1
|
Gimenes GM, Pereira JNB, Borges da Silva E, dos Santos AAC, Rodrigues TM, Santana GDO, Scervino MVM, Pithon-Curi TC, Hirabara SM, Gorjão R, Curi R. Intestinal Motility Dysfunction in Goto-Kakizaki Rats: Role of the Myenteric Plexus. Cells 2024; 13:1626. [PMID: 39404390 PMCID: PMC11475219 DOI: 10.3390/cells13191626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024] Open
Abstract
Diabetes mellitus is associated with changes in intestinal morphology and the enteric nervous system. We previously reported constipation in Goto-Kakizaki (GK) rats, a non-obese model for type 2 diabetes mellitus. AIM The morpho-quantitative analysis of myenteric plexus neurons in the small and large intestines of 120-day-old male GK rats was investigated. METHODS The diabetes was confirmed by high fasting blood glucose levels. The myenteric plexus was evaluated through wholemount immunofluorescence. The morpho-quantitative analyses included evaluating neuronal density (neurons per ganglion) of the total neuronal population, the cholinergic and nitrergic subpopulations, and enteric glial cells per ganglion. The cell body area of 100 neurons per segment per animal was measured. RESULTS The total neurons and nitrergic subpopulation were unaltered in the GK rats' small and large intestines. The cholinergic subpopulation exhibited decreased density in the three segments of the small intestine and an increased number in the proximal colon of the GK rats. The number of enteric glial cells increased in the ileum of the GK rats, which could indicate enteric gliosis caused by the intestinal inflammatory state. The area of the cell body was increased in the total neuronal population of the jejunum and ileum of the GK rats. Frequency histograms of the cell body area distribution revealed the contribution of cholinergic neurons to larger areas in the jejunum and nitrergic neurons in the ileum. CONCLUSION The constipation previously reported in GK rats might be explained by the decrease in the density of cholinergic neurons in the small intestine of this animal model.
Collapse
Affiliation(s)
- Gabriela Mandú Gimenes
- Interdisciplinary Post-Graduate Program in Health Science, Institute of Physical Activity and Sports Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, Liberdade, São Paulo 01506-000, Brazil
| | | | - Eliane Borges da Silva
- Interdisciplinary Post-Graduate Program in Health Science, Institute of Physical Activity and Sports Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, Liberdade, São Paulo 01506-000, Brazil
| | - Alef Aragão Carneiro dos Santos
- Interdisciplinary Post-Graduate Program in Health Science, Institute of Physical Activity and Sports Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, Liberdade, São Paulo 01506-000, Brazil
| | - Thais Martins Rodrigues
- Interdisciplinary Post-Graduate Program in Health Science, Institute of Physical Activity and Sports Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, Liberdade, São Paulo 01506-000, Brazil
| | - Giovanna de Oliveira Santana
- Interdisciplinary Post-Graduate Program in Health Science, Institute of Physical Activity and Sports Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, Liberdade, São Paulo 01506-000, Brazil
| | - Maria Vitoria Martins Scervino
- Interdisciplinary Post-Graduate Program in Health Science, Institute of Physical Activity and Sports Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, Liberdade, São Paulo 01506-000, Brazil
| | - Tania Cristina Pithon-Curi
- Interdisciplinary Post-Graduate Program in Health Science, Institute of Physical Activity and Sports Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, Liberdade, São Paulo 01506-000, Brazil
| | - Sandro Massao Hirabara
- Interdisciplinary Post-Graduate Program in Health Science, Institute of Physical Activity and Sports Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, Liberdade, São Paulo 01506-000, Brazil
| | - Renata Gorjão
- Interdisciplinary Post-Graduate Program in Health Science, Institute of Physical Activity and Sports Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, Liberdade, São Paulo 01506-000, Brazil
| | - Rui Curi
- Interdisciplinary Post-Graduate Program in Health Science, Institute of Physical Activity and Sports Sciences, Cruzeiro do Sul University, Rua Galvão Bueno, 868, Liberdade, São Paulo 01506-000, Brazil
- Butantan Institute, São Paulo 05585-000, Brazil
| |
Collapse
|
2
|
Wen XP, Wan QQ. Nomogram to predict gas-related complications during transoral endoscopic resection of upper gastrointestinal submucosal lesions: Clinical significance. World J Gastrointest Endosc 2024; 16:5-10. [PMID: 38313461 PMCID: PMC10835473 DOI: 10.4253/wjge.v16.i1.5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/13/2023] [Accepted: 12/29/2023] [Indexed: 01/15/2024] Open
Abstract
Transoral endoscopic resections in treating upper gastrointestinal submucosal lesions have the advantages of maintaining the integrity of the gastrointestinal lumen, avoiding perforation and reducing gastrointestinal fistulae. They are becoming more widely used in clinical practice, but, they may also present a variety of complications. Gas-related complications are one of the most common, which can be left untreated if the symptoms are mild, but in severe cases, they can lead to rapid changes in the respiratory and circulatory systems in a short period, which can be life-threatening. Therefore, it is important to predict the occurrence of gas-related complications early and take preventive measures actively. Based on the authors' results in the prepublication of the article "Nomogram to predict gas-related complications during transoral endoscopic resection of upper gastrointestinal submucosal lesions," and in conjunction with our evaluation and additions to the relevant content, radiographs may help screen patients at high risk for gas-related complications. Controlling blood glucose levels, shortening the duration of surgery, and choosing the most appropriate surgical resection may positively impact the prognosis of patients at high risk for gas-related complications during transoral endoscopic resection of upper gastrointestinal submucosal lesions.
