1
|
Lu W, Yan L, Tang X, Wang X, Du J, Zou Z, Li L, Ye J, Zhou L. Efficacy and safety of mesenchymal stem cells therapy in COVID-19 patients: a systematic review and meta-analysis of randomized controlled trials. J Transl Med 2024; 22:550. [PMID: 38851730 PMCID: PMC11162060 DOI: 10.1186/s12967-024-05358-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/31/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND The coronavirus disease 2019 (COVID-19) has become a serious public health issue. In COVID-19 patients, the elevated levels of inflammatory cytokines lead to the manifestation of COVID-19 symptoms, such as lung tissue edema, lung diffusion dysfunction, acute respiratory distress syndrome (ARDS), secondary infection, and ultimately mortality. Mesenchymal stem cells (MSCs) exhibit anti-inflammatory and immunomodulatory properties, thus providing a potential treatment option for COVID-19. The number of clinical trials of MSCs for COVID-19 has been rising. However, the treatment protocols and therapeutic effects of MSCs for COVID-19 patients are inconsistent. This meta-analysis was performed to systematically determine the safety and efficacy of MSC infusion in COVID-19 patients. METHODS We conducted a comprehensive literature search from PubMed/Medline, Web of Science, EMBASE, and Cochrane Library up to 22 November 2023 to screen for eligible randomized controlled trials. Inclusion and exclusion criteria for searched literature were formulated according to the PICOS principle, followed by the use of literature quality assessment tools to assess the risk of bias. Finally, outcome measurements including therapeutic efficacy, clinical symptoms, and adverse events of each study were extracted for statistical analysis. RESULTS A total of 14 randomized controlled trials were collected. The results of enrolled studies demonstrated that patients with COVID-19 pneumonia who received MSC inoculation showed a decreased mortality compared with counterparts who received conventional treatment (RR: 0.76; 95% CI [0.60, 0.96]; p = 0.02). Reciprocally, MSC inoculation improved the clinical symptoms in patients (RR: 1.28; 95% CI [1.06, 1.55]; p = 0.009). In terms of immune biomarkers, MSC treatment inhibited inflammation responses in COVID-19 patients, as was indicated by the decreased levels of CRP and IL-6. Importantly, our results showed that no significant differences in the incidence of adverse reactions or serious adverse events were monitored in patients after MSC inoculation. CONCLUSION This meta-analysis demonstrated that MSC inoculation is effective and safe in the treatment of patients with COVID-19 pneumonia. Without increasing the incidence of adverse events or serious adverse events, MSC treatment decreased patient mortality and inflammatory levels and improved the clinical symptoms in COVID-19 patients. However, large-cohort randomized controlled trials with expanded numbers of patients are required to further confirm our results.
Collapse
Affiliation(s)
- Wenming Lu
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- School of Rehabilitation Medicine, Gannan Medical University, GanZhou City, 341000, Jiangxi, People's Republic of China
- The First Clinical College of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Longxiang Yan
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- School of Rehabilitation Medicine, Gannan Medical University, GanZhou City, 341000, Jiangxi, People's Republic of China
- The First Clinical College of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Xingkun Tang
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- School of Rehabilitation Medicine, Gannan Medical University, GanZhou City, 341000, Jiangxi, People's Republic of China
| | - Xuesong Wang
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- School of Rehabilitation Medicine, Gannan Medical University, GanZhou City, 341000, Jiangxi, People's Republic of China
| | - Jing Du
- School of Rehabilitation Medicine, Gannan Medical University, GanZhou City, 341000, Jiangxi, People's Republic of China
| | - Zhengwei Zou
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Lincai Li
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Junsong Ye
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou, 341000, Jiangxi, People's Republic of China
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
- Jiangxi Provincal Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China
| | - Lin Zhou
- Subcenter for Stem Cell Clinical Translation, First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China.
- Ganzhou Key Laboratory of Stem Cell and Regenerative Medicine, Ganzhou, 341000, Jiangxi, People's Republic of China.
- Key Laboratory of Prevention and Treatment of Cardiovascular and Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China.
- Jiangxi Provincal Key Laboratory of Tissue Engineering, Gannan Medical University, Ganzhou, 341000, Jiangxi, People's Republic of China.
| |
Collapse
|
2
|
Feng Y, Guo K, Jiang J, Lin S. Mesenchymal stem cell-derived exosomes as delivery vehicles for non-coding RNAs in lung diseases. Biomed Pharmacother 2024; 170:116008. [PMID: 38071800 DOI: 10.1016/j.biopha.2023.116008] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024] Open
Abstract
The burden of lung diseases is gradually increasing with an increase in the average human life expectancy. Therefore, it is necessary to identify effective methods to treat lung diseases and reduce their social burden. Currently, an increasing number of studies focus on the role of mesenchymal stem cell-derived exosomes (MSC-Exos) as a cell-free therapy in lung diseases. They show great potential for application to lung diseases as a more stable and safer option than traditional cell therapies. MSC-Exos are rich in various substances, including proteins, nucleic acids, and DNA. Delivery of Non-coding RNAs (ncRNAs) enables MSC-Exos to communicate with target cells. MSC-Exos significantly inhibit inflammatory factors, reduce oxidative stress, promote normal lung cell proliferation, and reduce apoptosis by delivering ncRNAs. Moreover, MSC-Exos carrying specific ncRNAs affect the proliferation, invasion, and migration of lung cancer cells, thereby playing a role in managing lung cancer. The detailed mechanisms of MSC-Exos in the clinical treatment of lung disease were explored by developing standardized culture, isolation, purification, and administration strategies. In summary, MSC-Exo-based delivery methods have important application prospects for treating lung diseases.
