1
|
Benabdelkamel H, Sebaa R, AlMalki RH, Masood A, Alfadda AA, Abdel Rahman AM. Untargeted metabolomics reveals the impact of Liraglutide treatment on metabolome profiling and metabolic pathways in type-2 diabetes mellitus. Saudi Pharm J 2024; 32:102172. [PMID: 39381269 PMCID: PMC11458941 DOI: 10.1016/j.jsps.2024.102172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024] Open
Abstract
Liraglutide, a type2 diabetes mellitus (T2DM)-related treatment, improves glycemic control and reduces the risks of adverse cardiovascular events in T2DM patients. However, the underlying mechanisms of the above-mentioned beneficial effects of Liraglutide are not well understood. To have better understanding of these mechanisms, we aimed to study the metabolic impacts of Liraglutide on the metabolome and corresponding pathways in T2DM patients, especially metabolism plays a very fundamental role in health and diseases and is influenced by drugs. In this study, plasma samples collected from T2DM patients (n = 20) and taken pre- and post-Liraglutide treatment were used for untargeted metabolomics analyses, including metabolome profiling and metabolic pathway/network analyses. The metabolome profiling analyses identified 93 endogenous metabolites that were significantly affected by Liraglutide treatment where 49 and 44 metabolites were up and down regulated, respectively. Liraglutide caused metabolic alterations impacting metabolic pathways such as pentose and glucuronate interconversion and alanine, aspartate and glutamate metabolism in T2DM patients. Since the last-mentioned pathways are affected by Liraglutide, it could explain partially the overall beneficial effects of Liraglutide in T2DM, especially that glucuronate interconversion pathway is known by its important roles in eliminating toxic and undesirable substances from the human body to maintain good health status. In addition, the metabolism of amino acids induced by Liraglutide could improve the function of immune cells, strengthening the immunity of T2DM patients. Also, Liraglutide induced the level of other metabolites that help in the defense mechanism against oxidative events. Overall, the findings of this study provide a deeper understanding of the underlying mechanisms involved in the beneficial effects of Liraglutide in T2DM from the metabolic aspect.
Collapse
Affiliation(s)
- Hicham Benabdelkamel
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Rajaa Sebaa
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Reem H. AlMalki
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Afshan Masood
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Assim A. Alfadda
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
- Department of Medicine, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Anas M. Abdel Rahman
- Metabolomics Section, Department of Clinical Genomics, Center for Genomics Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh 11211, Saudi Arabia
- Department of Biochemistry and Molecular Medicine, College of Medicine, Al Faisal University, Riyadh 11533, Saudi Arabia
| |
Collapse
|
2
|
Boshchenko AA, Maslov LN, Mukhomedzyanov AV, Zhuravleva OA, Slidnevskaya AS, Naryzhnaya NV, Zinovieva AS, Ilinykh PA. Peptides Are Cardioprotective Drugs of the Future: The Receptor and Signaling Mechanisms of the Cardioprotective Effect of Glucagon-like Peptide-1 Receptor Agonists. Int J Mol Sci 2024; 25:4900. [PMID: 38732142 PMCID: PMC11084666 DOI: 10.3390/ijms25094900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/10/2024] [Accepted: 04/14/2024] [Indexed: 05/13/2024] Open
Abstract
The high mortality rate among patients with acute myocardial infarction (AMI) is one of the main problems of modern cardiology. It is quite obvious that there is an urgent need to create more effective drugs for the treatment of AMI than those currently used in the clinic. Such drugs could be enzyme-resistant peptide analogs of glucagon-like peptide-1 (GLP-1). GLP-1 receptor (GLP1R) agonists can prevent ischemia/reperfusion (I/R) cardiac injury. In addition, chronic administration of GLP1R agonists can alleviate the development of adverse cardiac remodeling in myocardial infarction, hypertension, and diabetes mellitus. GLP1R agonists can protect the heart against oxidative stress and reduce proinflammatory cytokine (IL-1β, TNF-α, IL-6, and MCP-1) expression in the myocardium. GLP1R stimulation inhibits apoptosis, necroptosis, pyroptosis, and ferroptosis of cardiomyocytes. The activation of the GLP1R augments autophagy and mitophagy in the myocardium. GLP1R agonists downregulate reactive species generation through the activation of Epac and the GLP1R/PI3K/Akt/survivin pathway. The GLP1R, kinases (PKCε, PKA, Akt, AMPK, PI3K, ERK1/2, mTOR, GSK-3β, PKG, MEK1/2, and MKK3), enzymes (HO-1 and eNOS), transcription factors (STAT3, CREB, Nrf2, and FoxO3), KATP channel opening, and MPT pore closing are involved in the cardioprotective effect of GLP1R agonists.
Collapse
Affiliation(s)
- Alla A. Boshchenko
- Department of Atherosclerosis and Chronic Coronary Heart Disease, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Leonid N. Maslov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Alexander V. Mukhomedzyanov
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Olga A. Zhuravleva
- Department of Atherosclerosis and Chronic Coronary Heart Disease, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Alisa S. Slidnevskaya
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Natalia V. Naryzhnaya
- Laboratory of Experimental Cardiology, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Arina S. Zinovieva
- Department of Atherosclerosis and Chronic Coronary Heart Disease, Cardiology Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634012 Tomsk, Russia
| | - Philipp A. Ilinykh
- Department of Pathology, The University of Texas Medical Branch at Galveston, Galveston, TX 77555, USA
| |
Collapse
|
3
|
Jitte S, Keluth S, Bisht P, Wal P, Singh S, Murti K, Kumar N. Obesity and Depression: Common Link and Possible Targets. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:1425-1449. [PMID: 38747226 DOI: 10.2174/0118715273291985240430074053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/15/2024] [Accepted: 03/27/2024] [Indexed: 10/22/2024]
Abstract
Depression is among the main causes of disability, and its protracted manifestations could make it even harder to treat metabolic diseases. Obesity is linked to episodes of depression, which is closely correlated to abdominal adiposity and impaired food quality. The present review is aimed at studying possible links between obesity and depression along with targets to disrupt it. Research output in Pubmed and Scopus were referred for writing this manuscript. Obesity and depression are related, with the greater propensity of depressed people to gain weight, resulting in poor dietary decisions and a sedentary lifestyle. Adipokines, which include adiponectin, resistin, and leptin are secretory products of the adipose tissue. These adipokines are now being studied to learn more about the connection underlying obesity and depression. Ghrelin, a gut hormone, controls both obesity and depression. Additionally, elevated ghrelin levels result in anxiolytic and antidepressant-like effects. The gut microbiota influences the metabolic functionalities of a person, like caloric processing from indigestible nutritional compounds and storage in fatty tissue, that exposes an individual to obesity, and gut microorganisms might connect to the CNS through interconnecting pathways, including neurological, endocrine, and immunological signalling systems. The alteration of brain activity caused by gut bacteria has been related to depressive episodes. Monoamines, including dopamine, serotonin, and norepinephrine, have been widely believed to have a function in emotions and appetite control. Emotional signals stimulate arcuate neurons in the hypothalamus that are directly implicated in mood regulation and eating. The peptide hormone GLP-1(glucagon-like peptide- 1) seems to have a beneficial role as a medical regulator of defective neuroinflammation, neurogenesis, synaptic dysfunction, and neurotransmitter secretion discrepancy in the depressive brain. The gut microbiota might have its action in mood and cognition regulation, in addition to its traditional involvement in GI function regulation. This review addressed the concept that obesity-related low-grade mild inflammation in the brain contributes to chronic depression and cognitive impairments.
Collapse
Affiliation(s)
- Srikanth Jitte
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali 844102, Bihar, India
| | - Saritha Keluth
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali 844102, Bihar, India
| | - Priya Bisht
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali 844102, Bihar, India
| | - Pranay Wal
- PSIT- Pranveer Singh Institute of Technology, Pharmacy, Kanpur 209305, Uttar Pradesh, India
| | - Sanjiv Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali 844102, Bihar, India
| | - Krishna Murti
- Department of Pharmacy Practice, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali 844102, Bihar, India
| | - Nitesh Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Hajipur, Vaishali 844102, Bihar, India
| |
Collapse
|
4
|
Gou Y, Schwartz MW. How should we think about the unprecedented weight loss efficacy of incretin-mimetic drugs? J Clin Invest 2023; 133:e174597. [PMID: 37781919 PMCID: PMC10541183 DOI: 10.1172/jci174597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023] Open
|
5
|
Zhang Y, Liu Y, Yong VW, Xue M. Omarigliptin inhibits brain cell ferroptosis after intracerebral hemorrhage. Sci Rep 2023; 13:14339. [PMID: 37658227 PMCID: PMC10474264 DOI: 10.1038/s41598-023-41635-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 08/29/2023] [Indexed: 09/03/2023] Open
Abstract
Intracerebral hemorrhage (ICH) is a disastrous disease without effective treatment. An extensive body of evidence indicate that neuronal ferroptosis is a key contributor to neurological disfunctions after ICH. Omarigliptin, also known as MK3102, is an anti-diabetic drug that inhibits dipeptidyl peptidase (DPP4). Recently, MK3102 is reported to exhibit anti-ferroptosis and anti-oxidative effects in different pathological conditions. However, the anti-ferroptosis ability of MK3102 in ICH injury is unknown. Hemin was administrated to model ICH injury in cultured primary cortical neurons, and collagenase VII was used to induce ICH in C57BL/6 mice. MK3102 was administered after ICH. Cell Counting Kit-8 (CCK-8) was applied to detect cell viability. Neurological functions were assessed through the Focal deficits neurological scores and corner test. HE and TUNEL staining was applied to evaluate brain damage areas and cell death, respectively. Ferroptosis was evaluated in cultured neurons by fluorescent probe DCFH-DA, FerroOrange, Liperfluo and immunofluorescence of GPX4, AIFM2 and FACL4. Perls staining was performed to visualize Fe3+ deposition. Ferroptosis-related proteins in mouse brain were measured by immunohistochemistry and western blotting. MK3102 reduced the neurotoxicity of hemin in cultured primary cortical neurons. It improved neurological functions associated with a decrease in the number of dead neurons and the area of brain damage after ICH in mice. Moreover, MK3102 prominently upregulated glucagon-like peptide-1 receptor (GLP-1R) levels after ICH. In addition, the elevation of iron content, lipid peroxidation and FACL4 after ICH; and reduction of GPX4 and AIFM2; were mitigated by MK3102 in vitro and in vivo. The neuroprotective effect of MK3102 may be related to anti-ferroptosis by regulating GLP-1R after ICH injury.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - Yang Liu
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, China
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China
| | - V Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, Henan, China.
- Academy of Medical Science, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
6
|
Osmanović Barilar J, Babić Perhoč A, Knezović A, Homolak J, Virag D, Šalković-Petrišić M. The Effect of the Sodium-Glucose Cotransporter Inhibitor on Cognition and Metabolic Parameters in a Rat Model of Sporadic Alzheimer's Disease. Biomedicines 2023; 11:1025. [PMID: 37189641 PMCID: PMC10135566 DOI: 10.3390/biomedicines11041025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/16/2023] [Accepted: 03/23/2023] [Indexed: 03/29/2023] Open
Abstract
Type 2 diabetes mellitus increases the risk of sporadic Alzheimer's disease (sAD), and antidiabetic drugs, including the sodium-glucose cotransporter inhibitors (SGLTI), are being studied as possible sAD therapy. We have explored whether the SGLTI phloridzin may influence metabolic and cognitive parameters in a rat model of sAD. Adult male Wistar rats were randomized to a control (CTR), an sAD-model group induced by intracerebroventricular streptozotocin (STZ-icv; 3 mg/kg), a CTR+SGLTI, or an STZ-icv+SGLTI group. Two-month-long oral (gavage) SGLTI treatment (10 mg/kg) was initiated 1 month after STZ-icv and cognitive performance tested prior to sacrifice. SGLTI treatment significantly decreased plasma glucose levels only in the CTR group and failed to correct STZ-icv-induced cognitive deficit. In both the CTR and STZ-icv groups, SGLTI treatment diminished weight gain, decreased amyloid beta (Aβ) 1-42 in duodenum, and decreased the plasma levels of total glucagon-like peptide 1 (GLP-1), while the levels of active GLP-1, as well as both total and active glucose-dependent insulinotropic polypeptide, remained unchanged, compared to their respective controls. The increment in GLP-1 levels in the cerebrospinal fluid and its effect on Aβ 1-42 in duodenum could be one of the molecular mechanisms by which SGLTIs indirectly induce pleiotropic beneficial effects.