Collapse
Affiliation(s)
- Xu-Peng Wen
- Department of Critical Care Medicine, Zhongshan Hospital, Fudan University, Shanghai 200030, China
| | - Qi-Quan Wan
- Department of Transplant Surgery, The Third Xiangya Hospital of Central South University, Changsha 410013, Hunan Province, China
| |
Collapse
|
3
|
Wei L, Ji L, Miao Y, Han X, Li Y, Wang Z, Fu J, Guo L, Su Y, Zhang Y. Constipation in DM are associated with both poor glycemic control and diabetic complications: Current status and future directions. Biomed Pharmacother 2023; 165:115202. [PMID: 37506579 DOI: 10.1016/j.biopha.2023.115202] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/15/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Constipation is a major complications of diabetes mellitus. With the accelerating prevalence of diabetes worldwide and an aging population, there is considerable research interest regarding the altered function and structure of the gastrointestinal tract in diabetic patients. Despite current advances in hyperglycemic treatment strategies, the specific pathogenesis of diabetic constipation remains unknown. Patients with constipation, may be reluctant to eat regularly, which may worsen glycemic control and thus worsen symptoms associated with underlying diabetic bowel disease. This paper presents a review of the complex relationship between diabetes and constipation, exploring the morphological alterations and biomechanical remodeling associated with intestinal motility dysfunction, as well as alterations in intestinal neurons, cellular signaling pathways, and oxidative stress. Further studies focusing on new targets that may play a role in the pathogenesis of diabetic constipation may, provide new ideas for the development of novel therapies to treat or even prevent diabetic constipation.
Collapse
Affiliation(s)
- Luge Wei
- Tianjin University of Traditional Chinese Medicine, China.
| | - Lanqi Ji
- Tianjin University of Traditional Chinese Medicine, China
| | - Yulu Miao
- Tianjin University of Traditional Chinese Medicine, China
| | - Xu Han
- Tianjin University of Traditional Chinese Medicine, China
| | - Ying Li
- Tianjin University of Traditional Chinese Medicine, China
| | - Zhe Wang
- Tianjin University of Traditional Chinese Medicine, China
| | - Jiafeng Fu
- Tianjin University of Traditional Chinese Medicine, China
| | - Liuli Guo
- Tianjin University of Traditional Chinese Medicine, China
| | - Yuanyuan Su
- Tianjin University of Traditional Chinese Medicine, China
| | - Yanjun Zhang
- Tianjin University of Traditional Chinese Medicine, China; First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, China
| |
Collapse
|
4
|
Phuong-Nguyen K, McNeill BA, Aston-Mourney K, Rivera LR. Advanced Glycation End-Products and Their Effects on Gut Health. Nutrients 2023; 15:nu15020405. [PMID: 36678276 PMCID: PMC9867518 DOI: 10.3390/nu15020405] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/20/2022] [Accepted: 01/11/2023] [Indexed: 01/14/2023] Open
Abstract
Dietary advanced glycation end-products (AGEs) are a heterogeneous group of compounds formed when reducing sugars are heated with proteins, amino acids, or lipids at high temperatures for a prolonged period. The presence and accumulation of AGEs in numerous cell types and tissues are known to be prevalent in the pathology of many diseases. Modern diets, which contain a high proportion of processed foods and therefore a high level of AGE, cause deleterious effects leading to a multitude of unregulated intracellular and extracellular signalling and inflammatory pathways. Currently, many studies focus on investigating the chemical and structural aspects of AGEs and how they affect the metabolism and the cardiovascular and renal systems. Studies have also shown that AGEs affect the digestive system. However, there is no complete picture of the implication of AGEs in this area. The gastrointestinal tract is not only the first and principal site for the digestion and absorption of dietary AGEs but also one of the most susceptible organs to AGEs, which may exert many local and systemic effects. In this review, we summarise the current evidence of the association between a high-AGE diet and poor health outcomes, with a special focus on the relationship between dietary AGEs and alterations in the gastrointestinal structure, modifications in enteric neurons, and microbiota reshaping.
Collapse
|
5
|
Stavely R, Sahakian L, Filippone RT, Stojanovska V, Bornstein JC, Sakkal S, Nurgali K. Oxidative Stress-Induced HMGB1 Translocation in Myenteric Neurons Contributes to Neuropathy in Colitis. Biomolecules 2022; 12:biom12121831. [PMID: 36551259 PMCID: PMC9776169 DOI: 10.3390/biom12121831] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
High-mobility group box 1 (HMGB1) is a damage-associated molecular pattern released by dying cells to stimulate the immune response. During cell death, HMGB1 is translocated from the nucleus to the cytoplasm and passively released. High levels of secreted HMGB1 are observed in the faeces of inflammatory bowel disease (IBD) patients, indicating its role in IBD pathophysiology and potential as a non-invasive IBD biomarker. HMGB1 is important in regulating neuronal damage in the central nervous system; its pathological activity is intertwined with oxidative stress and inflammation. In this study, HMGB1 expression in the enteric nervous system and its relevance to intestinal neuroinflammation is explored in organotypic cultures of the myenteric plexus exposed to oxidative stimuli and in Winnie mice with spontaneous chronic colitis. Oxidative stimuli induced cytoplasmic translocation of HMGB1 in myenteric neurons in organotypic preparations. HMGB1 translocation correlated with enteric neuronal loss and oxidative stress in the myenteric ganglia of Winnie mice. Inhibition of HMGB1 by glycyrrhizic acid ameliorated HMGB1 translocation and myenteric neuronal loss in Winnie mice. These data highlight modulation of HMGB1 signalling as a therapeutic strategy to reduce the consequences of enteric neuroinflammation in colitis, warranting the exploration of therapeutics acting on the HMGB1 pathway as an adjunct treatment with current anti-inflammatory agents.
