1
|
Zhao Y, Zhang Q, Wang M, Wu B, Zhao S, Wei X, Diao Y, Tang Y, Hu J. Integrated analysis of miRNA and mRNA expression profiles in the bursa of Fabricius of specific pathogen-free chickens infected with avian reticuloendotheliosis virus strain SNV. Poult Sci 2025; 104:104847. [PMID: 39874788 PMCID: PMC11810829 DOI: 10.1016/j.psj.2025.104847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/18/2025] [Accepted: 01/22/2025] [Indexed: 01/30/2025] Open
Abstract
Reticuloendotheliosis virus (REV) is a gamma retrovirus that can cause immunosuppression, dwarf syndrome and acute reticulocytoma in poultry. The molecular mechanism by which REV infection leads to immunosuppression and tumorigenesis is poorly understood. In this study, we elucidated the regulatory network of miRNA-mRNA and the major signaling pathways involved in REV-SNV infection. Therefore, we used the spleen necrosis virus (SNV) model of REV to inoculate one-day-old specific pathogen-free (SPF) chickens and then performed global miRNA and mRNA expression profiling by conducting high-throughput sequencing of 18 bursa of Fabricius samples collected at 7, 14, and 21 dpi. In total, 213 differentially expressed miRNAs (DEMs) and 3311 differentially expressed genes (DEGs) were identified. In the miRNA-mRNA network constructed based on the association analysis of these DEMs and DEGs, 1376 negatively correlated miRNA-mRNA pairs were identified; among them, 82 pairs were identified at 7 dpi, 203 pairs were identified at 14 dpi, and 873 pairs were identified at 21 dpi. Moreover, the results of the Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of the mRNAs in the network revealed greater enrichment of immune-related pathways, such as the immune system, signal transduction, cell growth and death, and signaling molecules and interactions. We confirmed the selected immune-related DEMs and their DEGs by conducting quantitative RT-PCR (qRT-PCR) analysis. These findings increased our understanding of the interactions of miRNAs and their target genes during infection with REV-SNV, and contributed to the understanding of host-virus interactions.
Collapse
Affiliation(s)
- Yubo Zhao
- College of Veterinary Medicine, Shandong Agricultural University, No.7 Panhe Street, Tai'an 271017, China.
| | - Qing Zhang
- College of Veterinary Medicine, Shandong Agricultural University, No.7 Panhe Street, Tai'an 271017, China.
| | - Meng Wang
- College of Animal Science and Technology, Shandong Agricultural University, No.7 Panhe Street, Tai'an 271017, China.
| | - Bingrong Wu
- College of Veterinary Medicine, Shandong Agricultural University, No.7 Panhe Street, Tai'an 271017, China.
| | - Saisai Zhao
- College of Veterinary Medicine, Shandong Agricultural University, No.7 Panhe Street, Tai'an 271017, China.
| | - Xinhui Wei
- College of Veterinary Medicine, Shandong Agricultural University, No.7 Panhe Street, Tai'an 271017, China.
| | - Youxiang Diao
- College of Veterinary Medicine, Shandong Agricultural University, No.7 Panhe Street, Tai'an 271017, China.
| | - Yi Tang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, China.
| | - Jingdong Hu
- College of Veterinary Medicine, Shandong Agricultural University, No.7 Panhe Street, Tai'an 271017, China.
| |
Collapse
|
2
|
Li Z, Wu YH, Guo YQ, Min XJ, Lin Y. Tasquinimod promotes the sensitivity of ovarian cancer cells to cisplatin by down-regulating the HDAC4/p21 pathway. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2025; 29:191-204. [PMID: 39539173 PMCID: PMC11842298 DOI: 10.4196/kjpp.24.132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/03/2024] [Accepted: 08/06/2024] [Indexed: 11/16/2024]
Abstract
To investigate whether Tasquinimod can influence cisplatin resistance in drug-resistant ovarian cancer (OC) cell lines by regulating histone deacetylase 4 (HDAC4) or p21, we explored its effects on the cell cycle, and associated mechanisms. RT-PCR and Western blot analyses, flow cytometry, CCK8 assay, and immunofluorescence were utilized to investigate the effects of Tasquinimod on gene expression, cell cycle, apoptosis, viability, and protein levels in OC cells. The results showed that Tasquinimod inhibited cell viability and promoted apoptosis in SKOV3/DDP (cisplatin) and A2780/DDP cells more effectively than DDP alone. In combination with cisplatin, Tasquinimod further enhanced cell apoptosis and reduced cell viability in these cell lines, an effect that could be reversed following HDAC4 overexpression. Tasquinimod treatment down-regulated HDAC4, Bcl-2, and cyclin D1, and CDK4 expression and up-regulated the cleaved-Caspase-3, and p21 expression in SKOV3/DDP and A2780/ DDP cells. Additionally, Tasquinimod inhibited DDP resistance in OC/DDP cells. These effects were similarly observed in OC mouse models treated with Tasquinimod. In conclusion, Tasquinimod can improve OC cells' sensitivity to DDP by down-regulating the HDAC4/p21 axis, offering insights into potential strategies for overcoming cisplatin resistance in OC.
Collapse
Affiliation(s)
- Zhao Li
- Department of Gynecology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410000, Hunan, China
| | - Ya-Hong Wu
- Department of Gynecology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410000, Hunan, China
| | - Ye-Qing Guo
- Department of Gynecology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410000, Hunan, China
| | - Xiao-Jia Min
- Department of Gynecology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410000, Hunan, China
| | - Ying Lin
- Department of Gynecology, Hunan Provincial People's Hospital (The First Affiliated Hospital of Hunan Normal University), Changsha 410000, Hunan, China
| |
Collapse
|
3
|
Ishikawa C, Mori N. A New Strategy for Adult T-Cell Leukemia Treatment Targeting Glycogen Synthase Kinase-3β. Eur J Haematol 2024; 113:852-862. [PMID: 39239903 DOI: 10.1111/ejh.14300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 08/16/2024] [Accepted: 08/18/2024] [Indexed: 09/07/2024]
Abstract
OBJECTIVES The role of glycogen synthase kinase (GSK)-3β in adult T-cell leukemia (ATL) caused by human T-cell leukemia virus type 1 (HTLV-1) is paradoxical and enigmatic. Here, we investigated the role of GSK-3β and its potential as a therapeutic target for ATL. METHODS Cell proliferation/survival, cell cycle, apoptosis, and reactive oxygen species (ROS) generation were examined using the WST-8 assay, flow cytometry, and Hoechst 33342 staining, respectively. Expression of GSK-3β and cell cycle/death-related proteins, and survival signals was analyzed using RT-PCR, immunofluorescence staining, and immunoblotting. RESULTS HTLV-1-infected T-cell lines showed nuclear accumulation of GSK-3β. GSK-3β knockdown and its inhibition with 9-ING-41 and LY2090314 suppressed cell proliferation/survival. 9-ING-41 induced G2/M arrest by enhancing the expression of γH2AX, p53, p21, and p27, and suppressing the expression of CDK1, cyclin A/B, and c-Myc. It induced caspase-mediated apoptosis by decreasing the expression of Bcl-xL, Mcl-1, XIAP, c-IAP1/2, and survivin, and increasing the expression of Bak and Bax. 9-ING-41 also induced ferroptosis and necroptosis, promoted JNK phosphorylation, and suppressed IKKγ and JunB expression. It inhibited the phosphorylation of IκBα, Akt, and STAT3/5, induced ROS production, and reduced glycolysis-derived lactate levels. CONCLUSION GSK-3β functions as an oncogene in ATL and could be a potential therapeutic target.
Collapse
Affiliation(s)
- Chie Ishikawa
- Department of Microbiology and Oncology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
- Division of Health Sciences, Transdisciplinary Research Organization for Subtropics and Island Studies, University of the Ryukyus, Nishihara, Japan
| | - Naoki Mori
- Department of Microbiology and Oncology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Japan
| |
Collapse
|
4
|
Meng S, Xing S, Xu H, Li J, Jiang Y, He H, Cai H, Li M. Integrated analysis of intestinal microbial community and muscle transcriptome profile in rabbits. Anim Biotechnol 2024; 35:2387015. [PMID: 39145993 DOI: 10.1080/10495398.2024.2387015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Intestinal microbial community plays an important part in maintaining health and skeletal muscle development in livestock. This study is the first of its kind in the world. In order to better understand the relationship between gut microbiota and gene expression in skeletal muscle of rabbits, caecum contents and longissimus dorsi tissues of rabbits at 0 d (S1), 35 d (S2) and 70d (S3) were collected and subjected for 16S rRNA sequencing and transcriptome sequencing. Our results showed that, among three groups of rabbits, Firmicutes and Bacteroidetes were the dominant phyla at the phylum level, while Akmansia, Bacteroides and Ruminobacter were the dominant genera at the genus level, and the relative abundance of Akmansia and Bacteroides increased firstly and then decreased from 0 d to 70 d. By analyzing the transcriptome sequencing data, we identified 2866, 2446 and 4541 differentially expressed genes (DEGs) in S1 vs S2, S2 vs S3 and S1 vs S3 groups, respectively. Finally, we performed correlation analysis between gut microbiota and the expression levels of muscle development-related genes of rabbits at 0 d and 70 d. Compared with 0 day old rabbits, in 70 day old rabbits Acinetobacter and Cronbacter with decreased abundance, and Ruminococcaceae_UCG-014 and Ruminococcus_1 with increase abundance is beneficial to caecum health in rabbits. These results will lay a foundation for further re-searches about the relationship between caecum microflora and muscle development in rabbits.
Collapse
Affiliation(s)
- Shengbo Meng
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, P.R. China
| | - Shanshan Xing
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, P.R. China
| | - Huifen Xu
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, P.R. China
| | - Jing Li
- Animal Health Supervision Institute of Biyang, Henan, P.R. China
| | - Yixuan Jiang
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, P.R. China
| | - Hui He
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, P.R. China
| | - Hanfang Cai
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, P.R. China
| | - Ming Li
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou, P.R. China
| |
Collapse
|
5
|
Nikravesh F, Arezoomand H, h Mirzaee Khalilabadi R, Nooshadokht M, Mardani Valandani H. Platelet-derived microparticles enhance Ara-C-induced cell death in acute lymphoblastic leukemia (Nalm-6). BIOIMPACTS : BI 2024; 15:30454. [PMID: 40256222 PMCID: PMC12008256 DOI: 10.34172/bi.30454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/08/2024] [Accepted: 07/24/2024] [Indexed: 04/22/2025]
Abstract
Introduction The current understanding highlights the intricate relationship between leukemic cells and their microenvironment, emphasizing the significant impact of environmental factors on chemotherapy resistance or sensitivity. Platelet-derived microparticles (PMPs) play a crucial role in facilitating intercellular communication, significantly contributing to the complex dynamics of cancer pathology and treatment outcomes. This study aims to investigate the cytotoxic and apoptotic effects of PMP, Ara-C, and their combinations on cancer cells, as well as their influence on the expression of critical genes like Bax, Bcl-2, P21, and h-TERT in the context of Acute Lymphoblastic Leukemia (ALL) cell line (Nalm-6). Methods PMPs were isolated through centrifugation at varying speeds, and their concentration was determined using the BCA assay. The size and immunophenotypic characteristics of PMPs were analyzed using dynamic light scattering (DLS) and flow cytometry. The cytotoxic and apoptotic effects of PMP, Ara-C, and their combinations on Nalm-6 cells were assessed using the MTT assay, the trypan blue exclusion assay, and flow cytometry. Gene expression levels were analyzed using real-time PCR. Results According to our research findings, PMPs did not independently impact the viability and apoptosis of Nalm-6 cells; however, they synergistically augmented Ara-C's suppressive impact on viability and apoptosis. The MTT assay showed that both PMPs and Ara-C, whether administered alone or in combination, had a cytotoxic effect on the Nalm-6 cells. Furthermore, the combined treatment significantly affected the expression of Bax, Bcl-2, P21, and h-TERT genes. Conclusion Our study demonstrates that PMPs have the potential to improve the effectiveness of Ara-C chemotherapy in treating ALL. These findings contribute to a deeper understanding of the interplay between PMP and chemotherapy agents, offering potential insights for optimizing treatment strategies and improving patient outcomes in ALL.
Collapse
Affiliation(s)
- Fariba Nikravesh
- Department of Hematology and Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hossein Arezoomand
- Department of Hematology and Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Roohollah h Mirzaee Khalilabadi
- Department of Hematology and Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Maryam Nooshadokht
- Department of Medical Parasitology and Mycology, School of Medicine, Kerman University of Medical Sciences, Kerman, Iran
| | - Hajar Mardani Valandani
- Department of Hematology and Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
6
|
Wu S, Xu J, Ma Y, Liang G, Wang J, Sun T. Advances in the mechanism of CDK4/6 inhibitor resistance in HR+/HER2- breast cancer. Ther Adv Med Oncol 2024; 16:17588359241282499. [PMID: 39371618 PMCID: PMC11450575 DOI: 10.1177/17588359241282499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 08/24/2024] [Indexed: 10/08/2024] Open
Abstract
Among women, breast cancer is the most prevalent form of a malignant tumour. Among the subtypes of breast cancer, hormone receptor (HR) positive and human epidermal growth factor receptor (HER2) negative kinds make up the biggest proportion. The advent of cyclin-dependent kinase 4 and 6 (CDK4/6) inhibitors, which are dependent on cell cycle proteins, has greatly enhanced the prognosis of patients with advanced HR+/HER2- breast cancer. This is a specific treatment that stops the growth of cancer cells by preventing them from dividing. Nevertheless, the drug resistance of the disease unavoidably impacts the effectiveness of treatment and the prognosis of patients. This report provides a thorough analysis of the current research advancements about the resistance mechanism of CDK4/6 inhibitors in HR+/HER2- breast cancer. It presents an in-depth discussion from numerous viewpoints, such as aberrant cell cycle regulation and changes in signalling pathways. In response to the drug resistance problem, subsequent treatment strategies are also being explored, including switching to other CDK4/6 inhibitor drugs, a combination of novel endocrine therapeutic agents, an optimal combination of targeted therapies and switching to chemotherapy. An in-depth study of the resistance mechanism can assist in identifying creative tactics that can overcome or postpone drug resistance, alleviate the problem of restricted treatment strategies following drug resistance and enhance the prognosis of patients.
Collapse
Affiliation(s)
- Sijia Wu
- Breast Medicine Section One, Liaoning Cancer Hospital, Shenyang, Liaoning, China
| | - Junnan Xu
- Breast Medicine Section One, Liaoning Cancer Hospital, Shenyang, Liaoning, China
| | - Yiwen Ma
- Breast Medicine Section One, Liaoning Cancer Hospital, Shenyang, Liaoning, China
| | - Guilian Liang
- Breast Medicine Section One, Liaoning Cancer Hospital, Shenyang, Liaoning, China
| | - Jiaxing Wang
- Breast Medicine Section One, Liaoning Cancer Hospital, Shenyang, Liaoning, China
| | - Tao Sun
- Breast Medicine Section One, Liaoning Cancer Hospital, Shenyang, Liaoning 110000, China
| |
Collapse
|
7
|
Chang S, Ren D, Zhang L, Liu S, Yang W, Cheng H, Zhang X, Hong E, Geng D, Wang Y, Chen C, Zhang J, Shi T, Guo Y, Ni X, Wang H, Jin Y. Therapeutic SHPRH-146aa encoded by circ-SHPRH dynamically upregulates P21 to inhibit CDKs in neuroblastoma. Cancer Lett 2024; 598:217120. [PMID: 39002691 DOI: 10.1016/j.canlet.2024.217120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/15/2024]
Abstract
Recent research has underscored the significance of circular RNAs (circRNAs) in various cancers, including neuroblastoma (NB). Specifically, circ-SHPRH, a unique circRNA, has been revealed to inhibit tumor growth by sequestering miRNAs or producing the SHPRH-146aa protein. To explore circ-SHPRH's involvement in NB and its potential application in gene therapy, this study examined circ-SHPRH expression in 94 NB tissues and cell lines (SK-N-BE(2), SH-SY5Y) using real-time PCR and fluorescence in situ hybridization (FISH). Functional assays encompassing both overexpression and knockdown experiments in NB cell lines, as well as in vivo investigations, were conducted. RNA-seq analysis revealed a correlation between circ-SHPRH and the pathway of P21 (CDKN1A), a pivotal cell cycle regulator. Validation through PCR and other techniques confirmed that circ-SHPRH upregulated P21 expression. Furthermore, the regulatory role of circ-SHPRH in the P21-CDK pathway was corroborated through SHPRH-146aa expression analysis. Notably, adenovirus-mediated circ-SHPRH overexpression effectively curbed NB tumor growth in NSG mice, while combining circ-SHPRH with everolimus exhibited potential for NB treatment. This study elucidates the remarkable significance of circ-SHPRH in NB and its prospective utility in gene therapy, thereby paving the way for innovative therapeutic approaches.
