1
|
Mulugeta L, Drach A, Erdemir A, Hunt CA, Horner M, Ku JP, Myers JG, Vadigepalli R, Lytton WW. Credibility, Replicability, and Reproducibility in Simulation for Biomedicine and Clinical Applications in Neuroscience. Front Neuroinform 2018; 12:18. [PMID: 29713272 PMCID: PMC5911506 DOI: 10.3389/fninf.2018.00018] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 03/29/2018] [Indexed: 12/27/2022] Open
Abstract
Modeling and simulation in computational neuroscience is currently a research enterprise to better understand neural systems. It is not yet directly applicable to the problems of patients with brain disease. To be used for clinical applications, there must not only be considerable progress in the field but also a concerted effort to use best practices in order to demonstrate model credibility to regulatory bodies, to clinics and hospitals, to doctors, and to patients. In doing this for neuroscience, we can learn lessons from long-standing practices in other areas of simulation (aircraft, computer chips), from software engineering, and from other biomedical disciplines. In this manuscript, we introduce some basic concepts that will be important in the development of credible clinical neuroscience models: reproducibility and replicability; verification and validation; model configuration; and procedures and processes for credible mechanistic multiscale modeling. We also discuss how garnering strong community involvement can promote model credibility. Finally, in addition to direct usage with patients, we note the potential for simulation usage in the area of Simulation-Based Medical Education, an area which to date has been primarily reliant on physical models (mannequins) and scenario-based simulations rather than on numerical simulations.
Collapse
Affiliation(s)
| | - Andrew Drach
- The Institute for Computational Engineering and Sciences, The University of Texas at Austin, Austin, TX, United States
| | - Ahmet Erdemir
- Department of Biomedical Engineering and Computational Biomodeling (CoBi) Core, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, United States
| | - C A Hunt
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, United States
| | | | - Joy P Ku
- Department of Bioengineering, Stanford University, Stanford, CA, United States
| | - Jerry G Myers
- NASA Glenn Research Center, Cleveland, OH, United States
| | - Rajanikanth Vadigepalli
- Department of Pathology, Anatomy and Cell Biology, Daniel Baugh Institute for Functional Genomics and Computational Biology, Thomas Jefferson University, Philadelphia, PA, United States
| | - William W Lytton
- Department of Neurology, SUNY Downstate Medical Center, The State University of New York, New York, NY, United States.,Department of Physiology and Pharmacology, SUNY Downstate Medical Center, The State University of New York, New York, NY, United States.,Department of Neurology, Kings County Hospital Center, New York, NY, United States
| |
Collapse
|
2
|
Lytton WW, Arle J, Bobashev G, Ji S, Klassen TL, Marmarelis VZ, Schwaber J, Sherif MA, Sanger TD. Multiscale modeling in the clinic: diseases of the brain and nervous system. Brain Inform 2017; 4:219-230. [PMID: 28488252 PMCID: PMC5709279 DOI: 10.1007/s40708-017-0067-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 04/27/2017] [Indexed: 12/26/2022] Open
Abstract
Computational neuroscience is a field that traces its origins to the efforts of Hodgkin and Huxley, who pioneered quantitative analysis of electrical activity in the nervous system. While also continuing as an independent field, computational neuroscience has combined with computational systems biology, and neural multiscale modeling arose as one offshoot. This consolidation has added electrical, graphical, dynamical system, learning theory, artificial intelligence and neural network viewpoints with the microscale of cellular biology (neuronal and glial), mesoscales of vascular, immunological and neuronal networks, on up to macroscales of cognition and behavior. The complexity of linkages that produces pathophysiology in neurological, neurosurgical and psychiatric disease will require multiscale modeling to provide understanding that exceeds what is possible with statistical analysis or highly simplified models: how to bring together pharmacotherapeutics with neurostimulation, how to personalize therapies, how to combine novel therapies with neurorehabilitation, how to interlace periodic diagnostic updates with frequent reevaluation of therapy, how to understand a physical disease that manifests as a disease of the mind. Multiscale modeling will also help to extend the usefulness of animal models of human diseases in neuroscience, where the disconnects between clinical and animal phenomenology are particularly pronounced. Here we cover areas of particular interest for clinical application of these new modeling neurotechnologies, including epilepsy, traumatic brain injury, ischemic disease, neurorehabilitation, drug addiction, schizophrenia and neurostimulation.