Collapse
Affiliation(s)
- Rhian Stavely
- Institute for Health and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, St Albans, VIC 3021, Australia
- Department of Pediatric Surgery, Pediatric Surgery Research Laboratories, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
- Department of Medicine Western Health, The University of Melbourne, St Albans, VIC 3021, Australia
| | - Lauren Sahakian
- Institute for Health and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, St Albans, VIC 3021, Australia
| | - Rhiannon T. Filippone
- Institute for Health and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, St Albans, VIC 3021, Australia
| | - Vanesa Stojanovska
- Institute for Health and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, St Albans, VIC 3021, Australia
- The Ritchie Centre, Hudson Institute of Medical Research, Monash Health Translation Precinct, Melbourne, VIC 3168, Australia
| | - Joel C. Bornstein
- Department of Anatomy and Physiology, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Samy Sakkal
- Institute for Health and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, St Albans, VIC 3021, Australia
| | - Kulmira Nurgali
- Institute for Health and Sport, Victoria University, Western Centre for Health, Research and Education, Sunshine Hospital, St Albans, VIC 3021, Australia
- Department of Medicine Western Health, The University of Melbourne, St Albans, VIC 3021, Australia
- Regenerative Medicine and Stem Cell Program, Australian Institute for Musculoskeletal Science (AIMSS), St Albans, VIC 3021, Australia
- Correspondence:
| |
Collapse
|
6
|
Gimenes GM, Santana GO, Scervino MVM, Curi R, Pereira JNB. A short review on the features of the non-obese diabetic Goto-Kakizaki rat intestine. Braz J Med Biol Res 2022; 55:e11910. [PMID: 36000611 PMCID: PMC9394691 DOI: 10.1590/1414-431x2022e11910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 06/30/2022] [Indexed: 11/23/2022] Open
Abstract
The Goto-Kakizaki (GK) rat is a non-obese experimental model of type 2 diabetes
mellitus (T2DM) that allows researchers to monitor diabetes-induced changes
without jeopardizing the effects of obesity. This rat strain exhibits notable
gastrointestinal features associated with T2DM, such as marked alterations in
intestinal morphology, reduced intestinal motility, slow transit, and modified
microbiota compared to Wistar rats. The primary treatments for diabetic patients
include administration of hypoglycemic agents and insulin, and lifestyle
changes. Emerging procedures, including alternative therapies, metabolic
surgeries, and modulation of the intestinal microbiota composition, have been
shown to improve the diabetic state of GK rats. This review describes the
morpho-physiological diabetic-associated features of the gastrointestinal tract
(GIT) of GK rats. We also describe promising strategies, e.g., metabolic surgery
and modulation of gut microbiota composition, used to target the GIT of this
animal model to improve the diabetic state.
Collapse
Affiliation(s)
- G M Gimenes
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, SP, Brasil
| | - G O Santana
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, SP, Brasil
| | - M V M Scervino
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, SP, Brasil
| | - R Curi
- Programa de Pós-Graduação Interdisciplinar em Ciências da Saúde, Universidade Cruzeiro do Sul, São Paulo, SP, Brasil.,Centro Bioindustrial, Instituto Butantan, São Paulo, SP, Brasil
| | - J N B Pereira
- Laboratório Estratégico de Diagnóstico Molecular, Instituto Butantan, São Paulo, SP, Brasil
| |
Collapse
|
7
|
The Role of AGE-RAGE Signalling as a Modulator of Gut Permeability in Diabetes. Int J Mol Sci 2022; 23:ijms23031766. [PMID: 35163688 PMCID: PMC8836043 DOI: 10.3390/ijms23031766] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/28/2022] [Accepted: 01/30/2022] [Indexed: 12/11/2022] Open
Abstract
There is increasing evidence for the role of intestinal permeability as a contributing factor in the pathogenesis of diabetes; however, the molecular mechanisms are poorly understood. Advanced glycation endproducts, of both exogenous and endogenous origin, have been shown to play a role in diabetes pathophysiology, in part by their ligation to the receptor for advanced glycation endproducts (RAGE), leading to a proinflammatory signalling cascade. RAGE signalling has been demonstrated to play a role in the development of intestinal inflammation and permeability in Crohn's disease and ulcerative colitis. In this review, we explore the role of AGE-RAGE signalling and intestinal permeability and explore whether activation of RAGE on the intestinal epithelium may be a downstream event contributing to the pathogenesis of diabetes complications.
Collapse
|
8
|
Lin J, Liu G, Duan Z. The mechanism of esophagus dysmotility in diabetes and research progress of relating treatments. Expert Rev Gastroenterol Hepatol 2021; 15:919-927. [PMID: 34156876 DOI: 10.1080/17474124.2021.1945921] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction: Esophagus dysmotility is a crucial risk factor of gastroesophageal reflux disease (GERD), which is one of the most common diseases in digestive medicine globally. This review emphasizes the mechanisms of esophagus dysmotility in diabetes and summarizes more targeted treatments for these patients to avoid the overuse of proton pump inhibitors (PPIs).Areas covered: Diabetes mellitus (DM) is a clear factor that must not be neglected in the development of GERD. Previous studies have preliminarily researched the esophagus deterioration in diabetes. However, the multi-faceted mechanisms of esophagus dysmotility in diabetes need more studies. Besides, targeted treatments for these patients rather than conventional PPIs are urgently needed.Expert opinion: The treatments for GERD patients with diabetes should be further explored. Pharmacological approaches such as prokinetic agents, psychotherapy can be adopted. Meanwhile, it's feasible to explore non-drug treatments. For example, Electroacupuncture (EA) at Zusanli (ST-36) may be effective to protect the networks of intestinal cells of Cajal (ICCs) in diabetes. More effective approaches should be explored to achieve individualized treatment for these patients.