Collapse
Affiliation(s)
- Yuqian Feng
- Hangzhou School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Kaibo Guo
- Department of Oncology, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310003, China
| | - Jing Jiang
- The Third Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, China
| | - Shengyou Lin
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang 310006, China.
| |
Collapse
|
3
|
Guo BC, Wu KH, Chen CY, Lin WY, Chang YJ, Lee TA, Lin MJ, Wu HP. Mesenchymal Stem Cells in the Treatment of COVID-19. Int J Mol Sci 2023; 24:14800. [PMID: 37834246 PMCID: PMC10573267 DOI: 10.3390/ijms241914800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/21/2023] [Accepted: 09/29/2023] [Indexed: 10/15/2023] Open
Abstract
Since the emergence of the coronavirus disease 2019 (COVID-19) pandemic, many lives have been tragically lost to severe infections. The COVID-19 impact extends beyond the respiratory system, affecting various organs and functions. In severe cases, it can progress to acute respiratory distress syndrome (ARDS) and multi-organ failure, often fueled by an excessive immune response known as a cytokine storm. Mesenchymal stem cells (MSCs) have considerable potential because they can mitigate inflammation, modulate immune responses, and promote tissue regeneration. Accumulating evidence underscores the efficacy and safety of MSCs in treating severe COVID-19 and ARDS. Nonetheless, critical aspects, such as optimal routes of MSC administration, appropriate dosage, treatment intervals, management of extrapulmonary complications, and potential pediatric applications, warrant further exploration. These research avenues hold promise for enriching our understanding and refining the application of MSCs in confronting the multifaceted challenges posed by COVID-19.
Collapse
Affiliation(s)
- Bei-Cyuan Guo
- Department of Pediatrics, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan 70403, Taiwan;
| | - Kang-Hsi Wu
- Department of Pediatrics, Chung Shan Medical University Hospital, Taichung 40201, Taiwan;
- School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Chun-Yu Chen
- Department of Emergency Medicine, Tungs’ Taichung Metro Harbor Hospital, Taichung 43503, Taiwan;
- Department of Nursing, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli 35664, Taiwan
| | - Wen-Ya Lin
- Department of Pediatrics, Taichung Veterans General Hospital, Taichung 43503, Taiwan
| | - Yu-Jun Chang
- Laboratory of Epidemiology and Biostastics, Changhua Christian Hospital, Changhua 50006, Taiwan;
| | - Tai-An Lee
- Department of Emergency Medicine, Chang Bing Show Chwan Memorial Hospital, Changhua 50544, Taiwan;
| | - Mao-Jen Lin
- Division of Cardiology, Department of Medicine, Taichung Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, Taichung 42743, Taiwan
- Department of Medicine, College of Medicine, Tzu Chi University, Hualien 97002, Taiwan
| | - Han-Ping Wu
- College of Medicine, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Pediatrics, Chiayi Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| |
Collapse
|
4
|
Namiot ED, Smirnovová D, Sokolov AV, Chubarev VN, Tarasov VV, Schiöth HB. The international clinical trials registry platform (ICTRP): data integrity and the trends in clinical trials, diseases, and drugs. Front Pharmacol 2023; 14:1228148. [PMID: 37790806 PMCID: PMC10544909 DOI: 10.3389/fphar.2023.1228148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023] Open
Abstract
Introduction: Clinical trials are the gold standard for testing new therapies. Databases like ClinicalTrials.gov provide access to trial information, mainly covering the US and Europe. In 2006, WHO introduced the global ICTRP, aggregating data from ClinicalTrials.gov and 17 other national registers, making it the largest clinical trial platform by June 2019. This study conducts a comprehensive global analysis of the ICTRP database and provides framework for large-scale data analysis, data preparation, curation, and filtering. Materials and methods: The trends in 689,793 records from the ICTRP database (covering trials registered from 1990 to 2020) were analyzed. Records were adjusted for duplicates and mapping of agents to drug classes was performed. Several databases, including DrugBank, MESH, and the NIH Drug Information Portal were used to investigate trends in agent classes. Results: Our novel approach unveiled that 0.5% of the trials we identified were hidden duplicates, primarily originating from the EUCTR database, which accounted for 82.9% of these duplicates. However, the overall number of hidden duplicates within the ICTRP seems to be decreasing. In total, 689 793 trials (478 345 interventional) were registered in the ICTRP between 1990 and 2020, surpassing the count of trials in ClinicalTrials.gov (362 500 trials by the end of 2020). We identified 4 865 unique agents in trials with DrugBank, whereas 2 633 agents were identified with NIH Drug Information Portal data. After the ClinicalTrials.gov, EUCTR had the most trials in the ICTRP, followed by CTRI, IRCT, CHiCTR, and ISRCTN. CHiCTR displayed a significant surge in trial registration around 2015, while CTRI experienced rapid growth starting in 2016. Conclusion: This study highlights both the strengths and weaknesses of using the ICTRP as a data source for analyzing trends in clinical trials, and emphasizes the value of utilizing multiple registries for a comprehensive analysis.
