1
|
Zou Y, Zeng X, Wang K, Ye J, Zhao Y, Jin H, Zhang J, Cheng G, Nie X. CD271 regulates osteogenic differentiation of ectomesenchymal stem cells via the RhoA/ROCK signaling pathway. Int Immunopharmacol 2025; 148:114068. [PMID: 39826451 DOI: 10.1016/j.intimp.2025.114068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 12/28/2024] [Accepted: 01/07/2025] [Indexed: 01/22/2025]
Abstract
The low-affinity neurotrophic receptor CD271 plays a crucial role in the osteogenic differentiation of ectomesenchyme stem cells (EMSCs), which is essential for the development and regeneration of jaw bones. This study aimed to investigate the influence of CD271 on EMSCs osteogenic differentiation and to uncover the underlying mechanisms. CD271-deficient mice exhibited delayed mandibular bone development, with a significantly reduction in the expression of osteogenic makers such as ALP, Col-1, OPN, and RUNX2. Single-cell sequencing further proved that the RhoA/ROCK signaling pathway was downregulated in CD271ExIII-/- EMSCs, highlighting the potential role of CD271 in regulating the osteogenic differentiation of EMSCs. After treatment with Pentanoic Acid or Y27632, the protein expression of Runx2 and Col-1 in EMSCs was either enhanced or reduced, respectively. These findings suggest that CD271 facilitates the osteogenic differentiation of EMSCs in vitro and contributes to mandibular alveolar bone formation in vivo through activation of the RhoA/ROCK signaling pathway.
Collapse
Affiliation(s)
- Yanhui Zou
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Xiaoke Zeng
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Keyu Wang
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Jiaqi Ye
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Yeke Zhao
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Haoyang Jin
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Jiajun Zhang
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Gu Cheng
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China.
| | - Xin Nie
- School & Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
2
|
Zhao X, Yao M, Wang Y, Feng C, Yang Y, Tian L, Bao C, Li X, Zhu X, Zhang X. Neuroregulation during Bone Formation and Regeneration: Mechanisms and Strategies. ACS APPLIED MATERIALS & INTERFACES 2025; 17:7223-7250. [PMID: 39869030 DOI: 10.1021/acsami.4c16786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The skeleton is highly innervated by numerous nerve fibers. These nerve fibers, in addition to transmitting information within the bone and mediating bone sensations, play a crucial role in regulating bone tissue formation and regeneration. Traditional bone tissue engineering (BTE) often fails to achieve satisfactory outcomes when dealing with large-scale bone defects, which is frequently related to the lack of effective reconstruction of the neurovascular network. In recent years, increasing research has revealed the critical role of nerves in bone metabolism. Nerve fibers regulate bone cells through neurotransmitters, neuropeptides, and peripheral glial cells. Furthermore, nerves also coordinate with the vascular and immune systems to jointly construct a microenvironment favorable for bone regeneration. As a signaling driver of bone formation, neuroregulation spans the entire process of bone physiological activities from the embryonic formation to postmaturity remodeling and repair. However, there is currently a lack of comprehensive summaries of these regulatory mechanisms. Therefore, this review sketches out the function of nerves during bone formation and regeneration. Then, we elaborate on the mechanisms of neurovascular coupling and neuromodulation of bone immunity. Finally, we discuss several novel strategies for neuro-bone tissue engineering (NBTE) based on neuroregulation of bone, focusing on the coordinated regeneration of nerve and bone tissue.
Collapse
Affiliation(s)
- Xiangrong Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu 610041, Sichuan, China
| | - Meilin Yao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuyi Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Cong Feng
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yuhan Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu 610041, Sichuan, China
| | - Luoqiang Tian
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Chongyun Bao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xiangfeng Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
3
|
de Sousa Moreira A, Lopes B, Sousa AC, Coelho A, Sousa P, Araújo A, Delgado E, Alvites R, Maurício AC. Stem Cell-Based Therapies for Glaucoma Treatment: A Review Bridging the Gap in Veterinary Patients. Int J Mol Sci 2024; 26:232. [PMID: 39796087 PMCID: PMC11719664 DOI: 10.3390/ijms26010232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Retinal diseases are characterized by progressive damage to retinal cells, leading to irreversible vision loss. Among these, glaucoma stands out as a multifactorial neurodegenerative disease involving elevated intraocular pressure, retinal ganglion cell apoptosis, and optic nerve damage, ultimately resulting in blindness in both humans and dogs. Stem cell-based therapies have emerged as a promising therapeutic option for such conditions due to their regenerative and neuroprotective potential. These therapies, particularly those based on mesenchymal stem cells, offer the potential to repair and protect retinal tissues through the bioactive molecules (growth factors, cytokines, chemokines) secreted, their secretome. However, research in this field, especially on the use of umbilical cord mesenchymal stem cells' secretome, remains sparse. Most clinical trials focus on human glaucomatous patients, leaving a significant gap in veterinary patients' application, especially in dogs, with additional research being needed to determine its usefulness in canine glaucoma treatment. Future studies should aim to evaluate these therapies across both human and veterinary contexts, broadening treatment possibilities for glaucoma.
Collapse
Affiliation(s)
- Alícia de Sousa Moreira
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto (UP), Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (A.d.S.M.); (B.L.); (A.C.S.); (A.C.); (P.S.); (R.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa (UL), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal;
| | - Bruna Lopes
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto (UP), Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (A.d.S.M.); (B.L.); (A.C.S.); (A.C.); (P.S.); (R.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa (UL), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal;
| | - Ana Catarina Sousa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto (UP), Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (A.d.S.M.); (B.L.); (A.C.S.); (A.C.); (P.S.); (R.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa (UL), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal;
| | - André Coelho
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto (UP), Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (A.d.S.M.); (B.L.); (A.C.S.); (A.C.); (P.S.); (R.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa (UL), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal;
| | - Patrícia Sousa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto (UP), Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (A.d.S.M.); (B.L.); (A.C.S.); (A.C.); (P.S.); (R.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa (UL), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal;
| | - Ana Araújo
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa (UL), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal;
| | - Esmeralda Delgado
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa (UL), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal;
- Centro de Investigação Interdisciplinar em Sanidade Animal (CIISA), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa (UL), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal
| | - Rui Alvites
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto (UP), Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (A.d.S.M.); (B.L.); (A.C.S.); (A.C.); (P.S.); (R.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa (UL), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal;
- Instituto Universitário de Ciências da Saúde (CESPU), Avenida Central de Gandra n° 1317, 4585-116 Paredes, Portugal
| | - Ana Colette Maurício
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto (UP), Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (A.d.S.M.); (B.L.); (A.C.S.); (A.C.); (P.S.); (R.A.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas de Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, n° 228, 4050-313 Porto, Portugal;
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), Faculdade de Medicina Veterinária (FMV), Universidade de Lisboa (UL), Avenida da Universidade Técnica, 1300-477 Lisboa, Portugal;
| |
Collapse
|
4
|
Lisboa MDO, Selenko AH, Hochuli AHD, Senegaglia AC, Fracaro L, Brofman PRS. The influence of fetal bovine serum concentration on stemness and neuronal differentiation markers in stem cells from human exfoliated deciduous teeth. Tissue Cell 2024; 91:102571. [PMID: 39353229 DOI: 10.1016/j.tice.2024.102571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/26/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
Dental Stem Cells (DSCs) from discarded teeth are a non-invasive and ethically favorable source with the potential for neurogenesis due to their ectodermal origin. Stem cells from human exfoliated deciduous teeth (SHED) are particularly promising due to their high differentiation potential and relative immaturity compared to other Mesenchymal Stromal Cells (MSCs). Markers like CD56 and CD271 are critical in identifying MSC subpopulations for therapeutic applications because of their roles in neurodevelopment and maintaining stemness. This study investigates how fetal bovine serum (FBS) concentrations affect the expression of CD56 and CD271 in SHED, influencing their stemness and neuronal differentiation potential. SHEDs were isolated from various donors, cultured, and characterized for MSC traits using markers such as CD14, CD19, CD29, CD34, CD45, CD73, CD90, CD105, CD56, and CD271. Culturing SHED in different FBS conditions (standard 15 %, reduced 1 % and 5 %, and FBS-free) showed that lower FBS concentrations increase CD271 and CD56 expression while maintaining the standard MSC immunophenotype. Importantly, the enhanced expression of these markers can be induced even after SHEDs have been expanded in standard FBS concentrations. These findings suggest that FBS concentration can optimize SHED culture conditions, enhancing their suitability for regenerative medicine and tissue engineering applications.