Collapse
Affiliation(s)
- Jiarong Lin
- The Second Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Laboratory of Integrated Chinese and Western Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Gongkai Liu
- School of Medicine, Nova Southeastern University, Davie, FL, USA
| | - Zhijun Duan
- The Second Department of Gastroenterology, The First Affiliated Hospital of Dalian Medical University, Dalian, China.,Laboratory of Integrated Chinese and Western Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
9
|
Wang Y, Ding L, Yang J, Liu L, Dong L. Intestinal fatty acid-binding protein, a biomarker of intestinal barrier dysfunction, increases with the progression of type 2 diabetes. PeerJ 2021; 9:e10800. [PMID: 33604184 PMCID: PMC7863777 DOI: 10.7717/peerj.10800] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/29/2020] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVE To investigate serum intestinal fatty acid-binding protein (I-FABP) in two groups of patients with different duration of hyperglycemia in a cross-sectional study. MATERIALS AND METHODS In the present study, a total of 280 individuals (158 outpatients and 122 inpatients) suffering from hyperglycemia were recruited between May and September 2019. The clinical information of all participants was collected from the hospital information system, including the duration of hyperglycemia, age, gender, hemoglobin A1c (HbA1c), 75-g oral glucose tolerance test including fasting plasma glucose (FPG), 2-hour plasma glucose (2hPG), fasting C-peptide (FC-pep), 2-hour C-peptide (2hC-pep), fasting insulin (FIns), and 2-hour insulin (2hIns). In addition, the morbidity of diabetic complications (retinopathy, neuropathy, and nephropathy) in the inpatient group was determined. Furthermore, the difference between 2hPG and FPG (ΔPG), the difference between 2hC-pep and FC-pep (ΔC-pep), and the difference between 2hIns and FIns (ΔIns) were calculated. The level of serum I-FABP, a biomarker of intestinal barrier (IB) dysfunction, was estimated by an enzyme-linked immunosorbent assay. RESULTS For the outpatient group, the median duration of hyperglycemia was less than a year; the serum I-FABP level was positively correlated with age (R = 0.299, P < 0.001). For the inpatient group, the median duration of hyperglycemia was ten years; correlation analysis showed that the serum I-FABP level was positively associated with age and ΔPG (R = 0.286, P = 0.001; R = 0.250, P = 0.006, respectively) while negatively associated with FC-pep and 2hC-pep (R = - 0.304, P = 0.001; R = - 0.241, P = 0.008, respectively); multiple linear regression analysis showed that the serum I-FABP level was positively associated with the duration of hyperglycemia (β = 0.362, P < 0.001); moreover, patients with retinopathy had a significantly higher I-FABP level than those without retinopathy (P = 0.001). CONCLUSIONS In the outpatients whose duration of hyperglycemia was less than a year, the serum I-FABP level was positively associated with age. In the inpatients with different courses of diabetes, the serum I-FABP level was positively associated with the duration of hyperglycemia and glycemic variability but negatively associated with islet beta-cell function; moreover, the serum I-FABP level was higher in patients with retinopathy than in those without retinopathy, suggesting that the IB dysfunction got worse with the progression of diabetes.
Collapse
Affiliation(s)
- Yifeng Wang
- Department of Emergency and Critical Care Medicine, Second Affiliated Hospital of Soochow University, Suzhou, China
- Department of Critical Care Medicine, Wuxi People’s Hospital affiliated to Nanjing Medical University, Wuxi, China
| | - Licheng Ding
- Department of Emergency Medicine, Affiliated Hospital of Jiangnan University, Wuxi, China
| | - Jiayue Yang
- Department of Endocrinology and Metabolism, Wuxi People’s Hospital affiliated to Nanjing Medical University, Wuxi, China
| | - Lijun Liu
- Department of Emergency and Critical Care Medicine, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Liang Dong
- Department of Critical Care Medicine, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| |
Collapse
|
10
|
Jiang H, Zhao J, Liao D, Wang G, Gregersen H. Esophageal stress softening recovery is altered in STZ-induced diabetic rats. J Biomech 2019; 92:126-136. [DOI: 10.1016/j.jbiomech.2019.05.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/27/2019] [Accepted: 05/27/2019] [Indexed: 12/29/2022]
|
11
|
Ludidi A, Baloyi MC, Khathi A, Sibiya NH, Ngubane PS. The effects of Momordica balsamina methanolic extract on haematological function in streptozotocin-induced diabetic rats: Effects on selected markers. Biomed Pharmacother 2019; 116:108925. [PMID: 31112874 DOI: 10.1016/j.biopha.2019.108925] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Chronic hyperglycaemia-induced haematological changes increase the risk of cardiovascular complications in diabetic patients. The administration of insulin injection as a bolus is accompanied with increased blood viscosity, which is not recommended for patients with congestive heart failure. Momordica balsamina methanolic extract (MB) has previously been shown to possess anti-hyperglycaemic and renal dysfunction ameliorative effects; however, the haematological effects of MB have not been shown. The current study therefore, investigated the short-term effects MB on selected haematological parameters in streptozotocin (STZ)-induced diabetic rats. METHODS Briefly, the air-dried Momordica balsamina leaves were sequentially extracted with methanol to yield a methanolic extract. STZ-induced diabetic rats were divided into untreated and treated groups with insulin (170 μg kg-1 s.c.) and metformin (500 mg kg-1 p.o.) MB (250 mg kg-1 p.o.). MB was administered twice daily for the 5-week experimental period. Blood glucose concentration was monitored weekly. Animals were sacrificed terminally. Blood and kidneys were collected for haematological and biochemical analysis respectively. RESULTS Treatment with MB significantly decreased blood glucose concentration and improved erythropoietin secretion, thus significantly increasing red blood cell production in treated diabetic animals by comparison to untreated animals. MB also significantly improved haemoglobin concentrations and moderately increased erythrocyte indices specifically, mean corpuscular volume (MCV), mean corpuscular haemoglobin concentration (MCHC) and mean corpuscular haemoglobin (MCH) to no significance by comparison to untreated diabetic animals. MB treatment decreased the oxidative stress evoked by the induction of diabetes while improving the antioxidant status of treated animals by comparison to untreated animals respectively. CONCLUSIONS Administration of Momordica balsamina methanolic extract protects against some injurious haematological changes induced by hyperglycaemia, which may reduce the risks of cardiovascular complications.