Collapse
Affiliation(s)
- Saishuo Chang
- Department of Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Dong Ren
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Li Zhang
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shan Liu
- Department of Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Wei Yang
- Department of Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Haiyan Cheng
- Department of Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Xuexi Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Enyu Hong
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Di Geng
- Biobank for Clinical Data and Samples in Pediatrics, Beijing Children's Hospital, National Center for Children's Health, Beijing Pediatric Research Institute, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Yadi Wang
- Biobank for Clinical Data and Samples in Pediatrics, Beijing Children's Hospital, National Center for Children's Health, Beijing Pediatric Research Institute, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Chenghao Chen
- Department of Thoracic Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Jie Zhang
- Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Tieliu Shi
- Center for Bioinformatics and Computational Biology and the Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yongli Guo
- Department of Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China
| | - Xin Ni
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China; Department of Otolaryngology, Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| | - Huanmin Wang
- Department of Surgery, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| | - Yaqiong Jin
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Beijing, 100045, China.
| |
Collapse
|
8
|
Kot M, Simiczyjew A, Wądzyńska J, Ziętek M, Matkowski R, Nowak D. Characterization of two melanoma cell lines resistant to BRAF/MEK inhibitors (vemurafenib and cobimetinib). Cell Commun Signal 2024; 22:410. [PMID: 39175042 PMCID: PMC11342534 DOI: 10.1186/s12964-024-01788-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024] Open
Abstract
BACKGROUND BRAF (v-raf murine sarcoma viral oncogene homolog B1)/MEK (mitogen-activated protein kinase kinase) inhibitors are used for melanoma treatment. Unfortunately, patients treated with this combined therapy develop resistance to treatment quite quickly, but the mechanisms underlying this phenomenon are not yet fully understood. Here, we report and characterize two melanoma cell lines (WM9 and Hs294T) resistant to BRAF (vemurafenib) and MEK (cobimetinib) inhibitors. METHODS Cell viability was assessed via the XTT test. The level of selected proteins as well as activation of signaling pathways were evaluated using Western blotting. The expression of the chosen genes was assessed by RT-PCR. The distribution of cell cycle phases was analyzed by flow cytometry, and confocal microscopy was used to take photos of spheroids. The composition of cytokines secreted by cells was determined using a human cytokine array. RESULTS The resistant cells had increased survival and activation of ERK kinase in the presence of BRAF/MEK inhibitors. The IC50 values for these cells were over 1000 times higher than for controls. Resistant cells also exhibited elevated activation of AKT, p38, and JNK signaling pathways with increased expression of EGFR, ErbB2, MET, and PDGFRβ receptors as well as reduced expression of ErbB3 receptor. Furthermore, these cells demonstrated increased expression of genes encoding proteins involved in drug transport and metabolism. Resistant cells also exhibited features of epithelial-mesenchymal transition and cancer stem cells as well as reduced proliferation rate and elevated cytokine secretion. CONCLUSIONS In summary, this work describes BRAF/MEK-inhibitor-resistant melanoma cells, allowing for better understanding the underlying mechanisms of resistance. The results may thus contribute to the development of new, more effective therapeutic strategies.
Collapse
Affiliation(s)
- Magdalena Kot
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Aleksandra Simiczyjew
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland.
| | - Justyna Wądzyńska
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| | - Marcin Ziętek
- Department of Oncology, Division of Surgical Oncology, Wroclaw Medical University, Plac Hirszfelda 12, Wroclaw, 53-413, Poland
- Lower Silesian Oncology, Pulmonology, and Hematology Center, Plac Hirszfelda 12, Wroclaw, 53-413, Poland
| | - Rafał Matkowski
- Department of Oncology, Division of Surgical Oncology, Wroclaw Medical University, Plac Hirszfelda 12, Wroclaw, 53-413, Poland
- Lower Silesian Oncology, Pulmonology, and Hematology Center, Plac Hirszfelda 12, Wroclaw, 53-413, Poland
| | - Dorota Nowak
- Department of Cell Pathology, Faculty of Biotechnology, University of Wroclaw, Joliot-Curie 14a, Wroclaw, 50-383, Poland
| |
Collapse
|
9
|
Dong Q, Gong C, Jiang Q, Liu Y, Hu Y, Wang D, Liu H, Zheng T, Song C, Wang T, Ju R, Wang C, Song D, Liu Z, Liu Y, Lu Y, Fan J, Liu M, Gao T, An Z, Zhang J, Li P, Cao C, Liu X. Identification of differentially expressed tumour-related genes regulated by UHRF1-driven DNA methylation. Sci Rep 2024; 14:18371. [PMID: 39112494 PMCID: PMC11306747 DOI: 10.1038/s41598-024-69110-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 07/31/2024] [Indexed: 08/10/2024] Open
Abstract
Ubiquitin-like with PHD and RING finger domains 1 (UHRF1) is an epigenetic regulator that plays critical roles in tumours. However, the DNA methylation alteration patterns driven by UHRF1 and the related differentially expressed tumour-related genes remain unclear. In this study, a UHRF1-shRNA MCF-7 cell line was constructed, and whole-genome bisulfite sequencing and RNA sequencing were performed. The DNA methylation alteration landscape was elucidated, and DNA methylation-altered regions (DMRs) were found to be distributed in both gene bodies and adjacent regions. The DMRs were annotated and categorized into 488 hypermethylated/1696 hypomethylated promoters and 1149 hypermethylated/5501 hypomethylated gene bodies. Through an integrated analysis with the RNA sequencing data, 217 methylation-regulated upregulated genes and 288 downregulated genes were identified, and these genes were primarily enriched in nervous system development and cancer signalling pathways. Further analysis revealed 21 downregulated oncogenes and 15 upregulated TSGs. We also showed that UHRF1 silencing inhibited cell proliferation and migration and suppressed tumour growth in vivo. Our study suggested that UHRF1 and the oncogenes or TSGs it regulates might serve as biomarkers and targets for breast cancer treatment.
Collapse
Affiliation(s)
- Qincai Dong
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Chunxue Gong
- Institute of Health Sciences, Anhui University, Hefei, 230601, China
| | - Qian Jiang
- Institute of Health Sciences, Anhui University, Hefei, 230601, China
| | - Yue Liu
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Yong Hu
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Di Wang
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Hainan Liu
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Tong Zheng
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Caiwei Song
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Tingting Wang
- Institute of Health Sciences, Anhui University, Hefei, 230601, China
| | - Ruixia Ju
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Chen Wang
- Institute of Health Sciences, Anhui University, Hefei, 230601, China
| | - Dengcen Song
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Zijing Liu
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Yuting Liu
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Yuwei Lu
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Jinlian Fan
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Mengzi Liu
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Ting Gao
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Ziqian An
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Jiaxin Zhang
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Ping Li
- Beijing Institute of Biotechnology, Beijing, 100850, China
| | - Cheng Cao
- Beijing Institute of Biotechnology, Beijing, 100850, China.
| | - Xuan Liu
- Beijing Institute of Biotechnology, Beijing, 100850, China.
| |
Collapse
|
10
|
Zhou S, Zhang H, Li J, Li W, Su M, Ren Y, Ge F, Zhang H, Shang H. Potential anti-liver cancer targets and mechanisms of kaempferitrin based on network pharmacology, molecular docking and experimental verification. Comput Biol Med 2024; 178:108693. [PMID: 38850960 DOI: 10.1016/j.compbiomed.2024.108693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/29/2024] [Accepted: 06/01/2024] [Indexed: 06/10/2024]
Abstract
AIM Kaempferitrin is an active component in Chenopodium ambrosioides, showing medicinal functions against liver cancer. This study aimed to identify the potential targets and pathways of kaempferitrin against liver cancer using network pharmacology and molecular docking, and verify the essential hub targets and pathway in mice model of SMMC-7721 cells xenografted tumors and SMMC-7721 cells. METHODS Kaempferitrin therapeutical targets were obtained by searching SwissTargetPrediction, PharmMapper, STITCH, DrugBank, and TTD databases. Liver cancer specific genes were obtained by searching GeneCards, DrugBank, TTD, OMIM, and DisGeNET databases. PPI network of "kaempferitrin-targets-liver cancer" was constructed to screen the hub targets. GO, KEGG pathway and MCODE clustering analyses were performed to identify possible enrichment of genes with specific biological subjects. Molecular docking and molecular dynamics simulation were employed to determine the docking pose, potential and stability of kaempferitrin with hub targets. The potential anti-liver cancer mechanisms of kaempferitrin, as predicted by network pharmacology analyses, were verified by in vitro and in vivo experiments. RESULTS 228 kaempferitrin targets and 2186 liver cancer specific targets were identified, of which 50 targets were overlapped. 8 hub targets were identified through network topology analysis, and only SIRT1 and TP53 had a potent binding activity with kaempferitrin as indicated by molecular docking and molecular dynamics simulation. MCODE clustering analysis revealed the most significant functional module of PPI network including SIRT1 and TP53 was mainly related to cell apoptosis. GO and KEGG enrichment analyses suggested that kaempferitrin exerted therapeutic effects on liver cancer possibly by promoting apoptosis via p21/Bcl-2/Caspase 3 signaling pathway, which were confirmed by in vivo and in vitro experiments, such as HE staining of tumor tissues, CCK-8, qRT-PCR and Western blot. CONCLUSION This study provided not only insight into how kaempferitrin could act against liver cancer by identifying hub targets and their associated signaling pathways, but also experimental evidence for the clinical use of kaempferitrin in liver cancer treatment.
Collapse
Affiliation(s)
- Siyu Zhou
- College of Life Science, Sichuan Normal University, Chengdu, 610101, China
| | - Huidong Zhang
- College of Life Science, Sichuan Normal University, Chengdu, 610101, China
| | - Jiao Li
- College of Life Science, Sichuan Normal University, Chengdu, 610101, China.
| | - Wei Li
- College of Life Science, Sichuan Normal University, Chengdu, 610101, China
| | - Min Su
- College of Life Science, Sichuan Normal University, Chengdu, 610101, China
| | - Yao Ren
- College of Life Science, Sichuan Normal University, Chengdu, 610101, China
| | - Fanglan Ge
- College of Life Science, Sichuan Normal University, Chengdu, 610101, China
| | - Hong Zhang
- College of Life Science, Sichuan Normal University, Chengdu, 610101, China
| | - Hongli Shang
- College of Life Science, Sichuan Normal University, Chengdu, 610101, China
| |
Collapse
|
11
|
Mo CJ, Deng XY, Ma RL, Zhu K, Shi L, Li K. Sm-like 5 knockdown inhibits proliferation and promotes apoptosis of colon cancer cells by upregulating p53, CDKN1A and TNFRSF10B. World J Gastrointest Oncol 2024; 16:2704-2714. [DOI: 10.4251/wjgo.v16.i6.2704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/09/2024] [Accepted: 04/15/2024] [Indexed: 06/13/2024] Open
Abstract
BACKGROUND The role of Sm-like 5 (LSM5) in colon cancer has not been determined. In this study, we investigated the role of LSM5 in progression of colon cancer and the potential underlying mechanism involved.
AIM To determine the role of LSM5 in the progression of colon cancer and the potential underlying mechanism involved.
METHODS The Gene Expression Profiling Interactive Analysis database and the Human Protein Atlas website were used for LSM5 expression analysis and prognosis analysis. Real-time quantitative polymerase chain reaction and Western blotting were utilized to detect the expression of mRNAs and proteins. A lentivirus targeting LSM5 was constructed and transfected into colon cancer cells to silence LSM5 expression. Proliferation and apoptosis assays were also conducted to evaluate the growth of the colon cancer cells. Human GeneChip assay and bioinformatics analysis were performed to identify the potential underlying mechanism of LSM5 in colon cancer.
RESULTS LSM5 was highly expressed in tumor tissue and colon cancer cells. A high expression level of LSM5 was related to poor prognosis in patients with colon cancer. Knockdown of LSM5 suppressed proliferation and promoted apoptosis in colon cancer cells. Silencing of LSM5 also facilitates the expression of p53, cyclin-dependent kinase inhibitor 1A (CDKN1A) and tumor necrosis factor receptor superfamily 10B (TNFRSF10B). The inhibitory effect of LSM5 knockdown on the growth of colon cancer cells was associated with the upregulation of p53, CDKN1A and TNFRSF10B.
CONCLUSION LSM5 knockdown inhibited the proliferation and facilitated the apoptosis of colon cancer cells by upregulating p53, CDKN1A and TNFRSF10B.
Collapse
Affiliation(s)
- Cai-Jing Mo
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Xiao-Yuan Deng
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Ru-Lan Ma
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Kun Zhu
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Lei Shi
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Kang Li
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| |
Collapse
|
12
|
Mo CJ, Deng XY, Ma RL, Zhu K, Shi L, Li K. Sm-like 5 knockdown inhibits proliferation and promotes apoptosis of colon cancer cells by upregulating p53, CDKN1A and TNFRSF10B. World J Gastrointest Oncol 2024; 16:2716-2726. [PMID: 38994171 PMCID: PMC11236259 DOI: 10.4251/wjgo.v16.i6.2716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/18/2024] [Accepted: 04/15/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND The role of Sm-like 5 (LSM5) in colon cancer has not been determined. In this study, we investigated the role of LSM5 in progression of colon cancer and the potential underlying mechanism involved. AIM To determine the role of LSM5 in the progression of colon cancer and the potential underlying mechanism involved. METHODS The Gene Expression Profiling Interactive Analysis database and the Human Protein Atlas website were used for LSM5 expression analysis and prognosis analysis. Real-time quantitative polymerase chain reaction and Western blotting were utilized to detect the expression of mRNAs and proteins. A lentivirus targeting LSM5 was constructed and transfected into colon cancer cells to silence LSM5 expression. Proliferation and apoptosis assays were also conducted to evaluate the growth of the colon cancer cells. Human GeneChip assay and bioinformatics analysis were performed to identify the potential underlying mechanism of LSM5 in colon cancer. RESULTS LSM5 was highly expressed in tumor tissue and colon cancer cells. A high expression level of LSM5 was related to poor prognosis in patients with colon cancer. Knockdown of LSM5 suppressed proliferation and promoted apoptosis in colon cancer cells. Silencing of LSM5 also facilitates the expression of p53, cyclin-dependent kinase inhibitor 1A (CDKN1A) and tumor necrosis factor receptor superfamily 10B (TNFRSF10B). The inhibitory effect of LSM5 knockdown on the growth of colon cancer cells was associated with the upregulation of p53, CDKN1A and TNFRSF10B. CONCLUSION LSM5 knockdown inhibited the proliferation and facilitated the apoptosis of colon cancer cells by upregulating p53, CDKN1A and TNFRSF10B.