Collapse
Affiliation(s)
- Mateus de Oliveira Lisboa
- Core for Cell Technology, School of Medicine and Health Sciences - Pontifícia Universidade Católica do Paraná, Curitiba, Paraná 80215-901, Brazil; National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, 21941-599, Brazil.
| | - Ana Helena Selenko
- Core for Cell Technology, School of Medicine and Health Sciences - Pontifícia Universidade Católica do Paraná, Curitiba, Paraná 80215-901, Brazil; National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, 21941-599, Brazil
| | - Agner Henrique Dorigo Hochuli
- Core for Cell Technology, School of Medicine and Health Sciences - Pontifícia Universidade Católica do Paraná, Curitiba, Paraná 80215-901, Brazil; National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, 21941-599, Brazil
| | - Alexandra Cristina Senegaglia
- Core for Cell Technology, School of Medicine and Health Sciences - Pontifícia Universidade Católica do Paraná, Curitiba, Paraná 80215-901, Brazil; National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, 21941-599, Brazil
| | - Letícia Fracaro
- Core for Cell Technology, School of Medicine and Health Sciences - Pontifícia Universidade Católica do Paraná, Curitiba, Paraná 80215-901, Brazil; National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, 21941-599, Brazil.
| | - Paulo Roberto Slud Brofman
- Core for Cell Technology, School of Medicine and Health Sciences - Pontifícia Universidade Católica do Paraná, Curitiba, Paraná 80215-901, Brazil; National Institute of Science and Technology for Regenerative Medicine, INCT-REGENERA, 21941-599, Brazil
| |
Collapse
|
5
|
Prummel KD, Woods K, Kholmatov M, Schmitt EC, Vlachou EP, Poschmann G, Stühler K, Wehner R, Schmitz M, Winter S, Oelschlaegel U, Schwartz LS, Moura PL, Hellström-Lindberg E, Theobald M, Trowbridge JJ, Platzbecker U, Zaugg JB, Guezguez B. Inflammatory Mesenchymal Stromal Cells and IFN-responsive T cells are key mediators of human bone marrow niche remodeling in CHIP and MDS. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.27.625734. [PMID: 39651275 PMCID: PMC11623587 DOI: 10.1101/2024.11.27.625734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Somatic mutations in hematopoietic stem/progenitor cells (HSPCs) can lead to clonal hematopoiesis of indeterminate potential (CHIP), potentially progressing to myelodysplastic syndromes (MDS). Here, we investigated how CHIP and MDS remodel the human bone marrow (BM) niche relative to healthy elderly donors, using single cell and anatomical analyses in a large BM cohort. We found distinct inflammatory remodeling of the BM in CHIP and MDS. Furthermore, the stromal compartment progressively lost its HSPC-supportive adipogenic CXCL12-abundant reticular cells while an inflammatory mesenchymal stroma cell (iMSCs) population emerged in CHIP, which expanded in MDS. iMSCs exhibited distinct functional signatures in CHIP and MDS, retaining residual HSPC-support and angiogenic activity in MDS, corresponding with an increase in microvasculature in the MDS niche. Additionally, an IFN-responsive T cell population was linked to fueling inflammation in the stroma. Overall, these findings open new avenues for early intervention in hematological malignancies.
Collapse
|
6
|
Miteva M, Mihaylova Z, Mitev V, Aleksiev E, Stanimirov P, Praskova M, Dimitrova VS, Vasileva A, Calenic B, Constantinescu I, Perlea P, Ishkitiev N. A Review of Stem Cell Attributes Derived from the Oral Cavity. Int Dent J 2024; 74:1129-1141. [PMID: 38582718 PMCID: PMC11561491 DOI: 10.1016/j.identj.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/29/2024] [Accepted: 03/12/2024] [Indexed: 04/08/2024] Open
Abstract
Oral cavity stem cells (OCSCs) have been the focus of intense scientific efforts due to their accessibility and stem cell properties. The present work aims to compare the different characteristics of 6 types of dental stem cells derived from the oral cavity: dental pulp stem cells (DPSC), stem cells from human exfoliated deciduous teeth (SHED), periodontal ligament stem cells (PDLSC), stem cells from the apical papilla (SCAP), bone marrow mesenchymal stem cells (BMSC), and gingival mesenchymal stem cells (GMSC). Using immunofluorescence and real-time polymerase chain reaction techniques, we analysed the cells for stem cell, differentiation, adhesion, and extracellular matrix markers; the ability to proliferate in vitro; and multilineage differentiation potential. Markers such as vimentin, CD44, alkaline phosphatase, CD146, CD271, CD49f, Oct 3/4, Sox 9, FGF7, nestin, and BMP4 showed significant differences in expression levels, highlighting the heterogeneity and unique characteristics of each cell type. At the same time, we confirmed that all cell types successfully differentiated into osteogenic, chondrogenic, or adipose lineages, with different readiness. In conclusion, our study reveals the distinct properties and potential applications of various dental-derived stem cells. These findings contribute to a deeper understanding of OCSCs and their significance in future clinical applications.