Collapse
Affiliation(s)
- Eugenia D. Namiot
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Diana Smirnovová
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Aleksandr V. Sokolov
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | | | - Vadim V. Tarasov
- Advanced Molecular Technology, Limited Liable Company (LLC), Moscow, Russia
| | - Helgi B. Schiöth
- Department of Surgical Sciences, Division of Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Couto PS, Al-Arawe N, Filgueiras IS, Fonseca DLM, Hinterseher I, Catar RA, Chinnadurai R, Bersenev A, Cabral-Marques O, Moll G, Verter F. Systematic review and meta-analysis of cell therapy for COVID-19: global clinical trial landscape, published safety/efficacy outcomes, cell product manufacturing and clinical delivery. Front Immunol 2023; 14:1200180. [PMID: 37415976 PMCID: PMC10321603 DOI: 10.3389/fimmu.2023.1200180] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/24/2023] [Indexed: 07/08/2023] Open
Abstract
During the pandemic of severe respiratory distress syndrome coronavirus 2 (SARS-CoV2), many novel therapeutic modalities to treat Coronavirus 2019 induced disease (COVID-19) were explored. This study summarizes 195 clinical trials of advanced cell therapies targeting COVID-19 that were registered over the two years between January 2020 to December 2021. In addition, this work also analyzed the cell manufacturing and clinical delivery experience of 26 trials that published their outcomes by July 2022. Our demographic analysis found the highest number of cell therapy trials for COVID-19 was in United States, China, and Iran (N=53, 43, and 19, respectively), with the highest number per capita in Israel, Spain, Iran, Australia, and Sweden (N=0.641, 0.232, 0,223, 0.194, and 0.192 trials per million inhabitants). The leading cell types were multipotent mesenchymal stromal/stem cells (MSCs), natural killer (NK) cells, and mononuclear cells (MNCs), accounting for 72%, 9%, and 6% of the studies, respectively. There were 24 published clinical trials that reported on infusions of MSCs. A pooled analysis of these MSC studies found that MSCs provide a relative risk reduction for all-cause COVID-19 mortality of RR=0.63 (95% CI 0.46 to 0.85). This result corroborates previously published smaller meta-analyses, which suggested that MSC therapy demonstrated a clinical benefit for COVID-19 patients. The sources of the MSCs used in these studies and their manufacturing and clinical delivery methods were remarkably heterogeneous, with some predominance of perinatal tissue-derived products. Our results highlight the important role that cell therapy products may play as an adjunct therapy in the management of COVID-19 and its related complications, as well as the importance of controlling key manufacturing parameters to ensure comparability between studies. Thus, we support ongoing calls for a global registry of clinical studies with MSC products that could better link cell product manufacturing and delivery methods to clinical outcomes. Although advanced cell therapies may provide an important adjunct treatment for patients affected by COVID-19 in the near future, preventing pathology through vaccination still remains the best protection to date. We conducted a systematic review and meta-analysis of advanced cell therapy clinical trials as potential novel treatment for COVID-19 (resulting from SARS-CoV-2 coronavirus infection), including analysis of the global clinical trial landscape, published safety/efficacy outcomes (RR/OR), and details on cell product manufacturing and clinical delivery. This study had a 2-year observation interval from start of January 2020 to end of December 2021, including a follow-up period until end of July to identify published outcomes, which covers the most vivid period of clinical trial activity, and is also the longest observation period studied until today. In total, we identified 195 registered advanced cell therapy studies for COVID-19, employing 204 individual cell products. Leading registered trial activity was attributed to the USA, China, and Iran. Through the end of July 2022, 26 clinical trials were published, with 24 out of 26 articles employing intravenous infusions (IV) of mesenchymal stromal/stem cell (MSC) products. Most of the published trials were attributed to China and Iran. The cumulative results from the 24 published studies employing infusions of MSCs indicated an improved survival (RR=0.63 with 95% Confidence Interval 0.46 to 0.85). Our study is the most comprehensive systematic review and meta-analysis on cell therapy trials for COVID-19 conducted to date, clearly identifying the USA, China, and Iran as leading advanced cell therapy trial countries for COVID-19, with further strong contributions from Israel, Spain, Australia and Sweden. Although advanced cell therapies may provide an important adjunct treatment for patients affected by COVID-19 in the future, preventing pathology through vaccination remains the best protection.