Collapse
Affiliation(s)
- Jelena Osmanović Barilar
- Department of Pharmacology and Croatian, Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | | | | | | | | | | |
Collapse
|
7
|
Mei Y, Li Y, Cheng Y, Gao L. The effect of gastric bypass surgery on cognitive function of Alzheimer's disease and the role of GLP1-SGLT1 pathway. Exp Neurol 2023; 363:114377. [PMID: 36893833 DOI: 10.1016/j.expneurol.2023.114377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/20/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023]
Abstract
OBJECTIVE Gastric bypass surgery has been shown to improve metabolic profiles via GLP1, which may also have cognitive benefits for Alzheimer's disease (AD) patients. However, the exact mechanism requires further investigation. METHODS Roux-en-Y gastric bypass or sham surgery was performed on APP/PS1/Tau triple transgenic mice (an AD mice model) or wild type C57BL/6 mice. Morris Water Maze (MWM) test was used to evaluate the cognitive function of mice and animal tissue samples were obtained for measurements two months after the surgery. Additionally, STC-1 intestine cells were treated with siTAS1R2 and siSGLT1, and HT22 nerve cells were treated with Aβ, siGLP1R, GLP1 and siSGLT1 in vitro to explore the role of GLP1-SGLT1 related signaling pathway in cognitive function. RESULTS The MWM test showed that bypass surgery significantly improved cognitive function in AD mice as measured by navigation and spatial probe tests. Moreover, bypass surgery reversed neurodegeneration, down-regulated hyperphosphorylation of Tau protein and Aβ deposition, improved glucose metabolism, and up-regulated the expression of GLP1, SGLT1, and TAS1R2/3 in the hippocampus. Furthermore, GLP1R silencing down-regulated SGLT1 expression, whereas SGLT1 silencing increased Tau protein deposition and exacerbated dysregulated of glucose metabolism in HT22 cells. However, RYGB did not alter the level of GLP1 secretion in the brainstem (where central GLP1 is mainly produced). Additionally, GLP1 expression was upregulated by RYGB via TAS1R2/3-SGLT1 activation sequentially in the small intestine. CONCLUSION RYGB surgery could improve cognition function in AD mice through facilitating glucose metabolism and reducing Tau phosphorylation and Aβ deposition in the hippocampus, mediated by peripheral serum GLP1 activation of SGLT1 in the brain. Furthermore, RYGB increased GLP1 expression through sequential activation of TAS1R2/TAS1R3 and SGLT1 in the small intestine.
Collapse
Affiliation(s)
- Yingna Mei
- Department of Endocrinology & Metabolism, Renmin Hospital of Wuhan University, China
| | - Yubing Li
- Department of Endocrinology & Metabolism, Renmin Hospital of Wuhan University, China
| | - Yanxiang Cheng
- Department of Obstetrics & Gynecology, Renmin Hospital of Wuhan University, China.
| | - Ling Gao
- Department of Endocrinology & Metabolism, Renmin Hospital of Wuhan University, China.
| |
Collapse
|
8
|
Kopp KO, Glotfelty EJ, Li Y, Greig NH. Glucagon-like peptide-1 (GLP-1) receptor agonists and neuroinflammation: Implications for neurodegenerative disease treatment. Pharmacol Res 2022; 186:106550. [PMID: 36372278 PMCID: PMC9712272 DOI: 10.1016/j.phrs.2022.106550] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/03/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
Chronic, excessive neuroinflammation is a key feature of neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). However, neuroinflammatory pathways have yet to be effectively targeted in clinical treatments for such diseases. Interestingly, increased inflammation and neurodegenerative disease risk have been associated with type 2 diabetes mellitus (T2DM) and insulin resistance (IR), suggesting that treatments that mitigate T2DM pathology may be successful in treating neuroinflammatory and neurodegenerative pathology as well. Glucagon-like peptide-1 (GLP-1) is an incretin hormone that promotes healthy insulin signaling, regulates blood sugar levels, and suppresses appetite. Consequently, numerous GLP-1 receptor (GLP-1R) stimulating drugs have been developed and approved by the US Food and Drug Administration (FDA) and related global regulatory authorities for the treatment of T2DM. Furthermore, GLP-1R stimulating drugs have been associated with anti-inflammatory, neurotrophic, and neuroprotective properties in neurodegenerative disorder preclinical models, and hence hold promise for repurposing as a treatment for neurodegenerative diseases. In this review, we discuss incretin signaling, neuroinflammatory pathways, and the intersections between neuroinflammation, brain IR, and neurodegenerative diseases, with a focus on AD and PD. We additionally overview current FDA-approved incretin receptor stimulating drugs and agents in development, including unimolecular single, dual, and triple receptor agonists, and highlight those in clinical trials for neurodegenerative disease treatment. We propose that repurposing already-approved GLP-1R agonists for the treatment of neurodegenerative diseases may be a safe, efficacious, and cost-effective strategy for ameliorating AD and PD pathology by quelling neuroinflammation.
Collapse
Affiliation(s)
- Katherine O Kopp
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, United States.
| | - Elliot J Glotfelty
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, United States; Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Yazhou Li
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, United States
| | - Nigel H Greig
- Drug Design & Development Section, Translational Gerontology Branch, Intramural Research Program National Institute on Aging, NIH, Baltimore, MD 21224, United States.
| |
Collapse
|
9
|
Manavi MA. Neuroprotective effects of glucagon-like peptide-1 (GLP-1) analogues in epilepsy and associated comorbidities. Neuropeptides 2022; 94:102250. [PMID: 35561568 DOI: 10.1016/j.npep.2022.102250] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 10/18/2022]
Abstract
Epilepsy is a common neurological condition induced by losing equilibrium of different pathway as well as neurotransmitters that affects over 50 million people globally. Furthermore, long-term administration of anti-seizure medications has been associated with psychological adverse effects. Also, epilepsy has been related to an increased prevalence of obesity and called type 2 diabetes mellitus. On the other hand, GLP-1 receptors are located throughout the brain, including the hippocampus, which have been associated to majority of neurological conditions, such as epilepsy and psychiatric disorders. Moreover, the impact of different GLP-1 analogues on diverse neurotransmitter systems and associated cellular and molecular pathways as a potential therapeutic target for epilepsy and associated comorbidities has piqued curiosity. In this regard, the anticonvulsant effects of GLP-1 analogues have been investigated in various animal models and promising results such as anticonvulsants as well as cognitive improvements have been observed. For instance, GLP-1 analogues like liraglutide in addition to their possible anticonvulsant benefits, could be utilized to alleviate mental cognitive problems caused by both epilepsy and anti-seizure medication side effects. In this review and growing protective function of GLP-1 in epilepsy induced by disturbed neurotransmitter pathways and the probable mechanisms of action of GLP-1 analogues as well as the GLP-1 receptor in these effects have been discussed.
Collapse
Affiliation(s)
- Mohammad Amin Manavi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Ji S, Zhao X, Zhu R, Dong Y, Huang L, Zhang T. Metformin and the risk of dementia based on an analysis of 396,332 participants. Ther Adv Chronic Dis 2022; 13:20406223221109454. [PMID: 35847477 PMCID: PMC9277541 DOI: 10.1177/20406223221109454] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 06/01/2022] [Indexed: 11/17/2022] Open
Abstract
Background: AMPK has attracted widespread interest as a potential therapeutic target for age-related diseases, given its key role in controlling energy homeostasis. Metformin (Met) has historically been used to treat Type 2 diabetes and has been shown to counteract age-related diseases. However, studies regarding the relationship between Met and a variety of age-related classifications of cognitive decline have reported mixed findings. Objective: To assess the potential effect of Met on the onset of dementia and discuss the possible biological mechanisms involved. Methods: This study was registered in the PROSPERO database (CRD420201251468). PubMed, Embase, and Cochrane Library were searched from inception to 25 May 2021, for population-based cohort studies. Effect estimates with 95% confidence intervals (CIs) were pooled using the random-effects model. Meta-regression and subgroup analyses were performed to explore sources of heterogeneity and the stability of the results. Results: Fourteen population-based cohort studies (17 individual comparisons) involving 396,332 participants were identified. Meta-analysis showed that Met exposure was significantly associated with reduced risk of all subtypes of dementias [relative risk (RR) = 0.79, 95% CI = 0.68–0.91; p < 0.001]. Conversely, no significant reduction in risk was observed for those who received Met monotherapy at the onset of vascular dementia (VD), Parkinson’s disease (PD), and Alzheimer’s disease (AD). The effect was more prominent in patients who had long-term Met exposure (⩾4 years) (RR = 0.38, 95% CI = 0.32–0.46; p < 0.001), while no such significant effect was found with short-term Met exposure (1–2 years) (RR = 1.20, 95% CI = 0.87–1.66; p < 0.001). Moreover, no association was observed for Met exposure in participants of European descent (RR = 1.01, 95% CI = 0.66–1.54; p = 0.003) compared with those from other countries. Conclusion: Based on the evidence from population-based cohort studies, our findings suggest that the AMPK activator, Met, is a potential geroprotective agent for dementias, particularly among long-term Met users. Due to the significant heterogeneity among the included studies, we should interpret the results with caution.
Collapse
Affiliation(s)
- Shiliang Ji
- Department of pharmacy, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Xingxing Zhao
- Department of Neonatology, The Affiliated Suzhou Hospital of Nanjing Medical University (Suzhou Municipal Hospital), Gusu School, Nanjing Medical University, Suzhou, China
| | - Ruifang Zhu
- Department of pharmacy, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Yongchao Dong
- Department of pharmacy, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, China
| | - Lifeng Huang
- Department of pharmacy, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou 215153, China
| | - Taiquan Zhang
- Department of pharmacy, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou 215153, China
| |
Collapse
|
11
|
Al Dahhan NZ, Cox E, Nieman BJ, Mabbott DJ. Cross-translational models of late-onset cognitive sequelae and their treatment in pediatric brain tumor survivors. Neuron 2022; 110:2215-2241. [PMID: 35523175 DOI: 10.1016/j.neuron.2022.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/21/2022] [Accepted: 04/08/2022] [Indexed: 10/18/2022]
Abstract
Pediatric brain tumor treatments have a high success rate, but survivors are at risk of cognitive sequelae that impact long-term quality of life. We summarize recent clinical and animal model research addressing pathogenesis or evaluating candidate interventions for treatment-induced cognitive sequelae. Assayed interventions encompass a broad range of approaches, including modifications to radiotherapy, modulation of immune response, prevention of treatment-induced cell loss or promotion of cell renewal, manipulation of neuronal signaling, and lifestyle/environmental adjustments. We further emphasize the potential of neuroimaging as a key component of cross-translation to contextualize laboratory research within broader clinical findings. This cross-translational approach has the potential to accelerate discovery to improve pediatric cancer survivors' long-term quality of life.
Collapse
Affiliation(s)
- Noor Z Al Dahhan
- Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada
| | - Elizabeth Cox
- Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada
| | - Brian J Nieman
- Translational Medicine, Hospital for Sick Children, Toronto, ON, Canada; Mouse Imaging Centre, Hospital for Sick Children, Toronto, ON, Canada; Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada; Ontario Institute for Cancer Research, Toronto, ON, Canada
| | - Donald J Mabbott
- Neurosciences and Mental Health, Hospital for Sick Children, Toronto, ON, Canada; Department of Psychology, University of Toronto, Toronto, ON, Canada; Department of Psychology, Hospital for Sick Children, Toronto, ON, Canada.
| |
Collapse
|
12
|
Su Y, Liu N, Zhang Z, Hao L, Ma J, Yuan Y, Shi M, Liu J, Zhao Z, Zhang Z, Holscher C. Cholecystokinin and glucagon-like peptide-1 analogues regulate intestinal tight junction, inflammation, dopaminergic neurons and α-synuclein accumulation in the colon of two Parkinson's disease mouse models. Eur J Pharmacol 2022; 926:175029. [DOI: 10.1016/j.ejphar.2022.175029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 11/03/2022]
|
13
|
Meng L, Wang Z, Ji HF, Shen L. Causal association evaluation of diabetes with Alzheimer's disease and genetic analysis of antidiabetic drugs against Alzheimer's disease. Cell Biosci 2022; 12:28. [PMID: 35272707 PMCID: PMC8908591 DOI: 10.1186/s13578-022-00768-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/26/2022] [Indexed: 03/05/2023] Open
Abstract
Background Despite accumulating epidemiological studies support that diabetes increases the risk of Alzheimer’s disease (AD), the causal associations between diabetes and AD remain inconclusive. The present study aimed to explore: i) whether diabetes is causally related to the increased risk of AD; ii) and if so, which diabetes-related physiological parameter is associated with AD; iii) why diabetes drugs can be used as candidates for the treatment of AD. Two-sample Mendelian randomization (2SMR) was employed to perform the analysis. Results Firstly, the 2SMR analysis provided a suggestive association between genetically predicted type 1 diabetes (T1D) and a slightly increased AD risk (OR = 1.04, 95% CI = [1.01, 1.06]), and type 2 diabetes (T2D) showed a much stronger association with AD risk (OR = 1.34, 95% CI = [1.05, 1.70]). Secondly, further 2SMR analysis revealed that diabetes-related physiological parameters like fasting blood glucose and total cholesterol levels might have a detrimental role in the development of AD. Thirdly, we obtained 74 antidiabetic drugs and identified SNPs to proxy the targets of antidiabetic drugs. 2SMR analysis indicated the expression of three target genes, ETFDH, GANC, and MGAM, were associated with the increased risk of AD, while CPE could be a protective factor for AD. Besides, further PPI network found that GANC interacted with MGAM, and further interacted with CD33, a strong genetic locus related to AD. Conclusions In conclusion, the present study provides evidence of a causal association between diabetes and increased risk of AD, and also useful genetic clues for drug development.