Collapse
Affiliation(s)
- Marina Miteva
- Department of Chemistry and Biochemistry, Medical Faculty, Medical University Sofia, Bulgaria
| | - Zornitsa Mihaylova
- Department of Dental, Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Medical University Sofia, Bulgaria
| | - Vanyo Mitev
- Department of Chemistry and Biochemistry, Medical Faculty, Medical University Sofia, Bulgaria
| | - Evgeniy Aleksiev
- Department of Dental, Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Medical University Sofia, Bulgaria
| | - Pavel Stanimirov
- Department of Dental, Oral and Maxillofacial Surgery, Faculty of Dental Medicine, Medical University Sofia, Bulgaria
| | - Maria Praskova
- Department of Chemistry and Biochemistry, Medical Faculty, Medical University Sofia, Bulgaria
| | - Violeta S Dimitrova
- Department of Chemistry and Biochemistry, Medical Faculty, Medical University Sofia, Bulgaria
| | - Anelia Vasileva
- Department of Chemistry and Biochemistry, Medical Faculty, Medical University Sofia, Bulgaria
| | - Bogdan Calenic
- Centre for Immunogenetics and Virology, Fundeni Clinical Institute, University of Medicine and Farmacy "Carol Davila," Bucharest, Romania.
| | - Ileana Constantinescu
- Centre for Immunogenetics and Virology, Fundeni Clinical Institute, University of Medicine and Farmacy "Carol Davila," Bucharest, Romania
| | - Paula Perlea
- Department of Endodontics, UMF Carol Davila, Bucharest, Romania.
| | - Nikolay Ishkitiev
- Department of Chemistry and Biochemistry, Medical Faculty, Medical University Sofia, Bulgaria
| |
Collapse
|
7
|
Pal D, Das P, Roy S, Mukherjee P, Halder S, Ghosh D, Nandi SK. Recent trends of stem cell therapies in the management of orthopedic surgical challenges. Int J Surg 2024; 110:6330-6344. [PMID: 38716973 PMCID: PMC11487011 DOI: 10.1097/js9.0000000000001524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 04/14/2024] [Indexed: 10/20/2024]
Abstract
Emerged health-related problems especially with increasing population and with the wider occurrence of these issues have always put the utmost concern and led medicine to outgrow its usual mode of treatment, to achieve better outcomes. Orthopedic interventions are one of the most concerning hitches, requiring advancement in several issues, that show complications with conventional approaches. Advanced studies have been undertaken to address the issue, among which stem cell therapy emerged as a better area of growth. The capacity of the stem cells to renovate themselves and adapt into different cell types made it possible to implement its use as a regenerative slant. Harvesting the stem cells, particularly mesenchymal stem cells (MSCs) is easier and can be further grown in vitro . In this review, we have discussed orthopedic-related issues including bone defects and fractures, nonunions, ligament and tendon injuries, degenerative changes, and associated conditions, which require further approaches to execute better outcomes, and the advanced strategies that can be tagged along with various ways of application of MSCs. It aims to objectify the idea of stem cells, with a major focus on the application of MSCs from different sources in various orthopedic interventions. It also discusses the limitations, and future scopes for further approaches in the field of regenerative medicine. The involvement of MSCs may transition the procedures in orthopedic interventions from predominantly surgical substitution and reconstruction to bio-regeneration and prevention. Nevertheless, additional improvements and evaluations are required to explore the effectiveness and safety of mesenchymal stem cell treatment in orthopedic regenerative medicine.
Collapse
Affiliation(s)
| | - Pratik Das
- Department of Veterinary Surgery and Radiology
| | - Subhasis Roy
- Department of Veterinary Clinical Complex, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal
| | - Prasenjit Mukherjee
- Department of Veterinary Clinical Complex, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal
| | | | | | | |
Collapse
|
8
|
Aghazadeh S, Peng Q, Dardmeh F, Hjortdal JØ, Zachar V, Alipour H. Immunophenotypical Characterization of Limbal Mesenchymal Stromal Cell Subsets during In Vitro Expansion. Int J Mol Sci 2024; 25:8684. [PMID: 39201371 PMCID: PMC11354999 DOI: 10.3390/ijms25168684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
Limbal mesenchymal stromal cells (LMSCs) reside in the limbal niche, supporting corneal integrity and facilitating regeneration. While mesenchymal stem/stromal cells (MSCs) are used in regenerative therapies, there is limited knowledge about LMSC subpopulations and their characteristics. This study characterized human LMSC subpopulations through the flow cytometric assessment of fifteen cell surface markers, including MSC, wound healing, immune regulation, ASC, endothelial, and differentiation markers. Primary LMSCs were established from remnant human corneal transplant specimens and passaged eight times to observe changes during subculture. The results showed the consistent expression of typical MSC markers and distinct subpopulations with the passage-dependent expression of wound healing, immune regulation, and differentiation markers. High CD166 and CD248 expressions indicated a crucial role in ocular surface repair. CD29 expression suggested an immunoregulatory role. Comparable pigment-epithelial-derived factor (PEDF) expression supported anti-inflammatory and anti-angiogenic roles. Sustained CD201 expression indicated maintained differentiation capability, while VEGFR2 expression suggested potential endothelial differentiation. LMSCs showed higher VEGF expression than fibroblasts and endothelial cells, suggesting a potential contribution to ocular surface regeneration through the modulation of angiogenesis and inflammation. These findings highlight the heterogeneity and multipotent potential of LMSC subpopulations during in vitro expansion, informing the development of standardized protocols for regenerative therapies and improving treatments for ocular surface disorders.
Collapse
Affiliation(s)
- Sara Aghazadeh
- Regenerative Medicine, Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (S.A.); (Q.P.); (F.D.); (V.Z.)
| | - Qiuyue Peng
- Regenerative Medicine, Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (S.A.); (Q.P.); (F.D.); (V.Z.)
| | - Fereshteh Dardmeh
- Regenerative Medicine, Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (S.A.); (Q.P.); (F.D.); (V.Z.)
| | | | - Vladimir Zachar
- Regenerative Medicine, Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (S.A.); (Q.P.); (F.D.); (V.Z.)
| | - Hiva Alipour
- Regenerative Medicine, Department of Health Science and Technology, Aalborg University, 9260 Gistrup, Denmark; (S.A.); (Q.P.); (F.D.); (V.Z.)
| |
Collapse
|
9
|
Vlieghe H, Sousa MJ, Charif D, Amorim CA. Unveiling the Differentiation Potential of Ovarian Theca Interna Cells from Multipotent Stem Cell-like Cells. Cells 2024; 13:1248. [PMID: 39120279 PMCID: PMC11311681 DOI: 10.3390/cells13151248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 08/10/2024] Open
Abstract
RESEARCH QUESTION Theca interna cells (TICs) are an indispensable cell source for ovarian follicle development and steroidogenesis. Recent studies have identified theca stem cells (TSCs) in both humans and animals. Interestingly, TSCs express mesenchymal stem cell (MSC)-related markers and can differentiate into mesenchymal lineages. MSCs are promising for tissue engineering and regenerative medicine due to their self-renewal and differentiation abilities. Therefore, this study investigated the potential origin of TICs from MSCs. DESIGN Whole ovaries from postmenopausal organ donors were obtained, and their cortex was cryopreserved prior to the isolation of stromal cells. These isolated cells were differentiated in vitro to TICs using cell media enriched with various growth factors and hormones. Immunocytochemistry, an enzyme-linked immunosorbent assay, flow cytometry, and reverse transcription-quantitative polymerase chain were employed at different timepoints. Data were analyzed using one-way ANOVA. RESULTS Immunocytochemistry showed an increase in TIC markers from day 0 to day 8 and a significant rise in MSC-like markers on day 2. This corresponds with rising androstenedione levels from day 2 to day 13. Flow cytometry identified a decreasing MSC-like cell population from day 2 onwards. The CD13+ cell population and its gene expression increased significantly over time. NGFR and PDGFRA expression was induced on days 0 and 2, respectively, compared to day 13. CONCLUSIONS This study offers insights into MSC-like cells as the potential origin of TICs. Differentiating TICs from these widely accessible MSCs holds potential significance for toxicity studies and investigating TIC-related disorders like polycystic ovary syndrome (PCOS).
