristics up to 48 h against the C. albicans and C. glabrata but not for C. tropicalis. CONCLUSION The study confirms that the citrate ion intercalated LDHs have the potential for use in future slow release antifungal drug formulation. Graphical AbstractSlow release nanohybrids based on citrate intercalated layered double hydroxides.
Collapse
Affiliation(s)
- Jayoda Perera
- Department of Chemistry, Faculty of Applied Science, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Manjula Weerasekera
- Department of Microbiology, Faculty of Medical Science, University of Sri Jayewardenepura, Nugegoda, Sri Lanka
| | - Nilwala Kottegoda
- Department of Chemistry, Faculty of Applied Science, University of Sri Jayewardenepura, Nugegoda, Sri Lanka ; Sri Lanka Institute of Nanotechnology, Center for Excellence in Nanotechnology, Nanotechnology and Science Park, Pitipana, Homagama Sri Lanka
| |
Collapse
|
38
|
Bahieldin A, Gadalla NO, Al-Garni SM, Almehdar H, Noor S, Hassan SM, Shokry AM, Sabir JSM, Murata N. Efficient production of lycopene in Saccharomyces cerevisiae by expression of synthetic crt genes from a plasmid harboring the ADH2 promoter. Plasmid 2014; 72:18-28. [PMID: 24680933 DOI: 10.1016/j.plasmid.2014.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 02/23/2014] [Accepted: 03/10/2014] [Indexed: 01/04/2023]
Abstract
Lycopene is an effective antioxidant proposed as a possible treatment for some cancers and other degenerative human conditions. This study aims at generation of a yeast strain (Saccharomyces cerevisiae) of efficient productivity of lycopene by overexpressing synthetic genes derived from crtE, crtB and crtI genes of Erwinia uredovora. These synthetic genes were constructed in accordance with the preferred codon usage in S. cerevisiae but with no changes in amino acid sequences of the gene products. S. cerevisiae cells were transformed with these synthetic crt genes, whose expression was regulated by the ADH2 promoter, which is de-repressed upon glucose depletion. The RT-PCR and Western blotting analyses indicated that the synthetic crt genes were efficiently transcribed and translated in crt-transformed S. cerevisiae cells. The highest level of lycopene in one of the transformed lines was 3.3mglycopene/g dry cell weight, which is higher than the previously reported levels of lycopene in other microorganisms transformed with the three genes. These results suggest the excellence of using the synthetic crt genes and the ADH2 promoter in generation of recombinant S. cerevisiae that produces a high level of lycopene. The level of ergosterol was reversely correlated to that of lycopene in crt-transformed S. cerevisiae cells, suggesting that two pathways for lycopene and ergosterol syntheses compete for the use of farnesyl diphosphate.
Collapse
Affiliation(s)
- Ahmed Bahieldin
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia; Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt.
| | - Nour O Gadalla
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia; Genetics and Cytology Department, Genetic Engineering and Biotechnology Division, National Research Center, Dokki, Egypt
| | - Saleh M Al-Garni
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia
| | - Hussein Almehdar
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia
| | - Samah Noor
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia
| | - Sabah M Hassan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia; Department of Genetics, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Ahmed M Shokry
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia; Agricultural Genetic Engineering Research Institute (AGERI), Agriculture Research Center (ARC), Giza, Egypt
| | - Jamal S M Sabir
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University (KAU), P.O. Box 80141, Jeddah 21589, Saudi Arabia
| | - Norio Murata
- National Institute for Basic Biology, Myodaiji, Okazaki, Aichi 444-8585, Japan
| |
Collapse
|