Collapse
Affiliation(s)
- A Ludidi
- Department of Human Physiology, University of KwaZulu-Natal, 4000, South Africa.
| | - M C Baloyi
- Department of Human Physiology, University of KwaZulu-Natal, 4000, South Africa
| | - A Khathi
- Department of Human Physiology, University of KwaZulu-Natal, 4000, South Africa
| | - N H Sibiya
- Department of Pharmacy, Rhodes University, 6140, South Africa
| | - P S Ngubane
- Department of Human Physiology, University of KwaZulu-Natal, 4000, South Africa
| |
Collapse
|
12
|
Ghodsi R, Kheirouri S. Positive Association Between Plasma Levels of Advanced Glycation and Precursor of Lipoxidation end Products with Gastrointestinal Problems in Children with Autism. Curr Pediatr Rev 2019; 15:184-190. [PMID: 31264551 DOI: 10.2174/1573396315666190628141333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Revised: 05/08/2019] [Accepted: 05/15/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Increased oxidative stress has been reported in autistic patients besides, evidence linking oxidative stress to enhancement of advanced glycation and lipoxidation end products (AGEs and ALEs) and their precursors. OBJECTIVE This study aimed to compare the plasma levels of the AGEs and precursors of ALEs in autistic and healthy children and to evaluate their relationship with autism comorbidities. METHODS In this descriptive study, 54 children, 36 autistic and 18 healthy participated. Plasma levels of AGEs and precursors of ALEs were measured by ELISA method. Severity of autism and Gastrointestinal (GI) disorders were measured by GARSII questionnaire and QPGS-ROME III questionnaire, respectively. RESULTS Plasma levels of AGEs and precursors of ALEs in autistic children were comparable with healthy children. Plasma levels of AGEs and precursor of ALEs were correlated with physical activity and GI disorders in autistic children. A strong association was also found between AGEs and precursors of ALEs. CONCLUSION The results indicate that AGEs and ALEs have a strong correlation together but the AGEs and precursor of ALEs in autistic children are not different from healthy children.
Collapse
Affiliation(s)
- Ramin Ghodsi
- Department of Nutrition, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sorayya Kheirouri
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
13
|
Sha H, Tong X, Zhao J. Abnormal expressions of AGEs, TGF-β1, BDNF and their receptors in diabetic rat colon-Associations with colonic morphometric and biomechanical remodeling. Sci Rep 2018; 8:9437. [PMID: 29930382 PMCID: PMC6013484 DOI: 10.1038/s41598-018-27787-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 06/08/2018] [Indexed: 02/06/2023] Open
Abstract
Present study aims to investigate the role of AGEs, TGF-β1, BDNF and their receptors on diabetes-induced colon remodeling. Diabetes was induced by a single tail vein injection 40 mg/kg of STZ. The parameters of morphometric and biomechanical properties of colonic segments were obtained from diabetic and normal rats. The expressions of AGE, RAGE, TGF- β1, TGF- β1 receptor, BDNF and TrkB were immunohistochemically detected in different layers of the colon. The expressions of AGE, RAGE, TGF-β1 and TGF- β1 receptor were increased whereas BDNF and TrkB were decreased in the diabetic colon (P < 0.05, P < 0.01). AGE, RAGE and TGF-β1 receptor expressions were positively correlated whereas the BDNF expression was negatively correlated with most of the morphometry and biomechanical parameters (P < 0.05, P < 0.01, P < 0.001). AGE, TGF- β1 and BDNF in different layers correlated with their receptors RAGE, TGF- β1 receptor and TrkB respectively. STZ-induced diabetes up-regulated the expression of AGE, RAGE, TGF- β1 and TGF- β1 receptors and down-regulated BDNF and TrkB in different layers of diabetic colon mainly due to hyperglycemia. Such changes maybe important for diabetes-induced colon remodeling, however it is needed to further perform mechanistic experiments in order to study causality or approaches that explain the relevance of the molecular pathways.