Collapse
Affiliation(s)
| | | | | | - Christiani A. Amorim
- Pôle de Recherche en Physiopathologie de la Reproduction, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Avenue Hippocrate 54, bte B1.55.03, 1200 Brussels, Belgium; (H.V.); (M.J.S.); (D.C.)
| |
Collapse
|
10
|
Walters DK, Jelinek DF. Analysis of Normal Plasma Cell Distribution Across Distinct Age Cohorts Reveals Age-Dependent Changes. J Histochem Cytochem 2024; 72:435-451. [PMID: 39054649 PMCID: PMC11308192 DOI: 10.1369/00221554241266005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/13/2024] [Indexed: 07/27/2024] Open
Abstract
Hematopoietic and stromal cells within the bone marrow (BM) provide membrane-bound and/or soluble factors that are vital for the survival of plasma cells (PCs). Recent reports in murine BM demonstrated the dynamic formation and dispersion of PC clusters. To date, PC clustering in normal human BM has yet to be thoroughly examined. The goal of this study was to determine whether PC clusters are present in human BM and whether clustering changes as a function of age. Quantification of PCs and clustering in BM sections across six different age groups revealed that fewer PCs and PC clusters were observed in the youngest and oldest age groups. PC clustering increased with age until the sixth decade and then began to decrease. A positive correlation between the number of PCs and PC clusters was observed across all age groups. PC clusters were typically heterogeneous for immunoglobulin heavy- and light-chain expression. Taken together, these data demonstrate that PC clusters are present in human BM and that PC clustering increases until middle adulthood and then begins to diminish. These results suggest the spatial distribution of BM PC-supportive stromal cells changes with age.
Collapse
Affiliation(s)
- Denise K. Walters
- Department of Immunology, College of Medicine and Science, Mayo Clinic, Rochester, MN and Scottsdale, AZ
| | - Diane F. Jelinek
- Department of Immunology, College of Medicine and Science, Mayo Clinic, Rochester, MN and Scottsdale, AZ
| |
Collapse
|
11
|
Bandyopadhyay S, Duffy MP, Ahn KJ, Sussman JH, Pang M, Smith D, Duncan G, Zhang I, Huang J, Lin Y, Xiong B, Imtiaz T, Chen CH, Thadi A, Chen C, Xu J, Reichart M, Martinez Z, Diorio C, Chen C, Pillai V, Snaith O, Oldridge D, Bhattacharyya S, Maillard I, Carroll M, Nelson C, Qin L, Tan K. Mapping the cellular biogeography of human bone marrow niches using single-cell transcriptomics and proteomic imaging. Cell 2024; 187:3120-3140.e29. [PMID: 38714197 PMCID: PMC11162340 DOI: 10.1016/j.cell.2024.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/02/2024] [Accepted: 04/12/2024] [Indexed: 05/09/2024]
Abstract
Non-hematopoietic cells are essential contributors to hematopoiesis. However, heterogeneity and spatial organization of these cells in human bone marrow remain largely uncharacterized. We used single-cell RNA sequencing (scRNA-seq) to profile 29,325 non-hematopoietic cells and discovered nine transcriptionally distinct subtypes. We simultaneously profiled 53,417 hematopoietic cells and predicted their interactions with non-hematopoietic subsets. We employed co-detection by indexing (CODEX) to spatially profile over 1.2 million cells. We integrated scRNA-seq and CODEX data to link predicted cellular signaling with spatial proximity. Our analysis revealed a hyperoxygenated arterio-endosteal neighborhood for early myelopoiesis, and an adipocytic localization for early hematopoietic stem and progenitor cells (HSPCs). We used our CODEX atlas to annotate new images and uncovered mesenchymal stromal cell (MSC) expansion and spatial neighborhoods co-enriched for leukemic blasts and MSCs in acute myeloid leukemia (AML) patient samples. This spatially resolved, multiomic atlas of human bone marrow provides a reference for investigation of cellular interactions that drive hematopoiesis.
Collapse
Affiliation(s)
- Shovik Bandyopadhyay
- Cellular and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael P Duffy
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kyung Jin Ahn
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jonathan H Sussman
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Minxing Pang
- Applied Mathematics & Computational Science Graduate Group, University of Pennsylvania, Philadelphia, PA, USA
| | - David Smith
- Center for Single Cell Biology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Gwendolyn Duncan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Iris Zhang
- Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey Huang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Yulieh Lin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Barbara Xiong
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Tamjid Imtiaz
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Chia-Hui Chen
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Anusha Thadi
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Changya Chen
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Jason Xu
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Melissa Reichart
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zachary Martinez
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Caroline Diorio
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chider Chen
- Department of Oral and Maxillofacial Surgery/Pharmacology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vinodh Pillai
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Oraine Snaith
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Derek Oldridge
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Siddharth Bhattacharyya
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ivan Maillard
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Martin Carroll
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Charles Nelson
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - Kai Tan
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Center for Single Cell Biology, Children's Hospital of Philadelphia, Philadelphia, PA, USA; Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
12
|
Ding Z, Greenberg ZF, Serafim MF, Ali S, Jamieson JC, Traktuev DO, March K, He M. Understanding molecular characteristics of extracellular vesicles derived from different types of mesenchymal stem cells for therapeutic translation. EXTRACELLULAR VESICLE 2024; 3:100034. [PMID: 38957857 PMCID: PMC11218754 DOI: 10.1016/j.vesic.2024.100034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Mesenchymal stem cells (MSCs) have been studied for decades as candidates for cellular therapy, and their secretome, including secreted extracellular vesicles (EVs), has been identified to contribute significantly to regenerative and reparative functions. Emerging evidence has suggested that MSC-EVs alone, could be used as therapeutics that emulate the biological function of MSCs. However, just as with MSCs, MSC-EVs have been shown to vary in composition, depending on the tissue source of the MSCs as well as the protocols employed in culturing the MSCs and obtaining the EVs. Therefore, the importance of careful choice of cell sources and culture environments is receiving increasing attention. Many factors contribute to the therapeutic potential of MSC-EVs, including the source tissue, isolation technique, and culturing conditions. This review illustrates the molecular landscape of EVs derived from different types of MSC cells along with culture strategies. A thorough analysis of publicly available omic datasets was performed to advance the precision understanding of MSC-EVs with unique tissue source-dependent molecular characteristics. The tissue-specific protein and miRNA-driven Reactome ontology analysis was used to reveal distinct patterns of top Reactome ontology pathways across adipose, bone marrow, and umbilical MSC-EVs. Moreover, a meta-analysis assisted by an AI technique was used to analyze the published literature, providing insights into the therapeutic translation of MSC-EVs based on their source tissues.