Collapse
Affiliation(s)
- Lei Meng
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, People's Republic of China.,Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Zibo Key Laboratory of New Drug Development of Neurodegenerative Diseases, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, People's Republic of China
| | - Zhe Wang
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, People's Republic of China.,Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Zibo Key Laboratory of New Drug Development of Neurodegenerative Diseases, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, People's Republic of China
| | - Hong-Fang Ji
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, People's Republic of China. .,Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Zibo Key Laboratory of New Drug Development of Neurodegenerative Diseases, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, People's Republic of China.
| | - Liang Shen
- Institute of Biomedical Research, Shandong University of Technology, Zibo, Shandong, People's Republic of China. .,Shandong Provincial Research Center for Bioinformatic Engineering and Technique, Zibo Key Laboratory of New Drug Development of Neurodegenerative Diseases, School of Life Sciences and Medicine, Shandong University of Technology, Zibo, Shandong, People's Republic of China.
| |
Collapse
|
14
|
Zhang M, Wu Y, Gao R, Chen X, Chen R, Chen Z. Glucagon-like peptide-1 analogs mitigate neuroinflammation in Alzheimer's disease by suppressing NLRP2 activation in astrocytes. Mol Cell Endocrinol 2022; 542:111529. [PMID: 34906628 DOI: 10.1016/j.mce.2021.111529] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 01/15/2023]
Abstract
Neuroinflammation is closely linked to the pathogenesis of Alzheimer's disease (AD). Glucagon-like peptide-1 (GLP-1) analogs exhibit anti-inflammatory and neuroprotective effects; hence, we investigated whether they reduce cognitive impairment and protect astrocytes from oxidative stress. We found that 5 × FAD transgenic mice treated with the synthetic GLP-1 receptor agonist exenatide had improved cognitive function per the Morris water maze test. Immunohistochemistry, western blotting, and ELISAs used to detect inflammatory factors revealed reduced neuroinflammation in extracted piriform cortexes of exenatide-treated mice as well as lower amyloid β1-42-induced oxidative stress and inflammation in astrocytes treated with exendin-4 (the natural analog of exenatide). Adenovirus-mediated overexpression of nucleotide-binding oligomerization domain, leucine-rich repeat, and pyrin domain containing 2 (NLRP2) revealed that exenatide/exendin-4 function may be attributed to NLRP2 inflammasome inhibition. Collectively, our results indicate that GLP-1 analogs improve cognitive dysfunction in vivo and protect astrocytes in vitro, potentially via the downregulation of the NLRP2 inflammasome.
Collapse
Affiliation(s)
- Mengjun Zhang
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Yubin Wu
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Ruonan Gao
- Department of Endocrinology, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Xinwei Chen
- Graduate School of Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Ruiyu Chen
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, China
| | - Zhou Chen
- Department of Clinical Pharmacy and Pharmacy Administration, School of Pharmacy, Fujian Medical University, Fuzhou, 350122, Fujian, China; Fujian Key Laboratory of Natural Medicine Pharmacology, Fujian Medical University, Fuzhou, 350122, China.
| |
Collapse
|
15
|
Hölscher C. Protective properties of GLP-1 and associated peptide hormones in neurodegenerative disorders. Br J Pharmacol 2022; 179:695-714. [PMID: 33900631 PMCID: PMC8820183 DOI: 10.1111/bph.15508] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/11/2022] Open
Abstract
Type 2 diabetes mellitus and the associated desensitisation of insulin signalling has been identified as a risk factor for progressive neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and others. Glucagon-like peptide 1 (GLP-1) is a hormone that has growth factor-like and neuroprotective properties. Several clinical trials have been conducted, testing GLP-1 receptor agonists in patients with Alzheimer's disease, Parkinson's disease or diabetes-induced memory impairments. The trials showed clear improvements in Alzheimer's disease, Parkinson's disease and diabetic patients. Glucose-dependent insulinotropic polypeptide/gastric inhibitory peptide (GIP) is the 'sister' incretin hormone of GLP-1. GIP analogues have shown neuroprotective effects in animal models of disease and can improve on the effects of GLP-1. Novel dual GLP-1/GIP receptor agonists have been developed that can enter the brain at an enhanced rate. The improved neuroprotective effects of these drugs suggest that they are superior to single GLP-1 receptor agonists and could provide disease-modifying care for Alzheimer's disease and Parkinson's disease patients. LINKED ARTICLES: This article is part of a themed issue on GLP1 receptor ligands (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.4/issuetoc.
Collapse
Affiliation(s)
- Christian Hölscher
- The Second Associated Hospital, Neurology DepartmentShanxi Medical UniversityTaiyuanChina
- Academy of Chinese Medical ScienceHenan University of Chinese MedicineZhengzhouChina
| |
Collapse
|
16
|
Expression of glucagon-like peptide 1 receptor in neuropeptide Y neurons of the arcuate nucleus in mice. Brain Struct Funct 2021; 227:77-87. [PMID: 34596755 DOI: 10.1007/s00429-021-02380-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
Glucagon-like peptide 1 (GLP-1) and its agonists exert anorexigenic effect at least partly via acting on GLP-1 receptors (GLP-1R) in the arcuate nucleus (ARC). While the anorexigenic, proopiomelanocortin (POMC) neurons of the ARC were shown previously to express GLP-1R, the putative GLP-1R-content of the orexigenic, neuropeptide Y (NPY) neurons remained so far undetected. As GLP-1R is abundant in the ventromedial ARC, where NPY neurons are located; here, we address the possibility that GLP-1 can act directly on the orexigenic NPY system via GLP-1R. Double-labeling immunocytochemistry and in situ hybridization were performed on tissues of adult male mice to detect GLP-1R in NPY neurons. In double-immunolabeled preparations, GLP-1R-immunoreactivity was observed in NPY neurons and in axons ensheathing the majority of NPY neurons. Ultrastructural studies confirmed that GLP-1R-immunoreactivity is associated with the outer membrane of NPY perikarya as well as with axons forming symmetric type, inhibitory synapses on NPY-containing neurons. Double-labeling in situ hybridization experiments demonstrated the expression of GLP-1R mRNA in approximately 20% of NPY mRNA-containing neurons of the ARC. In summary, our data demonstrate the presence of GLP-1R protein and mRNA in NPY neurons of ARC and also reveal the innervation of NPY neurons by GLP-1R-containing inhibitory neurons. These observations suggest that GLP-1 signaling can influence NPY neurons both directly and indirectly. Furthermore, GLP-1 signaling on energy homeostasis appears to involve both direct and indirect effects of GLP-1 on the orexigenic NPY neurons, in addition to the previously known effects via the anorexigenic POMC neuronal system.
Collapse
|
17
|
Sim AY, Barua S, Kim JY, Lee YH, Lee JE. Role of DPP-4 and SGLT2 Inhibitors Connected to Alzheimer Disease in Type 2 Diabetes Mellitus. Front Neurosci 2021; 15:708547. [PMID: 34489627 PMCID: PMC8417940 DOI: 10.3389/fnins.2021.708547] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
Alzheimer's disease (AD) is characterized by memory loss and cognitive decline. Additionally, abnormal extracellular amyloid plaques accumulation and nerve damage caused by intracellular neurofibrillary tangles, and tau protein are characteristic of AD. Furthermore, AD is associated with oxidative stress, impaired mitochondrial structure and function, denormalization, and inflammatory responses. Recently, besides the amyloid β hypothesis, another hypothesis linking AD to systemic diseases has been put forth by multiple studies as a probable cause for AD. Particularly, type 2 diabetes mellitus (T2DM) and its features, including hyperinsulinemia, and chronic hyperglycemia with an inflammatory response, have been shown to be closely related to AD through insulin resistance. The brain cannot synthesize or store glucose, but it does require glucose, and the use of glucose in the brain is higher than that in any other organ in the mammalian body. One of the therapeutic drugs for T2DM, dipeptidyl peptidase-4 (DPP-4) inhibitor, suppresses the degradation of incretins, glucagon-like peptides and glucose-dependent insulinotropic peptide. Sodium-glucose cotransporter 2 (SGLT2) inhibitors, recently used in T2DM treatment, have a unique mechanism of action via inhibition of renal glucose reabsorption, and which is different from the mechanisms of previously used medications. This manuscript reviews the pathophysiological relationship between the two diseases, AD and T2DM, and the pharmacological effects of therapeutic T2DM drugs, especially DPP-4 inhibitors, and SGLT2 inhibitors.
Collapse
Affiliation(s)
- A Young Sim
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Sumit Barua
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong Youl Kim
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea
| | - Yong-Ho Lee
- Department of Internal Medicine, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong Eun Lee
- Department of Anatomy, Yonsei University College of Medicine, Seoul, South Korea.,Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea.,Brain Research Institute, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
18
|
Vernia F, Di Ruscio M, Ciccone A, Viscido A, Frieri G, Stefanelli G, Latella G. Sleep disorders related to nutrition and digestive diseases: a neglected clinical condition. Int J Med Sci 2021; 18:593-603. [PMID: 33437194 PMCID: PMC7797530 DOI: 10.7150/ijms.45512] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 10/04/2020] [Indexed: 02/06/2023] Open
Abstract
Sleep disturbances often result from inappropriate lifestyles, incorrect dietary habits, and/or digestive diseases. This clinical condition, however, has not been sufficiently explored in this area. Several studies have linked the circadian timing system to the physiology of metabolism control mechanisms, energy balance regulation, and nutrition. Sleep disturbances supposedly trigger digestive disorders or conversely represent specific clinical manifestation of gastrointestinal (GI) diseases. Poor sleep may worsen the symptoms of GI disorders, affecting the quality of life. Conversely, short sleep may influence dietary choices, as well as meal timing, and the circadian system drives temporal changes in metabolic patterns. Emerging evidence suggests that patients with inappropriate dietary habits and chronic digestive disorders often sleep less and show lower sleep efficiency, compared with healthy individuals. Sleep disturbances may thus represent a primary symptom of digestive diseases. Further controlled trials are needed to fully understand the relationship between sleep disturbances, dietary habits, and GI disorders. It may be also anticipated that the evaluation of sleep quality may prove useful to drive positive interventions and improve the quality of life in a proportion of patients. This review summarizes data linking sleep disorders with diet and a series of disease including gastro-esophageal reflux disease, peptic disease, functional gastrointestinal disorders, inflammatory bowel diseases, gut microbiota alterations, liver and pancreatic diseases, and obesity. The evidence supporting the complex interplay between sleep dysfunction, nutrition, and digestive diseases is discussed.
Collapse
Affiliation(s)
- Filippo Vernia
- Division of Gastroenterology, Hepatology and Nutrition, Department of Life, Health, and Environmental Sciences, University of L'Aquila, Piazza S. Tommasi, 1- Coppito, 67100 L'Aquila, Italy
| | - Mirko Di Ruscio
- Division of Gastroenterology, Hepatology and Nutrition, Department of Life, Health, and Environmental Sciences, University of L'Aquila, Piazza S. Tommasi, 1- Coppito, 67100 L'Aquila, Italy
| | - Antonio Ciccone
- Division of Gastroenterology, Hepatology and Nutrition, Department of Life, Health, and Environmental Sciences, University of L'Aquila, Piazza S. Tommasi, 1- Coppito, 67100 L'Aquila, Italy
| | - Angelo Viscido
- Division of Gastroenterology, Hepatology and Nutrition, Department of Life, Health, and Environmental Sciences, University of L'Aquila, Piazza S. Tommasi, 1- Coppito, 67100 L'Aquila, Italy
| | - Giuseppe Frieri
- Division of Gastroenterology, Hepatology and Nutrition, Department of Life, Health, and Environmental Sciences, University of L'Aquila, Piazza S. Tommasi, 1- Coppito, 67100 L'Aquila, Italy
| | - Gianpiero Stefanelli
- Division of Gastroenterology, Hepatology and Nutrition, Department of Life, Health, and Environmental Sciences, University of L'Aquila, Piazza S. Tommasi, 1- Coppito, 67100 L'Aquila, Italy
| | - Giovanni Latella
- Division of Gastroenterology, Hepatology and Nutrition, Department of Life, Health, and Environmental Sciences, University of L'Aquila, Piazza S. Tommasi, 1- Coppito, 67100 L'Aquila, Italy
| |
Collapse
|
19
|
Rahman SO, Kaundal M, Salman M, Shrivastava A, Parvez S, Panda BP, Akhter M, Akhtar M, Najmi AK. Alogliptin reversed hippocampal insulin resistance in an amyloid-beta fibrils induced animal model of Alzheimer's disease. Eur J Pharmacol 2020; 889:173522. [PMID: 32866503 DOI: 10.1016/j.ejphar.2020.173522] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 08/24/2020] [Accepted: 08/28/2020] [Indexed: 12/17/2022]
Abstract
The complications of Alzheimer's disease (AD) have made the development of its treatment a challenging task. Several studies have indicated the disruption of insulin receptor substrate-1 (IRS-1) signaling during the development and progression of AD. The role of a dipeptidyl peptidase-4 (DPP-4) inhibitor on hippocampal IRS-1 signaling has not been investigated before. In this study, we evaluated the efficacy of alogliptin (DPP-4 inhibitor) on hippocampal insulin resistance and associated AD complications. In the present study, amyloid-β (1-42) fibrils were produced and administered intrahippocampally for inducing AD in Wistar rats. After 7 days of surgery, rats were treated with 10 and 20 mg/kg of alogliptin for 28 days. Morris water maze (MWM) test was performed in the last week of our experimental study. Post 24 h of final treatment, rats were euthanized and hippocampi were separated for biochemical and histopathological investigations. In-silico analysis revealed that alogliptin has a good binding affinity with Aβ and beta-secretase-1 (BACE-1). Alogliptin significantly restored cognitive functions in Aβ (1-42) fibrils injected rats during the MWM test. Alogliptin also significantly attenuated insulin level, IRS-1pS307 expression, Aβ (1-42) level, GSK-3β activity, TNF-α level and oxidative stress in the hippocampus. The histopathological analysis supported alogliptin mediated neuroprotective and anti-amyloidogenic effect. Immunohistochemical analysis also revealed a reduction in IRS-1pS307 expression after alogliptin treatment. The in-silico, behavioral, biochemical and histopathological analysis supports the protective effect of alogliptin against hippocampal insulin resistance and AD.