Collapse
Affiliation(s)
- Hong Sha
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Xiaolin Tong
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Jingbo Zhao
- Department of Clinical Medicine, Aarhus University, 8200, Aarhus N, Denmark.
| |
Collapse
|
14
|
Holik AK, Lieder B, Kretschy N, Somoza MM, Ley JP, Hans J, Somoza V. The advanced glycation end product N ϵ -carboxymethyllysine and its precursor glyoxal increase serotonin release from Caco-2 cells. J Cell Biochem 2017; 119:2731-2741. [PMID: 29052845 DOI: 10.1002/jcb.26439] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/17/2017] [Indexed: 12/13/2022]
Abstract
Advanced glycation end products (AGEs), comprising a highly diverse class of Maillard reaction compounds formed in vivo and during heating processes of foods, have been described in the progression of several degenerative conditions such as Alzheimer's disease and diabetes mellitus. Nϵ -Carboxymethyllysine (CML) represents a well-characterized AGE, which is frequently encountered in a Western diet and is known to mediate its cellular effects through binding to the receptor for AGEs (RAGE). As very little is known about the impact of exogenous CML and its precursor, glyoxal, on intestinal cells, a genome-wide screening using a customized microarray was conducted in fully differentiated Caco-2 cells. After verification of gene regulation by qPCR, functional assays on fatty acid uptake, glucose uptake, and serotonin release were performed. While only treatment with glyoxal showed a slight impact on fatty acid uptake (P < 0.05), both compounds reduced glucose uptake significantly, leading to values of 81.3% ± 22.8% (500 μM CML, control set to 100%) and 68.3% ± 20.9% (0.3 μM glyoxal). Treatment with 500 μM CML or 0.3 μM glyoxal increased serotonin release (P < 0.05) to 236% ± 111% and 264% ± 66%, respectively. Co-incubation with the RAGE antagonist FPS-ZM1 reduced CML-induced serotonin release by 34%, suggesting a RAGE-mediated mechanism. Similarly, co-incubation with the SGLT-1 inhibitor phloridzin attenuated serotonin release after CML treatment by 32%, hinting at a connection between CML-stimulated serotonin release and glucose uptake. Future studies need to elucidate whether the CML/glyoxal-induced serotonin release in enterocytes might stimulate serotonin-mediated intestinal motility.
Collapse
Affiliation(s)
- Ann-Katrin Holik
- Department of Nutritional and Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Barbara Lieder
- Department of Nutritional and Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria.,Christian Doppler Laboratory for Bioactive Aroma Compounds, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Nicole Kretschy
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | - Mark M Somoza
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria
| | | | | | - Veronika Somoza
- Department of Nutritional and Physiological Chemistry, Faculty of Chemistry, University of Vienna, Vienna, Austria.,Christian Doppler Laboratory for Bioactive Aroma Compounds, Faculty of Chemistry, University of Vienna, Vienna, Austria
| |
Collapse
|
15
|
Gu JF, Su SL, Guo JM, Zhu Y, Zhao M, Duan JA. The aerial parts of Salvia miltiorrhiza Bge. strengthen intestinal barrier and modulate gut microbiota imbalance in streptozocin-induced diabetic mice. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.06.010] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
16
|
Zhao M, Liao D, Zhao J. Diabetes-induced mechanophysiological changes in the small intestine and colon. World J Diabetes 2017; 8:249-269. [PMID: 28694926 PMCID: PMC5483424 DOI: 10.4239/wjd.v8.i6.249] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/05/2017] [Accepted: 05/05/2017] [Indexed: 02/05/2023] Open
Abstract
The disorders of gastrointestinal (GI) tract including intestine and colon are common in the patients with diabetes mellitus (DM). DM induced intestinal and colonic structural and biomechanical remodeling in animals and humans. The remodeling is closely related to motor-sensory abnormalities of the intestine and colon which are associated with the symptoms frequently encountered in patients with DM such as diarrhea and constipation. In this review, firstly we review DM-induced histomorphological and biomechanical remodeling of intestine and colon. Secondly we review motor-sensory dysfunction and how they relate to intestinal and colonic abnormalities. Finally the clinical consequences of DM-induced changes in the intestine and colon including diarrhea, constipation, gut microbiota change and colon cancer are discussed. The final goal is to increase the understanding of DM-induced changes in the gut and the subsequent clinical consequences in order to provide the clinicians with a better understanding of the GI disorders in diabetic patients and facilitates treatments tailored to these patients.
Collapse
|
17
|
Pham JK, Nosala C, Scott EY, Nguyen KF, Hagen KD, Starcevich HN, Dawson SC. Transcriptomic Profiling of High-Density Giardia Foci Encysting in the Murine Proximal Intestine. Front Cell Infect Microbiol 2017; 7:227. [PMID: 28620589 PMCID: PMC5450421 DOI: 10.3389/fcimb.2017.00227] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/16/2017] [Indexed: 12/15/2022] Open
Abstract
Giardia is a highly prevalent, understudied protistan parasite causing significant diarrheal disease worldwide. Its life cycle consists of two stages: infectious cysts ingested from contaminated food or water sources, and motile trophozoites that colonize and attach to the gut epithelium, later encysting to form new cysts that are excreted into the environment. Current understanding of parasite physiology in the host is largely inferred from transcriptomic studies using Giardia grown axenically or in co-culture with mammalian cell lines. The dearth of information about the diversity of host-parasite interactions occurring within distinct regions of the gastrointestinal tract has been exacerbated by a lack of methods to directly and non-invasively interrogate disease progression and parasite physiology in live animal hosts. By visualizing Giardia infections in the mouse gastrointestinal tract using bioluminescent imaging (BLI) of tagged parasites, we recently showed that parasites colonize the gut in high-density foci. Encystation is initiated in these foci throughout the entire course of infection, yet how the physiology of parasites within high-density foci in the host gut differs from that of cells in laboratory culture is unclear. Here we use BLI to precisely select parasite samples from high-density foci in the proximal intestine to interrogate in vivo Giardia gene expression in the host. Relative to axenic culture, we noted significantly higher expression (>10-fold) of oxidative stress, membrane transporter, and metabolic and structural genes associated with encystation in the high-density foci. These differences in gene expression within parasite foci in the host may reflect physiological changes associated with high-density growth in localized regions of the gut. We also identified and verified six novel cyst-specific proteins, including new components of the cyst wall that were highly expressed in these foci. Our in vivo transcriptome data support an emerging view that parasites encyst early in localized regions in the gut, possibly as a consequence of nutrient limitation, and also impact local metabolism and physiology.