Collapse
Affiliation(s)
- Pedro S. Couto
- Department of Biochemical Engineering, Advanced Centre for Biochemical Engineering, University College London, London, United Kingdom
- CellTrials.org and Parent’s Guide to Cord Blood Foundation, a non-profit organization headquartered in Brookeville, Brookeville, MD, United States
| | - Nada Al-Arawe
- Department of Nephrology and Internal Intensive Care Medicine, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany
- Vascular Surgery Clinic, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Igor S. Filgueiras
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Dennyson L. M. Fonseca
- Interunit Postgraduate Program on Bioinformatics, Institute of Mathematics and Statistics (IME), University of São Paulo (USP), São Paulo, SP, Brazil
| | - Irene Hinterseher
- Vascular Surgery Clinic, Charité Universitätsmedizin Berlin, Berlin, Germany
- Department of Vascular Surgery, Universitätsklinikum Ruppin-Brandenburg, Medizinische Hochschule Brandenburg Theodor Fontane, Neuruppin, Germany
- Fakultät der Gesundheitswissenschaften Brandenburg, Gemeinsame Fakultät der Universität Potsdam, der Medizinischen Hochschule Brandenburg Theodor Fontane, und der Brandenburg Technischen Universität (BTU) Cottbus-Senftenberg, Potsdam, Germany
| | - Rusan A. Catar
- Department of Nephrology and Internal Intensive Care Medicine, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany
| | - Raghavan Chinnadurai
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA, United States
| | - Alexey Bersenev
- Advanced Cell Therapy (ACT) Laboratory, Yale School of Medicine, New Haven, CT, United States
| | - Otávio Cabral-Marques
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
- Interunit Postgraduate Program on Bioinformatics, Institute of Mathematics and Statistics (IME), University of São Paulo (USP), São Paulo, SP, Brazil
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
- Department of Pharmacy and Postgraduate Program of Health and Science, Federal University of Rio Grande do Norte, Natal, Brazil
- Department of Medicine, Division of Molecular Medicine, University of São Paulo School of Medicine, São Paulo, Brazil
- Laboratory of Medical Investigation 29, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Guido Moll
- Department of Nephrology and Internal Intensive Care Medicine, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health (BIH), Berlin, Germany
- Berlin Institute of Health (BIH) Center for Regenerative Therapies (BCRT), Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Frances Verter
- CellTrials.org and Parent’s Guide to Cord Blood Foundation, a non-profit organization headquartered in Brookeville, Brookeville, MD, United States
| |
Collapse
|
6
|
Future regenerative medicine developments and their therapeutic applications. Biomed Pharmacother 2023; 158:114131. [PMID: 36538861 DOI: 10.1016/j.biopha.2022.114131] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/05/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Although the currently available pharmacological assays can cure most pathological disorders, they have limited therapeutic value in relieving certain disorders like myocardial infarct, peripheral vascular disease, amputated limbs, or organ failure (e.g. renal failure). Pilot studies to overcome such problems using regenerative medicine (RM) delivered promising data. Comprehensive investigations of RM in zebrafish or reptilians are necessary for better understanding. However, the precise mechanisms remain poorly understood despite the tremendous amount of data obtained using the zebrafish model investigating the exact mechanisms behind their regenerative capability. Indeed, understanding such mechanisms and their application to humans can save millions of lives from dying due to potentially life-threatening events. Recent studies have launched a revolution in replacing damaged human organs via different approaches in the last few decades. The newly established branch of medicine (known as Regenerative Medicine aims to enhance natural repair mechanisms. This can be done through the application of several advanced broad-spectrum technologies such as organ transplantation, tissue engineering, and application of Scaffolds technology (support vascularization using an extracellular matrix), stem cell therapy, miRNA treatment, development of 3D mini-organs (organoids), and the construction of artificial tissues using nanomedicine and 3D bio-printers. Moreover, in the next few decades, revolutionary approaches in regenerative medicine will be applied based on artificial intelligence and wireless data exchange, soft intelligence biomaterials, nanorobotics, and even living robotics capable of self-repair. The present work presents a comprehensive overview that summarizes the new and future advances in the field of RM.
Collapse
|
7
|
Ulldemolins A, Jurado A, Herranz-Diez C, Gavara N, Otero J, Farré R, Almendros I. Lung Extracellular Matrix Hydrogels-Derived Vesicles Contribute to Epithelial Lung Repair. Polymers (Basel) 2022; 14:polym14224907. [PMID: 36433034 PMCID: PMC9692679 DOI: 10.3390/polym14224907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/16/2022] Open
Abstract
The use of physiomimetic decellularized extracellular matrix-derived hydrogels is attracting interest since they can modulate the therapeutic capacity of numerous cell types, including mesenchymal stromal cells (MSCs). Remarkably, extracellular vesicles (EVs) derived from MSCs display similar functions as their parental cells, mitigating tissue damage in lung diseases. However, recent data have shown that ECM-derived hydrogels could release other resident vesicles similar to EVs. Here, we aim to better understand the contribution of EVs and ECM-vesicles released from MSCs and/or lung-derived hydrogel (L-HG) in lung repair by using an in vitro lung injury model. L-HG derived-vesicles and MSCs EVs cultured either in L-HG or conventional plates were isolated and characterized. The therapeutic capacity of vesicles obtained from each experimental condition was tested by using an alveolar epithelial wound-healing assay. The number of ECM-vesicles released from acellular L-HG was 10-fold greater than EVs from conventional MSCs cell culture revealing that L-HG is an important source of bioactive vesicles. MSCs-derived EVs and L-HG vesicles have similar therapeutic capacity in lung repair. However, when wound closure rate was normalized by total proteins, the MSCs-derived EVs shows higher therapeutic potential to those released by L-HG. The EVs released from L-HG must be considered when HG is used as substrate for cell culture and EVs isolation.