Collapse
Affiliation(s)
- Cai-Jing Mo
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Xiao-Yuan Deng
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Ru-Lan Ma
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Kun Zhu
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Lei Shi
- Department of Infectious Diseases, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| | - Kang Li
- Department of Surgical Oncology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, Shaanxi Province, China
| |
Collapse
|
13
|
Nikravesh F, Mirzaee Khalilabadi R, Farsinejad A, Mardani Valandani H. Platelet microparticles influence gene expression and modulate biological activities of chronic myeloid leukemia cells (K562). Mol Biol Rep 2024; 51:676. [PMID: 38796661 DOI: 10.1007/s11033-024-09383-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 02/26/2024] [Indexed: 05/28/2024]
Abstract
BACKGROUND The current understanding emphasizes the intricate interplay between the Leukemic cell and its environment. Platelet-derived microparticles play a crucial role in facilitating intercellular communication and contribute to the complex landscape of cancer pathology. This study aimed to investigate the influence of platelet-derived microparticles on cell proliferation, apoptosis, and the expression of key genes, including P53, P21, Cyclin D1, Bax, and Bcl-2, within the context of a chronic myeloid leukemia cell line (K562). METHODS AND RESULTS Platelet-derived microparticles were obtained through centrifugation at various speeds, and their concentration was quantified using the BCA assay. To determine the size and immunophenotypic characteristics of the PMPs, both the DLS technique and flow cytometry were employed. Cell proliferation was assessed using the MTT assay and hemocytometer, and cell cycle analysis was conducted through DNA content evaluation. Real-time PCR was utilized for gene expression analysis of Bax, Bcl-2, Cyclin D1, P53, and P21. Flow cytometry was employed to examine cell apoptosis. The findings revealed that platelet-derived microparticles have the ability to decrease proliferation of the K562 cell line, while not exerting an impact on apoptosis and cell cycle progression. Analysis through real-time PCR indicated an upregulation in the gene expression of P53, P21, and Bcl-2, accompanied by a downregulation in Bax and Cyclin D1. CONCLUSION This investigation sheds light on the intricate relationship between chronic myeloid leukemia and its microenvironment, particularly the involvement of platelet-derived microparticles. The study underscores the potential of platelet-derived microparticles to influence cell behavior and gene expression, providing a deeper understanding of their role in CML and its therapeutic implications.
Collapse
MESH Headings
- Humans
- Cell-Derived Microparticles/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/pathology
- Blood Platelets/metabolism
- K562 Cells
- Cell Proliferation/genetics
- Apoptosis/genetics
- Cell Cycle/genetics
- bcl-2-Associated X Protein/metabolism
- bcl-2-Associated X Protein/genetics
- Cyclin D1/metabolism
- Cyclin D1/genetics
- Proto-Oncogene Proteins c-bcl-2/metabolism
- Proto-Oncogene Proteins c-bcl-2/genetics
- Gene Expression Regulation, Leukemic
Collapse
Affiliation(s)
- Fariba Nikravesh
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Medical University Campus, Haft-Bagh Highway, Kerman, Iran
| | - Roohollah Mirzaee Khalilabadi
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Medical University Campus, Haft-Bagh Highway, Kerman, Iran
| | - Alireza Farsinejad
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Medical University Campus, Haft-Bagh Highway, Kerman, Iran
- Cell Therapy and Regenerative Medicine Comprehensive Center, Kerman University of Medical Sciences, Medical University Campus, Haft-Bagh Highway, Kerman, Iran
| | - Hajar Mardani Valandani
- Department of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Medical University Campus, Haft-Bagh Highway, Kerman, Iran.
| |
Collapse
|
14
|
Battistella ME, Freire NH, Toson B, Dalmolin M, Fernandes MAC, Tassinari ID, Jaeger M, Brunetto AT, Brunetto AL, Gregianin L, de Farias CB, Roesler R. Stemness and Cell Cycle Regulators and Their Modulation by Retinoic Acid in Ewing Sarcoma. Curr Issues Mol Biol 2024; 46:3990-4003. [PMID: 38785514 PMCID: PMC11119684 DOI: 10.3390/cimb46050246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/13/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
Retinoic acid (RA) regulates stemness and differentiation in human embryonic stem cells (ESCs). Ewing sarcoma (ES) is a pediatric tumor that may arise from the abnormal development of ESCs. Here we show that RA impairs the viability of SK-ES-1 ES cells and affects the cell cycle. Cells treated with RA showed increased levels of p21 and its encoding gene, CDKN1A. RA reduced mRNA and protein levels of SRY-box transcription factor 2 (SOX2) as well as mRNA levels of beta III Tubulin (TUBB3), whereas the levels of CD99 increased. Exposure to RA reduced the capability of SK-ES-1 to form tumorspheres with high expression of SOX2 and Nestin. Gene expression of CD99 and CDKN1A was reduced in ES tumors compared to non-tumoral tissue, whereas transcript levels of SOX2 were significantly higher in tumors. For NES and TUBB3, differences between tumors and control tissue did not reach statistical significance. Low expression of CD99 and NES, and high expression of SOX2, were significantly associated with a poorer patient prognosis indicated by shorter overall survival (OS). Our results indicate that RA may display rather complex modulatory effects on multiple target genes associated with the maintenance of stem cell's features versus their differentiation, cell cycle regulation, and patient prognosis in ES.
Collapse
Affiliation(s)
- Maria Eduarda Battistella
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil
| | - Natália Hogetop Freire
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil
- Children’s Cancer Institute, Porto Alegre 90620-110, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology—INCT BioOncoPed, Porto Alegre 90035-003, Brazil
| | - Bruno Toson
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil
| | - Matheus Dalmolin
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology—INCT BioOncoPed, Porto Alegre 90035-003, Brazil
- InovAI Lab, nPITI/IMD, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
- Bioinformatics Multidisciplinary Environment (BioME), Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Marcelo A. C. Fernandes
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology—INCT BioOncoPed, Porto Alegre 90035-003, Brazil
- InovAI Lab, nPITI/IMD, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
- Bioinformatics Multidisciplinary Environment (BioME), Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
- Department of Computer Engineering and Automation, Federal University of Rio Grande do Norte, Natal 59078-970, Brazil
| | - Isadora D. Tassinari
- Laboratory of Neurobiology and Metabolism (NeuroMet), Department of Physiology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil
- Graduate Program in Physiology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil
| | - Mariane Jaeger
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil
- Children’s Cancer Institute, Porto Alegre 90620-110, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology—INCT BioOncoPed, Porto Alegre 90035-003, Brazil
| | - André T. Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil
- Children’s Cancer Institute, Porto Alegre 90620-110, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology—INCT BioOncoPed, Porto Alegre 90035-003, Brazil
| | - Algemir L. Brunetto
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil
- Children’s Cancer Institute, Porto Alegre 90620-110, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology—INCT BioOncoPed, Porto Alegre 90035-003, Brazil
| | - Lauro Gregianin
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology—INCT BioOncoPed, Porto Alegre 90035-003, Brazil
- Department of Pediatrics, School of Medicine, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil
- Pediatric Oncology Service, Clinical Hospital, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil
| | - Caroline Brunetto de Farias
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil
- Children’s Cancer Institute, Porto Alegre 90620-110, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology—INCT BioOncoPed, Porto Alegre 90035-003, Brazil
| | - Rafael Roesler
- Cancer and Neurobiology Laboratory, Experimental Research Center, Clinical Hospital (CPE-HCPA), Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil
- National Science and Technology Institute for Children’s Cancer Biology and Pediatric Oncology—INCT BioOncoPed, Porto Alegre 90035-003, Brazil
- Department of Pharmacology, Institute for Basic Health Sciences, Federal University of Rio Grande do Sul, Porto Alegre 90035-003, Brazil
| |
Collapse
|
15
|
Zigová M, Miškufová V, Budovská M, Michalková R, Mojžiš J. Exploring the Antiproliferative and Modulatory Effects of 1-Methoxyisobrassinin on Ovarian Cancer Cells: Insights into Cell Cycle Regulation, Apoptosis, Autophagy, and Its Interactions with NAC. Molecules 2024; 29:1773. [PMID: 38675591 PMCID: PMC11052400 DOI: 10.3390/molecules29081773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/22/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Ovarian cancer, a highly lethal malignancy among reproductive organ cancers, poses a significant challenge with its high mortality rate, particularly in advanced-stage cases resistant to platinum-based chemotherapy. This study explores the potential therapeutic efficacy of 1-methoxyisobrassinin (MB-591), a derivative of indole phytoalexins found in Cruciferae family plants, on both cisplatin-sensitive (A2780) and cisplatin-resistant ovarian cancer cells (A2780 cis). The findings reveal that MB-591 exhibits an antiproliferative effect on both cell lines, with significantly increased potency against cisplatin-sensitive cells. The substance induces alterations in the distribution of the cell cycle, particularly in the S and G2/M phases, accompanied by changes in key regulatory proteins. Moreover, MB-591 triggers apoptosis in both cell lines, involving caspase-9 cleavage, PARP cleavage induction, and DNA damage, accompanied by the generation of reactive oxygen species (ROS) and mitochondrial dysfunction. Notably, the substance selectively induces autophagy in cisplatin-resistant cells, suggesting potential targeted therapeutic applications. The study further explores the interplay between MB-591 and antioxidant N-acetylcysteine (NAC), in modulating cellular processes. NAC demonstrates a protective effect against MB-591-induced cytotoxicity, affecting cell cycle distribution and apoptosis-related proteins. Additionally, NAC exhibits inhibitory effects on autophagy initiation in cisplatin-resistant cells, suggesting its potential role in overcoming resistance mechanisms.
Collapse
Affiliation(s)
- Martina Zigová
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (M.Z.); (V.M.)
| | - Viktória Miškufová
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (M.Z.); (V.M.)
| | - Marianna Budovská
- Department of Organic Chemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia;
| | - Radka Michalková
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (M.Z.); (V.M.)
| | - Ján Mojžiš
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (M.Z.); (V.M.)
| |
Collapse
|
16
|
Yang W, Zhang B, Tan Q, Chen Y, Chen T, Zou G, Sun B, Wang B, Yuan J, She Z. 4-Hydroxy-2-pyridone derivatives with antitumor activity produced by mangrove endophytic fungus Talaromyces sp. CY-3. Eur J Med Chem 2024; 269:116314. [PMID: 38527379 DOI: 10.1016/j.ejmech.2024.116314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/21/2024] [Accepted: 03/07/2024] [Indexed: 03/27/2024]
Abstract
OSMAC strategy is a useful tool for discovering series of metabolites from microorganism. Five new sambutoxin derivatives (1-2, 4, 8-9), together with seven known compounds (3, 5-7, 10-12), were isolated from Talaromyces sp. CY-3 under OSMAC strategy and guidance of molecular networking. Their planar structures and absolute configurations were determined by NMR, HRESIMS, ECD spectra and common biosynthetic pathway. In bioassay, compounds 1-12 showed cytotoxicity to tumor cell lines with IC50 values in the range of 1.76-49.13 μM. The antitumor molecular mechanism of 10 was also explored. In vitro compound 10 significantly inhibited the growth and proliferation of two lung cancer cell lines (A549 and H1703). Furthermore, colony formation, EdU analysis, flow cytometry and Western blot analysis showed that 10 could induce cell cycle arrest in G0/G1 phase by promoting the expression of p53 and p21. The molecular mechanism of its antitumor effects in vitro is that 10 arrests the cell cycle by activating the p21/CyclinD1/Rb signaling pathway and the p53 pathway. Our results identified a lead small molecule compound with efficient antitumor growth and proliferation activity.
Collapse
Affiliation(s)
- Wencong Yang
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, PR China; School of Pharmaceutical Sciences, Sun Yat-Sen University, Guangzhou, 510006, PR China
| | - Bingzhi Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of Tropical Disease Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, 510080, PR China
| | - Qi Tan
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Yan Chen
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, PR China; School of Pharmacy, Anhui Medical University, Hefei, 230032, PR China
| | - Tao Chen
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Ge Zou
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Bing Sun
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, PR China
| | - Bo Wang
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, PR China.
| | - Jie Yuan
- Key Laboratory of Tropical Disease Control, Sun Yat-Sen University, Ministry of Education, Guangzhou, 510080, PR China; Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, PR China.
| | - Zhigang She
- School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, PR China.
| |
Collapse
|
17
|
Chi F, Griffiths JI, Nath A, Bild AH. Paradoxical cancer cell proliferation after FGFR inhibition through decreased p21 signaling in FGFR1-amplified breast cancer cells. Breast Cancer Res 2024; 26:54. [PMID: 38553760 PMCID: PMC10979625 DOI: 10.1186/s13058-024-01808-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/13/2024] [Indexed: 04/02/2024] Open
Abstract
Fibroblast growth factors (FGFs) control various cellular functions through fibroblast growth factor receptor (FGFR) activation, including proliferation, differentiation, migration, and survival. FGFR amplification in ER + breast cancer patients correlate with poor prognosis, and FGFR inhibitors are currently being tested in clinical trials. By comparing three-dimensional spheroid growth of ER + breast cancer cells with and without FGFR1 amplification, our research discovered that FGF2 treatment can paradoxically decrease proliferation in cells with FGFR1 amplification or overexpression. In contrast, FGF2 treatment in cells without FGFR1 amplification promotes classical FGFR proliferative signaling through the MAPK cascade. The growth inhibitory effect of FGF2 in FGFR1 amplified cells aligned with an increase in p21, a cell cycle inhibitor that hinders the G1 to S phase transition in the cell cycle. Additionally, FGF2 addition in FGFR1 amplified cells activated JAK-STAT signaling and promoted a stem cell-like state. FGF2-induced paradoxical effects were reversed by inhibiting p21 or the JAK-STAT pathway and with pan-FGFR inhibitors. Analysis of patient ER + breast tumor transcriptomes from the TCGA and METABRIC datasets demonstrated a strong positive association between expression of FGF2 and stemness signatures, which was further enhanced in tumors with high FGFR1 expression. Overall, our findings reveal a divergence in FGFR signaling, transitioning from a proliferative to stemness state driven by activation of JAK-STAT signaling and modulation of p21 levels. Activation of these divergent signaling pathways in FGFR amplified cancer cells and paradoxical growth effects highlight a challenge in the use of FGFR inhibitors in cancer treatment.
Collapse
Affiliation(s)
- Feng Chi
- Department of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Institute, 1218 S Fifth Ave, Monrovia, CA, 91016, USA
| | - Jason I Griffiths
- Department of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Institute, 1218 S Fifth Ave, Monrovia, CA, 91016, USA
| | - Aritro Nath
- Department of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Institute, 1218 S Fifth Ave, Monrovia, CA, 91016, USA
| | - Andrea H Bild
- Department of Medical Oncology and Therapeutics, City of Hope Comprehensive Cancer Institute, 1218 S Fifth Ave, Monrovia, CA, 91016, USA.
| |
Collapse
|
18
|
de Oliveira Silva N, de Lima LVA, de Oliveira LM, da Silva MF, de Aguiar AP, Semprebon SC, Favaron PO, Lepri SR, Felicidade I, Mantovani MS. Cellular and molecular antiproliferative effects in 2D monolayer and 3D-cultivated HT-29 cells treated with zerumbone. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1561-1573. [PMID: 37672080 DOI: 10.1007/s00210-023-02701-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023]
Abstract
Zerumbone (ZER) is a phytochemical isolated from plants of the Zingiberaceae family. Numerous studies have demonstrated its diverse pharmacological properties, particularly its potent antitumorigenic activity. This study aimed to assess the antiproliferative effects of ZER on HT-29 cells cultivated in both two-dimensional (2D) monolayer and three-dimensional (3D) spheroid culture systems. The evaluation of growth (size), cell death, and cell cycle arrest in 3D spheroid HT-29 cells was correlated with mRNA expression data. Treatment of 2D cells revealed that ZER exhibited cytotoxicity at concentrations above 30 µM, and an IC50 of 83.54 µM (24-h post-ZER treatment) effectively suppressed cell migration. In the 3D model, ZER induced an increase in spheroid volume over a 72-h period attributed to disaggregation and reconfiguration of characteristic zones. Analysis of cell death demonstrated a significant rise in apoptotic cells after 24 h of ZER treatment, along with cell cycle arrest in the G1 phase. Furthermore, ZER treatment resulted in alterations in mRNA expression, affecting key signaling pathways involved in cell death (BCL2 and BBC3), endoplasmic reticulum stress (ERN1), DNA damage (GADD45A), cell cycle regulation (CDKN1A, NFKB1, MYC, and TP53), and autophagy (BECN1 and SQSTM1). These findings suggested that ZER holds promise as a potential candidate for the development of novel anticancer agents that can modulate crucial cell signaling pathways. Additionally, the use of the 3D culture system proved to be a valuable tool in our investigation.