Collapse
Affiliation(s)
- Jonathan K Pham
- Department of Microbiology and Molecular Genetics, University of California, DavisDavis, CA, United States
| | - Christopher Nosala
- Department of Microbiology and Molecular Genetics, University of California, DavisDavis, CA, United States
| | - Erica Y Scott
- Department of Animal Science, University of California, DavisDavis, CA, United States
| | - Kristofer F Nguyen
- Department of Microbiology and Molecular Genetics, University of California, DavisDavis, CA, United States
| | - Kari D Hagen
- Department of Microbiology and Molecular Genetics, University of California, DavisDavis, CA, United States
| | - Hannah N Starcevich
- Department of Microbiology and Molecular Genetics, University of California, DavisDavis, CA, United States
| | - Scott C Dawson
- Department of Microbiology and Molecular Genetics, University of California, DavisDavis, CA, United States
| |
Collapse
|
18
|
Tangshen Formula Attenuates Colonic Structure Remodeling in Type 2 Diabetic Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 2017:4064156. [PMID: 28303157 PMCID: PMC5338308 DOI: 10.1155/2017/4064156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 12/26/2016] [Indexed: 12/20/2022]
Abstract
Aim. This study investigated the effect and mechanism of the Chinese herbal medicine Tangshen Formula (TSF) on GI structure remodeling in the rat model of diabetes. Methods. Type 2 diabetic rats were used. Wet weight per unit length, layer thicknesses, levels of collagens I and III, nuclear factor kappa B (NF-κB), interferon-γ (IFN-γ), interleukin-6 (IL-6), transforming growth factor-β1 (TGF-β1), and Smad2/3 expression in the rat colon were measured. Results. Compared with the control group animals, wet weight and layer thicknesses of the colon increased, and expressions of collagens I and III, NF-κB, IFN-γ, IL-6, TGF-β1, and Smad2/3 increased significantly in the diabetic animals. TSF inhibited increase in colonic wet weight and layer thicknesses, downregulated expressions of collagens I and III in the mucosal layer, and downregulated expressions of NF-κB, IFN-γ, IL-6, TGF-β1, and Smad2/3 in the colon wall. Furthermore, level of expression of NF-κB was associated with those of TGF-β1 and Smad2/3. Expression of TGF-β1 was associated with the most histomorphometric parameters including colonic weight, mucosal and muscle thicknesses, and levels of collagens I and III in mucosal layer. Conclusion. TSF appears to attenuate colonic structure remodeling in type 2 diabetic rats through inhibiting the overactivated pathway of NF-κB, thus reducing expressions of TGF-β1.
Collapse
|
19
|
Apocynin influence on oxidative stress and cardiac remodeling of spontaneously hypertensive rats with diabetes mellitus. Cardiovasc Diabetol 2016; 15:126. [PMID: 27585437 PMCID: PMC5009715 DOI: 10.1186/s12933-016-0442-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/18/2016] [Indexed: 02/06/2023] Open
Abstract
PURPOSE Although increased oxidative stress is a major component of diabetic hypertensive cardiomyopathy, research into the effects of antioxidants on cardiac remodeling remains scarce. The actions of antioxidant apocynin include inhibiting reactive oxygen species (ROS) generation by nicotinamide adenine dinucleotide phosphate (NADPH) oxidases and ROS scavenging. We evaluated the effects of apocynin on cardiac remodeling in spontaneously hypertensive rats (SHR) with diabetes mellitus (DM). METHODS Male SHR were divided into four groups: control (SHR, n = 16); SHR treated with apocynin (SHR-APO; 16 mg/kg/day, added to drinking water; n = 16); diabetic SHR (SHR-DM, n = 13); and SHR-DM treated with apocynin (SHR-DM-APO, n = 14), for eight weeks. DM was induced by streptozotocin (40 mg/kg, single dose). Statistical analyzes: ANOVA and Tukey or Mann-Whitney. RESULTS Echocardiogram in diabetic groups showed higher left ventricular and left atrium diameters indexed for body weight, and higher isovolumetric relaxation time than normoglycemic rats; systolic function did not differ between groups. Isolated papillary muscle showed impaired contractile and relaxation function in diabetic groups. Developed tension was lower in SHR-APO than SHR. Myocardial hydroxyproline concentration was higher in SHR-DM than SHR, interstitial collagen fraction was higher in SHR-DM-APO than SHR-APO, and type III collagen protein expression was lower in SHR-DM and SHR-DM-APO than their controls. Type I collagen and lysyl oxidase expression did not differ between groups. Apocynin did not change collagen tissue. Myocardial lipid hydroperoxide concentration was higher in SHR-DM than SHR and SHR-DM-APO. Glutathione peroxidase activity was lower and catalase higher in SHR-DM than SHR. Apocynin attenuated antioxidant enzyme activity changes in SHR-DM-APO. Advanced glycation end-products and NADPH oxidase activity did not differ between groups. CONCLUSION Apocynin reduces oxidative stress independently of NADPH oxidase activity and does not change ventricular or myocardial function in spontaneously hypertensive rats with diabetes mellitus. The apocynin-induced myocardial functional impairment in SHR shows that apocynin actions need to be clarified during sustained chronic pressure overload.