Collapse
Affiliation(s)
- Anna Ulldemolins
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Alicia Jurado
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Carolina Herranz-Diez
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
| | - Núria Gavara
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
- The Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
| | - Jorge Otero
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
- The Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), 08028 Barcelona, Spain
- CIBER de Enfermedades Respiratorias, 28029 Madrid, Spain
| | - Ramon Farré
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
- CIBER de Enfermedades Respiratorias, 28029 Madrid, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain
| | - Isaac Almendros
- Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, 08036 Barcelona, Spain
- CIBER de Enfermedades Respiratorias, 28029 Madrid, Spain
- Institut d’Investigacions Biomèdiques August Pi i Sunyer, 08036 Barcelona, Spain
- Correspondence:
| |
Collapse
|
8
|
Mesenchymal Stem Cell-Derived Extracellular Vesicles Therapy for Pulmonary Hypertension: A Comprehensive Review of Preclinical Studies. J Interv Cardiol 2022; 2022:5451947. [PMID: 36419957 PMCID: PMC9652076 DOI: 10.1155/2022/5451947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 10/09/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Pulmonary hypertension (PH) is a type of clinical pathophysiological syndrome characterized by a progressive increase in pulmonary vascular resistance and subsequent progressive failure of the right heart function, and is a common complication of many diseases. Mesenchymal stem cells (MSCs) autonomously home to sites damaged by disease, repair damaged tissues, and participate in the regulation of systemic inflammation and immune responses, which have good clinical application prospects. Extracellular vesicles (EVs), such as exosomes and microvesicles, participate in various biological activities by regulating intercellular communication. Exosomes secreted into the extracellular environment also affect the host immune system. MSC-derived extracellular vesicles (MSC-EVs), as a mediator in the paracrine processes of MSCs, carry biologically active substances such as proteins, lipids, mRNA, and micro-RNA. MSC-EVs therapies, safer than cell-based treatments, have been shown to be effective in modulating macrophages to support anti-inflammatory phenotypes, which are strongly related to histological and functional benefits in preclinical models of pulmonary hypertension. The main effects of active substances and their potential medical value have attracted wide attention from researchers. This article reviews the role and relevant mechanisms of MSC-EVs in the treatment of pulmonary hypertension in recent studies and provides a basis for their future clinical applications.
Collapse
|
9
|
Zhang X, Cai J, Chen L, Yang Q, Tian H, Wu J, Ji Z, Zheng D, Li Z, Chen Y. Mapping global trends in research of stem cell therapy for COVID-19: A bibliometric analysis. Front Public Health 2022; 10:1016237. [PMID: 36311582 PMCID: PMC9614336 DOI: 10.3389/fpubh.2022.1016237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/26/2022] [Indexed: 02/05/2023] Open
Abstract
Over the past 2 years, the world has witnessed the devastating effects of the COVID-19 pandemic on humanity. Fortunately, stem cell therapy is widely used in clinical practice for the treatment of COVID-19 and has saved the lives of many critically ill patients. A bibliometric analysis of this field can analyze research hotspots and predict the research trends. This research analyzed documents from Web of Science between the years 2020-2022. The bibliometrics software bibliometrix, VOSviewer, and CiteSpace were used to complete the visual analysis of publications, authors, countries, documents, organizations, collaborative networks, and keywords clustering. 896 publications on COVID-19 stem cell therapy were included in the analysis, including 451 articles and 445 review articles. The field grew at the average growth rate of 103.17% between 2020 and 2021. The United States had the highest number of publications and citations. Many developing countries had also contributed significantly to the field. The journal with the most articles was Stem Cell Research and Therapy. The most cited journal was Stem Cell Reviews and Reports. The published documents were focused on five themes: "Cell Biology", "Medicine Research Experimental", "Cell Tissue Engineering", "Immunology", and "Pharmacology Pharmacy". The bibliometric analysis revealed that current clinical trials had validated stem cell therapy's remarkable potential in treating COVID-19 and its complications. It is foreseeable that future research in this area will continue to increase. With the help of bibliometric analysis, researchers can identify the current state of research and potential research hotspots.