Collapse
Affiliation(s)
- Nayane de Oliveira Silva
- Department of General Biology, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Luan Vitor Alves de Lima
- Department of General Biology, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Liana Martins de Oliveira
- Department of General Biology, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Matheus Felipe da Silva
- Department of General Biology, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Amanda Passuello de Aguiar
- Department of General Biology, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Simone Cristine Semprebon
- Department of General Biology, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Phelipe Oliveira Favaron
- Department of General Biology, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Sandra Regina Lepri
- Department of General Biology, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Ingrid Felicidade
- Department of General Biology, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil
| | - Mario Sergio Mantovani
- Department of General Biology, Center of Biological Sciences, State University of Londrina, Londrina, Paraná, Brazil.
| |
Collapse
|
19
|
Cardillo TM, Zalath MB, Arrojo R, Sharkey RM, Govindan SV, Chang CH, Goldenberg DM. Sacituzumab govitecan plus platinum-based chemotherapy mediates significant antitumor effects in triple-negative breast, urinary bladder, and small-cell lung carcinomas. Oncotarget 2024; 15:144-158. [PMID: 38386805 PMCID: PMC10883684 DOI: 10.18632/oncotarget.28559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 01/23/2024] [Indexed: 02/24/2024] Open
Abstract
Sacituzumab govitecan (SG) is an antibody-drug conjugate composed of an anti-Trop-2-directed antibody conjugated with the topoisomerase I inhibitory drug, SN-38, via a proprietary hydrolysable linker. SG has received United States Food and Drug Administration (FDA) approval to treat metastatic triple-negative breast cancer (TNBC), unresectable locally advanced or metastatic hormone receptor (HR)-positive, human epidermal growth factor receptor 2 (HER2)-negative breast cancer, and accelerated approval for metastatic urothelial cancer. We investigated the utility of combining SG with platinum-based chemotherapeutics in TNBC, urinary bladder carcinoma (UBC), and small-cell lung carcinoma (SCLC). SG plus carboplatin or cisplatin produced additive growth-inhibitory effects in vitro that trended towards synergy. Immunoblot analysis of cell lysates suggests perturbation of the cell-cycle and a shift towards pro-apoptotic signaling evidenced by an increased Bax to Bcl-2 ratio and down-regulation of two anti-apoptotic proteins, Mcl-1 and survivin. Significant antitumor effects were observed with SG plus carboplatin in mice bearing TNBC or SCLC tumors compared to all controls (P < 0.0062 and P < 0.0017, respectively) and with SG plus cisplatin in UBC and SCLC tumor-bearing animals (P < 0.0362 and P < 0.0001, respectively). These combinations were well tolerated by the animals. Combining SG with platinum-based chemotherapeutics demonstrates the benefit in these indications and warrants further clinical investigation.
Collapse
Affiliation(s)
- Thomas M. Cardillo
- Immunomedics, Inc., Morris Plains, NJ 07950 now acquired by Gilead Sciences, Inc., Foster City, CA 94404, USA
- Gilead Sciences, Inc., Foster City, CA 94404, USA
- At the time the work was conducted, all the authors were employees of Immunomedics, Inc
| | - Maria B. Zalath
- Immunomedics, Inc., Morris Plains, NJ 07950 now acquired by Gilead Sciences, Inc., Foster City, CA 94404, USA
- At the time the work was conducted, all the authors were employees of Immunomedics, Inc
| | - Roberto Arrojo
- Immunomedics, Inc., Morris Plains, NJ 07950 now acquired by Gilead Sciences, Inc., Foster City, CA 94404, USA
- At the time the work was conducted, all the authors were employees of Immunomedics, Inc
| | - Robert M. Sharkey
- Immunomedics, Inc., Morris Plains, NJ 07950 now acquired by Gilead Sciences, Inc., Foster City, CA 94404, USA
- At the time the work was conducted, all the authors were employees of Immunomedics, Inc
| | - Serengulam V. Govindan
- Immunomedics, Inc., Morris Plains, NJ 07950 now acquired by Gilead Sciences, Inc., Foster City, CA 94404, USA
- At the time the work was conducted, all the authors were employees of Immunomedics, Inc
| | - Chien-Hsing Chang
- Immunomedics, Inc., Morris Plains, NJ 07950 now acquired by Gilead Sciences, Inc., Foster City, CA 94404, USA
- At the time the work was conducted, all the authors were employees of Immunomedics, Inc
| | - David M. Goldenberg
- Immunomedics, Inc., Morris Plains, NJ 07950 now acquired by Gilead Sciences, Inc., Foster City, CA 94404, USA
- Current address: Center for Molecular Medicine and Immunology, Mendham, NJ 07945, USA; E-mail,
- At the time the work was conducted, this author was Chairman and Chief Scientific Officer of Immunomedics, Inc., which he founded in 1982
| |
Collapse
|
20
|
Singh S, Kiran M, Somvanshi PR. Computational Inference of Gene Regulatory Network Using Genome-wide ChIP-X Data. Methods Mol Biol 2024; 2719:295-306. [PMID: 37803124 DOI: 10.1007/978-1-0716-3461-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
Gene regulatory network is the architecture of transcription factors (TFs) and their gene targets, which help in controlling their expression as required by a phenotype during various environmental perturbations. Inferring the regulatory network from the high-throughput data needs an algorithmic approach involving statistical analysis. There are several interaction databases such as JASPAR and SwissRegulon that provide information for TFs-targets pair interaction, which are estimated based on experimental and prediction procedures. These repositories are majorly used for predicting the complex structure of GRNs either with or without gene expression data. Here we described and discussed the step-wise procedures to extract the interaction data for a desired set of target-TFs from the JASPAR database, and used that information to infer the network by using the igraph library. Further, we also mentioned the important parameters for analyzing the different properties of the network. The described procedure will be helpful in discerning the GRN based on the set of TF-gene pairs.
Collapse
Affiliation(s)
- Samayaditya Singh
- Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Manjari Kiran
- Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Pramod R Somvanshi
- Department of Systems and Computational Biology, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| |
Collapse
|
21
|
Li M, Yang J, Li J, Zhou Y, Li X, Ma Z, Li X, Ma H, Ye X. Epiberberine induced p53/p21-dependent G2/M cell cycle arrest and cell apoptosis in gastric cancer cells by activating γ-aminobutyric acid receptor- β3. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 123:155198. [PMID: 38006806 DOI: 10.1016/j.phymed.2023.155198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 11/03/2023] [Accepted: 11/07/2023] [Indexed: 11/27/2023]
Abstract
BACKGROUND AND PURPOSE Epiberberine (EPI) is one of the most important bioalkaloid found in the rhizome of Coptis chinensis, which has been observed to exhibit pharmaceutical effects against gastric cancer (GC). Nevertheless, the potential mechanism of EPI against GC cells still remains unclear. This study aimed to identify the core receptor on GC cells through which EPI inhibited the growth of GC cells and to explore the underlying inhibitory mechanisms. METHODS To identify hub receptor targets that respond to EPI treatment, RNA sequencing (RNA-Seq) data from a tumor-bearing mouse model were analyzed using bioinformatics method and molecular docking. The binding interaction between EPI and GABRB3 was validated through western blotting based-cellular thermal shift assay (WB-CETSA). To further verify the binding region between EPI and GABRB3 through circular dichroism (CD) chromatography, fragments of the extracellular and transmembrane domains of the GABRB3 protein were expressed and purified in vitro. Stable cell lines with the overexpression or knockdown of GABRB3 were established using the recombinant lentivirus system. MTT ((3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide)) assay, colony formation assay, invasion and migration experiments, and flow cytometry were conducted to validate the inhibitory effect of EPI on the GC cells via GABRB3. Additionally, western blotting was utilized to explore the potential inhibitory mechanisms. RESULTS Through the combination of multiple bioinformatics methods and molecular docking, we found that the γ-aminobutyric acid type A receptor subunit -β3 (GABRB3) might be the critical receptor target in response to EPI treatment. The results of WB-CETSA analysis indicated that EPI significantly promoted the thermostability of the GABRB3 protein. Importantly, EPI could directly bind to GABRB3 and alter the secondary structure of GABRB3 fragments similar to the natural agonist, γ-aminobutyric acid (GABA). The EPI-induced suppression of the malignant phenotype of GC cells was dependent on the presence of GABRB3. GABRB3 expression was positively correlated with TP53 in patients with GC. The binding of EPI to GABRB3 stimulated p53 accumulation in GC cells. This activated the p21/CDK1/cyclinB1 pathway, resulting in G2/M cell cycle arrest, and induced the Bcl-2/BAX/Caspase axis-dependent cell apoptosis. CONCLUSION This study revealed the target receptor for EPI in GC cells and provided new insights into its anticancer mechanisms.
Collapse
Affiliation(s)
- Mengmeng Li
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Jiaye Yang
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Juan Li
- School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Yuan Zhou
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xiaoduo Li
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Zhengcai Ma
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Xuegang Li
- School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Hang Ma
- School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China.
| | - Xiaoli Ye
- Engineering Research Center of Coptis Development and Utilization (Ministry of Education), School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
22
|
Manousakis E, Miralles CM, Esquerda MG, Wright RHG. CDKN1A/p21 in Breast Cancer: Part of the Problem, or Part of the Solution? Int J Mol Sci 2023; 24:17488. [PMID: 38139316 PMCID: PMC10743848 DOI: 10.3390/ijms242417488] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Cyclin-dependent kinase inhibitor 1A (Cip1/Waf1/CDKN1A/p21) is a well-established protein, primarily recognised for its pivotal role in the cell cycle, where it induces cell cycle arrest by inhibiting the activity of cyclin-dependent kinases (CDKs). Over the years, extensive research has shed light on various additional mechanisms involving CDKN1A/p21, implicating it in processes such as apoptosis, DNA damage response (DDR), and the regulation of stem cell fate. Interestingly, p21 can function either as an oncogene or as a tumour suppressor in these contexts. Complicating matters further, the expression of CDKN1A/p21 is elevated in certain tumour types while downregulated in others. In this comprehensive review, we provide an overview of the multifaceted functions of CDKN1A/p21, present clinical data pertaining to cancer patients, and delve into potential strategies for targeting CDKN1A/p21 as a therapeutic approach to cancer. Manipulating CDKN1A/p21 shows great promise for therapy given its involvement in multiple cancer hallmarks, such as sustained cell proliferation, the renewal of cancer stem cells (CSCs), epithelial-mesenchymal transition (EMT), cell migration, and resistance to chemotherapy. Given the dual role of CDKN1A/p21 in these processes, a more in-depth understanding of its specific mechanisms of action and its regulatory network is imperative to establishing successful therapeutic interventions.
Collapse
Affiliation(s)
| | | | | | - Roni H. G. Wright
- Basic Sciences Department, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya, 08195 Barcelona, Spain
| |
Collapse
|
23
|
Ben-Oz BM, Machour FE, Nicola M, Argoetti A, Polyak G, Hanna R, Kleifeld O, Mandel-Gutfreund Y, Ayoub N. A dual role of RBM42 in modulating splicing and translation of CDKN1A/p21 during DNA damage response. Nat Commun 2023; 14:7628. [PMID: 37993446 PMCID: PMC10665399 DOI: 10.1038/s41467-023-43495-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 11/10/2023] [Indexed: 11/24/2023] Open
Abstract
p53-mediated cell cycle arrest during DNA damage is dependent on the induction of p21 protein, encoded by the CDKN1A gene. p21 inhibits cyclin-dependent kinases required for cell cycle progression to guarantee accurate repair of DNA lesions. Hence, fine-tuning of p21 levels is crucial to preserve genomic stability. Currently, the multilayered regulation of p21 levels during DNA damage is not fully understood. Herein, we identify the human RNA binding motif protein 42 (RBM42) as a regulator of p21 levels during DNA damage. Genome-wide transcriptome and interactome analysis reveals that RBM42 alters the expression of p53-regulated genes during DNA damage. Specifically, we demonstrate that RBM42 facilitates CDKN1A splicing by counteracting the splicing inhibitory effect of RBM4 protein. Unexpectedly, we also show that RBM42, underpins translation of various splicing targets, including CDKN1A. Concordantly, transcriptome-wide mapping of RBM42-RNA interactions using eCLIP further substantiates the dual function of RBM42 in regulating splicing and translation of its target genes, including CDKN1A. Collectively, our data show that RBM42 couples splicing and translation machineries to fine-tune gene expression during DNA damage response.
Collapse
Affiliation(s)
- Bella M Ben-Oz
- Department of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Feras E Machour
- Department of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Marian Nicola
- Department of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Amir Argoetti
- Department of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Galia Polyak
- Department of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Rawad Hanna
- Department of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Oded Kleifeld
- Department of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Yael Mandel-Gutfreund
- Department of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel
| | - Nabieh Ayoub
- Department of Biology, Technion - Israel Institute of Technology, Haifa, 3200003, Israel.
| |
Collapse
|
24
|
Rambabu M, Konageni N, Vasudevan K, Dasegowda KR, Gokul A, Jayanthi S, Rohini K. Identification of key biomarkers and associated pathways of pancreatic cancer using integrated transcriptomic and gene network analysis. Saudi J Biol Sci 2023; 30:103819. [PMID: 37860809 PMCID: PMC10582056 DOI: 10.1016/j.sjbs.2023.103819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 09/11/2023] [Accepted: 09/21/2023] [Indexed: 10/21/2023] Open
Abstract
Pancreatic cancer shows malignancy around the world standing in 4th position for causing death globally. This cancer is majorly divided into exocrine and neuroendocrine where exocrine pancreatic ductal adenocarcinoma is observed to be nearly 85% of cases. The lack of diagnosis of pancreatic cancer is considered to be one of the major drawbacks to the prognosis and treatment of pancreatic cancer patients. The survival rate after diagnosis is very low, due to the higher incidence of drug resistance to cancer which leads to an increase in the mortality rate. The transcriptome analysis for pancreatic cancer involves dataset collection from the ENA database, incorporating them into quality control analysis to the quantification process to get the summarized read counts present in collected samples and used for further differential gene expression analysis using the DESeq2 package. Additionally, explore the enriched pathways using GSEA software and represented them by utilizing the enrichment map finally, the gene network has been constructed by Cytoscape software. Furthermore, explored the hub genes that are present in the particular pathways and how they are interconnected from one pathway to another has been analyzed. Finally, we identified the CDKN1A, IL6, and MYC genes and their associated pathways can be better biomarker for the clinical processes to increase the survival rate of of pancreatic cancer.