Collapse
Affiliation(s)
- Zuo Ding
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32611, USA
| | - Zachary F. Greenberg
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32611, USA
| | - Maria Fernanda Serafim
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32611, USA
| | - Samantha Ali
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32611, USA
| | - Julia C. Jamieson
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32611, USA
| | - Dmitry O. Traktuev
- UF Center for Regenerative Medicine, Division of Cardiovascular Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Keith March
- UF Center for Regenerative Medicine, Division of Cardiovascular Medicine, Department of Medicine, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Mei He
- Department of Pharmaceutics, College of Pharmacy, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
13
|
Marquez-Curtis LA, Elliott JAW. Mesenchymal stromal cells derived from various tissues: Biological, clinical and cryopreservation aspects: Update from 2015 review. Cryobiology 2024; 115:104856. [PMID: 38340887 DOI: 10.1016/j.cryobiol.2024.104856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/12/2024]
Abstract
Mesenchymal stromal cells (MSCs) have become one of the most investigated and applied cells for cellular therapy and regenerative medicine. In this update of our review published in 2015, we show that studies continue to abound regarding the characterization of MSCs to distinguish them from other similar cell types, the discovery of new tissue sources of MSCs, and the confirmation of their properties and functions that render them suitable as a therapeutic. Because cryopreservation is widely recognized as the only technology that would enable the on-demand availability of MSCs, here we show that although the traditional method of cryopreserving cells by slow cooling in the presence of 10% dimethyl sulfoxide (Me2SO) continues to be used by many, several novel MSC cryopreservation approaches have emerged. As in our previous review, we conclude from these recent reports that viable and functional MSCs from diverse tissues can be recovered after cryopreservation using a variety of cryoprotectants, freezing protocols, storage temperatures, and periods of storage. We also show that for logistical reasons there are now more studies devoted to the cryopreservation of tissues from which MSCs are derived. A new topic included in this review covers the application in COVID-19 of MSCs arising from their immunomodulatory and antiviral properties. Due to the inherent heterogeneity in MSC populations from different sources there is still no standardized procedure for their isolation, identification, functional characterization, cryopreservation, and route of administration, and not likely to be a "one-size-fits-all" approach in their applications in cell-based therapy and regenerative medicine.
Collapse
Affiliation(s)
- Leah A Marquez-Curtis
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada, T6G 1H9; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada, T6G 1C9
| | - Janet A W Elliott
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada, T6G 1H9; Department of Laboratory Medicine and Pathology, University of Alberta, Edmonton, AB, Canada, T6G 1C9.
| |
Collapse
|
14
|
Quek J, Vizetto-Duarte C, Teoh SH, Choo Y. Towards Stem Cell Therapy for Critical-Sized Segmental Bone Defects: Current Trends and Challenges on the Path to Clinical Translation. J Funct Biomater 2024; 15:145. [PMID: 38921519 PMCID: PMC11205181 DOI: 10.3390/jfb15060145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/18/2024] [Accepted: 05/24/2024] [Indexed: 06/27/2024] Open
Abstract
The management and reconstruction of critical-sized segmental bone defects remain a major clinical challenge for orthopaedic clinicians and surgeons. In particular, regenerative medicine approaches that involve incorporating stem cells within tissue engineering scaffolds have great promise for fracture management. This narrative review focuses on the primary components of bone tissue engineering-stem cells, scaffolds, the microenvironment, and vascularisation-addressing current advances and translational and regulatory challenges in the current landscape of stem cell therapy for critical-sized bone defects. To comprehensively explore this research area and offer insights for future treatment options in orthopaedic surgery, we have examined the latest developments and advancements in bone tissue engineering, focusing on those of clinical relevance in recent years. Finally, we present a forward-looking perspective on using stem cells in bone tissue engineering for critical-sized segmental bone defects.
Collapse
Affiliation(s)
- Jolene Quek
- Developmental Biology and Regenerative Medicine Programme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (C.V.-D.)
| | - Catarina Vizetto-Duarte
- Developmental Biology and Regenerative Medicine Programme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (C.V.-D.)
| | - Swee Hin Teoh
- Centre for Advanced Medical Engineering, College of Materials Science and Engineering, Hunan University, Changsha 410012, China
| | - Yen Choo
- Developmental Biology and Regenerative Medicine Programme, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore; (J.Q.); (C.V.-D.)
| |
Collapse
|
15
|
Bandyopadhyay S, Duffy M, Ahn KJ, Pang M, Smith D, Duncan G, Sussman J, Zhang I, Huang J, Lin Y, Xiong B, Imtiaz T, Chen CH, Thadi A, Chen C, Xu J, Reichart M, Pillai V, Snaith O, Oldridge D, Bhattacharyya S, Maillard I, Carroll M, Nelson C, Qin L, Tan K. Mapping the Cellular Biogeography of Human Bone Marrow Niches Using Single-Cell Transcriptomics and Proteomic Imaging. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.14.585083. [PMID: 38559168 PMCID: PMC10979999 DOI: 10.1101/2024.03.14.585083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The bone marrow is the organ responsible for blood production. Diverse non-hematopoietic cells contribute essentially to hematopoiesis. However, these cells and their spatial organization remain largely uncharacterized as they have been technically challenging to study in humans. Here, we used fresh femoral head samples and performed single-cell RNA sequencing (scRNA-Seq) to profile 29,325 enriched non-hematopoietic bone marrow cells and discover nine transcriptionally distinct subtypes. We next employed CO-detection by inDEXing (CODEX) multiplexed imaging of 18 individuals, including both healthy and acute myeloid leukemia (AML) samples, to spatially profile over one million single cells with a novel 53-antibody panel. We discovered a relatively hyperoxygenated arterio-endosteal niche for early myelopoiesis, and an adipocytic, but not endosteal or perivascular, niche for early hematopoietic stem and progenitor cells. We used our atlas to predict cell type labels in new bone marrow images and used these predictions to uncover mesenchymal stromal cell (MSC) expansion and leukemic blast/MSC-enriched spatial neighborhoods in AML patient samples. Our work represents the first comprehensive, spatially-resolved multiomic atlas of human bone marrow and will serve as a reference for future investigation of cellular interactions that drive hematopoiesis.