Collapse
Affiliation(s)
- William W. Lytton
- Department of Physiology and Pharmacology and Neurology, SUNY Downstate, Kings County Hospital, Brooklyn, NY 11203 USA
| | | | | | - Songbai Ji
- Thayer School of Engineering, Department of Surgery and of Orthopaedic Surgery, Geisel School of Medicine, Dartmouth College, Hanover, NH 3755 USA
| | | | | | | | - Mohamed A. Sherif
- Yale U, New Haven, CT USA
- VA Connecticut Healthcare System, West Haven, CT USA
- Ain Shams U Institute of Psychiatry, Cairo, Egypt
| | | |
Collapse
|
3
|
Neymotin SA, McDougal RA, Bulanova AS, Zeki M, Lakatos P, Terman D, Hines ML, Lytton WW. Calcium regulation of HCN channels supports persistent activity in a multiscale model of neocortex. Neuroscience 2016; 316:344-66. [PMID: 26746357 PMCID: PMC4724569 DOI: 10.1016/j.neuroscience.2015.12.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/16/2015] [Accepted: 12/21/2015] [Indexed: 01/08/2023]
Abstract
Neuronal persistent activity has been primarily assessed in terms of electrical mechanisms, without attention to the complex array of molecular events that also control cell excitability. We developed a multiscale neocortical model proceeding from the molecular to the network level to assess the contributions of calcium (Ca(2+)) regulation of hyperpolarization-activated cyclic nucleotide-gated (HCN) channels in providing additional and complementary support of continuing activation in the network. The network contained 776 compartmental neurons arranged in the cortical layers, connected using synapses containing AMPA/NMDA/GABAA/GABAB receptors. Metabotropic glutamate receptors (mGluR) produced inositol triphosphate (IP3) which caused the release of Ca(2+) from endoplasmic reticulum (ER) stores, with reuptake by sarco/ER Ca(2+)-ATP-ase pumps (SERCA), and influence on HCN channels. Stimulus-induced depolarization led to Ca(2+) influx via NMDA and voltage-gated Ca(2+) channels (VGCCs). After a delay, mGluR activation led to ER Ca(2+) release via IP3 receptors. These factors increased HCN channel conductance and produced firing lasting for ∼1min. The model displayed inter-scale synergies among synaptic weights, excitation/inhibition balance, firing rates, membrane depolarization, Ca(2+) levels, regulation of HCN channels, and induction of persistent activity. The interaction between inhibition and Ca(2+) at the HCN channel nexus determined a limited range of inhibition strengths for which intracellular Ca(2+) could prepare population-specific persistent activity. Interactions between metabotropic and ionotropic inputs to the neuron demonstrated how multiple pathways could contribute in a complementary manner to persistent activity. Such redundancy and complementarity via multiple pathways is a critical feature of biological systems. Mediation of activation at different time scales, and through different pathways, would be expected to protect against disruption, in this case providing stability for persistent activity.
Collapse
Affiliation(s)
- S A Neymotin
- Department of Physiology & Pharmacology, SUNY Downstate, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA.
| | - R A McDougal
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA.
| | - A S Bulanova
- Department of Physiology & Pharmacology, SUNY Downstate, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA.
| | - M Zeki
- Department of Mathematics, Zirve University, 27260 Gaziantep, Turkey.
| | - P Lakatos
- Nathan Kline Institute for Psychiatric Research, 140 Old Orangeburg Road, Orangeburg, NY 10962, USA.
| | - D Terman
- Department of Mathematics, The Ohio State University, 231 W 18th Avenue, Columbus, OH 43210, USA.
| | - M L Hines
- Department of Neuroscience, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06510, USA.
| | - W W Lytton
- Department of Physiology & Pharmacology, SUNY Downstate, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; Department of Neurology, SUNY Downstate, 450 Clarkson Avenue, Brooklyn, NY 11203, USA; Department Neurology, Kings County Hospital Center, 451 Clarkson Avenue, Brooklyn, NY 11203, USA.
| |
Collapse
|
4
|
Abstract
Neurostimulation as a therapeutic tool has been developed and used for a range of different diseases such as Parkinson's disease, epilepsy, and migraine. However, it is not known why the efficacy of the stimulation varies dramatically across patients or why some patients suffer from severe side effects. This is largely due to the lack of mechanistic understanding of neurostimulation. Hence, theoretical computational approaches to address this issue are in demand. This chapter provides a review of mechanistic computational modeling of brain stimulation. In particular, we will focus on brain diseases, where mechanistic models (e.g., neural population models or detailed neuronal models) have been used to bridge the gap between cellular-level processes of affected neural circuits and the symptomatic expression of disease dynamics. We show how such models have been, and can be, used to investigate the effects of neurostimulation in the diseased brain. We argue that these models are crucial for the mechanistic understanding of the effect of stimulation, allowing for a rational design of stimulation protocols. Based on mechanistic models, we argue that the development of closed-loop stimulation is essential in order to avoid inference with healthy ongoing brain activity. Furthermore, patient-specific data, such as neuroanatomic information and connectivity profiles obtainable from neuroimaging, can be readily incorporated to address the clinical issue of variability in efficacy between subjects. We conclude that mechanistic computational models can and should play a key role in the rational design of effective, fully integrated, patient-specific therapeutic brain stimulation.
Collapse
|