Collapse
|
20
|
Zhao J, Gregersen H. Diabetes-induced mechanophysiological changes in the esophagus. Ann N Y Acad Sci 2016; 1380:139-154. [PMID: 27495976 DOI: 10.1111/nyas.13180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/17/2016] [Accepted: 06/20/2016] [Indexed: 12/13/2022]
Abstract
Esophageal disorders are common in diabetes mellitus (DM) patients. DM induces mechanostructural remodeling in the esophagus of humans and animal models. The remodeling is related to esophageal sensorimotor abnormalities and to symptoms frequently encountered by DM patients. For example, gastroesophageal reflux disease (GERD) is a common disorder associated with DM. This review addresses diabetic remodeling of esophageal properties and function in light of the Esophagiome, a scientifically based modeling effort to describe the physiological dynamics of the normal, intact esophagus built upon interdisciplinary approaches with applications for esophageal disease. Unraveling the structural, biomechanical, and sensory remodeling of the esophagus in DM must be based on a multidisciplinary approach that can bridge the knowledge from a variety of scientific disciplines. The first focus of this review is DM-induced morphodynamic and biomechanical remodeling in the esophagus. Second, we review the sensorimotor dysfunction in DM and how it relates to esophageal remodeling. Finally, we discuss the clinical consequences of DM-induced esophageal remodeling, especially in relation to GERD. The ultimate aim is to increase the understanding of DM-induced remodeling of esophageal structure and sensorimotor function in order to assist clinicians to better understand the esophageal disorders induced by DM and to develop better treatments for those patients.
Collapse
Affiliation(s)
- Jingbo Zhao
- Giome Academia, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark.
| | - Hans Gregersen
- GIOME, Department of Surgery, Prince of Wales Hospital and Chinese University of Hong Kong, Shatin, Hong Kong SAR.,GIOME, College of Bioengineering, Chongqing University, Chongqing, China
| |
Collapse
|
21
|
Wang XQ, Hu MM, Wang W, Gao F, Zhang LM, Yan FY, Ju J. Pathogenesis of diabetic gastrointestinal dysfunction. Shijie Huaren Xiaohua Zazhi 2016; 24:2682-2687. [DOI: 10.11569/wcjd.v24.i17.2682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Diabetic gastrointestinal dysfunction is a common complication in patients with diabetes mellitus. Most of the symptoms are related to impaired gastrointestinal function. The pathogenesis and etiology of diabetic gastroenteropathy are complex, involving the parasympathetic and sympathetic nervous systems, enteric neurons, smooth muscle cells, the network of interstitial cells of Cajal, cholinergic receptors and neuronal nitric oxide synthase. This article reviews the pathogenesis of diabetic gastrointestinal dysfunction.
Collapse
|
22
|
Sha H, Zhao D, Tong X, Gregersen H, Zhao J. Mechanism Investigation of the Improvement of Chang Run Tong on the Colonic Remodeling in Streptozotocin-Induced Diabetic Rats. J Diabetes Res 2015; 2016:1826281. [PMID: 26839890 PMCID: PMC4709916 DOI: 10.1155/2016/1826281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Revised: 09/29/2015] [Accepted: 09/30/2015] [Indexed: 02/06/2023] Open
Abstract
Previous study demonstrated that Chang Run Tong (CRT) could partly restore the colon remodeling in streptozotocin- (STZ-) induced diabetic rats. Here we investigated the mechanisms of such effects of CRT. Diabetes was induced by a single injection of 40 mg/kg of STZ. CRT was poured into the stomach by gastric lavage once daily for 60 days. The remodeling parameters were obtained from diabetic (DM), CRT treated diabetic (T1, 50 g/kg; T2, 25 g/kg), and normal (Con) rats. Expressions of advanced glycation end product (AGE), AGE receptor, transforming growth factor-β1 (TGF-β1), and TGF-β1 receptor in the colon wall were immunochemically detected and quantitatively analyzed. The association between the expressions of those proteins and the remodeling parameters was analyzed. The expressions of those proteins were significantly higher in different colon layers in the DM group (P < 0.05, P < 0.01) and highly correlated to the remodeling parameters. Furthermore, the expressions of those proteins were significantly decreased in the T1 group (P < 0.05, P < 0.01) but not in the T2 group (P > 0.05). The corrective effect on the expressions of those proteins is likely to be one molecular pathway for the improvement of CRT on the diabetes-induced colon remodeling.
Collapse
Affiliation(s)
- Hong Sha
- China-Japan Hospital, Beijing 100029, China
| | - Dong Zhao
- China-Japan Hospital, Beijing 100029, China
| | - Xiaolin Tong
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing 100053, China
| | - Hans Gregersen
- Bioengineering College of Chongqing University, Chongqing 400044, China
| | - Jingbo Zhao
- Bioengineering College of Chongqing University, Chongqing 400044, China
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus N, Denmark
| |
Collapse
|