Collapse
Affiliation(s)
- Majji Rambabu
- Department of Biotechnology, REVA University, Bengaluru, Karnataka, India
| | - Nagaraj Konageni
- Department of Biotechnology, REVA University, Bengaluru, Karnataka, India
| | - Karthick Vasudevan
- Department of Biotechnology, REVA University, Bengaluru, Karnataka, India
| | - K R Dasegowda
- Department of Biotechnology, REVA University, Bengaluru, Karnataka, India
| | - Anand Gokul
- Department of Computer Science, University of Southern California, Los Angeles, CA, USA
| | - Sivaraman Jayanthi
- Department of Biotechnology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - Karunakaran Rohini
- Department of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India
- Unit of Biochemistry, Faculty of Medicine, AIMST University, Semeling, Bedong, Malaysia
| |
Collapse
|
25
|
Ren X, Zhang G, Ling X, Zhang L, Tian Y, Zhu G, Wang P, Leavenworth JW, Luo L, Li F. Allyl-isothiocyanate against colorectal cancer via the mutual dependent regulation of p21 and Nrf2. Eur J Pharmacol 2023; 957:176016. [PMID: 37634842 DOI: 10.1016/j.ejphar.2023.176016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/21/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
Allyl-isothiocyanate (AITC) is a common Isothiocyanates (ITC) and its chemo-preventive and anti-tumor effects are believed to be related to the activation of NF-E2 p45-related Factor 2 (Nrf2). However, its anti-tumor effects on colorectal cancer (CRC) are not well elucidated. Here, we investigated the therapeutic in vitro and/or in vivo effects and mechanisms of action (MOA) for AITC on CRC cell line HCT116 (human) and MC38 (mouse). AITC treatment in a low concentration range (1 mg/kg in vivo) significantly inhibited the tumor cell growth and increased the expression of p21 and Nrf2. The AITC-mediated induction of p21 was dependent on Nrf2 but independent on p53 in vitro and in vivo at low dose. In contrast, the high dose of AITC (5 mg/kg in vivo) failed to increase substantial levels of p21/MdmX, and impaired the total antioxidant capacity of tumors and subsequent anti-tumor effect in vivo. These results suggest that an optimal dose of AITC is important and required for the proper Nrf2 activation and its anti-CRC effects and thus, providing insights into the potential applications of AITC for the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Xiaoyan Ren
- Department of Pathology, Affiliated Maternity and Child Health Care Hospital of Nantong University, Jiangsu, 226018, PR China
| | - Gaoshan Zhang
- School of Pharmacy, Nantong University, Jiangsu, 226001, PR China; Northern Jiangsu People's Hospital, Jiangsu, 225001, PR China
| | - Xiang Ling
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Linhua Zhang
- School of Pharmacy, Nantong University, Jiangsu, 226001, PR China
| | - Yangyang Tian
- School of Pharmacy, Nantong University, Jiangsu, 226001, PR China
| | - Guoxiang Zhu
- Department of Pathology, Affiliated Maternity and Child Health Care Hospital of Nantong University, Jiangsu, 226018, PR China
| | - Pengbo Wang
- Affiliated Hospital of Nantong University, Jiangsu, 226001, PR China
| | - Jianmei W Leavenworth
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, AL, 35233, USA; The O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, 35294, USA
| | - Lin Luo
- School of Pharmacy, Nantong University, Jiangsu, 226001, PR China.
| | - Fengzhi Li
- Department of Pharmacology & Therapeutics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
| |
Collapse
|
26
|
Iskusnykh IY, Fattakhov N, Li Y, Bihannic L, Kirchner MK, Steshina EY, Northcott PA, Chizhikov VV. Lmx1a is a master regulator of the cortical hem. eLife 2023; 12:e84095. [PMID: 37725078 PMCID: PMC10508884 DOI: 10.7554/elife.84095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 09/05/2023] [Indexed: 09/21/2023] Open
Abstract
Development of the nervous system depends on signaling centers - specialized cellular populations that produce secreted molecules to regulate neurogenesis in the neighboring neuroepithelium. In some cases, signaling center cells also differentiate to produce key types of neurons. The formation of a signaling center involves its induction, the maintenance of expression of its secreted molecules, and cell differentiation and migration events. How these distinct processes are coordinated during signaling center development remains unknown. By performing studies in mice, we show that Lmx1a acts as a master regulator to orchestrate the formation and function of the cortical hem (CH), a critical signaling center that controls hippocampus development. Lmx1a co-regulates CH induction, its Wnt signaling, and the differentiation and migration of CH-derived Cajal-Retzius neurons. Combining RNAseq, genetic, and rescue experiments, we identified major downstream genes that mediate distinct Lmx1a-dependent processes. Our work revealed that signaling centers in the mammalian brain employ master regulatory genes and established a framework for analyzing signaling center development.
Collapse
Affiliation(s)
- Igor Y Iskusnykh
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphisUnited States
| | - Nikolai Fattakhov
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphisUnited States
| | - Yiran Li
- Department of Developmental Neurobiology, St. Jude Children's Research HospitalMemphisUnited States
| | - Laure Bihannic
- Department of Developmental Neurobiology, St. Jude Children's Research HospitalMemphisUnited States
| | - Matthew K Kirchner
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphisUnited States
| | - Ekaterina Y Steshina
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphisUnited States
| | - Paul A Northcott
- Department of Developmental Neurobiology, St. Jude Children's Research HospitalMemphisUnited States
| | - Victor V Chizhikov
- Department of Anatomy and Neurobiology, University of Tennessee Health Science CenterMemphisUnited States
| |
Collapse
|
27
|
Park YH, Im SA, Park K, Wen J, Lee KH, Choi YL, Lee WC, Min A, Bonato V, Park S, Ram S, Lee DW, Kim JY, Lee SK, Lee WW, Lee J, Kim M, Kim HS, Weinrich SL, Ryu HS, Kim TY, Dann S, Kim YJ, Fernandez DR, Koh J, Wang S, Park SY, Deng S, Powell E, Ravi RK, Bienkowska J, Rejto PA, Park WY, Kan Z. Longitudinal multi-omics study of palbociclib resistance in HR-positive/HER2-negative metastatic breast cancer. Genome Med 2023; 15:55. [PMID: 37475004 PMCID: PMC10360358 DOI: 10.1186/s13073-023-01201-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 06/05/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND Cyclin-dependent kinase 4/6 inhibitor (CDK4/6) therapy plus endocrine therapy (ET) is an effective treatment for patients with hormone receptor-positive/human epidermal receptor 2-negative metastatic breast cancer (HR+/HER2- MBC); however, resistance is common and poorly understood. A comprehensive genomic and transcriptomic analysis of pretreatment and post-treatment tumors from patients receiving palbociclib plus ET was performed to delineate molecular mechanisms of drug resistance. METHODS Tissue was collected from 89 patients with HR+/HER2- MBC, including those with recurrent and/or metastatic disease, receiving palbociclib plus an aromatase inhibitor or fulvestrant at Samsung Medical Center and Seoul National University Hospital from 2017 to 2020. Tumor biopsy and blood samples obtained at pretreatment, on-treatment (6 weeks and/or 12 weeks), and post-progression underwent RNA sequencing and whole-exome sequencing. Cox regression analysis was performed to identify the clinical and genomic variables associated with progression-free survival. RESULTS Novel markers associated with poor prognosis, including genomic scar features caused by homologous repair deficiency (HRD), estrogen response signatures, and four prognostic clusters with distinct molecular features were identified. Tumors with TP53 mutations co-occurring with a unique HRD-high cluster responded poorly to palbociclib plus ET. Comparisons of paired pre- and post-treatment samples revealed that tumors became enriched in APOBEC mutation signatures, and many switched to aggressive molecular subtypes with estrogen-independent characteristics. We identified frequent genomic alterations upon disease progression in RB1, ESR1, PTEN, and KMT2C. CONCLUSIONS We identified novel molecular features associated with poor prognosis and molecular mechanisms that could be targeted to overcome resistance to CKD4/6 plus ET. TRIAL REGISTRATION ClinicalTrials.gov, NCT03401359. The trial was posted on 18 January 2018 and registered prospectively.
Collapse
Affiliation(s)
- Yeon Hee Park
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea.
- Department of Health Science and Technology, School of Medicine & SAIHST, Sungkyunkwan University, Seoul, Republic of Korea.
| | - Seock-Ah Im
- Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul National University, Seoul, Republic of Korea.
| | - Kyunghee Park
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Ji Wen
- Oncology Research & Development, Pfizer Inc, San Diego, CA, USA
| | - Kyung-Hun Lee
- Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Yoon-La Choi
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Health Science and Technology, School of Medicine & SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Won-Chul Lee
- Oncology Research & Development, Pfizer Inc, San Diego, CA, USA
| | - Ahrum Min
- Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul National University, Seoul, Republic of Korea
| | | | - Seri Park
- Department of Health Science and Technology, School of Medicine & SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| | - Sripad Ram
- Drug Safety R&D, Pfizer Inc, San Diego, CA, USA
| | - Dae-Won Lee
- Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Ji-Yeon Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Su Kyeong Lee
- Research Center for Future Medicine, Samsung Medical Center, Seoul, Republic of Korea
| | - Won-Woo Lee
- Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jisook Lee
- Oncology Research & Development, Pfizer Inc, San Diego, CA, USA
| | - Miso Kim
- Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul National University, Seoul, Republic of Korea
| | | | | | - Han Suk Ryu
- Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Tae Yong Kim
- Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Stephen Dann
- Oncology Research & Development, Pfizer Inc, San Diego, CA, USA
| | - Yu-Jin Kim
- Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul National University, Seoul, Republic of Korea
| | | | - Jiwon Koh
- Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Shuoguo Wang
- Oncology Research & Development, Pfizer Inc, San Diego, CA, USA
| | - Song Yi Park
- Seoul National University Hospital, Cancer Research Institute, Seoul National University College of Medicine, Seoul National University, Seoul, Republic of Korea
| | | | - Eric Powell
- Oncology Research & Development, Pfizer Inc, San Diego, CA, USA
| | | | | | - Paul A Rejto
- Oncology Research & Development, Pfizer Inc, San Diego, CA, USA
| | - Woong-Yang Park
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Health Science and Technology, School of Medicine & SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
- Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Zhengyan Kan
- Oncology Research & Development, Pfizer Inc, San Diego, CA, USA.
| |
Collapse
|
28
|
Jin W, Zhang J, Chen X, Yin S, Yu H, Gao F, Yao D. Unraveling the complexity of histone-arginine methyltransferase CARM1 in cancer: From underlying mechanisms to targeted therapeutics. Biochim Biophys Acta Rev Cancer 2023; 1878:188916. [PMID: 37196782 DOI: 10.1016/j.bbcan.2023.188916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/28/2023] [Accepted: 05/12/2023] [Indexed: 05/19/2023]
Abstract
Coactivator-associated arginine methyltransferase 1 (CARM1), a type I protein arginine methyltransferase (PRMT), has been widely reported to catalyze arginine methylation of histone and non-histone substrates, which is closely associated with the occurrence and progression of cancer. Recently, accumulating studies have demonstrated the oncogenic role of CARM1 in many types of human cancers. More importantly, CARM1 has been emerging as an attractive therapeutic target for discovery of new candidate anti-tumor drugs. Therefore, in this review, we summarize the molecular structure of CARM1 and its key regulatory pathways, as well as further discuss the rapid progress in better understanding of the oncogenic functions of CARM1. Moreover, we further demonstrate several representative targeted CARM1 inhibitors, especially focusing on demonstrating their designing strategies and potential therapeutic applications. Together, these inspiring findings would shed new light on elucidating the underlying mechanisms of CARM1 and provide a clue on discovery of more potent and selective CARM1 inhibitors for the future targeted cancer therapy.
Collapse
Affiliation(s)
- Wenke Jin
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China; School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, and State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jin Zhang
- School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Xiya Chen
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China; School of Pharmacy, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Siwen Yin
- School of Nursing, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Haiyang Yu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, and State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Feng Gao
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu 610031, China.
| | - Dahong Yao
- School of Pharmaceutical Sciences, Shenzhen Technology University, Shenzhen 518118, China.
| |
Collapse
|
29
|
Alkaabi D, Arafat K, Sulaiman S, Al-Azawi AM, Attoub S. PD-1 Independent Role of PD-L1 in Triple-Negative Breast Cancer Progression. Int J Mol Sci 2023; 24:ijms24076420. [PMID: 37047395 PMCID: PMC10094894 DOI: 10.3390/ijms24076420] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 04/01/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is a type of breast malignancy characterized by a high proliferative rate and metastatic potential leading to treatment failure, relapse, and poor prognosis. Therefore, efforts are continuously being devoted to understanding its biology and identifying new potential targets. Programmed death-ligand 1 (PD-L1) is an immunosuppressive protein that inactivates T cells by binding to the inhibitory receptor programmed death-1 (PD-1). PD-L1 overexpression in cancer cells contributes to immune evasion and, subsequently, poor survival and prognosis in several cancers, including breast cancer. Apart from its inhibitory impact on T cells, this ligand is believed to have an intrinsic role in cancer cells. This study was performed to clarify the PD-1 independent role of PD-L1 in TNBC MDA-MB-231 cells by knocking out the PD-L1 using three designs of CRISPR-Cas9 lentiviral particles. Our study revealed that PD-L1 knockout significantly inhibited MDA-MB-231 cell proliferation and colony formation in vitro and tumor growth in the chick embryo chorioallantoic membrane (CAM) model in vivo. PD-L1 knockout also decreased the migration and invasion of MDA-MB-231 cells in vitro. We have shown that PD-L1 knockout MDA-MB-231 cells have low levels of p-Akt and p-ERK in addition to some of their downstream proteins, c-Fos, c-Myc, p21, survivin, and COX-2. Furthermore, PD-L1 knockout significantly decreased the expression of Snail and RhoA. This study shows the intrinsic role of PD-L1 in TNBC independently of its binding to PD-1 receptors on T cells. It may pave the way for developing novel therapeutic strategies using PD-L1 inhibitors alone and in combination to treat TNBC more effectively.
Collapse
Affiliation(s)
- Duaa Alkaabi
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Kholoud Arafat
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Shahrazad Sulaiman
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Aya Mudhafar Al-Azawi
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
| | - Samir Attoub
- Department of Pharmacology & Therapeutics, College of Medicine & Health Sciences, United Arab Emirates University, Al-Ain 15551, United Arab Emirates
- Institut National de la Santé et de la Recherche Médicale (INSERM), 75013 Paris, France
- Correspondence:
| |
Collapse
|
30
|
Zhu D, Li X, Zhu Y, Wei Q, Hu Y, Su S, Chao J, Wang L, Weng L. Spatiotemporal Monitoring of Subcellular mRNAs In Situ via Polyadenine-Mediated Dual-Color Sticky Flares. ACS APPLIED MATERIALS & INTERFACES 2023; 15:15250-15259. [PMID: 36941806 DOI: 10.1021/acsami.3c01242] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Spatiotemporal monitoring of multiple low-abundance messenger RNAs (mRNAs) is vitally important for the diagnosis and pathologic analysis of cancer. However, it remains a clinical challenge to monitor and track multiple mRNAs location simultaneously in situ at subcellular level with high efficiency. Herein, we proposed polyA-mediated dual-color sticky flares for simultaneous imaging of two kinds of intracellular mRNA biomarkers. Two kinds of fluorescent DNA specific for GalNac-T mRNA and c-Myc mRNA were functionalized onto gold nanoparticles (AuNPs) through efficient polyadenine (polyA) attachment. By tuning polyA length, the lateral spacing and densities of DNA on AuNPs could be precisely engineered. Compared to the traditional thio-DNA-modified nanoprobes, the uniformity, detection sensitivity, and response kinetics of sticky flares were greatly improved, which enables live-cell imaging of mRNAs with enhanced efficiency. With a sticky-end design, the fluorescent DNA could dynamically trace mRNAs after binding with target mRNAs, which realized spatiotemporal monitoring of subcellular mRNAs in situ. Compared to one target mRNA imaging mode, the multiple target imaging mode allows more accurate diagnosis of cancer. Furthermore, the proposed polyA-mediated dual-color sticky flares exhibit excellent cell entry efficiency and low cytotoxicity with a low-cost and simple assembling process, which provide a pivotal tool for multiple targets imaging in living cells.