Collapse
Affiliation(s)
- Xinkang Zhang
- Department of General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Jiehui Cai
- Department of General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | | | | | | | | | | | | | - Zhiyang Li
- Department of General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Yexi Chen
- Department of General Surgery, The Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
10
|
Popowski KD, Moatti A, Scull G, Silkstone D, Lutz H, López de Juan Abad B, George A, Belcher E, Zhu D, Mei X, Cheng X, Cislo M, Ghodsi A, Cai Y, Huang K, Li J, Brown AC, Greenbaum A, Dinh PUC, Cheng K. Inhalable dry powder mRNA vaccines based on extracellular vesicles. MATTER 2022; 5:2960-2974. [PMID: 35847197 PMCID: PMC9272513 DOI: 10.1016/j.matt.2022.06.012] [Citation(s) in RCA: 94] [Impact Index Per Article: 31.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/29/2022] [Accepted: 06/07/2022] [Indexed: 05/10/2023]
Abstract
Respiratory diseases are a global burden, with millions of deaths attributed to pulmonary illnesses and dysfunctions. Therapeutics have been developed, but they present major limitations regarding pulmonary bioavailability and product stability. To circumvent such limitations, we developed room-temperature-stable inhalable lung-derived extracellular vesicles or exosomes (Lung-Exos) as mRNA and protein drug carriers. Compared with standard synthetic nanoparticle liposomes (Lipos), Lung-Exos exhibited superior distribution to the bronchioles and parenchyma and are deliverable to the lungs of rodents and nonhuman primates (NHPs) by dry powder inhalation. In a vaccine application, severe acute respiratory coronavirus 2 (SARS-CoV-2) spike (S) protein encoding mRNA-loaded Lung-Exos (S-Exos) elicited greater immunoglobulin G (IgG) and secretory IgA (SIgA) responses than its loaded liposome (S-Lipo) counterpart. Importantly, S-Exos remained functional at room-temperature storage for one month. Our results suggest that extracellular vesicles can serve as an inhaled mRNA drug-delivery system that is superior to synthetic liposomes.
Collapse
Affiliation(s)
- Kristen D Popowski
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Adele Moatti
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh/Chapel Hill, NC 27607/27599, USA
| | - Grant Scull
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh/Chapel Hill, NC 27607/27599, USA
| | - Dylan Silkstone
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh/Chapel Hill, NC 27607/27599, USA
| | - Halle Lutz
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Blanca López de Juan Abad
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
| | - Arianna George
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695, USA
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Elizabeth Belcher
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh/Chapel Hill, NC 27607/27599, USA
| | - Dashuai Zhu
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Xuan Mei
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh/Chapel Hill, NC 27607/27599, USA
| | - Xiao Cheng
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh/Chapel Hill, NC 27607/27599, USA
| | - Megan Cislo
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27695, USA
- Department of Food, Bioprocessing, and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695, USA
| | - Asma Ghodsi
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
| | - Yuheng Cai
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh/Chapel Hill, NC 27607/27599, USA
| | - Ke Huang
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh/Chapel Hill, NC 27607/27599, USA
| | - Junlang Li
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh/Chapel Hill, NC 27607/27599, USA
| | - Ashley C Brown
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh/Chapel Hill, NC 27607/27599, USA
| | - Alon Greenbaum
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh/Chapel Hill, NC 27607/27599, USA
| | - Phuong-Uyen C Dinh
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
| | - Ke Cheng
- Department of Molecular Biomedical Sciences, North Carolina State University, Raleigh, NC 27607, USA
- Comparative Medicine Institute, North Carolina State University, Raleigh, NC 27607, USA
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh/Chapel Hill, NC 27607/27599, USA
- Division of Pharmacoengineering and Molecular Pharmaceutics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
11
|
Saheli M, Khoramipour K, Vosough M, Piryaei A, Rahmati M, Suzuki K. Athletes' Mesenchymal Stem Cells Could Be the Best Choice for Cell Therapy in Omicron-Infected Patients. Cells 2022; 11:1926. [PMID: 35741055 PMCID: PMC9221912 DOI: 10.3390/cells11121926] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/08/2022] [Accepted: 06/12/2022] [Indexed: 02/05/2023] Open
Abstract
New severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variant, Omicron, contains 32 mutations that have caused a high incidence of breakthrough infections or re-infections. These mutations have reduced vaccine protection against Omicron and other new emerging variants. This highlights the need to find effective treatment, which is suggested to be stem cell-based therapy. Stem cells could support respiratory epithelial cells and they could restore alveolar bioenergetics. In addition, they can increase the secretion of immunomodulatory cytokines. However, after transplantation, cell survival and growth rate are low because of an inappropriate microenvironment, and stem cells face ischemia, inflammation, and oxidative stress in the transplantation niche which reduces the cells' survival and growth. Exercise-training can upregulate antioxidant, anti-inflammatory, and anti-apoptotic defense mechanisms and increase growth signaling, thereby improving transplanted cells' survival and growth. Hence, using athletes' stem cells may increase stem-cell therapy outcomes in Omicron-affected patients.