Collapse
Affiliation(s)
- Shovik Bandyopadhyay
- Cellular and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Michael Duffy
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kyung Jin Ahn
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Minxing Pang
- Applied Mathematics & Computational Science Graduate Group, University of Pennsylvania, Philadelphia, PA
| | - David Smith
- Center for Single Cell Biology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Gwendolyn Duncan
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
| | - Jonathan Sussman
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Iris Zhang
- Department of Computer and Information Science, University of Pennsylvania, Philadelphia, PA
| | - Jeffrey Huang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
| | - Yulieh Lin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Barbara Xiong
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Tamjid Imtiaz
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
| | - Chia-Hui Chen
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Anusha Thadi
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Changya Chen
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Jason Xu
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Melissa Reichart
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Vinodh Pillai
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Oraine Snaith
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Derek Oldridge
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Siddharth Bhattacharyya
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ivan Maillard
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Martin Carroll
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Charles Nelson
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ling Qin
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Kai Tan
- Division of Oncology and Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA
- Center for Single Cell Biology, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
16
|
Mahmoud M, Abdel-Rasheed M, Galal ER, El-Awady RR. Factors Defining Human Adipose Stem/Stromal Cell Immunomodulation in Vitro. Stem Cell Rev Rep 2024; 20:175-205. [PMID: 37962697 PMCID: PMC10799834 DOI: 10.1007/s12015-023-10654-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2023] [Indexed: 11/15/2023]
Abstract
Human adipose tissue-derived stem/stromal cells (hASCs) are adult multipotent mesenchymal stem/stromal cells with immunomodulatory capacities. Here, we present up-to-date knowledge on the impact of different experimental and donor-related factors on hASC immunoregulatory functions in vitro. The experimental determinants include the immunological status of hASCs relative to target immune cells, contact vs. contactless interaction, and oxygen tension. Factors such as the ratio of hASCs to immune cells, the cellular context, the immune cell activation status, and coculture duration are also discussed. Conditioning of hASCs with different approaches before interaction with immune cells, hASC culture in xenogenic or xenofree culture medium, hASC culture in two-dimension vs. three-dimension with biomaterials, and the hASC passage number are among the experimental parameters that greatly may impact the hASC immunosuppressive potential in vitro, thus, they are also considered. Moreover, the influence of donor-related characteristics such as age, sex, and health status on hASC immunomodulation in vitro is reviewed. By analysis of the literature studies, most of the indicated determinants have been investigated in broad non-standardized ranges, so the results are not univocal. Clear conclusions cannot be drawn for the fine-tuned scenarios of many important factors to set a standard hASC immunopotency assay. Such variability needs to be carefully considered in further standardized research. Importantly, field experts' opinions may help to make it clearer.
Collapse
Affiliation(s)
- Marwa Mahmoud
- Stem Cell Research Group, Medical Research Centre of Excellence, National Research Centre, 33 El Buhouth St, Ad Doqi, Dokki, 12622, Cairo Governorate, Egypt.
- Department of Medical Molecular Genetics, Human Genetics and Genome Research Institute, National Research Centre, Cairo, Egypt.
| | - Mazen Abdel-Rasheed
- Stem Cell Research Group, Medical Research Centre of Excellence, National Research Centre, 33 El Buhouth St, Ad Doqi, Dokki, 12622, Cairo Governorate, Egypt
- Department of Reproductive Health Research, National Research Centre, Cairo, Egypt
| | - Eman Reda Galal
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| | - Rehab R El-Awady
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy (Girls), Al-Azhar University, Cairo, Egypt
| |
Collapse
|
17
|
Zhou Z, Zhang X, Wang S, Wang X, Mao J. A Powerful Tool in the Treatment of Myocardial Ischemia-Reperfusion Injury: Natural and Nanoscale Modified Small Extracellular Vesicles Derived from Mesenchymal Stem Cells. Int J Nanomedicine 2023; 18:8099-8112. [PMID: 38164265 PMCID: PMC10758182 DOI: 10.2147/ijn.s443716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 12/12/2023] [Indexed: 01/03/2024] Open
Abstract
Myocardial ischemia-reperfusion injury (MI/RI) constitutes a pivotal determinant impacting the long-term prognosis of individuals afflicted by ischemic cardiomyopathy subsequent to reperfusion therapy. Stem cells have garnered extensive application within the realm of MI/RI investigation, yielding tangible outcomes. Stem cell therapy encounters certain challenges in its application owing to the complexities associated with stem cell acquisition, a diminished homing rate, and a brief in vivo lifespan. Small extracellular vesicles (sEV) originating from mesenchymal stem cells (MSCs) have been demonstrated to possess the benefits of abundant availability, reduced immunogenicity, and a diminished tumorigenic incidence. They can exert their effects on damaged organs, improving injuries by transporting a lot of constituents, including proteins, RNA, lipid droplets, and more. This phenomenon has garnered substantial attention in the context of MI/RI treatment. Simultaneously, MSC-derived sEV (MSC-sEV) can exhibit enhanced therapeutic advantages through bioengineering modifications, biomaterial incorporation, and natural drug interventions. Within this discourse, we shall appraise the utilization of MSC-sEV and their derivatives in the context of MI/RI treatment, aiming to offer valuable insights for future research endeavors related to MI/RI.
Collapse
Affiliation(s)
- Zhou Zhou
- Cardiovascular Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, People’s Republic of China
- Graduate School, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People’s Republic of China
| | - Xuan Zhang
- Cardiovascular Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, People’s Republic of China
| | - Shuai Wang
- Cardiovascular Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, People’s Republic of China
| | - Xianliang Wang
- Cardiovascular Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, People’s Republic of China
| | - Jingyuan Mao
- Cardiovascular Department, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine/National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin, 300381, People’s Republic of China
| |
Collapse
|
18
|
van Dijk Christiansen P, Andreasen CM, El-Masri BM, Laursen KS, Delaisse JM, Andersen TL. Osteoprogenitor recruitment and differentiation during intracortical bone remodeling of adolescent humans. Bone 2023; 177:116896. [PMID: 37699496 DOI: 10.1016/j.bone.2023.116896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 08/17/2023] [Accepted: 09/08/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Recruitment and proliferation of osteoprogenitors during the reversal-resorption phase, and their differentiation into mature bone-forming osteoblasts is crucial for initiation of bone formation during bone remodeling. This study investigates the osteoprogenitors' gradual recruitment, proliferation, and differentiation into bone-forming osteoblasts within intracortical remodeling events of healthy adolescent humans. METHODS The study was conducted on cortical bone specimens from 11 adolescent human controls - patients undergoing surgery due to coxa valga. The osteoprogenitor recruitment route and differentiation into osteoblasts were backtracked using immunostainings and in situ hybridizations with osteoblastic markers (CD271/NGFR, osterix/SP7, COL3A1 and COL1A1). The osteoblastic cell populations were defined based on the pore surfaces, and their proliferation index (Ki67), density and number/circumference were estimated in multiplex-immunofluorescence (Ki67, TRAcP, CD34) stained sections. RESULTS During the reversal-resorption phase, osteoclasts are intermixed with (COL3A1+NFGR+) osteoblastic reversal cells, which are considered to be osteoprogenitors of (COL1A1+SP7+) bone-forming osteoblasts. Initiation of bone formation requires a critical density of these osteoprogenitors (43 ± 9 cells/mm), which is reached though proliferation (4.4 ± 0.5 % proliferative) and even more so through recruitment of osteoprogenitors, but challenged by the ongoing expansion of the canal circumference. These osteoprogenitors most likely originate from osteoblastic bone lining cells and mainly lumen osteoprogenitors, which expand their population though proliferation (4.6 ± 0.3 %) and vascular recruitment. These lumen osteoprogenitors resemble canopy cells above trabecular remodeling sites, and like canopy cells they extend above bone-forming osteoblasts where they may rejuvenate the osteoblast population during bone formation. CONCLUSION Initiation of bone formation during intracortical remodeling requires a critical density of osteoprogenitors on eroded surfaces, which is reached though proliferation and recruitment of local osteoprogenitors: bone lining cells and lumen osteoprogenitors.