Collapse
Affiliation(s)
- Dan Zhu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Xiaojian Li
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yu Zhu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Qingyun Wei
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yang Hu
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Shao Su
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Jie Chao
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Lianhui Wang
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Lixing Weng
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
31
|
Pharmacological Activities of Mogrol: Potential Phytochemical against Different Diseases. Life (Basel) 2023; 13:life13020555. [PMID: 36836915 PMCID: PMC9959222 DOI: 10.3390/life13020555] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/11/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
Recently, mogrol has emerged as an important therapeutic candidate with multiple potential pharmacological properties, including neuroprotective, anticancer, anti-inflammatory, antiobesity, antidiabetes, and exerting a protective effect on different organs such as the lungs, bone, brain, and colon. Pharmacokinetic studies also highlighted the potential of mogrol as a therapeutic. Studies were also conducted to design and synthesize the analogs of mogrol to achieve better activities against different diseases. The literature also highlighted the possible molecular mechanism behind pharmacological activities, which suggested the role of several important targets, including AMPK, TNF-α, and NF-κB. These important mogrol targets were verified in different studies, indicating the possible role of mogrol in other associated diseases. Still, the compilation of pharmacological properties, possible molecular mechanisms, and important targets of the mogrol is missing in the literature. The current study not only provides the compilation of information regarding pharmacological activities but also highlights the current gaps and suggests the precise direction for the development of mogrol as a therapeutic against different diseases.
Collapse
|
32
|
Zhu C, Jiang J, Feng G, Fan S. The exciting encounter between lncRNAs and radiosensitivity in IR-induced DNA damage events. Mol Biol Rep 2023; 50:1829-1843. [PMID: 36507968 DOI: 10.1007/s11033-022-07966-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 09/22/2022] [Indexed: 12/14/2022]
Abstract
Radiation therapy is a commonly used tool in cancer management due to its ability to destroy malignant tumors. Mechanically, the efficacy of radiotherapy mainly depends on the inherent radiosensitivity of cancer cells and surrounding normal tissues, which mostly accounts for molecular dynamics associated with radiation-induced DNA damage. However, the relationship between radiosensitivity and DNA damage mechanism deserves to be further probed. As the well-established RNA regulators or effectors, long noncoding RNAs (lncRNAs) dominate vital roles in modulating ionizing radiation response by targeting crucial molecular pathways, including DNA damage repair. Recently, emerging evidence has constantly confirmed that overexpression or inhibition of lncRNAs can greatly influence the sensitivity of radiotherapy for many kinds of cancers, by driving a diverse array of DNA damage-associated signaling cascades. In conclusion, this review critically summarizes the recent progress in the molecular mechanism of IR-responsive lncRNAs in the context of radiation-induced DNA damage. The different response of lncRNAs when IR exposure. IR exposure can trigger the changes in expression pattern and subcellular localization of lncRNAs that influences the different radiology processes.
Collapse
Affiliation(s)
- Changchun Zhu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, 300192, Tianjin, PR China
| | - Jin Jiang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, 300192, Tianjin, PR China
| | - Guoxing Feng
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, 300192, Tianjin, PR China.
| | - Saijun Fan
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, 238 Baidi Road, 300192, Tianjin, PR China.
| |
Collapse
|
33
|
D'costa M, Bothe A, Das S, Udhaya Kumar S, Gnanasambandan R, George Priya Doss C. CDK regulators—Cell cycle progression or apoptosis—Scenarios in normal cells and cancerous cells. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 135:125-177. [PMID: 37061330 DOI: 10.1016/bs.apcsb.2022.11.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Serine/threonine kinases called cyclin-dependent kinases (CDKs) interact with cyclins and CDK inhibitors (CKIs) to control the catalytic activity. CDKs are essential controllers of RNA transcription and cell cycle advancement. The ubiquitous overactivity of the cell cycle CDKs is caused by a number of genetic and epigenetic processes in human cancer, and their suppression can result in both cell cycle arrest and apoptosis. This review focused on CDKs, describing their kinase activity, their role in phosphorylation inhibition, and CDK inhibitory proteins (CIP/KIP, INK 4, RPIC). We next compared the role of different CDKs, mainly p21, p27, p57, p16, p15, p18, and p19, in the cell cycle and apoptosis in cancer cells with respect to normal cells. The current work also draws attention to the use of CDKIs as therapeutics, overcoming the pharmacokinetic barriers of pan-CDK inhibitors, analyze new chemical classes that are effective at attacking the CDKs that control the cell cycle (cdk4/6 or cdk2). It also discusses CDKI's drawbacks and its combination therapy against cancer patients. These findings collectively demonstrate the complexity of cancer cell cycles and the need for targeted therapeutic intervention. In order to slow the progression of the disease or enhance clinical outcomes, new medicines may be discovered by researching the relationship between cell death and cell proliferation.
Collapse
Affiliation(s)
- Maria D'costa
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Anusha Bothe
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Soumik Das
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - S Udhaya Kumar
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - R Gnanasambandan
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India.
| | - C George Priya Doss
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India.
| |
Collapse
|
34
|
Wang Q, Zhang W, Yin D, Tang Z, Zhang E, Wu W. Gene amplification-driven lncRNA SNHG6 promotes tumorigenesis via epigenetically suppressing p27 expression and regulating cell cycle in non-small cell lung cancer. Cell Death Dis 2022; 8:485. [PMID: 36494339 PMCID: PMC9734177 DOI: 10.1038/s41420-022-01276-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 11/17/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022]
Abstract
Long non-coding RNAs (lncRNAs) have been validated to play essential roles in non-small cell lung carcinoma (NSCLC) progression. In this study, through systematically screening GSE33532 and GSE29249 from Gene Expression Omnibus (GEO) database and bioinformatics analysis, we found the significant upregulation of SNHG6 in NSCLC. The activation of SNHG6 was driven by copy number amplification and high expression of SNHG6 indicated a poor prognosis. Functionally, the knockdown of SNHG6 inhibited NSCLC cell proliferation, migration, and suppressed the G1/S transition of the cell cycle. SNHG6 overexpression had the opposite effects. Mechanically, SNHG6 recruited EZH2 to the promoter region of p27 and increased H3K27me3 enrichment, thus epigenetically repressing the expression of p27, regulating the cell cycle, and promoting tumorigenesis of NSCLC. SNHG6 silencing restrained tumor growth in vivo and suppressed the expressions of cell cycle-related proteins in the G1/S transition. In conclusion, our study uncovered a novel mechanism of SNHG6 activation and its function. SNHG6 can be considered a potential target for the diagnosis and treatment of NSCLC in the future.
Collapse
Affiliation(s)
- Qi Wang
- grid.412676.00000 0004 1799 0784Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Zhang
- grid.412676.00000 0004 1799 0784Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dandan Yin
- grid.410745.30000 0004 1765 1045Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine, Zhong Fu Road, Gulou District, Nanjing, Jiangsu 210003 PR China
| | - Zaibin Tang
- grid.412676.00000 0004 1799 0784Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Erbao Zhang
- grid.89957.3a0000 0000 9255 8984Department of Epidemiology, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China ,grid.89957.3a0000 0000 9255 8984Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Weibing Wu
- grid.412676.00000 0004 1799 0784Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
35
|
Du Y, Yang Y, Zhang W, Yang C, Xu P. Human β-defensin-3 and nuclear factor-kappa B p65 synergistically promote the cell proliferation and invasion of oral squamous cell carcinoma. Transl Oncol 2022; 27:101582. [PMID: 36403504 PMCID: PMC9676516 DOI: 10.1016/j.tranon.2022.101582] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 10/15/2022] [Accepted: 10/31/2022] [Indexed: 11/19/2022] Open
Abstract
Oral squamous cell carcinoma (OSCC) is a usual oral cancer. Therefore, it's essential to identify targets for its early diagnosis and therapy. This research aimed to explore the roles of human β-defensin-3 (hBD-3) and nuclear factor-kappa B (NF-κB) p65 in the pathogenesis and progression of OSCC. The connection between NF-κB p65 and the carcinogenesis of oral cancer was analyzed by immunohistochemical staining. The relative expressions of hBD-3 and NF-κB p65 in OSCC cells were evaluated by qRT-PCR and Western blot. Afterward, hBD-3 was knocked down, and NF-κB p65 was overexpressed. The cell viability and invasion were tested via CCK-8 and Transwell experiment, and the expression of hBD-3, NF-κB p65, and its downstream molecules was evaluated by Western blot. The expression of NF-κB p65 was increased with the aggravation of the oral submucosal fibrosis. HBD-3 and NF-κB p65 were high-expressed in OSCC cells. The viability and invasion abilities of OSCC cells that knocked down hBD-3 were markedly decreased, while they were restored by the overexpression of NF-κB p65. The expressions of NF-κB p65 and c-myc were diminished while IκB and p21 were raised with the knockdown of hBD-3. After overexpression of NF-κB p65, the expression of hBD-3 and IκB did not change markedly, while c-myc was increased and p21 was decreased dramatically. HBD-3 and NF-κB p65 facilitate the proliferation and invasion of OSCC cells, and hBD-3 may promote this process by governing the expression of NF-κB p65 and its downstream c-myc and p21.
Collapse
Affiliation(s)
- Yongxiu Du
- Department of Oral Mucosa Diseases, The Affiliated Haikou Hospital of Xiangya Medical College of Central South University, Hunan, China
| | - Yanlan Yang
- Periodontics Department, The Affiliated Haikou Hospital of Xiangya Medical College of Central South University, Hunan, China
| | - Wenbo Zhang
- Periodontics Department, The Affiliated Haikou Hospital of Xiangya Medical College of Central South University, Hunan, China
| | - Chenxi Yang
- Department of Oral Mucosa Diseases, The Affiliated Haikou Hospital of Xiangya Medical College of Central South University, Hunan, China
| | - Pu Xu
- General Dentistry Department, The Affiliated Haikou Hospital of Xiangya Medical College of Central South University, No. 43 Meilan Avenue, Haikou, Hunan 570208, China,Corresponding author.
| |
Collapse
|
36
|
Su C, Zheng J, Chen S, Tuo J, Su J, Ou X, Chen S, Wang C. Identification of key genes associated with cancer stem cell characteristics in Wilms' tumor based on bioinformatics analysis. ANNALS OF TRANSLATIONAL MEDICINE 2022; 10:1204. [PMID: 36544656 PMCID: PMC9761159 DOI: 10.21037/atm-22-4477] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/07/2022] [Indexed: 11/21/2022]
Abstract
Background Nephroblastoma, also known as Wilms' tumor (WT), remains one of the major causes of tumor-related deaths worldwide in children. Cancer stem cells (CSCs) are considered to be the main culprits in cancer resistance and disease recurrence, which are reported in multiple types of tumors. However, the research on CSCs in WT is limited. Therefore, our study aimed to identify the key genes related to CSCs in WT to provide new ideas for treating WT. Methods The RNA-seq and clinical data of WT samples were obtained from the University of California Santa Cruz (UCSC) Xena database, which included 120 WT and six para-cancerous tissues. The mRNA stemness index (mRNAsi) based on mRNA expression was calculated to evaluate tumor stem cell characteristics in WT patients. A Kaplan-Meier (KM) analysis was performed to explore the clinical characteristics of the mRNAsi in WT. A weighted gene co-expression network analysis (WGCNA) was used to identify the key modules and genes related to the mRNAsi. A Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was performed to explore the signaling pathways based on the key genes. The expression levels of the key genes were validated by the Gene Expression Omnibus (GEO) database. Further, the important upstream genes were identified by DisNor and gene co-expression analyses. Results The mRNAsi was significantly upregulated in WT (P=7.2e-05) and showed an upward trend in line with the pathological stage. Patients with lower mRNAsi scores had better overall survival (OS) than those with higher mRNAsi scores (P=0.0087). Eleven genes were defined as the key genes associated with the mRNAsi based on our WGCNA analysis [cor.MM (correlation. Module membership) >0.8 and cor.GS (correlation. Gene significance) >0.45] and were closely related to cell proliferation-related signaling pathways (P<0.05). Moreover, using protein interaction analysis, we identified ATM and CDKN1A as the key upstream regulatory genes of the 11 key genes. Conclusions Our study showed that the mRNAsi score was a potential prognostic factors in WT and identified the upstream genes ATM and CDKN1A and 11 genes closely related to the mRNAsi, which may provide new insights for CSC-targeted therapy in WT and improve clinical outcomes for WT patients.
Collapse
Affiliation(s)
- Cheng Su
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jie Zheng
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Siyu Chen
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinwei Tuo
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinxia Su
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Xiuyi Ou
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shaohua Chen
- Department of Urology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Congjun Wang
- Department of Pediatric Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
37
|
Luo X, Chang S, Xiao S, Peng Y, Gao Y, Hu F, Liang J, Xu Y, Du K, Chen Y, Qin J, Meltzer SJ, Deng S, Feng X, Fan X, Hou G, Jin Z, Zhang X. PAD4-dependent citrullination of nuclear translocation of GSK3β promotes colorectal cancer progression via the degradation of nuclear CDKN1A. Neoplasia 2022; 33:100835. [PMID: 36113195 PMCID: PMC9483803 DOI: 10.1016/j.neo.2022.100835] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/15/2022] [Accepted: 08/23/2022] [Indexed: 11/06/2022]
Abstract
Peptidylarginine deiminase 4 (PAD4), a Ca2+-dependent enzyme, catalyzes the conversion of arginine to citrulline and has been strongly associated with many malignant tumors. However, the molecular mechanisms of PAD4 in the development and progression of colorectal cancer (CRC) remain unclearly defined. In our study, PAD4 expression was increased in CRC tissues and cells, and was closely related to tumor size, lymph node metastasis. Moreover, the transcription factor KLF9 directly bound to PADI4 gene promoter, leading to overexpression of PAD4 in CRC cells, which augmented cell growth and migration. We revealed that PAD4 interacted with and citrullinated glycogen synthase kinase-3β (GSK3β) in CRC cells, and GSK3β Arg-344 was the dominating PAD4-citrullination site. Furthermore, IgL2 and catalytic domains of PAD4 directly bound to the kinase domain of GSK3β in CRC cells. Mechanistically, PAD4 promoted the transport of GSK3β from the cytoplasm to the nucleus, thereby increasing the ubiquitin-dependent proteasome degradation of nuclear cyclin-dependent kinase inhibitor 1 (CDKN1A). Our study is the first to reveal the details of a critical PAD4/GSK3β/CDKN1A signaling axis for CRC progression, and provides evidence that PAD4 is a potential diagnosis biomarker and therapeutic target in CRC.