Collapse
Affiliation(s)
- Mona Saheli
- Department of Anatomical Sciences, and Pathology and Stem Cell Research Centre, Afzalipour Faculty of Medicine, Kerman University of Medical Sciences, Kerman 7616914115, Iran;
| | - Kayvan Khoramipour
- Neuroscience Research Center, Institute of Neuropharmacology, and Department of Physiology and Pharmacology, Afzalipour School of Medicine, Kerman University of Medical Sciences, Kerman 7616914115, Iran
- Student Research Committee, Kerman University of Medical Sciences, Kerman 7619813159, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 1665659911, Iran;
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, 17177 Stockholm, Sweden
| | - Abbas Piryaei
- Department of Biology and Anatomical Sciences, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran;
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1434875451, Iran
| | - Masoud Rahmati
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khoramabad 6815144316, Iran;
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Saitama, Japan
| |
Collapse
|
12
|
Yang S, Liu P, Gao T, Song D, Zhao X, Li Y, Wu J, Wang L, Wang Z, Hao J, Wang C, Dai H. Every road leads to Rome: therapeutic effect and mechanism of the extracellular vesicles of human embryonic stem cell-derived immune and matrix regulatory cells administered to mouse models of pulmonary fibrosis through different routes. Stem Cell Res Ther 2022; 13:163. [PMID: 35413874 PMCID: PMC9006546 DOI: 10.1186/s13287-022-02839-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/02/2021] [Indexed: 12/27/2022] Open
Abstract
Background Idiopathic pulmonary fibrosis (IPF) is a progressive and fatal interstitial lung disease. Whether extracellular vesicles are effective in treating IPF and what is the optimal administrative route is not clear. Our previous studies have shown that immunity and matrix regulatory cells (IMRCs) derived from human embryonic stem cells can safely treat lung injury and fibrosis in mouse models, and its mechanism of action is related to the paracrine effect. In this study, we investigated the therapeutic effects of IMRC-derived extracellular vesicles (IMRC-EVs) on a bleomycin-induced pulmonary fibrosis mouse model and explored the optimal route of administration. Methods To study the biodistribution of IMRC-EVs after administration via different routes, NIR labeled-IMRC-EVs were delivered by intratracheal (IT) or intravenous (IV) route, and in vivo imaging was acquired at different time points. The therapeutic effects of IMRC-EVs delivered by different routes were analyzed by assessing histology, lung function, cytokines levels, and transcriptome profiling. RNA-seq of lung tissues was performed to investigate the mechanisms of EV treatment through IT or IV administrations. Results IMRC-EVs mainly reserved in the liver and spleen when administrated via IV route; and mainly retained in the lungs via the IT route. IMRC-EVs administrated via both routes demonstrated a therapeutic effect as attenuated pulmonary fibrosis, improved lung function, and histological parameters. Based on our RNA-seq results, different pathways may be affected by IMRC-EVs administrated via IT or IV routes. In addition, in vitro experiments showed that IMRC-EVs inhibited epithelial-to-mesenchymal transition induced by TGF-β. Conclusion IMRC-EVs administrated via IT or IV routes generate different biodistributions, but are both effective for the treatment of bleomycin-induced pulmonary fibrosis. The therapeutic mechanisms of IMRC-EVs administrated via different routes may be different. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02839-7.
Collapse
Affiliation(s)
- Shengnan Yang
- Harbin Medical University, Harbin, 150081, Heilongjiang Province, China.,Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China.,National Center for Respiratory Medicine, Beijing, 100029, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, 100029, China
| | - Peipei Liu
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China.,National Center for Respiratory Medicine, Beijing, 100029, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, 100029, China.,Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China
| | - Tingting Gao
- National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, 100190, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
| | - Dingyun Song
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China.,National Center for Respiratory Medicine, Beijing, 100029, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, 100029, China
| | - Xinyu Zhao
- Harbin Medical University, Harbin, 150081, Heilongjiang Province, China.,Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China.,National Center for Respiratory Medicine, Beijing, 100029, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, 100029, China
| | - Yupeng Li
- Harbin Medical University, Harbin, 150081, Heilongjiang Province, China.,Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China.,National Center for Respiratory Medicine, Beijing, 100029, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, 100029, China
| | - Jun Wu
- National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, 100190, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Liu Wang
- National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, 100190, China.,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zai Wang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, 100029, China.
| | - Jie Hao
- National Stem Cell Resource Center, Chinese Academy of Sciences, Beijing, 100190, China. .,State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China. .,Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China. .,Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Chen Wang
- Harbin Medical University, Harbin, 150081, Heilongjiang Province, China. .,Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China. .,National Center for Respiratory Medicine, Beijing, 100029, China. .,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, 100029, China. .,Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, 100730, China.
| | - Huaping Dai
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, 100029, China. .,National Center for Respiratory Medicine, Beijing, 100029, China. .,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, 100029, China.
| |
Collapse
|
13
|
Yin L, Li N, Jia W, Wang N, Liang M, Yang X, Du G. Skeletal muscle atrophy: From mechanisms to treatments. Pharmacol Res 2021; 172:105807. [PMID: 34389456 DOI: 10.1016/j.phrs.2021.105807] [Citation(s) in RCA: 159] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/03/2021] [Accepted: 08/07/2021] [Indexed: 02/07/2023]
Abstract
Skeletal muscle is a crucial tissue for movement, gestural assistance, metabolic homeostasis, and thermogenesis. It makes up approximately 40% of the total body weight and 50% of total protein. However, several pathological abnormalities (e.g., chronic diseases, cancer, long-term infection, aging) can induce an imbalance in skeletal muscle protein synthesis and degradation, which triggers muscle wasting and even leads to atrophy. Skeletal muscle atrophy is characterized by weakening, shrinking, and decreasing muscle mass and fiber cross-sectional area at the histological level. It manifests as a reduction in force production, easy fatigue and decreased exercise capability, along with a lower quality of life. Mechanistically, there are several pathophysiological processes involved in skeletal muscle atrophy, including oxidative stress and inflammation, which then activate signal transduction, such as the ubiquitin proteasome system, autophagy lysosome system, and mTOR. Considering the great economic and social burden that muscle atrophy can inflict, effective prevention and treatment strategies are essential but still limited. Exercise is widely acknowledged as the most effective therapy for skeletal muscle atrophy; unfortunately, it is not applicable for all patients. Several active substances for skeletal muscle atrophy have been discovered and evaluated in clinical trials, however, they have not been marketed to date. Knowledge is being gained on the underlying mechanisms, highlighting more promising treatment strategies in the future. In this paper, the mechanisms and treatment strategies for skeletal muscle atrophy are briefly reviewed.