Collapse
Affiliation(s)
- Syed Obaidur Rahman
- Pharmaceutical Medicine, Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Madhu Kaundal
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohd Salman
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Apeksha Shrivastava
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, New Delhi, India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | - Bibhu Prasad Panda
- Pharmaceutical Biotechnology Laboratory, Department of Pharmacognosy & Phytochemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mymoona Akhter
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research, New Delhi, India
| | - Mohd Akhtar
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
20
|
Kim YK, Kim OY, Song J. Alleviation of Depression by Glucagon-Like Peptide 1 Through the Regulation of Neuroinflammation, Neurotransmitters, Neurogenesis, and Synaptic Function. Front Pharmacol 2020; 11:1270. [PMID: 32922295 PMCID: PMC7456867 DOI: 10.3389/fphar.2020.01270] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/31/2020] [Indexed: 12/11/2022] Open
Abstract
Depression has emerged as a major cause of mortality globally. Many studies have reported risk factors and mechanisms associated with depression, but it is as yet unclear how these findings can be applied to the treatment and prevention of this disorder. The onset and recurrence of depression have been linked to diverse metabolic factors, including hyperglycemia, dyslipidemia, and insulin resistance. Recent studies have suggested that depression is accompanied by memory loss as well as depressive mood. Thus, many researchers have highlighted the relationship between depressive behavior and metabolic alterations from various perspectives. Glucagon-like peptide-1 (GLP-1), which is secreted from gut cells and hindbrain areas, has been studied in metabolic diseases such as obesity and diabetes, and was shown to control glucose metabolism and insulin resistance. Recently, GLP-1 was highlighted as a regulator of diverse pathways, but its potential as the therapeutic target of depressive disorder was not described comprehensively. Therefore, in this review, we focused on the potential of GLP-1 modulation in depression.
Collapse
Affiliation(s)
- Young-Kook Kim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun, South Korea
| | - Oh Yoen Kim
- Department of Food Science and Nutrition, Dong-A University, Busan, South Korea.,Center for Silver-targeted Biomaterials, Brain Busan 21 Plus Program, Graduate School, Dong-A University, Busan, South Korea
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun, South Korea
| |
Collapse
|
21
|
Hölscher C. Evidence for pathophysiological commonalities between metabolic and neurodegenerative diseases. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 155:65-89. [PMID: 32854859 DOI: 10.1016/bs.irn.2020.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Diabetes mellitus is a risk factor for developing neurodegenerative diseases, such as Alzheimer's and Parkinson's diseases. This relationship seems counter-intuitive as these pathological syndromes appear to be very different. However, they share underlying mechanisms such as desensitization of insulin signaling. Insulin not only regulates blood glucose levels, but also acts as a growth factor that is important for neuronal activity and repair. Insulin signaling desensitization has been found in the brains of people with progressive neurodegenerative diseases, which is most likely driven by chronic inflammation. Based on this, insulin has been tested in patients with Alzheimer's disease, and it was found that memory formation was improved and brain pathology reduced. Glucagon-like peptide-1 (GLP-1) is an incretin hormone, and numerous drugs that mimic this peptide are on the market to treat type 2 diabetes mellitus. Preclinical studies have provided robust evidence that some of these drugs, such as liraglutide or lixisenatide can enter the brain and improve key pathological parameters, such as memory loss, impairment of motor activity, synapse loss, reduced energy utilization by neurons and chronic inflammation in the brain. First clinical trials with a GLP-1 mimetic show good effects in patients with Parkinson's disease, improving motor control and insulin signaling in the brain. This is a proof of concept that this approach is viable and that drug treatment affects the main drivers of the disease and does not just modify the symptoms. It demonstrates that this new research area is a promising and fertile space for the development of novel treatments for neurodegenerative diseases.
Collapse
Affiliation(s)
- Christian Hölscher
- Neurology Department of the Second Associated Hospital of Shanxi Medical University, Taiyuan, Shanxi, PR China; Research and Experimental Center, Henan University of Chinese Medicine, Zhengzhou, Henan, PR China.
| |
Collapse
|
22
|
Hölscher C. Brain insulin resistance: role in neurodegenerative disease and potential for targeting. Expert Opin Investig Drugs 2020; 29:333-348. [PMID: 32175781 DOI: 10.1080/13543784.2020.1738383] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: This review evaluates the novel strategy of treating Alzheimer's and Parkinson's disease (AD and PD) withdrugs that initially have been developed to treat type 2 diabetes. As insulin signalling has been found to be de-sensitized in the brains of patients, drugs that can re-sensitize insulin signalling have been tested to evaluate if this strategy can alter disease progression.Areas covered: The review will give an overview of preclinical and clinical tests in AD and PD of drugs activating insulin receptors, glucagon-like peptide -1 (GLP-1) receptors, and glucose-dependent insulinotropic polypeptide (GIP) receptors.Expert opinion: Insulin, GLP-1 and GIP receptor agonists have shown good effects in preclinical studies. First clinical trials in MCI/AD patients have shown that insulin can improve on key pathological symptoms of AD such as memory impairment, brain activity, neuronal energy utilization, and inflammation markers. A GLP-1 receptor agonist has shown disease-modifying effects in PD patients, and first pilot studies have shown encouraging effects of a GLP-1 receptor agonist in AD patients. Novel dual GLP-1/GIP receptor agonists that cross the blood brain barrier show superior neuroprotective effects compared to single GLP-1 or GIP receptor agonists, and show great promise as novel treatments of AD and PD.
Collapse
Affiliation(s)
- Christian Hölscher
- Second Hospital, Neurology Department, Shanxi Medical University, Taiyuan, Shanxi, PR China.,Research and Experimental Center, Henan University of Chinese Medicine, Zhengzhou, Henan, PR China
| |
Collapse
|
23
|
The Bewildering Effect of AMPK Activators in Alzheimer's Disease: Review of the Current Evidence. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9895121. [PMID: 32149150 PMCID: PMC7049408 DOI: 10.1155/2020/9895121] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 01/14/2020] [Accepted: 01/29/2020] [Indexed: 12/12/2022]
Abstract
Alzheimer's disease is a multifactorial neurodegenerative disease characterized by progressive cognitive dysfunction. It is the most common form of dementia. The pathologic hallmarks of the disease include extracellular amyloid plaque, intracellular neurofibrillary tangles, and oxidative stress, to mention some of them. Despite remarkable progress in the understanding of the pathogenesis of the disease, drugs for cure or disease-modifying therapy remain somewhere in the distance. From recent time, the signaling molecule AMPK is gaining enormous attention in the AD drug research. AMPK is a master regulator of cellular energy metabolism, and recent pieces of evidence show that perturbation of its function is highly ascribed in the pathology of AD. Several drugs are known to activate AMPK, but their effect in AD remains to be controversial. In this review, the current shreds of evidence on the effect of AMPK activators in Aβ accumulation, tau aggregation, and oxidative stress are addressed. Positive and negative effects are reported with regard to Aβ and tauopathy but only positive in oxidative stress. We also tried to dissect the molecular interplays where the bewildering effects arise from.
Collapse
|
24
|
Effect of DPP-4 inhibitor on elderly patients with T2DM combined with MCI. Exp Ther Med 2020; 19:1356-1362. [PMID: 32010309 PMCID: PMC6966108 DOI: 10.3892/etm.2019.8339] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 11/08/2019] [Indexed: 12/23/2022] Open
Abstract
The aim of this study was to investigate the effect of dipeptidyl peptidase-4 (DPP-4) inhibitor on blood sugar level and cognitive ability in elderly patients with type 2 diabetes mellitus (T2DM) combined with post-stroke mild cognitive impairment (MCI). Thirty patients received DPP-4 inhibitor (study group), while another thirty received sulfonylurea (control group). Six months after treatment, markers regarding blood sugar were improved in both groups (all P<0.05) without intergroup differences (all P>0.05); scores regarding cognitive ability improved in the study group (both P<0.05) and were higher versus the control group (both P<0.01); the study group had higher Aβ1-42/Aβ1-40 value versus the pretreatment value (P<0.001), which differed from the control group (P<0.05); tumor necrosis factor-α and interleukin-6 concentrations decreased in both groups, while the study group had greater reductions; C-reactive protein value decreased after treatment in the study group (all P<0.05). Using DPP-4 inhibitor in elderly patients with T2DM combined with post-stroke MCI can lower blood sugar and improve cognitive ability. The mechanism may be associated with the improvement of Aβ gathering and reduction in inflammatory response.
Collapse
|
25
|
Bader M, Li Y, Tweedie D, Shlobin NA, Bernstein A, Rubovitch V, Tovar-y-Romo LB, DiMarchi RD, Hoffer BJ, Greig NH, Pick CG. Neuroprotective Effects and Treatment Potential of Incretin Mimetics in a Murine Model of Mild Traumatic Brain Injury. Front Cell Dev Biol 2020; 7:356. [PMID: 31998717 PMCID: PMC6965031 DOI: 10.3389/fcell.2019.00356] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 12/10/2019] [Indexed: 12/16/2022] Open
Abstract
Traumatic brain injury (TBI) is a commonly occurring injury in sports, victims of motor vehicle accidents, and falls. TBI has become a pressing public health concern with no specific therapeutic treatment. Mild TBI (mTBI), which accounts for approximately 90% of all TBI cases, may frequently lead to long-lasting cognitive, behavioral, and emotional impairments. The incretins glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are gastrointestinal hormones that induce glucose-dependent insulin secretion, promote β-cell proliferation, and enhance resistance to apoptosis. GLP-1 mimetics are marketed as treatments for type 2 diabetes mellitus (T2DM) and are well tolerated. Both GLP-1 and GIP mimetics have shown neuroprotective properties in animal models of Parkinson's and Alzheimer's disease. The aim of this study is to evaluate the potential neuroprotective effects of liraglutide, a GLP-1 analog, and twincretin, a dual GLP-1R/GIPR agonist, in a murine mTBI model. First, we subjected mice to mTBI using a weight-drop device and, thereafter, administered liraglutide or twincretin as a 7-day regimen of subcutaneous (s.c.) injections. We then investigated the effects of these drugs on mTBI-induced cognitive impairments, neurodegeneration, and neuroinflammation. Finally, we assessed their effects on neuroprotective proteins expression that are downstream to GLP-1R/GIPR activation; specifically, PI3K and PKA phosphorylation. Both drugs ameliorated mTBI-induced cognitive impairments evaluated by the novel object recognition (NOR) and the Y-maze paradigms in which neither anxiety nor locomotor activity were confounds, as the latter were unaffected by either mTBI or drugs. Additionally, both drugs significantly mitigated mTBI-induced neurodegeneration and neuroinflammation, as quantified by immunohistochemical staining with Fluoro-Jade/anti-NeuN and anti-Iba-1 antibodies, respectively. mTBI challenge significantly decreased PKA phosphorylation levels in ipsilateral cortex, which was mitigated by both drugs. However, PI3K phosphorylation was not affected by mTBI. These findings offer a new potential therapeutic approach to treat mTBI, and support further investigation of the neuroprotective effects and mechanism of action of incretin-based therapies for neurological disorders.
Collapse
Affiliation(s)
- Miaad Bader
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Yazhou Li
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - David Tweedie
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Nathan A. Shlobin
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Adi Bernstein
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Vardit Rubovitch
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Luis B. Tovar-y-Romo
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
- Division of Neuroscience, Institute of Cellular Physiology, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Barry J. Hoffer
- Department of Neurosurgery, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Nigel H. Greig
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Chaim G. Pick
- Department of Anatomy and Anthropology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Center for the Biology of Addictive Diseases, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
26
|
DPP-4 Inhibitor Linagliptin is Neuroprotective in Hyperglycemic Mice with Stroke via the AKT/mTOR Pathway and Anti-apoptotic Effects. Neurosci Bull 2019; 36:407-418. [PMID: 31808042 DOI: 10.1007/s12264-019-00446-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 08/10/2019] [Indexed: 12/11/2022] Open
Abstract
Dipeptidyl peptidase 4 (DPP-4) inhibitors have been shown to have neuroprotective effects in diabetic patients suffering from stroke, but less research has focused on patients with mild hyperglycemia below the threshold for a diagnosis of diabetes. In this investigation, a hyperglycemic mouse model was generated by intraperitoneal injection of streptozotocin and then subjected to focal cerebral ischemia. We demonstrated that the DPP-4 inhibitor linagliptin significantly decreased the infarct volume, reduced neuronal cell death, decreased inflammation, and improved neurological deficit compared with control mice. Linagliptin up-regulated the expression of p-Akt and p-mTOR and regulated the apoptosis factors Bcl-2, Bax, and caspase 9. Taken together, these results suggest that linagliptin exerts a neuroprotective action likely through activation of the Akt/mTOR pathway along with anti-apoptotic and anti-inflammatory mechanisms. Therefore, linagliptin may be considered as a therapeutic treatment for stroke patients with mild hyperglycemia.