Collapse
Affiliation(s)
- Xiaonuan Luo
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Shanshan Chang
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Siyu Xiao
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Yin Peng
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Yuli Gao
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Fan Hu
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Jianxue Liang
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Yidan Xu
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Kaining Du
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Yang Chen
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Jiequan Qin
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Stephen J Meltzer
- Department of Medicine/GI Division, Johns Hopkins University School of Medicine and Sidney Ki-mmel Comprehensive Cancer Center, Baltimore, MD, USA
| | - Shiqi Deng
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Xianling Feng
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Xinmin Fan
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Gangqiang Hou
- Department of Medical Image Center, Kangning Hospital of Shenzhen, Shenzhen, Guangdong Province, People's Republic of China
| | - Zhe Jin
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China
| | - Xiaojing Zhang
- Guangdong Provincial Key Laboratory of Genome Stability and Disease Prevention and Regional Immunity and Diseases, Department of Pathology, Shenzhen University School of Medicine, Shenzhen, Guangdong, People's Republic of China.
| |
Collapse
|
38
|
Qiao Y, Wang B, Yan Y, Niu L. Long noncoding RNA ST8SIA6-AS1 promotes cell proliferation and metastasis in triple-negative breast cancer by targeting miR-145-5p/CDCA3 to inactivate the p53/p21 signaling pathway. ENVIRONMENTAL TOXICOLOGY 2022; 37:2398-2411. [PMID: 35730485 DOI: 10.1002/tox.23605] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/08/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC), the most aggressive subtype of breast cancer, always exhibits a poor prognosis due to high risk of early recurrence and distant metastasis. Long noncoding RNAs (lncRNAs) have been reported as crucial regulators in breast cancer. However, the functions and action mechanisms of lncRNA ST8SIA6-AS1 in TNBC are largely unknown. METHODS Quantitative real-time PCR and western blot assays were used to measure the expression levels of different genes and proteins. Cell proliferation ability was monitored by CCK-8, colony forming and flow cytometry assays. Wound healing and transwell assays were performed to evaluate cell migration and invasion. The regulatory mechanisms of ST8SIA6-AS1 in TNBC were confirmed by dual luciferase reporter and RIP assays. A mouse xenograft model was established to investigate the role of ST8SIA6-AS1 in TNBC tumor growth. RESULTS ST8SIA6-AS1 displayed a higher expression in TNBC cells. Silencing ST8SIA6-AS1 impaired cell proliferation, cell cycle progression, migration, and invasion in vitro, and slowed tumor growth in vivo. Mechanistically, ST8SIA6-AS1 could facilitate the expression of its target CDCA3 (cell division cycle associated protein 3) and inactivate the p53/p21 signaling by inhibiting miR-145-5p. Moreover, miR-145-5p exerted a tumor-suppressive activity by targeting CDCA3. The tumor-suppressive effects induced by ST8SIA6-AS1 knockdown were abated by the down-regulation of miR-145-5p or the up-regulation of CDCA3. CONCLUSION ST8SIA6-AS1 exerts an oncogenic role in TNBC by interacting with miR-145-5p to up-regulate CDCA3 expression and inactivate the p53/p21 signaling, highlighting ST8SIA6-AS1 as a promising molecular target to combat TNBC.
Collapse
Affiliation(s)
- Yan Qiao
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bin Wang
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yu Yan
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ligang Niu
- Department of Breast Surgery, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
39
|
Xu Q, Li J, Wu Y, Zhou W, Xu Z. Colorectal Cancer Chemotherapy Drug Bevacizumab May Induce Muscle Atrophy Through CDKN1A and TIMP4. Front Oncol 2022; 12:897495. [PMID: 35847900 PMCID: PMC9283830 DOI: 10.3389/fonc.2022.897495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/04/2022] [Indexed: 11/21/2022] Open
Abstract
The muscle in the organism has the function of regulating metabolism. Long-term muscle inactivity or the occurrence of chronic inflammatory diseases are easy to induce muscle atrophy. Bevacizumab is an antiangiogenic drug that prevents the formation of neovascularization by inhibiting the activation of VEGF signaling pathway. It is used in the first-line treatment of many cancers in clinic. Studies have shown that the use of bevacizumab in the treatment of tumors can cause muscle mass loss and may induce muscle atrophy. Based on bioinformatics analysis, this study sought the relationship and influence mechanism between bevacizumab and muscle atrophy. The differences of gene and sample expression between bevacizumab treated group and control group were studied by RNA sequencing. WGCNA is used to find gene modules related to bevacizumab administration and explore biological functions through metascape. Differential analysis was used to analyze the difference of gene expression between the administration group and the control group in different muscle tissues. The key genes timp4 and CDKN1A were obtained through Venn diagram, and then GSEA was used to explore their biological functions in RNA sequencing data and geo chip data. This study studied the role of bevacizumab in muscle through the above methods, preliminarily determined that timp4 and CDKN1A may be related to muscle atrophy, and further explored their functional mechanism in bevacizumab myotoxicity.
Collapse
|
40
|
Kucherlapati MH. Co-expression patterns explain how a basic transcriptional role for MYC modulates Wnt and MAPK pathways in colon and lung adenocarcinomas. Cell Cycle 2022; 21:1619-1638. [PMID: 35438040 PMCID: PMC9291661 DOI: 10.1080/15384101.2022.2060454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
A subset of proliferation genes that are associated with origin licensing, firing, and DNA synthesis has been compared to known drivers of colon (COAD) and lung (LUAD) adenocarcinomas using Spearman's rank correlation coefficients. The frequency with which APC, CTNNB1, KRAS, MYC, Braf, TP53, Rb1, EGFR, and cell cycle components have direct or indirect co-expression with the proliferation factors permits identification of their expression relative to the G1-S phase of the cell cycle. Here, adenomatous polyposis coli (APC), a negative regulator of Wnt signaling known to function through MYC, indirectly co-expresses at the same frequency as proliferation genes in both COAD and LUAD, consistent with M phase expression. However, APC is indirectly co-expressed with MYC and is found mutated only in COAD. MYC is thought to function at the interface of transcription and replication, acting through the SWI/SNF chromatin remodeling complex, and increased or decreased expression of MYC can induce or repress tumorigenesis, respectively. These data suggest that transcription of APC during the M phase with low MYC co-expression contributes by an unknown mechanism to APC mutations and Wnt pathway deregulation in COAD and that upper and lower limits of MYC expression, enforced by the cell cycle, may influence cancer differentially. Other Wnt signaling components co-expressed in the low MYC context in COAD also have significantly higher mutation frequencies, supporting the hypothesis. Additionally, Braf is found here to have direct co-expression with multiple proliferation factors in non-EGFR activated LUAD, and EGFR-activated LUAD are completely deregulated with respect to E2F(s) 4/5/6 expression, potentially explaining the low proliferation rates seen in LUAD.
Collapse
Affiliation(s)
- Melanie Haas Kucherlapati
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, USA.,Department of Medicine, Division of Genetics, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
41
|
Fasano C, Lepore Signorile M, De Marco K, Forte G, Sanese P, Grossi V, Simone C. Identifying novel SMYD3 interactors on the trail of cancer hallmarks. Comput Struct Biotechnol J 2022; 20:1860-1875. [PMID: 35495117 PMCID: PMC9039736 DOI: 10.1016/j.csbj.2022.03.037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 12/30/2022] Open
Abstract
SMYD3 overexpression in several human cancers highlights its crucial role in carcinogenesis. Nonetheless, SMYD3 specific activity in cancer development and progression is currently under debate. Taking advantage of a library of rare tripeptides, which we first tested for their in vitro binding affinity to SMYD3 and then used as in silico probes, we recently identified BRCA2, ATM, and CHK2 as direct SMYD3 interactors. To gain insight into novel SMYD3 cancer-related roles, here we performed a comprehensive in silico analysis to cluster all potential SMYD3-interacting proteins identified by screening the human proteome for the previously tested tripeptides, based on their involvement in cancer hallmarks. Remarkably, we identified mTOR, BLM, MET, AMPK, and p130 as new SMYD3 interactors implicated in cancer processes. Further studies are needed to characterize the functional mechanisms underlying these interactions. Still, these findings could be useful to devise novel therapeutic strategies based on the combined inhibition of SMYD3 and its newly identified molecular partners. Of note, our in silico methodology may be useful to search for unidentified interactors of other proteins of interest.
Collapse
Key Words
- AMPK, 5′AMP-activated protein kinase
- BLM, Bloom syndrome protein
- CRC, colorectal cancer
- EMT, epithelial-mesenchymal transition
- GC, gastric cancer
- Gastrointestinal cancer cell lines
- H3K4, histone H3 lysine 4
- H4K5, histone H4 lysine 5
- HCC, hepatocellular carcinoma
- HGF, hepatocyte growth factor
- Hallmarks of cancer
- In silico tripeptide screening
- PC, pancreatic cancer
- PPIs, protein–protein interactions
- RB, retinoblastoma protein
- SMYD3
- SMYD3 interactome
- SMYD3i, SMYD3 inhibitor
- UCEC, uterine corpus endometrial carcinoma
Collapse
Affiliation(s)
- Candida Fasano
- Medical Genetics, National Institute for Gastroenterology, IRCCS ‘S. de Bellis’ Research Hospital, Castellana Grotte (Ba), Italy
| | - Martina Lepore Signorile
- Medical Genetics, National Institute for Gastroenterology, IRCCS ‘S. de Bellis’ Research Hospital, Castellana Grotte (Ba), Italy
| | - Katia De Marco
- Medical Genetics, National Institute for Gastroenterology, IRCCS ‘S. de Bellis’ Research Hospital, Castellana Grotte (Ba), Italy
| | - Giovanna Forte
- Medical Genetics, National Institute for Gastroenterology, IRCCS ‘S. de Bellis’ Research Hospital, Castellana Grotte (Ba), Italy
| | - Paola Sanese
- Medical Genetics, National Institute for Gastroenterology, IRCCS ‘S. de Bellis’ Research Hospital, Castellana Grotte (Ba), Italy
| | - Valentina Grossi
- Medical Genetics, National Institute for Gastroenterology, IRCCS ‘S. de Bellis’ Research Hospital, Castellana Grotte (Ba), Italy
| | - Cristiano Simone
- Medical Genetics, National Institute for Gastroenterology, IRCCS ‘S. de Bellis’ Research Hospital, Castellana Grotte (Ba), Italy
- Medical Genetics, Department of Biomedical Sciences and Human Oncology (DIMO), University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
42
|
Nong HB, Zhang YN, Bai YG, Zhang Q, Liu MF, Zhou Q, Shi ZH, Zeng GF, Zong SH. Adapalene Inhibits Prostate Cancer Cell Proliferation In Vitro and In Vivo by Inducing DNA Damage, S-phase Cell Cycle Arrest, and Apoptosis. Front Pharmacol 2022; 13:801624. [PMID: 35273495 PMCID: PMC8902295 DOI: 10.3389/fphar.2022.801624] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 02/07/2022] [Indexed: 12/25/2022] Open
Abstract
Aims: Prostate cancer is a well-known aggressive malignant tumor in men with a high metastasis rate and poor prognosis. Adapalene (ADA) is a third-generation synthetic retinoid with anticancer properties. We investigated the anti-tumor activity and molecular mechanisms of ADA in the RM-1 prostate cancer cell line in vivo and in vitro. Methods: The effects of ADA on cell proliferation were estimated using the CCK-8 and colony formation assays. The wound-healing assay and the Transwell assay were employed to examine the migratory capacity and invasiveness of the cells. Flow cytometry was utilized to evaluate the cell cycle and apoptosis, and Western blotting analysis was used to assess the expression of the associated proteins. Micro-CT, histomorphological, and immunohistochemical staining were used to assess the effects of ADA on bone tissue structure and tumor growth in a mouse model of prostate cancer bone metastasis. Result: ADA dramatically inhibited cell proliferation, migration, invasiveness, and induced S-phase arrest and apoptosis. ADA also regulated the expression of S-phase associated proteins and elevated the levels of DNA damage markers, p53, and p21 after ADA treatment, suggesting that the anti-tumor effect of ADA manifests through the DNA damage/p53 pathway. Furthermore, we observed that ADA could effectively inhibited tumor growth and bone destruction in mice. Conclusion: ADA inhibited prostate cancer cell proliferation, elicited apoptosis, and arrested the cell cycle in the S-phase. ADA also slowed the rate of tumor growth and bone destruction in vitro. Overall, our results suggest that ADA may be a potential treatment against prostate cancer.
Collapse
Affiliation(s)
- Hai-Bin Nong
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China
| | - Ya-Nan Zhang
- Collaborative Innovation Center of Guangxi Biological Medicine, Guangxi Medical University, Nanning, China
| | - Yi-Guang Bai
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China.,Department of Orthopaedics, Nanchong Central Hospital, The Second Clinical Institute of North Sichuan Medical College, Nanchong, China
| | - Qiong Zhang
- Department of Nutrition and Food Hygiene, College of Public Hygiene of Guangxi Medical University, Nanning, China
| | - Ming-Fu Liu
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China
| | - Quan Zhou
- Collaborative Innovation Center of Guangxi Biological Medicine, Guangxi Medical University, Nanning, China
| | - Zhuo-Hua Shi
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China
| | - Gao-Feng Zeng
- Department of Nutrition and Food Hygiene, College of Public Hygiene of Guangxi Medical University, Nanning, China
| | - Shao-Hui Zong
- Department of Spine Osteopathia, The First Affiliated Hospital of Guangxi Medical University, Guangxi Medical University, Nanning, China.,Research Centre for Regenerative Medicine and Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
| |
Collapse
|
43
|
Zhao T, Dong F, Hu X, Xu Y, Wei W, Liu R, Yu F, Fang W, Shen Y, Zhang Z. Dynamic tracking of p21 mRNA in living cells by sticky-flares for the visual evaluation of the tumor treatment effect. NANOSCALE 2022; 14:1733-1741. [PMID: 34985067 DOI: 10.1039/d1nr05418j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Monitoring the expression level of the intracellular tumor suppressor gene p21 mRNA is essential to reveal the progress and prognosis of a tumor. Methods widely reported for the detection of p21 mRNA are the real-time polymerase chain reaction and Northern blot. However, these methods only detect mRNA in vitro and cannot realize the in situ monitoring of the p21 mRNA expression level in living cells. Additionally, the sensor for the real-time tracking and monitoring of the p21 mRNA location without the help of a transfection reagent in living cells is still limited. Herein, a novel sticky-flare was constructed for the dynamic monitoring of the temporal and spatial variations of p21 mRNA in living cells. The nanoprobe consists of AuNP, a recognition sequence modified with Cy5, and a thiol-modified DNA sequence. The thiol oligonucleotide strand could act partially complementary to the Cy5-modified oligonucleotide strand to form a double-stranded DNA linked to AuNP, resulting in the fluorescence quenching of Cy5 due to the energy transfer from Cy5 to the gold sphere. In the presence of p21 mRNA, the Cy5-modified recognition nucleic acid specifically bound to p21 mRNA to form a more stable double chain and escaped from the gold sphere, leading to the recovery of red fluorescence. Our method is better than other methods in its ability to quantify the spatial distribution and expression level of p21 mRNA in living cells and discriminate various tumor cell lines with different p21 mRNA expression levels by the naked eye. Particularly, the sticky-flare probe used in this assay could allow the visual evaluation of the tumor treatment effect and the determination of the tumor progression stage by enabling monitoring of the relative expression level of p21 mRNA in tumor cells after cisplatin treatment. The method reported here is accurate, reliable and needs no auxiliary tools (transfection reagent), and thereby provides a promising route for the prognostic evaluation and drug development of cancer treatment in the future.
Collapse
Affiliation(s)
- Tingting Zhao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China 230032.
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, Anhui, China
- Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, Anhui 230032, China
| | - Fengqi Dong
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China 230032.
| | - Xinlong Hu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China 230032.
| | - Yanli Xu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China 230032.
| | - Wenmei Wei
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China 230032.
| | - Rui Liu
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China 230032.
| | - Fang Yu
- School of Pharmacy, Anhui Medical University, Hefei, Anhui 230032, China
| | - Weijun Fang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China 230032.
| | - Yuxian Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China 230032.