Collapse
Affiliation(s)
- Lin Yin
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Na Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Weihua Jia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Nuoqi Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Meidai Liang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China
| | - Xiuying Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China.
| | - Guanhua Du
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines and Beijing Key Laboratory of Drug Target and Screening Research, Institute of Materia Medica of Peking Union Medical College, 1 Xian Nong Tan Street, Beijing 100050, PR China.
| |
Collapse
|
14
|
Yang S, Liu P, Jiang Y, Wang Z, Dai H, Wang C. Therapeutic Applications of Mesenchymal Stem Cells in Idiopathic Pulmonary Fibrosis. Front Cell Dev Biol 2021; 9:639657. [PMID: 33768094 PMCID: PMC7985078 DOI: 10.3389/fcell.2021.639657] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/15/2021] [Indexed: 12/17/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an interstitial disease of unknown etiology characterized by progressive pulmonary fibrosis. Pirfenidone and nintedanib are the only drugs that can prolong the time to disease progression, slow down the decline in lung function, and prolong survival. However, they do not offer a cure and are associated with tolerability issues. The pluripotency of mesenchymal stem cells (MSCs) and their ability to regulate immunity, inhibit inflammation, and promote epithelial tissue repair highlight the promise of MSC therapy for treating interstitial lung disease. However, optimal protocols are lacking for multi-parameter selection in MSC therapy. This review summarizes preclinical studies on MSC transplantation for the treatment of interstitial lung disease and clinical studies with known results. An analysis of relevant factors for the optimization of treatment plans is presented, including MSCs with different sources, administration routes and timing, dosages, frequencies, and pretreatments with MSCs. This review proposes an optimized plan for guiding the design of future clinical research to identify therapeutic options for this complex disease.
Collapse
Affiliation(s)
- Shengnan Yang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.,National Center for Respiratory Medicine, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China.,National Clinical Research Center for Respiratory Diseases, Beijing, China.,WHO Collaborating Centre for Tobacco Cessation and Respiratory Diseases Prevention, Beijing, China.,Harbin Medical University, Harbin, China
| | - Peipei Liu
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yale Jiang
- School of Medicine, Tsinghua University, Beijing, China
| | - Zai Wang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Huaping Dai
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.,National Center for Respiratory Medicine, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China.,National Clinical Research Center for Respiratory Diseases, Beijing, China.,WHO Collaborating Centre for Tobacco Cessation and Respiratory Diseases Prevention, Beijing, China
| | - Chen Wang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital, Beijing, China.,National Center for Respiratory Medicine, Beijing, China.,Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing, China.,National Clinical Research Center for Respiratory Diseases, Beijing, China.,WHO Collaborating Centre for Tobacco Cessation and Respiratory Diseases Prevention, Beijing, China.,Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
15
|
Fröhlich E. Therapeutic Potential of Mesenchymal Stem Cells and Their Products in Lung Diseases-Intravenous Administration versus Inhalation. Pharmaceutics 2021; 13:232. [PMID: 33562240 PMCID: PMC7915745 DOI: 10.3390/pharmaceutics13020232] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/29/2021] [Accepted: 02/03/2021] [Indexed: 12/13/2022] Open
Abstract
The number of publications studying the therapeutic use of stem cells has steadily increased since 2000. Compared to other applications, there has been little interest in the evaluation of mesenchymal stem cells (MSCs) and MSC-derived products (mostly extracellular vesicles) for the treatment of respiratory diseases. Due to the lack of efficient treatments for acute respiratory distress syndrome caused by infections with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the action of MSCs has also been studied. This review describes mode of action and use of MSCs and MSC-derived products in the treatment of lung diseases including the respective advantages and limitations of the products. Further, issues related to standardized production are addressed. Administration by inhalation of MSCs, compared to intravenous injection, could decrease cell damage by shear stress, eliminate the barrier to reach target cells in the alveoli, prevent thrombus formation in the pulmonary vasculature and retention in filter for extracorporeal membrane oxygenation. There is more feasible to deliver extracellular vesicles than MSCs with inhalers, offering the advantage of non-invasive and repeated administration by the patient. Major obstacles for comparison of results are heterogeneity of the products, differences in the treatment protocols and small study cohorts.
Collapse
Affiliation(s)
- Eleonore Fröhlich
- Center for Medical Research, Medical University of Graz, Stiftingtalstr 24, 8010 Graz, Austria; ; Tel.: +43-316-385-73011
- Research Center Pharmaceutical Engineering GmbH, Inffeldgasse 13, 8010 Graz, Austria
| |
Collapse
|