Collapse
|
27
|
Citraro R, Iannone M, Leo A, De Caro C, Nesci V, Tallarico M, Abdalla K, Palma E, Arturi F, De Sarro G, Constanti A, Russo E. Evaluation of the effects of liraglutide on the development of epilepsy and behavioural alterations in two animal models of epileptogenesis. Brain Res Bull 2019; 153:133-142. [DOI: 10.1016/j.brainresbull.2019.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/27/2019] [Accepted: 08/02/2019] [Indexed: 01/22/2023]
|
28
|
Loera-Valencia R, Cedazo-Minguez A, Kenigsberg PA, Page G, Duarte AI, Giusti P, Zusso M, Robert P, Frisoni GB, Cattaneo A, Zille M, Boltze J, Cartier N, Buee L, Johansson G, Winblad B. Current and emerging avenues for Alzheimer's disease drug targets. J Intern Med 2019; 286:398-437. [PMID: 31286586 DOI: 10.1111/joim.12959] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Alzheimer's disease (AD), the most frequent cause of dementia, is escalating as a global epidemic, and so far, there is neither cure nor treatment to alter its progression. The most important feature of the disease is neuronal death and loss of cognitive functions, caused probably from several pathological processes in the brain. The main neuropathological features of AD are widely described as amyloid beta (Aβ) plaques and neurofibrillary tangles of the aggregated protein tau, which contribute to the disease. Nevertheless, AD brains suffer from a variety of alterations in function, such as energy metabolism, inflammation and synaptic activity. The latest decades have seen an explosion of genes and molecules that can be employed as targets aiming to improve brain physiology, which can result in preventive strategies for AD. Moreover, therapeutics using these targets can help AD brains to sustain function during the development of AD pathology. Here, we review broadly recent information for potential targets that can modify AD through diverse pharmacological and nonpharmacological approaches including gene therapy. We propose that AD could be tackled not only using combination therapies including Aβ and tau, but also considering insulin and cholesterol metabolism, vascular function, synaptic plasticity, epigenetics, neurovascular junction and blood-brain barrier targets that have been studied recently. We also make a case for the role of gut microbiota in AD. Our hope is to promote the continuing research of diverse targets affecting AD and promote diverse targeting as a near-future strategy.
Collapse
Affiliation(s)
- R Loera-Valencia
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - A Cedazo-Minguez
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | | | - G Page
- Neurovascular Unit and Cognitive impairments - EA3808, University of Poitiers, Poitiers, France
| | - A I Duarte
- CNC- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal.,Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - P Giusti
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Padova, Italy
| | - M Zusso
- Dipartimento di Scienze del Farmaco, Università degli Studi di Padova, Padova, Italy
| | - P Robert
- CoBTeK - lab, CHU Nice University Côte d'Azur, Nice, France
| | - G B Frisoni
- University Hospitals and University of Geneva, Geneva, Switzerland
| | - A Cattaneo
- University Hospitals and University of Geneva, Geneva, Switzerland
| | - M Zille
- Institute of Experimental and Clinical Pharmacology and Toxicology, Lübeck, Germany
| | - J Boltze
- School of Life Sciences, The University of Warwick, Coventry, UK
| | - N Cartier
- Preclinical research platform, INSERM U1169/MIRCen Commissariat à l'énergie atomique, Fontenay aux Roses, France.,Université Paris-Sud, Orsay, France
| | - L Buee
- Alzheimer & Tauopathies, LabEx DISTALZ, CHU-Lille, Inserm, Univ. Lille, Lille, France
| | - G Johansson
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden
| | - B Winblad
- Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Solna, Sweden.,Theme Aging, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
29
|
Issa Isaac N, Philippe D, Nicholas A, Raoult D, Eric C. Metaproteomics of the human gut microbiota: Challenges and contributions to other OMICS. CLINICAL MASS SPECTROMETRY 2019; 14 Pt A:18-30. [DOI: 10.1016/j.clinms.2019.06.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 06/02/2019] [Accepted: 06/03/2019] [Indexed: 12/22/2022]
|
30
|
The neuroprotection of liraglutide on diabetic cognitive deficits is associated with improved hippocampal synapses and inhibited neuronal apoptosis. Life Sci 2019; 231:116566. [DOI: 10.1016/j.lfs.2019.116566] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/05/2019] [Accepted: 06/12/2019] [Indexed: 12/27/2022]
|
31
|
Shi Q, Liu S, Fonseca VA, Thethi TK, Shi L. Effect of metformin on neurodegenerative disease among elderly adult US veterans with type 2 diabetes mellitus. BMJ Open 2019; 9:e024954. [PMID: 31366635 PMCID: PMC6677947 DOI: 10.1136/bmjopen-2018-024954] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE This study aimed to evaluate the association between metformin treatment and the risk of neurodegenerative disease (ND) among elderly adults with type 2 diabetes mellitus (T2DM). DESIGN/SETTING/PARTICIPANTS This retrospective longitudinal cohort study examined the effects of the length of metformin exposure on ND among elderly US veterans with T2DM and insulin treatment using the Veterans Affairs electronic medical record database. PRIMARY AND SECONDARY OUTCOME MEASURES The primary clinical outcome was defined as diagnosis of ND including dementia, Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and mild cognitive impairment during the follow-up period. The secondary clinical outcomes were separately measured by AD, PD, HD, dementia and mild cognitive impairment. RESULT Adjusted by propensity score weight, a total of 5528 patients (mean age, 63.2±10.9 years; male, 98%; white, 60%) with a median follow-up of 5.2 years were selected. Those with ND or other mental disorders at baseline or who were on insulin for less than two-thirds of the study period were excluded. The incidence rate of ND was 11.48 per 1000 person-years among patients with metformin treatment, compared with 25.45 per 1000 person-years for those without metformin. Compared with no metformin use, 2-4 years and >4 years of metformin exposure were significantly associated with lower risk of ND (adjusted HR (aHR)=0.62, 95% CI 0.45 to 0.85; aHR=0.19, 95% CI 0.12 to 0.31, respectively), while metformin exposure in the first 2 years showed no significant influence. CONCLUSION We conclude that long-term metformin therapy (>2 years) was associated with lower incidence of ND among elderly veterans with T2DM. We need to conduct a study with more representative population and more robust method for causal inferences. Further investigation into the mechanism involved is needed along with randomised trials to confirm a potential neuroprotective effect of metformin.
Collapse
Affiliation(s)
- Qian Shi
- Global Health Management and Policy, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
| | - Shuqian Liu
- Global Health Management and Policy, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
| | - Vivian A Fonseca
- Section of Endocrinology, Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Department of Endocrinology, Southeast Louisiana Veterans Health Care System, New Orleans, Louisiana, USA
| | - Tina K Thethi
- Section of Endocrinology, Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana, USA
- Department of Endocrinology, Southeast Louisiana Veterans Health Care System, New Orleans, Louisiana, USA
| | - Lizheng Shi
- Global Health Management and Policy, Tulane University School of Public Health and Tropical Medicine, New Orleans, Louisiana, USA
| |
Collapse
|
32
|
Chen S, Zhou M, Sun J, Guo A, Fernando RL, Chen Y, Peng P, Zhao G, Deng Y. DPP-4 inhibitor improves learning and memory deficits and AD-like neurodegeneration by modulating the GLP-1 signaling. Neuropharmacology 2019; 157:107668. [PMID: 31199957 DOI: 10.1016/j.neuropharm.2019.107668] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 05/31/2019] [Accepted: 06/10/2019] [Indexed: 02/06/2023]
Abstract
Glucagon-like peptide-1 (GLP-1) signaling in the brain plays an important role in the regulation of glucose metabolism, which is impaired in Alzheimer's disease (AD). Here, we detected the GLP-1 and GLP-1 receptor (GLP-1R) in AD human brain and APP/PS1/Tau transgenic (3xTg) mice brain, finding that they were both decreased in AD human and mice brain. Enhanced GLP-1 exerts its protective effects on AD, however, this is rapidly degraded into inactivated metabolites by dipeptidyl peptidase-4 (DPP-4), resulting in its extremely short half-time. DPP-4 inhibitors, thus, was applied to improve the level of GLP-1 and GLP-1R expression in the hippocampus and cortex of AD mice brains. It is also protected learning and memory and synaptic proteins, increased the O-Glycosylation and decreased abnormal phosphorylation of tau and neurofilaments (NFs), degraded intercellular β-amyloid (Aβ) accumulation and alleviated neurodegeneration related to GLP-1 signaling pathway.
Collapse
Affiliation(s)
- Shuyi Chen
- Pathophysiology Department, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Mei Zhou
- Pathophysiology Department, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jie Sun
- Department of Pathology, Tianjin People's Hospital, Tianjin, China
| | - Ai Guo
- Pathophysiology Department, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Roger Lakmal Fernando
- Pathophysiology Department, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yanlin Chen
- Pathophysiology Department, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Peng Peng
- Pathophysiology Department, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Gang Zhao
- Department of Pathology, Tianjin Tumor Hospital, Tianjin Medical University, Tianjin, China
| | - Yanqiu Deng
- Pathophysiology Department, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| |
Collapse
|
33
|
Caberlotto L, Nguyen TP, Lauria M, Priami C, Rimondini R, Maioli S, Cedazo-Minguez A, Sita G, Morroni F, Corsi M, Carboni L. Cross-disease analysis of Alzheimer's disease and type-2 Diabetes highlights the role of autophagy in the pathophysiology of two highly comorbid diseases. Sci Rep 2019; 9:3965. [PMID: 30850634 PMCID: PMC6408545 DOI: 10.1038/s41598-019-39828-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/29/2019] [Indexed: 12/24/2022] Open
Abstract
Evidence is accumulating that the main chronic diseases of aging Alzheimer's disease (AD) and type-2 diabetes mellitus (T2DM) share common pathophysiological mechanisms. This study aimed at applying systems biology approaches to increase the knowledge of the shared molecular pathways underpinnings of AD and T2DM. We analysed transcriptomic data of post-mortem AD and T2DM human brains to obtain disease signatures of AD and T2DM and combined them with protein-protein interaction information to construct two disease-specific networks. The overlapping AD/T2DM network proteins were then used to extract the most representative Gene Ontology biological process terms. The expression of genes identified as relevant was studied in two AD models, 3xTg-AD and ApoE3/ApoE4 targeted replacement mice. The present transcriptomic data analysis revealed a principal role for autophagy in the molecular basis of both AD and T2DM. Our experimental validation in mouse AD models confirmed the role of autophagy-related genes. Among modulated genes, Cyclin-Dependent Kinase Inhibitor 1B, Autophagy Related 16-Like 2, and insulin were highlighted. In conclusion, the present investigation revealed autophagy as the central dys-regulated pathway in highly co-morbid diseases such as AD and T2DM allowing the identification of specific genes potentially involved in disease pathophysiology which could become novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Laura Caberlotto
- The Microsoft Research, University of Trento Centre for Computational Systems Biology (COSBI), Rovereto, Italy.