Collapse
Affiliation(s)
- Pernille van Dijk Christiansen
- Clinical Cell Biology, Research Unit of Pathology, Department of Pathology, Odense University Hospital and Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| | - Christina Møller Andreasen
- Clinical Cell Biology, Research Unit of Pathology, Department of Pathology, Odense University Hospital and Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark; Danish Spatial Imaging Consortium (DanSIC).
| | - Bilal Mohamad El-Masri
- Clinical Cell Biology, Research Unit of Pathology, Department of Pathology, Odense University Hospital and Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Danish Spatial Imaging Consortium (DanSIC).
| | - Kaja Søndergaard Laursen
- Department of Forensic Medicine, Aarhus University, Aarhus, Denmark; Danish Spatial Imaging Consortium (DanSIC).
| | - Jean-Marie Delaisse
- Clinical Cell Biology, Research Unit of Pathology, Department of Pathology, Odense University Hospital and Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark.
| | - Thomas Levin Andersen
- Clinical Cell Biology, Research Unit of Pathology, Department of Pathology, Odense University Hospital and Department of Clinical Research, University of Southern Denmark, Odense, Denmark; Department of Molecular Medicine, University of Southern Denmark, Odense, Denmark; Department of Forensic Medicine, Aarhus University, Aarhus, Denmark; Danish Spatial Imaging Consortium (DanSIC).
| |
Collapse
|
19
|
Kummer S, Klang A, Strohmayer C, Walter I, Jindra C, Kneissl S, Brandt S. Feline SCCs of the Head and Neck Display Partial Epithelial-Mesenchymal Transition and Harbor Stem Cell-like Cancer Cells. Pathogens 2023; 12:1288. [PMID: 38003753 PMCID: PMC10674711 DOI: 10.3390/pathogens12111288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/23/2023] [Accepted: 10/26/2023] [Indexed: 11/26/2023] Open
Abstract
Squamous cell carcinoma of the head and neck (HNSCC) is a malignant cancer disease in humans and animals. There is ample evidence that the high plasticity of cancer cells, i.e., their ability to switch from an epithelial to a mesenchymal, endothelial, and stem cell-like phenotype, chiefly contributes to progression, metastasis, and multidrug resistance of human HNSCCs. In feline HNSCC, the field of cancer cell plasticity is still unexplored. In this study, fourteen feline HNSCCs with a known feline papillomavirus (FPV) infection status were subjected to histopathological grading and subsequent screening for expression of epithelial, mesenchymal, and stem cell markers by immunohistochemistry (IHC) and immunofluorescence staining (IF). Irrespective of the FPV infection status, all tumors except one corresponded to high-grade, invasive lesions and concurrently expressed epithelial (keratins, E-cadherin, β-catenin) and mesenchymal (vimentin, N-cadherin, CD146) proteins. This finding is indicative for partial epithelial-mesenchymal transition (pEMT) events in the lesions, as similarly described for human HNSCCs. IF double staining revealed the presence of CD44/CD271 double-positive cells notably within the tumors' invasive fronts that likely correspond to cancer stem cells. Taken together, the obtained findings suggest that feline HNSCCs closely resemble their human counterparts with respect to tumor cell plasticity.
Collapse
Affiliation(s)
- Stefan Kummer
- VetCore Facility for Research, University of Veterinary Medicine, 1210 Vienna, Austria; (S.K.); (I.W.)
| | - Andrea Klang
- Institute of Pathology, Department of Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria;
| | - Carina Strohmayer
- Clinical Unit of Diagnostic Imaging, Department for Companion Animals and Horses, University of Veterinary Medicine, 1210 Vienna, Austria; (C.S.); (S.K.)
| | - Ingrid Walter
- VetCore Facility for Research, University of Veterinary Medicine, 1210 Vienna, Austria; (S.K.); (I.W.)
- Institute of Morphology, Department of Pathobiology, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Christoph Jindra
- Research Group Oncology (RGO), Clinical Unit of Equine Surgery, Department for Companion Animals and Horses, University of Veterinary Medicine, 1210 Vienna, Austria;
- Division of Molecular Oncology and Hematology, Karl Landsteiner University of Health Sciences, 3500 Krems an der Donau, Austria
| | - Sibylle Kneissl
- Clinical Unit of Diagnostic Imaging, Department for Companion Animals and Horses, University of Veterinary Medicine, 1210 Vienna, Austria; (C.S.); (S.K.)
| | - Sabine Brandt
- Research Group Oncology (RGO), Clinical Unit of Equine Surgery, Department for Companion Animals and Horses, University of Veterinary Medicine, 1210 Vienna, Austria;
| |
Collapse
|
20
|
Kornmuller A, Cooper TT, Jani A, Lajoie GA, Flynn LE. Probing the effects of matrix-derived microcarrier composition on human adipose-derived stromal cells cultured dynamically within spinner flask bioreactors. J Biomed Mater Res A 2023; 111:415-434. [PMID: 36210786 DOI: 10.1002/jbm.a.37459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/23/2022] [Accepted: 09/28/2022] [Indexed: 01/20/2023]
Abstract
Recognizing the cell-instructive capacity of the extracellular matrix (ECM), this study investigated the effects of expanding human adipose-derived stromal cells (hASCs) on ECM-derived microcarriers fabricated from decellularized adipose tissue (DAT) or decellularized cartilage tissue (DCT) within spinner flask bioreactors. Protocols were established for decellularizing porcine auricular cartilage and electrospraying methods were used to generate microcarriers comprised exclusively of DAT or DCT, which were compositionally distinct, but had matching Young's moduli. Both microcarrier types supported hASC attachment and growth over 14 days within a low-shear spinner culture system, with a significantly higher cell density observed on the DCT microcarriers at 7 and 14 days. Irrespective of the ECM source, dynamic culture on the microcarriers altered the expression of genes and proteins associated with cell adhesion and ECM remodeling. Label-free mass spectrometry analysis showed upregulation of proteins associated with cartilage development and ECM in the hASCs expanded on the DCT microcarriers. Based on Luminex analysis, the hASCs expanded on the DCT microcarriers secreted significantly higher levels of IL-8 and PDGFAA, supporting that the ECM source can modulate hASC paracrine factor secretion. Finally, the hASCs expanded on the microcarriers were extracted for analysis of adipogenic and chondrogenic differentiation relative to baseline controls. The microcarrier-cultured hASCs showed enhanced intracellular lipid accumulation at 7 days post-induction of adipogenic differentiation. In the chondrogenic studies, a low level of differentiation was observed in all groups. Future studies are warranted using alternative cell sources with greater chondrogenic potential to further assess the chondro-inductive properties of the DCT microcarriers.