- Biopharmaceutical Research Institute, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Zhongping Zhang
- School of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| |
Collapse
|
44
|
Seyedabadi N, Shoushtari SY, Soofi A, Arabpour J, Shams Z, Akhavan H, Hosseini-Asl S. Molecular profiles of predictive biomarkers for platinum-based chemotherapy in Non-Small Cell Lung Cancer (NSCLC). Meta Gene 2022. [DOI: 10.1016/j.mgene.2021.100993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
45
|
Orendain-Jaime EN, Serafín-Higuera N, Leija-Montoya AG, Martínez-Coronilla G, Moreno-Trujillo M, Sánchez-Muñoz F, Ruiz-Hernández A, González-Ramírez J. MicroRNAs Encoded by Virus and Small RNAs Encoded by Bacteria Associated with Oncogenic Processes. Processes (Basel) 2021; 9:2234. [DOI: 10.3390/pr9122234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Cancer is a deadly disease and, globally, represents the second leading cause of death in the world. Although it is a disease where several factors can help its development, virus induced infections have been associated with different types of neoplasms. However, in bacterial infections, their participation is not known for certain. Among the proposed approaches to oncogenesis risks in different infections are microRNAs (miRNAs). These are small molecules composed of RNA with a length of 22 nucleotides capable of regulating gene expression by directing protein complexes that suppress the untranslated region of mRNA. These miRNAs and other recently described, such as small RNAs (sRNAs), are deregulated in the development of cancer, becoming promising biomarkers. Thus, resulting in a study possibility, searching for new tools with diagnostic and therapeutic approaches to multiple oncological diseases, as miRNAs and sRNAs are main players of gene expression and host–infectious agent interaction. Moreover, sRNAs with limited complementarity are similar to eukaryotic miRNAs in their ability to modulate the activity and stability of multiple mRNAs. Here, we will describe the regulatory RNAs from viruses that have been associated with cancer and how sRNAs in bacteria can be related to this disease.
Collapse
Affiliation(s)
- Erika Nallely Orendain-Jaime
- Facultad de Enfermería, Universidad Autónoma de Baja California, Av. Álvaro Obregón y Calle “G” S/N, Col. Nueva, Mexicali 21100, BC, Mexico
| | - Nicolás Serafín-Higuera
- Facultad de Odontología, Universidad Autónoma de Baja California, Zotoluca s/n, Fracc. Calafia, Mexicali 21040, BC, Mexico
| | - Ana Gabriela Leija-Montoya
- Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Centro Cívico, Mexicali 21000, BC, Mexico
| | - Gustavo Martínez-Coronilla
- Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Centro Cívico, Mexicali 21000, BC, Mexico
| | - Misael Moreno-Trujillo
- Departamento de Cuidados Intensivos, Hospital de Gineco-Pediatría #31, Instituto Mexicano del Seguro Social, Av. Sebastián Lerdo de Tejada S/N, Col. Nueva, Mexicali 21100, BC, Mexico
| | - Fausto Sánchez-Muñoz
- Departamento de Inmunología, Instituto Nacional de Cardiología, Juan Badiano No. 1, Col. Sección XVI, Tlalpan 140080, DF, Mexico
| | - Armando Ruiz-Hernández
- Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Centro Cívico, Mexicali 21000, BC, Mexico
| | - Javier González-Ramírez
- Facultad de Enfermería, Universidad Autónoma de Baja California, Av. Álvaro Obregón y Calle “G” S/N, Col. Nueva, Mexicali 21100, BC, Mexico
| |
Collapse
|
46
|
Luo D, Yu C, Yu J, Su C, Li S, Liang P. p53-mediated G1 arrest requires the induction of both p21 and Killin in human colon cancer cells. Cell Cycle 2021; 21:140-151. [PMID: 34878965 DOI: 10.1080/15384101.2021.2014249] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The main biological function of the tumor suppressor p53 is to control cell cycle arrest and apoptosis. Among the p53 target genes, p21 has been identified as a key player in p53-mediated G1 arrest, while Killin, via its high DNA binding affinity, has been implicated in S and G2/M arrest. However, whether Killin is involved in G1 arrest remains unclear. This research aimed to explore the role of Killin in p53-mediated G1 arrest. Knockout of killin in human colorectal cells led to a dramatic decrease in p53-mediated G1 arrest upon DNA damage. Moreover, double knockout of killin and p21 completely abolished G1 arrest, similar to that of p53 knockout cells. We further showed that Killin could upregulate p21 protein expression independent of p53 via ubiquitination pathways. Immunoprecipitation studies indicated that Killin may directly bind to proteasome subunits, thereby disrupting proteasomal degradation of p21. Together, these results demonstrate that Killin is involved in multiple cell cycle checkpoint controls, including p53-mediated G1 arrest.
Collapse
Affiliation(s)
- Dan Luo
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
| | - Chune Yu
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jing Yu
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chao Su
- Laboratory of Tumor Targeted and Immune Therapy, Clinical Research Center for Breast, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shun Li
- Department of Immunology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, Sichuan, China
| | - Peng Liang
- Clover Biopharmaceuticals, Chengdu, Sichuan, China
| |
Collapse
|
47
|
Pu Y, Lei M, Chen Y, Huang Y, Zhang L, Chen J, Zhang Y, Shao X, Liu L, Chen J. Hey1 promotes migration and invasion of melanoma cells via GRB2/PI3K/AKT signaling cascade. J Cancer 2021; 12:6979-6988. [PMID: 34729100 PMCID: PMC8558658 DOI: 10.7150/jca.60974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 09/18/2021] [Indexed: 11/05/2022] Open
Abstract
Increasing evidence indicates that Notch signaling regulates multiple intracellular biological processes in malignant melanoma. Whereas how Notch signaling is transduced to influence melanoma cell behaviors remains largely elusive. Here we show that the Notch signaling downstream target Hey1 promotes migration and invasion of melanoma cells via the GRB2/PI3K/AKT pathway. First, bioinformatics tools, immunohistochemistry, and Western blotting analysis showed that the expression of Hey1 is increased in melanoma. Then, both in vivo and in vitro experiments showed that Hey1 promotes the malignant behaviour of the melanoma cells. High-throughput RNA-sequencing analysis revealed that inhibition of Hey1 results in decreased GRB2 expression in melanoma cells. Last, functional experiments confirmed that Hey1 positively regulates GRB2/PI3K/AKT pathway to influence migration and invasion of melanoma cells. In summary, our results suggest that Hey1 promotes the invasion and metastasis of melanoma cells by regulating GRB2/PI3K/AKT pathway. Our study provides potential therapeutics in tumor biology.
Collapse
Affiliation(s)
- Yihuan Pu
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Mingxing Lei
- 111 Project Laboratory of Biomechanics and Tissue Repair, College of Bioengineering, Chongqing University, Chongqing 400044, China.,Key Laboratory of Biorheological Science and Technology of the Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Yangmei Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yanran Huang
- Department of Orthopaedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Lingzhao Zhang
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jiayi Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yujie Zhang
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xinyi Shao
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Lin Liu
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Jin Chen
- Department of Dermatology, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
48
|
Wang Y, Chu F, Lin J, Li Y, Johnson N, Zhang J, Gai C, Su Z, Cheng H, Wang L, Ding X. Erianin, the main active ingredient of Dendrobium chrysotoxum Lindl, inhibits precancerous lesions of gastric cancer (PLGC) through suppression of the HRAS-PI3K-AKT signaling pathway as revealed by network pharmacology and in vitro experimental verification. JOURNAL OF ETHNOPHARMACOLOGY 2021; 279:114399. [PMID: 34246740 DOI: 10.1016/j.jep.2021.114399] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 06/20/2021] [Accepted: 07/05/2021] [Indexed: 05/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Dendrobium chrysotoxum Lindl, a well-known traditional Chinese medicinal herb used in the treatment of gastric disease, is distinguished as the first of the "nine immortal grasses". Dendrobium chrysotoxum Lindl and the traditional Chinese medicine prescriptions containing Dendrobium chrysotoxum Lindl are often prescribed clinically to treat chronic gastritis and precancerous lesions of gastric cancer (PLGC), showing favorable clinical effects and medicinal value in the prevention of gastric cancer. However, the effective ingredients and pharmacological mechanisms through which Dendrobium chrysotoxum Lindl prevents and treats PLGC have not been adequately identified or interpreted. AIM OF THE STUDY The present study aimed to evaluate the effective ingredients and pharmacological mechanisms of Dendrobium chrysotoxum Lindl in the prevention and treatment of PLGC using network pharmacology. In addition, in vitro verification was performed to evaluate the mechanism of action of Erianin, the main active ingredient in Dendrobium chrysotoxum Lindl, providing experimental evidence for the clinical use of Dendrobium chrysotoxum Lindl in the treatment of PLGC. MATERIALS AND METHODS Using network pharmacology methods, the main ingredients in Dendrobium chrysotoxum Lindl were screened from the ETCM, BATMAN-TCM, and TCMID databases, and their potential targets were predicted using the Swiss Target Prediction platform. The targets related to PLGC were retrieved through the GeneCard database, and the targets common to the main ingredients of Dendrobium chrysotoxum Lindl and PLGC were analyzed. The protein-protein interaction (PPI) network was obtained via the STRING database and analyzed visually using Cytoscape 3.7.2. The underlying mechanisms of the common targets identified through gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis were analyzed using DAVID online. The "component-target-pathway" networks of Dendrobium chrysotoxum Lindl and Erianin were visually constructed by Cytoscape 3.7.2. The biological activity evaluation of Erianin's effect on PLGC was carried out using MC cell lines, the PLGC cell model established using MNNG to induce damage in normal gastric mucosal epithelial cell (GES-1). After the intervention of different concentrations of Erianin, MC cell viability was explored using the MTT assays, cell migration was determined by wound healing assays, the cell cycle and apoptosis were analyzed using flow cytometry, and the expression levels of related proteins and their phosphorylation in the HRAS-PI3K-AKT signaling pathway were detected by Western blot. RESULTS The "component-target-pathway" network constructed in this study showed 37 active ingredients from Dendrobium chrysotoxum Lindl and 142 overlapping targets related to both Dendrobium chrysotoxum Lindl and PLGC. The targets were associated with a variety of cancer-related signaling pathways, including Pathways in cancer, PI3K-Akt signaling pathway, Rap1 signaling pathway, Focal adhesion, Ras signaling pathway, and MAPK signaling pathway. Notably, the network showed that Erianin, the primary active ingredient from Dendrobium chrysotoxum Lindl and the component associated with the most targets, could regulate Pathways in cancer, PI3K-AKT signaling pathway, Focal adhesion, Rap1 signaling pathway, cell cycle, and RAS signaling pathway in the treatment of PLGC. Verification through in vitro experiments found that Erianin can significantly inhibit MC cell viability, inhibit cell migration, block the cell cycle in the G2/M phase, and induce cell apoptosis in a dose-dependent manner. The results of the Western blot experiment further showed that Erianin can significantly decrease the protein expression levels of HRAS, AKT, p-AKT, MDM2, Cyclin D1, and p-Gsk3β, and increase the protein expression level of p21, which suggests that Erianin can treat PLGC by regulating the HRAS-PI3K-AKT signaling pathway. CONCLUSION This study explained the positive characteristics of multi-component, multi-target, and multi-approach intervention with Dendrobium chrysotoxum Lindl in the treatment of PLGC. Our results suggest that Erianin may be a promising candidate in the development of prevention and treatment methods for PLGC. This study provided experimental evidence for the clinical use of Dendrobium chrysotoxum Lindl to treat PLGC and prevent gastric cancer.
Collapse
Affiliation(s)
- Yan Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fuhao Chu
- School of Chinese Materia Medicine, Beijing University of Chinese Medicine, Beijing, China; Institute of Regulatory Science for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jie Lin
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuan Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Nadia Johnson
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jianglan Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Cong Gai
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zeqi Su
- Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Hongjie Cheng
- Fangshan Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Linheng Wang
- Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China.
| | - Xia Ding
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China.
| |
Collapse
|
49
|
Wu Y, Xiang Q, Lv X, Xiang X, Feng Z, Tian S, Tang J, Xiang T, Gong J. C2orf40 inhibits hepatocellular carcinoma through interaction with UBR5. J Gastroenterol Hepatol 2021; 36:2581-2591. [PMID: 33576531 DOI: 10.1111/jgh.15441] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND AND AIM Hepatocellular carcinoma (HCC) urgently needs a marker for early diagnosis and targeted treatment. C2orf40 has been identified as a tumor suppressor gene in many cancers. However, the precise role and regulatory mechanism by C2orf40 contribute to HCC remain elusive and merit exploration. METHODS Reverse-transcription PCR, quantitative real-time PCR, and methylation-specific PCR were used to detect expression and methylation of C2orf40 in HCC cell lines or tissues. The effects of C2orf40 in liver cancer cells were examined via colony formation, CCK8, transwell, and flow cytometric assays. The effect of C2orf40 on tumorigenesis in vivo was determined by xenografts and immunohistochemical analysis. Western blot, indirect immunofluorescence, Co-IP, and cycloheximide (CHX) were used to further investigate the potential mechanism of C2orf40. RESULTS The down-regulation of C2orf40 in hepatocellular cancer tissue samples is often related to the degree of methylation of its promoter CpG. The recovery of C2orf40 expression in HCC cell lines can induce G0/G1 phase arrest and apoptosis and also inhibit cell migration and invasion by reversing the epithelial-mesenchymal transition (EMT) process, both in vivo and in vitro. In addition, C2orf40 can increase the expression of p21 through interaction with UBR5. CONCLUSIONS Low expression levels of C2orf40 are related to the hypermethylation of its promoter. C2orf40 can inhibit HCC through UBR5-dependent or p53-independent mechanisms. C2orf40 may be a diagnostic biomarker and a potential therapeutic target in HCC.
Collapse
Affiliation(s)
- Yue Wu
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qin Xiang
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoqin Lv
- Laboratory Animal Center, Chongqing Medical University, Chongqing, China
| | - Xia Xiang
- Laboratory Animal Center, Chongqing Medical University, Chongqing, China
| | - Zhihao Feng
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Shaorong Tian
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jun Tang
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tingxiu Xiang
- Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jianping Gong
- Department of Hepatobiliary Surgery, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
50
|
Zhang H, Zhang H, Cao S, Sui C, Song Y, Zhao Y, Liu S. Knockout of p53 leads to a significant increase in ALV-J replication. Poult Sci 2021; 100:101374. [PMID: 34411963 PMCID: PMC8377548 DOI: 10.1016/j.psj.2021.101374] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 01/27/2023] Open
Abstract
Avian leukemia is a common malignant disease, and and its regulatory mechanism is complex. As the most extensive tumor suppressor gene in cancer research, p53 can control multiple functions such as that of DNA repair, induction of apoptosis, cell cycle arrest and so on. In view of the diversity associated with varied function of p53, this study analyzed the possible effect of gene on ALV-J replication and its regulatory mechanism. We successfully constructed a p53 knockout DF-1 cell line (p53-KO-DF-1 cells) by using CRISPR-Cas9 system. When ALV-J was co-infected with DF-1 and p53-KO-DF-1 cells, it was found that compared with wild-type DF-1 cells, the viral copy number of p53-KO-DF-1 cells infected with ALV-J increased significantly 48 h after infection, whereas the expression of innate immune factors such as Il-2,TNF- α, IFN- γ and MX1 decreased significantly. Detection of p53-related tumor genes indicated that after p53 deletion, the expression of c-myc, bcl-2, and bak increased significantly, while the expression of p21 and p27 was noted to be decreased. The cell cycle distribution and apoptosis of the 2 cell lines was detected by flow cytometry analysis. The results showed that p53 knockout prevented G0/G1 and G2 M phase arrest induced by ALV-J, and substantially decreased the rate of apoptosis. Overall, the results indicated that p53 gene can effectively inhibits ALV-J replication by regulating important cellular processes, and p53 gene related proteins involved in cell cycle activity may function as the key targets for the prevention and treatment of ALV-J.
Collapse
Affiliation(s)
- Hui Zhang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian, Shandong 271018, China
| | - Huixia Zhang
- School of Chemical Engineering and Technology, Tianjin University, No. 92, Weijin Road, Nankai District, Tianjin 300072, China
| | - Shengliang Cao
- College of Agriculture, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Chao Sui
- Key Laboratory of Infection and Immunity of Shandong Province, Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Yinuo Song
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian, Shandong 271018, China
| | - Yiran Zhao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian, Shandong 271018, China
| | - Sidang Liu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, 61 Daizong Street, Taian, Shandong 271018, China.
| |
Collapse
|