- Aptuit an Evotec company Drug Design and Discovery, Verona, Italy.
| | - T-Phuong Nguyen
- The Microsoft Research, University of Trento Centre for Computational Systems Biology (COSBI), Rovereto, Italy
- Life Sciences Research Unit, University of Luxembourg, Esch-sur-Alzette, Luxembourg
- Megeno S.A.6A, avenue des Hauts-FourneauxL-4362 Esch-sur-Alzette, Esch-sur-Alzette, Luxembourg
| | - Mario Lauria
- The Microsoft Research, University of Trento Centre for Computational Systems Biology (COSBI), Rovereto, Italy
- Department of Mathematics, University of Trento, Povo, Trento, Italy
| | - Corrado Priami
- The Microsoft Research, University of Trento Centre for Computational Systems Biology (COSBI), Rovereto, Italy
| | - Roberto Rimondini
- Department of Medical and Surgical Science, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Silvia Maioli
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Angel Cedazo-Minguez
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Stockholm, Sweden
| | - Giulia Sita
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Fabiana Morroni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Mauro Corsi
- Aptuit, an Evotec company, Drug Design and Discovery, Verona, Italy
| | - Lucia Carboni
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum University of Bologna, Bologna, Italy
| |
Collapse
|
34
|
Sposito AC, Berwanger O, de Carvalho LSF, Saraiva JFK. GLP-1RAs in type 2 diabetes: mechanisms that underlie cardiovascular effects and overview of cardiovascular outcome data. Cardiovasc Diabetol 2018; 17:157. [PMID: 30545359 PMCID: PMC6292070 DOI: 10.1186/s12933-018-0800-2] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 12/07/2018] [Indexed: 02/06/2023] Open
Abstract
Patients with type 2 diabetes (T2DM) have a substantial risk of developing cardiovascular disease. The strong connection between the severity of hyperglycaemia, metabolic changes secondary to T2DM and vascular damage increases the risk of macrovascular complications. There is a challenging demand for the development of drugs that control hyperglycaemia and influence other metabolic risk factors to improve cardiovascular outcomes such as cardiovascular death, nonfatal myocardial infarction, nonfatal stroke, hospitalization for unstable angina and heart failure (major adverse cardiovascular events). In recent years, introduction of the new drug class of glucagon-like peptide-1 receptor agonists (GLP-1RAs) has changed the treatment landscape as GLP-1RAs have become well-established therapies in T2DM. The benefits of GLP-1RAs are derived from their pleiotropic effects, which include appetite control, glucose-dependent secretion of insulin and inhibition of glucagon secretion. Importantly, their beneficial effects extend to the cardiovascular system. Large clinical trials have evaluated the cardiovascular effects of GLP-1RAs in patients with T2DM and elevated risk of cardiovascular disease and the results are very promising. However, important aspects still require elucidation, such as the specific mechanisms involved in the cardioprotective effects of these drugs. Careful interpretation is necessary because of the heterogeneity across the trials concerning the definition of cardiovascular risk or cardiovascular disease, baseline characteristics, routine care and event rates. The aim of this review is to describe the main clinical aspects of the GLP-1RAs, compare them using data from both the mechanistic and randomized controlled trials and discuss potential reasons for improved cardiovascular outcomes observed in these trials. This review may help clinicians to decide which treatment is most appropriate in reducing cardiovascular risk in patients with T2DM.
Collapse
Affiliation(s)
- Andrei C Sposito
- Atherosclerosis and Vascular Biology Laboratory (AtheroLab), Cardiology Division, Faculty of Medical Sciences, State University of Campinas (Unicamp), 13084-971, Campinas, Sao Paulo, Brazil.
| | - Otávio Berwanger
- Academic Research Organization (ARO), Albert Einstein Hospital, Av. Albert Einstein 627, Sao Paulo, SP, 05651-901, Brazil
| | - Luiz Sérgio F de Carvalho
- Atherosclerosis and Vascular Biology Laboratory (AtheroLab), Cardiology Division, Faculty of Medical Sciences, State University of Campinas (Unicamp), 13084-971, Campinas, Sao Paulo, Brazil
| | - José Francisco Kerr Saraiva
- Cardiology Division, Pontifical Catholic University of Campinas Medicine School, Rua Engenheiro Carlos Stevenson 560, Campinas, Sao Paulo, 13092-132, Brazil
| |
Collapse
|
35
|
Knezovic A, Osmanovic Barilar J, Babic A, Bagaric R, Farkas V, Riederer P, Salkovic-Petrisic M. Glucagon-like peptide-1 mediates effects of oral galactose in streptozotocin-induced rat model of sporadic Alzheimer’s disease. Neuropharmacology 2018; 135:48-62. [DOI: 10.1016/j.neuropharm.2018.02.027] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Revised: 01/29/2018] [Accepted: 02/24/2018] [Indexed: 12/25/2022]
|
36
|
Candeias E, Sebastião I, Cardoso S, Carvalho C, Santos MS, Oliveira CR, Moreira PI, Duarte AI. Brain GLP-1/IGF-1 Signaling and Autophagy Mediate Exendin-4 Protection Against Apoptosis in Type 2 Diabetic Rats. Mol Neurobiol 2018; 55:4030-4050. [PMID: 28573460 DOI: 10.1007/s12035-017-0622-3] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/16/2017] [Indexed: 02/08/2023]
Abstract
Type 2 diabetes (T2D) is a modern socioeconomic burden, mostly due to its long-term complications affecting nearly all tissues. One of them is the brain, whose dysfunctional intracellular quality control mechanisms (namely autophagy) may upregulate apoptosis, leading to cognitive dysfunction and Alzheimer disease (AD). Since impaired brain insulin signaling may constitute the crosslink between T2D and AD, its restoration may be potentially therapeutic herein. Accordingly, the insulinotropic anti-T2D drugs from glucagon-like peptide-1 (GLP-1) mimetics, namely, exendin-4 (Ex-4), could be a promising therapy. In line with this, we hypothesized that peripherally administered Ex-4 rescues brain intracellular signaling pathways, promoting autophagy and ultimately protecting against chronic T2D-induced apoptosis. Thus, we aimed to explore the effects of chronic, continuous, subcutaneous (s.c.) exposure to Ex-4 in brain cortical GLP-1/insulin/insulin-like growth factor-1 (IGF-1) signaling, and in autophagic and cell death mechanisms in middle-aged (8 months old), male T2D Goto-Kakizaki (GK) rats. We used brain cortical homogenates obtained from middle-aged (8 months old) male Wistar (control) and T2D GK rats. Ex-4 was continuously administered for 28 days, via s.c. implanted micro-osmotic pumps (5 μg/kg/day; infusion rate 2.5 μL/h). Peripheral characterization of the animal models was given by the standard biochemical analyses of blood or plasma, the intraperitoneal glucose tolerance test, and the heart rate. GLP-1, insulin, and IGF-1, their downstream signaling and autophagic markers were evaluated by specific ELISA kits and Western blotting. Caspase-like activities and other apoptotic markers were given by colorimetric methods and Western blotting. Chronic Ex-4 treatment attenuated peripheral features of T2D in GK rats, including hyperglycemia and insulin resistance. Furthermore, s.c. Ex-4 enhanced their brain cortical GLP-1 and IGF-1 levels, and subsequent signaling pathways. Specifically, Ex-4 stimulated protein kinase A (PKA) and phosphoinositide 3-kinase (PI3K)/Akt signaling, increasing cGMP and AMPK levels, and decreasing GSK3β and JNK activation in T2D rat brains. Moreover, Ex-4 regulated several markers for autophagy in GK rat brains (as mTOR, PI3K class III, LC3 II, Atg7, p62, LAMP-1, and Parkin), ultimately protecting against apoptosis (by decreasing several caspase-like activities and mitochondrial cytochrome c, and increasing Bcl2 levels upon T2D). Altogether, this study demonstrates that peripheral Ex-4 administration may constitute a promising therapy against the chronic complications of T2D affecting the brain.
Collapse
Affiliation(s)
- Emanuel Candeias
- CNC-Center for Neuroscience and Cell Biology, Rua Larga, Faculty of Medicine (Pólo 1, 1st Floor), University of Coimbra, 3004-517, Coimbra, Portugal
- Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão - Pólo II, Rua D. Francisco de Lemos, 3030-789, Coimbra, Portugal
| | - Inês Sebastião
- CNC-Center for Neuroscience and Cell Biology, Rua Larga, Faculty of Medicine (Pólo 1, 1st Floor), University of Coimbra, 3004-517, Coimbra, Portugal
| | - Susana Cardoso
- CNC-Center for Neuroscience and Cell Biology, Rua Larga, Faculty of Medicine (Pólo 1, 1st Floor), University of Coimbra, 3004-517, Coimbra, Portugal
- Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão - Pólo II, Rua D. Francisco de Lemos, 3030-789, Coimbra, Portugal
| | - Cristina Carvalho
- CNC-Center for Neuroscience and Cell Biology, Rua Larga, Faculty of Medicine (Pólo 1, 1st Floor), University of Coimbra, 3004-517, Coimbra, Portugal
- Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão - Pólo II, Rua D. Francisco de Lemos, 3030-789, Coimbra, Portugal
| | - Maria Sancha Santos
- CNC-Center for Neuroscience and Cell Biology, Rua Larga, Faculty of Medicine (Pólo 1, 1st Floor), University of Coimbra, 3004-517, Coimbra, Portugal
- Life Sciences Department, University of Coimbra, Largo Marquês de Pombal, 3004-517, Coimbra, Portugal
| | - Catarina Resende Oliveira
- CNC-Center for Neuroscience and Cell Biology, Rua Larga, Faculty of Medicine (Pólo 1, 1st Floor), University of Coimbra, 3004-517, Coimbra, Portugal
- Institute of Biochemistry, Faculty of Medicine, University of Coimbra, 3004-504, Coimbra, Portugal
| | - Paula I Moreira
- CNC-Center for Neuroscience and Cell Biology, Rua Larga, Faculty of Medicine (Pólo 1, 1st Floor), University of Coimbra, 3004-517, Coimbra, Portugal.
- Institute of Physiology, Faculty of Medicine, University of Coimbra, 3004-504, Coimbra, Portugal.
| | - Ana I Duarte
- CNC-Center for Neuroscience and Cell Biology, Rua Larga, Faculty of Medicine (Pólo 1, 1st Floor), University of Coimbra, 3004-517, Coimbra, Portugal.
- Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Casa Costa Alemão - Pólo II, Rua D. Francisco de Lemos, 3030-789, Coimbra, Portugal.
| |
Collapse
|
37
|
Li YK, Ma DX, Wang ZM, Hu XF, Li SL, Tian HZ, Wang MJ, Shu YW, Yang J. The glucagon-like peptide-1 (GLP-1) analog liraglutide attenuates renal fibrosis. Pharmacol Res 2018. [DOI: 10.1016/j.phrs.2018.03.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
38
|
Kabel AM, Omar MS, Alhadhrami A, Alharthi SS, Alrobaian MM. Linagliptin potentiates the effect of l-dopa on the behavioural, biochemical and immunohistochemical changes in experimentally-induced Parkinsonism: Role of toll-like receptor 4, TGF-β1, NF-κB and glucagon-like peptide 1. Physiol Behav 2018; 188:108-118. [DOI: 10.1016/j.physbeh.2018.01.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/12/2018] [Accepted: 01/29/2018] [Indexed: 12/25/2022]
|
39
|
Tyurenkov IN, Ozerov AA, Kurkin DV, Logvinova EO, Bakulin DA, Volotova EV, Borodin DD. Structure and biological activity of endogenous and synthetic agonists of GPR119. RUSSIAN CHEMICAL REVIEWS 2018. [DOI: 10.1070/rcr4737] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A G-protein-coupled receptor, GPR119, is a promising pharmacological target for a new class of hypoglycaemic drugs with an original mechanism of action, namely, increase in the glucose-dependent incretin and insulin secretion. In 2005, the first ligands were found and in the subsequent years, a large number of GPR119 agonists were synthesized in laboratories in various countries; the safest and most promising agonists have entered phase I and II clinical trials as agents for the treatment of type 2 diabetes mellitus and obesity. The review describes the major endogenous GPR119 agonists and the main trends in the design and modification of synthetic structures for increasing the hypoglycaemic activity. The data on synthetic agonists are arranged according to the type of the central core of the molecules.
The bibliography includes 104 references.
Collapse
|
40
|
Fan W, Liang Z, Xiao H, Yang Q. Therapeutic efficacy of liraglutide on diabetic nephropathy mice by inhibiting inflammatory factors. EUR J INFLAMM 2018. [DOI: 10.1177/2058739218819283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
This study was to investigate the role and mechanism of liraglutide in the treatment of diabetic nephropathy (DN) mice. A mouse model of streptozotocin-induced DN was established. The mice were intraperitoneally injected with liraglutide at a dose of 200 μg/kg for 6 weeks. The expression of interleukin-6 (IL-6), tumor necrosis factor (TNF), and nuclear factor kappa B (NF-κB) messenger RNA (mRNA) in renal tissue of mice was examined by real-time quantitative polymerase chain reaction (PCR). Meanwhile, the expression of IL-6 and TNF protein in renal tissue of mice was detected by western blot, while the expression of NF-κB protein in renal tissues of each group was detected by immunofluorescence. After 6 weeks of intervention, the blood glucose (GLU), total cholesterol (TC), triglyceride (TG), low-density lipoprotein (LDL), and weight of the liraglutide group were significantly lower than those of the DN group ( P < 0.01 or P < 0.05), whereas high-density lipoprotein (HDL) was significantly increased ( P < 0.05). At the same time, the microscale albuminuria (MAU) and N-acetyl-β-d-glucosaminidase (NAG) in the liraglutide group were significantly lower than those in the DN group ( P < 0.05). Moreover, the urea (UR), creatinine (CR), and uric acid (UA) in the liraglutide group were significantly lower than those in the DN group ( P < 0.01 or P < 0.05). In addition, the mRNA and proteins of IL-6, TNF, and NF-κB in the liraglutide group were significantly lower than those in the DN group ( P < 0.05). In conclusion, the mechanism of liraglutide in the treatment of DN may be related to the inhibition of the expression of genes and proteins of inflammatory factors.
Collapse
Affiliation(s)
- WenXing Fan
- Department of Nephrology, First Affiliated Hospital of Kunming Medical University, Kunming, P.R. China
- Yunnan Key Laboratory of Laboratory Medicine, the First Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Zhang Liang
- Department of Science and Technology, Kunming Medical University, Kunming, P.R. China
| | - Hua Xiao
- Department of Nephrology, First Affiliated Hospital of Kunming Medical University, Kunming, P.R. China
| | - QiuPing Yang
- Department of Geriatric Medicine, First Affiliated Hospital of Kunming Medical University, Kunming, P.R. China
| |
Collapse
|
41
|
Tyurenkov IN, Kurkin DV, Bakulin DA, Volotova EV, Morkovin EI, Chafeev MA, Karapetian RN. Chemistry and Hypoglycemic Activity of GPR119 Agonist ZB-16. Front Endocrinol (Lausanne) 2018; 9:543. [PMID: 30283402 PMCID: PMC6156125 DOI: 10.3389/fendo.2018.00543] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 08/28/2018] [Indexed: 12/11/2022] Open
Abstract
This article is to highlight the chemical properties and primary pharmacology of novel GPR119 agonist ZB-16 and its analogs, which were rejected during the screening. Experiments were performed in vitro (specific activity, metabolism and cell toxicity) and in vivo (hypoglycemic activity and pharmacokinetics). ZB-16 exhibits nanomolar activity (EC50 = 7.3-9.7 nM) on target receptor GPR119 in vitro associated with hypoglycemic activity in vivo. In animals with streptozotocin-nicotinamide induced type 2 diabetes mellitus (STZ-NA T2D) daily oral dose of ZB-16 (1 mg/kg) or sitagliptin (10 mg/kg) for 28 days resulted in the reduction of blood glucose levels. The effects of ZB-16 were comparable to the hypoglycemic action of sitagliptin. ZB-16 demonstrated relatively low plasma exposition, high distribution volume, mild clearance and a prolonged half-life (more than 12 h). The present study demonstrates that the targeted search for selective GPR119 receptor agonists is a well-founded approach for developing novel drugs for the therapy of T2D. Based on the combination of high in vitro activity (compared to competitor standards), a useful ADME profile, distinct hypoglycemic activity which is comparable to the efficacy of sitagliptin in rats with experimental T2D, and the acceptable pharmacokinetic profile, we recommend the ZB-16 compound for further research.
Collapse
Affiliation(s)
| | | | - Dmitry A. Bakulin
- Volgograd State Medical University, Volgograd, Russia
- *Correspondence: Dmitry A. Bakulin
| | | | - Evgeny I. Morkovin
- Volgograd State Medical University, Volgograd, Russia
- Volgograd Medical Research Center, Volgograd, Russia
| | | | | |
Collapse
|
42
|
Wang QJ, Cui YZ, Zhang XY, Su J. Effect of early weaning on the expression of excitatory amino acid transporter 1 in the jejunum and ileum of piglets. Mol Med Rep 2017; 16:6518-6525. [PMID: 28901430 PMCID: PMC5865820 DOI: 10.3892/mmr.2017.7421] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Accepted: 05/02/2017] [Indexed: 12/15/2022] Open
Abstract
The present study aimed to compare the expression levels of excitatory amino acid transporters (EAATs) and growth status of piglets weaned at 10–20 days after birth with suckling piglets. A total of 40 hybrid piglets (Landrace × Large White × Duroc) born to 40 different sows, with similar body weight were selected for the present study. They were randomly divided into two groups (n=20 per group): Control group (suckling piglets) and experimental group (weaned piglets, reared in isolation). The experiment lasted for 10 days. At the end of the experiment, 12 piglets were randomly selected from each group and the jejunum and the ileum were collected in order to determine excitatory amino acid carrier 1 (EAAC1) expression levels and free amino acid content. The present study determined that early weaning significantly reduced EAAC1 gene and protein (57 and 73 kDa) expression levels and glutamate transporter associate protein 3–18 (GTRAP3-18; 50 kDa) in the jejunum and the ileum compared with the suckling group (P<0.05). Weaning led to an increased content of free glutamic acid (Glu) and total amino acids in the jejunum; however, content of free Glu and total amino acids in the ileum was significantly reduced (P<0.05). Early weaning reduced the expression of EAAC1 and GTRAP3-18, which was possibly due to the amino acid absorption and transport disorder in the small intestine due to the Glu deficiency.
Collapse
Affiliation(s)
- Qiu-Ju Wang
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Yi-Zhe Cui
- Department of Animal Medicine, College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, P.R. China
| | - Xiu-Ying Zhang
- Department of Basic Veterinary Medicine, College of Veterinary Medicine, Northeast Agricultural University, Harbin, Heilongjiang 150030, P.R. China
| | - Jing Su
- Heilongjiang Province Animal Epidemic Prevention and Control Center, Harbin, Heilongjiang 150069, P.R. China
| |
Collapse
|
43
|
Darsalia V, Klein T, Nyström T, Patrone C. Glucagon-like receptor 1 agonists and DPP-4 inhibitors: Anti-diabetic drugs with anti-stroke potential. Neuropharmacology 2017; 136:280-286. [PMID: 28823610 DOI: 10.1016/j.neuropharm.2017.08.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/14/2017] [Accepted: 08/16/2017] [Indexed: 02/06/2023]
Abstract
Stroke is one of the leading causes of death and serious disability in Westernized societies. The risk of stroke approximately doubles with each decade after the age of 55. Therefore, even though the incidence of stroke is declining, mostly because of the efforts to lower blood pressure and reduce smoking, the overall number of strokes is increasing due to the aging of the population. While stroke prevention by healthy lifestyle is effective in decreasing the risk of stroke, post stroke pharmacological strategies aimed at minimizing stroke-induced brain damage and promoting recovery are highly needed. Unfortunately, several candidate drugs that have shown significant neuroprotective efficacy in experimental models have failed in clinical trials and no treatment for stroke based on pharmacological neuroprotection is available today. Glucagon-like peptide 1 receptor (GLP-1R) agonists and dipeptidyl peptidase-4 inhibitors (DPP-4i) are clinically used against type 2 diabetes. Interestingly, these drugs have also shown promising effects in decreasing stroke incidence and increasing neuroprotection in clinical and preclinical studies, respectively. However, the mode of action of these drugs in the brain is largely unknown. Moreover, while it was previously thought that GLP-1R agonists and DPP-4i act via similar mechanisms of action, recent data argue against this hypothesis. Herein, we review this promising research area and highlight the main questions in the field whose answers could reveal important aiming to developing effective anti-stroke therapies. This article is part of the Special Issue entitled 'Metabolic Impairment as Risk Factors for Neurodegenerative Disorders.'
Collapse
Affiliation(s)
- Vladimer Darsalia
- Karolinska Institutet, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Stockholm, Sweden
| | - Thomas Klein
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Thomas Nyström
- Karolinska Institutet, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Stockholm, Sweden
| | - Cesare Patrone
- Karolinska Institutet, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Stockholm, Sweden.
| |
Collapse
|
44
|
Chen S, Sun J, Zhao G, Guo A, Chen Y, Fu R, Deng Y. Liraglutide Improves Water Maze Learning and Memory Performance While Reduces Hyperphosphorylation of Tau and Neurofilaments in APP/PS1/Tau Triple Transgenic Mice. Neurochem Res 2017; 42:2326-2335. [PMID: 28382596 DOI: 10.1007/s11064-017-2250-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/22/2017] [Accepted: 03/25/2017] [Indexed: 12/21/2022]
Abstract
The purpose of this study was to explore how liraglutide affects AD-like pathology and cognitive function in APP/PS1/Tau triple transgenic (3 × Tg) Alzheimer disease (AD) model mice. Male 3 × Tg mice and C57BL/6 J mice were treated for 8 weeks with liraglutide (300 μg/kg/day, subcutaneous injection) or saline. Levels of phosphorylated tau, neurofilaments (NFs), extracellular signal-regulated kinase (ERK), and c-Jun N-terminal kinase (JNK) in brain tissues were assessed with western blots. Fluoro-Jade-B labeling were applied to detect pathological changes. The Morris water maze (MWM) was used to assess the spatial learning and memory. Liraglutide decreased levels of hyperphosphorylated tau and NFs in 3 × Tg liraglutide-treated (Tg + LIR) mice, increased ERK phosphorylation, and decreased JNK phosphorylation. Liraglutide also decreased the number of degenerative neurons in the hippocampus and cortex of Tg + LIR mice, and shortened their escape latencies and increased their hidden platform crossings in the MWM task. Liraglutide did not significantly affect the animals' body weight (BW) or fasting blood glucose. Liraglutide can reduce hyperphosphorylation of tau and NFs and reduce neuronal degeneration, apparently through alterations in JNK and ERK signaling, which may be related to its positive effects on AD-like learning and memory impairment.
Collapse
Affiliation(s)
- Shuyi Chen
- Pathophysiology Department, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jie Sun
- Pathophysiology Department, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Gang Zhao
- Department of Pathology, Tianjin Cancer Hospital, Tianjin Medical University, Tianjin, China
| | - Ai Guo
- Pathophysiology Department, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Yanlin Chen
- Pathophysiology Department, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Rongxia Fu
- Food science and Biological Engineering Department, Tianjin Agriculture University, Tianjin, China
| | - Yanqiu Deng
- Pathophysiology Department, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China. .,, No. 22, Qi Xiang Tai Road, He Ping District, Tianjin, China.
| |
Collapse
|
45
|
Hutchinson JA, Burholt S, Hamley IW. Peptide hormones and lipopeptides: from self-assembly to therapeutic applications. J Pept Sci 2017; 23:82-94. [PMID: 28127868 PMCID: PMC5324658 DOI: 10.1002/psc.2954] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/24/2016] [Accepted: 11/27/2016] [Indexed: 12/18/2022]
Abstract
This review describes the properties and activities of lipopeptides and peptide hormones and how the lipidation of peptide hormones could potentially produce therapeutic agents combating some of the most prevalent diseases and conditions. The self-assembly of these types of molecules is outlined, and how this can impact on bioactivity. Peptide hormones specific to the uptake of food and produced in the gastrointestinal tract are discussed in detail. The advantages of lipidated peptide hormones over natural peptide hormones are summarised, in terms of stability and renal clearance, with potential application as therapeutic agents. © 2017 The Authors Journal of Peptide Science published by European Peptide Society and John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- J A Hutchinson
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, UK
| | - S Burholt
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, UK
| | - I W Hamley
- Department of Chemistry, University of Reading, Whiteknights, Reading, RG6 6AD, UK
| |
Collapse
|
46
|
Mancini MC, de Melo ME. The burden of obesity in the current world and the new treatments available: focus on liraglutide 3.0 mg. Diabetol Metab Syndr 2017; 9:44. [PMID: 28580018 PMCID: PMC5452636 DOI: 10.1186/s13098-017-0242-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 05/25/2017] [Indexed: 12/22/2022] Open
Abstract
The prevalence of obesity increases worldwide. Treating obesity and its associated health problems has a significant economic impact on health care systems. The unsatisfactory long-term outcomes observed in the obesity treatment are due to its complex pathophysiology and the inherent difficulties associated with maintenance of lifestyle modifications. Determined by genetic and environmental factors, obesity has been officially recognized as a chronic disease, an action that allowed the recognition of anti-obesity drugs as legitimate therapeutic options to address the growing obesity endemic. Like other chronic diseases, obesity requires long-term treatment. Pharmacological interventions, when used as an adjunct to lifestyle changes, are useful to facilitate clinically meaningful weight loss, which may impact on obesity-associated comorbid conditions. In the past, medications for weight reduction were limited. However, the landscape has changed and new drugs provide additional options for weight management. Among the new drugs, liraglutide is the most studied, especially regarding its effects on the limbic system. As an adjunct to a reduced-calorie diet and increased physical activity, treatment with liraglutide 3.0 mg provides a statistically significant and clinically meaningful weight loss. Liraglutide is a glucagon-like peptide 1 (GLP-1) receptor agonist that shares 97% homology to native GLP-1. Receptor agonists of GLP-1, including liraglutide, have emerged as effective therapies for type 2 diabetes and obesity. This review will address the major findings concerning the central regulation of appetite and the main studies that evaluated new drugs for obesity treatment, with a greater focus on liraglutide 3.0 mg.
Collapse
Affiliation(s)
- Marcio C. Mancini
- Obesity and Metabolic Syndrome Unit, Endocrinology and Metabolism Service, Clinics Hospital, São Paulo University Medical School, São Paulo, Brazil
- Laboratory of Carbohydrates and Radioimmunoassay LIM-18, São Paulo University Medical School, São Paulo, Brazil
- Endocrinology and Metabolism Service Secretariat, Av. Dr. Enéas de Carvalho Aguiar, 255, 7º andar, sala 7037, São Paulo, SP 05403-000 Brazil
| | - Maria Edna de Melo
- Obesity and Metabolic Syndrome Unit, Endocrinology and Metabolism Service, Clinics Hospital, São Paulo University Medical School, São Paulo, Brazil
- Laboratory of Carbohydrates and Radioimmunoassay LIM-18, São Paulo University Medical School, São Paulo, Brazil
| |
Collapse
|
47
|
Lietzau G, Nyström T, Östenson CG, Darsalia V, Patrone C. Type 2 diabetes-induced neuronal pathology in the piriform cortex of the rat is reversed by the GLP-1 receptor agonist exendin-4. Oncotarget 2016; 7:5865-76. [PMID: 26744321 PMCID: PMC4868727 DOI: 10.18632/oncotarget.6823] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 12/24/2015] [Indexed: 11/25/2022] Open
Abstract
Type 2 diabetes (T2D) patients often present olfactory dysfunction. However, the histopathological basis behind this has not been previously shown. Since the piriform cortex plays a crucial role in olfaction, we hypothesize that pathological changes in this brain area can occur in T2D patients along aging. Thus, we determined potential neuropathology in the piriform cortex of T2D rats, along aging. Furthermore, we determined the potential therapeutic role of the glucagon-like peptide-1 receptor (GLP1-R) agonist exendin-4 to counteract the identified T2D-induced neuropathology. Young-adult and middle-aged T2D Goto-Kakizaki rats were compared to age-matched Wistars. Additional Goto-Kakizaki rats were treated for six weeks with exendin-4/vehicle before sacrifice. Potential T2D-induced neuropathology was assessed by quantifying NeuN-positive neurons and Calbindin-D28k-positive interneurons by immunohistochemistry and stereology methods. We also quantitatively measured Calbindin-D28k neuronal morphology and JNK phosphorylation-mediated cellular stress. PI3K/AKT signalling was assessed by immunohistochemistry, and potential apoptosis by TUNEL. We show T2D-induced neuronal pathology in the piriform cortex along aging, characterized by atypical nuclear NeuN staining and increased JNK phosphorylation, without apoptosis. We also demonstrate the specific vulnerability of Calbindin-D28k interneurons. Finally, chronic treatment with exendin-4 substantially reversed the identified neuronal pathology in correlation with decreased JNK and increased AKT phosphorylation. Our results reveal the histopathological basis to explain T2D olfactory dysfunction. We also show that the identified T2D-neuropathology can be counteracted by GLP-1R activation supporting recent research promoting the use of GLP-1R agonists against brain diseases. Whether the identified neuropathology could represent an early hallmark of cognitive decline in T2D remains to be determined.
Collapse
Affiliation(s)
- Grazyna Lietzau
- Karolinska Institutet, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Stockholm, Sweden.,Medical University of Gdansk, Department of Anatomy and Neurobiology, Gdansk, Poland
| | - Thomas Nyström
- Karolinska Institutet, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Stockholm, Sweden
| | - Claes-Göran Östenson
- Karolinska Institutet, Department of Molecular Medicine and Surgery, Stockholm, Sweden
| | - Vladimer Darsalia
- Karolinska Institutet, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Stockholm, Sweden
| | - Cesare Patrone
- Karolinska Institutet, Department of Clinical Science and Education, Södersjukhuset, Internal Medicine, Stockholm, Sweden
| |
Collapse
|
48
|
DellaValle B, Brix GS, Brock B, Gejl M, Rungby J, Larsen A. Oral Administration of Sitagliptin Activates CREB and Is Neuroprotective in Murine Model of Brain Trauma. Front Pharmacol 2016; 7:450. [PMID: 27990119 PMCID: PMC5130988 DOI: 10.3389/fphar.2016.00450] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/10/2016] [Indexed: 12/21/2022] Open
Abstract
Introduction: Traumatic brain injury is a major cause of mortality and morbidity. We have previously shown that the injectable glucagon-like peptide-1 (GLP-1) analog, liraglutide, significantly improved the outcome in mice after severe traumatic brain injury (TBI). In this study we are interested in the effects of oral treatment of a different class of GLP-1 based therapy, dipeptidyl peptidase IV (DPP-IV) inhibition on mice after TBI. DPP-IV inhibitors reduce the degradation of endogenous GLP-1 and extend circulation of this protective peptide in the bloodstream. This class has yet to be investigated as a potential therapy for TBI. Methods: Mice were administrated once-daily 50 mg/kg of sitagliptin in a Nutella® ball or Nutella® alone throughout the study, beginning 2 days before severe trauma was induced with a stereotactic cryo-lesion. At 2 days post trauma, lesion size was determined. Brains were isolated for immunoblotting for assessment of selected biomarkers for pathology and protection. Results: Sitagliptin treatment reduced lesion size at day 2 post-injury by ~28% (p < 0.05). Calpain-driven necrotic tone was reduced ~2-fold in sitagliptin-treated brains (p < 0.001) and activation of the protective cAMP-response element binding protein (CREB) system was significantly more pronounced (~1.5-fold, p < 0.05). The CREB-regulated, mitochondrial antioxidant protein manganese superoxide dismutase (MnSOD) was increased in sitagliptin-treated mice (p < 0.05). Conversely, apoptotic tone (alpha-spectrin fragmentation, Bcl-2 levels) and the neuroinflammatory markers IL-6, and Iba-1 were not affected by treatment. Conclusions: This study shows, for the first time, that DPP-IV inhibition ameliorates both anatomical and biochemical consequences of TBI and activates CREB in the brain. Moreover, this work supports previous studies suggesting that the effect of GLP-1 analogs in models of brain damage relates to GLP-1 receptor stimulation in a dose-dependent manner.
Collapse
Affiliation(s)
- Brian DellaValle
- Department of Biomedicine/Pharmacology, Aarhus UniversityAarhus, Denmark; Centre of Medical Parasitology, Department of Clinical Microbiology, Copenhagen University HospitalCopenhagen, Denmark
| | - Gitte S Brix
- Department of Biomedicine/Pharmacology, Aarhus University Aarhus, Denmark
| | - Birgitte Brock
- Department of Biomedicine/Pharmacology, Aarhus UniversityAarhus, Denmark; Department of Clinical Biochemistry, Aarhus University HospitalAarhus, Denmark
| | - Michael Gejl
- Department of Biomedicine/Pharmacology, Aarhus UniversityAarhus, Denmark; Department of Clinical Biochemistry, Aarhus University HospitalAarhus, Denmark
| | - Jørgen Rungby
- Department of Biomedicine/Pharmacology, Aarhus UniversityAarhus, Denmark; Department of Endocrinology, Bispebjerg University HospitalCopenhagen, Denmark
| | - Agnete Larsen
- Department of Biomedicine/Pharmacology, Aarhus University Aarhus, Denmark
| |
Collapse
|
49
|
DellaValle B, Brix GS, Brock B, Gejl M, Landau AM, Møller A, Rungby J, Larsen A. Glucagon-Like Peptide-1 Analog, Liraglutide, Delays Onset of Experimental Autoimmune Encephalitis in Lewis Rats. Front Pharmacol 2016; 7:433. [PMID: 27917122 PMCID: PMC5114298 DOI: 10.3389/fphar.2016.00433] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/31/2016] [Indexed: 12/23/2022] Open
Abstract
Introduction: Recent findings indicate that metabolic disturbances are involved in multiple sclerosis (MS) pathology and influence the susceptibility to treatment, directing attention toward anti-diabetic drugs such as metformin and pioglitazone. Liraglutide, a drug of the glucagon-like peptide-1 (GLP-1) family, is also anti-diabetic and weight-reducing and is, moreover, directly neuroprotective and anti-inflammatory in a broad spectrum of experimental models of brain disease. In this study we investigate the potential for this FDA-approved drug, liraglutide, as a treatment for MS by utilizing the experimental model, experimental autoimmune encephalitis (EAE). Methods: EAE was induced in 30 female Lewis rats that subsequently received twice-daily liraglutide (200 μg/kg s.c.) or saline. Healthy controls were included (saline, n = 6, liraglutide, n = 7). Clinical score and weight were assessed daily by blinded observers. Animals were killed at peak disease severity (day 11) or if exceeding humane endpoint (clinical score ≥4). Protein levels of manganese superoxide dismutase (MnSOD), amyloid precursor protein (APP), and glial fibrillary acidic protein (GFAP) were determined. Results: Liraglutide treatment delayed disease onset (group clinical score significantly >0) by 2 days and markedly reduced disease severity (median clinical score 2 vs. 5; p = 0.0003). Fourteen of 15 (93%) of vehicle-treated rats reached the humane endpoint (clinical score ≥4) by day 11 compared to 5 of 15 (33%) of liraglutide-treated rats (p = 0.0004). Liraglutide substantially increased the mitochondrial antioxidant MnSOD (p < 0.01) and reduced the neurodegenerative marker APP (p = 0.036) in the brain. GFAP levels were not significantly changed with drug treatment (p = 0.09). Conclusion: We demonstrate, for the first time, that liraglutide treatment delays onset of EAE in Lewis rats and is associated with improved protective capacity against oxidative stress. These data suggest GLP-1 receptor agonists should be investigated further as a potential therapy for MS.
Collapse
Affiliation(s)
- Brian DellaValle
- Department of Biomedicine/Pharmacology, Aarhus UniversityAarhus, Denmark; Centre of Medical Parasitology, Department of Clinical Microbiology, Copenhagen University HospitalCopenhagen, Denmark
| | - Gitte S Brix
- Department of Biomedicine/Pharmacology, Aarhus University Aarhus, Denmark
| | - Birgitte Brock
- Department of Biomedicine/Pharmacology, Aarhus UniversityAarhus, Denmark; Department of Clinical Biochemistry and Department of Clinical Medicine, Aarhus University Hospital, Aarhus UniversityAarhus, Denmark
| | - Michael Gejl
- Department of Biomedicine/Pharmacology, Aarhus UniversityAarhus, Denmark; Department of Clinical Biochemistry and Department of Clinical Medicine, Aarhus University Hospital, Aarhus UniversityAarhus, Denmark
| | - Anne M Landau
- Department of Nuclear Medicine and PET Center, Aarhus UniversityAarhus, Denmark; Centre For Functionally Integrative Neuroscience, Aarhus UniversityAarhus, Denmark
| | - Arne Møller
- Department of Nuclear Medicine and PET Center, Aarhus UniversityAarhus, Denmark; Centre For Functionally Integrative Neuroscience, Aarhus UniversityAarhus, Denmark
| | - Jørgen Rungby
- Department of Biomedicine/Pharmacology, Aarhus UniversityAarhus, Denmark; Department of Endocrinology, Bispebjerg University HospitalCopenhagen, Denmark
| | - Agnete Larsen
- Department of Biomedicine/Pharmacology, Aarhus University Aarhus, Denmark
| |
Collapse
|
50
|
Prá M, Ferreira GK, de Mello AH, Schraiber RDB, Cardoso LC, Souza LDR, da Rosa N, Fortunato JJ, Rezin GT. Single dose and repeated administrations of liraglutide alter energy metabolism in the brains of young and adult rats. Biochem Cell Biol 2016; 94:451-458. [PMID: 27563837 DOI: 10.1139/bcb-2016-0016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Liraglutide is a human glucagon-like peptide-1 (GLP-1) analogue that was recently approved to treat obesity in some countries. Considering that liraglutide effects on brain energy metabolism are little known, we evaluated the effects of liraglutide on the energy metabolism. Animals received a single or daily injection of saline or liraglutide during 7 days (25, 50, 100, or 300 μg/kg i.p.). Twenty-four hours after the single or last injection, the rats were euthanized and the hypothalamus, prefrontal cortex, cerebellum, hippocampus, striatum, and posterior cortex were isolated. Our results demonstrated that a single dose of liraglutide in young rats increased the activity of complexes and inhibited creatine kinase activity. Repeated administrations of liraglutide in young rats reduced the activity of complexes and activated creatine kinase activity. In adult rats, a single dose of liraglutide reduced the activity of complex I and creatine kinase and increased the activity of complexes II and IV. Repeated administrations of liraglutide in adult rats increased the activity of complexes I and IV and reduced the activity of complex II and creatine kinase. We concluded that liraglutide may interfere in energy metabolism, because analysis of different times of administrations, concentrations, and level of brain development leads to divergent results.
Collapse
Affiliation(s)
- Morgana Prá
- a Laboratory of Clinical and Experimental Pathophysiology, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, 88704-900 SC, Brazil
| | - Gabriela Kozuchovski Ferreira
- b Laboratory Pharmacology and Pathophysiology of Skin, Department of Pharmacology, Federal University of Paraná, Curitiba, 81531-980 PR, Brazil
| | - Aline Haas de Mello
- a Laboratory of Clinical and Experimental Pathophysiology, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, 88704-900 SC, Brazil
| | - Rosiane de Bona Schraiber
- a Laboratory of Clinical and Experimental Pathophysiology, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, 88704-900 SC, Brazil
| | - Larissa Colonetti Cardoso
- a Laboratory of Clinical and Experimental Pathophysiology, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, 88704-900 SC, Brazil
| | - Luana da Rosa Souza
- a Laboratory of Clinical and Experimental Pathophysiology, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, 88704-900 SC, Brazil
| | - Naiana da Rosa
- c Laboratory of Neuroscience, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, 88704-900 SC, Brazil
| | - Jucélia Jeremias Fortunato
- c Laboratory of Neuroscience, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, 88704-900 SC, Brazil
| | - Gislaine Tezza Rezin
- a Laboratory of Clinical and Experimental Pathophysiology, Postgraduate Program in Health Sciences, University of Southern Santa Catarina, Tubarão, 88704-900 SC, Brazil
| |
Collapse
|