Collapse
Affiliation(s)
- Anna Kornmuller
- School of Biomedical Engineering, Faculty of Engineering, The University of Western Ontario, London, Canada
| | - Tyler T Cooper
- Department of Biochemistry, Don Rix Protein Identification Facility, The University of Western Ontario, London, Canada
| | - Ammi Jani
- Department of Chemical & Biochemical Engineering, Faculty of Engineering, The University of Western Ontario, London, Canada
| | - Gilles A Lajoie
- Department of Biochemistry, Don Rix Protein Identification Facility, The University of Western Ontario, London, Canada
| | - Lauren E Flynn
- School of Biomedical Engineering, Faculty of Engineering, The University of Western Ontario, London, Canada.,Department of Chemical & Biochemical Engineering, Faculty of Engineering, The University of Western Ontario, London, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Canada
| |
Collapse
|
21
|
Treaba DO, Bonal DM, Chorzalska A, Castillo-Martin M, Oakes A, Pardo M, Petersen M, Schorl C, Hopkins K, Melcher D, Zhao TC, Liang O, So EY, Reagan J, Olszewski AJ, Butera J, Anthony DC, Rintels P, Quesenberry P, Dubielecka PM. Transcriptomics of acute myeloid leukaemia core bone marrow biopsies reveals distinct therapy response-specific osteo-mesenchymal profiles. Br J Haematol 2023; 200:740-754. [PMID: 36354085 DOI: 10.1111/bjh.18513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 09/12/2022] [Accepted: 09/30/2022] [Indexed: 11/11/2022]
Abstract
While the bone marrow (BM) microenvironment is significantly remodelled in acute myeloid leukaemia (AML), molecular insight into AML-specific alterations in the microenvironment has been historically limited by the analysis of liquid marrow aspirates rather than core biopsies that contain solid-phase BM stroma. We assessed the effect of anthracycline- and cytarabine-based induction chemotherapy on both haematopoietic and non-haematopoietic cells directly in core BM biopsies using RNA-seq and histological analysis. We compared matched human core BM biopsies at diagnosis and 2 weeks after cytarabine- and anthracycline-based induction therapy in responders (<5% blasts present after treatment) and non-responders (≥5% blasts present after treatment). Our data indicated enrichment in vimentin (VIM), platelet-derived growth factor receptor beta (PDGFRB) and Snail family transcriptional repressor 2 (SNAI2) transcripts in responders, consistent with the reactivation of the mesenchymal population in the BM stroma. Enrichment of osteoblast maturation-related transcripts of biglycan (BGN), osteopontin (SPP1) and osteonectin (SPARC) was observed in non-responders. To the best of our knowledge, this is the first report demonstrating distinct osteogenic and mesenchymal transcriptome profiles specific to AML response to induction chemotherapy assessed directly in core BM biopsies. Detailing treatment response-specific alterations in the BM stroma may inform optimised therapeutic strategies for AML.
Collapse
Affiliation(s)
- Diana O Treaba
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Warren Alpert Medical School at Brown University, Providence, Rhode Island, USA
| | - Dennis M Bonal
- Signal Transduction Lab, Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital and Warren Alpert Medical School at Brown University, Rhode Island, Providence, USA
| | - Anna Chorzalska
- Signal Transduction Lab, Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital and Warren Alpert Medical School at Brown University, Rhode Island, Providence, USA
| | | | - Alissa Oakes
- Signal Transduction Lab, Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital and Warren Alpert Medical School at Brown University, Rhode Island, Providence, USA
| | - Makayla Pardo
- Signal Transduction Lab, Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital and Warren Alpert Medical School at Brown University, Rhode Island, Providence, USA
| | - Max Petersen
- Signal Transduction Lab, Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital and Warren Alpert Medical School at Brown University, Rhode Island, Providence, USA
| | | | - Kelsey Hopkins
- Warren Alpert Medical School at Brown University, Providence, Rhode Island, USA
| | - Dean Melcher
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Warren Alpert Medical School at Brown University, Providence, Rhode Island, USA
| | - Ting C Zhao
- Department of Surgery at Rhode Island Hospital and Warren Alpert Medical School at Brown University, Providence, Rhode Island, USA
| | - Olin Liang
- Division of Hematology/Oncology at Rhode Island Hospital and Warren Alpert Medical School at Brown University, Providence, Rhode Island, USA
| | - Eui-Young So
- Division of Hematology/Oncology at Rhode Island Hospital and Warren Alpert Medical School at Brown University, Providence, Rhode Island, USA
| | - John Reagan
- Division of Hematology/Oncology at Rhode Island Hospital and Warren Alpert Medical School at Brown University, Providence, Rhode Island, USA
| | - Adam J Olszewski
- Division of Hematology/Oncology at Rhode Island Hospital and Warren Alpert Medical School at Brown University, Providence, Rhode Island, USA
| | - James Butera
- Division of Hematology/Oncology at Rhode Island Hospital and Warren Alpert Medical School at Brown University, Providence, Rhode Island, USA
| | - Douglas C Anthony
- Department of Pathology and Laboratory Medicine, Rhode Island Hospital and Warren Alpert Medical School at Brown University, Providence, Rhode Island, USA
| | - Peter Rintels
- Hematology and Oncology Associates of Rhode Island, Cranston, Rhode Island, USA
| | - Peter Quesenberry
- Division of Hematology/Oncology at Rhode Island Hospital and Warren Alpert Medical School at Brown University, Providence, Rhode Island, USA
| | - Patrycja M Dubielecka
- Signal Transduction Lab, Division of Hematology/Oncology, Department of Medicine, Rhode Island Hospital and Warren Alpert Medical School at Brown University, Rhode Island, Providence, USA
| |
Collapse
|
22
|
Baghban N, Khoradmehr A, Afshar A, Jafari N, Zendehboudi T, Rasekh P, Abolfathi LG, Barmak A, Mohebbi G, Akmaral B, Askerovich KA, Maratovich MN, Azari H, Assadi M, Nabipour I, Tamadon A. MRI Tracking of Marine Proliferating Cells In Vivo Using Anti-Oct4 Antibody-Conjugated Iron Nanoparticles for Precision in Regenerative Medicine. BIOSENSORS 2023; 13:268. [PMID: 36832034 PMCID: PMC9953982 DOI: 10.3390/bios13020268] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/09/2023] [Accepted: 01/11/2023] [Indexed: 06/18/2023]
Abstract
Marine invertebrates are multicellular organisms consisting of a wide range of marine environmental species. Unlike vertebrates, including humans, one of the challenges in identifying and tracking invertebrate stem cells is the lack of a specific marker. Labeling stem cells with magnetic particles provides a non-invasive, in vivo tracking method using MRI. This study suggests antibody-conjugated iron nanoparticles (NPs), which are detectable with MRI for in vivo tracking, to detect stem cell proliferation using the Oct4 receptor as a marker of stem cells. In the first phase, iron NPs were fabricated, and their successful synthesis was confirmed using FTIR spectroscopy. Next, the Alexa Fluor anti-Oct4 antibody was conjugated with as-synthesized NPs. Their affinity to the cell surface marker in fresh and saltwater conditions was confirmed using two types of cells, murine mesenchymal stromal/stem cell culture and sea anemone stem cells. For this purpose, 106 cells of each type were exposed to NP-conjugated antibodies and their affinity to antibodies was confirmed by an epi-fluorescent microscope. The presence of iron-NPs imaged with the light microscope was confirmed by iron staining using Prussian blue stain. Next, anti-Oct4 antibodies conjugated with iron NPs were injected into a brittle star, and proliferating cells were tracked by MRI. To sum up, anti-Oct4 antibodies conjugated with iron NPs not only have the potential for identifying proliferating stem cells in different cell culture conditions of sea anemone and mouse cell cultures but also has the potential to be used for in vivo MRI tracking of marine proliferating cells.
Collapse
Affiliation(s)
- Neda Baghban
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 7514633196, Iran
| | - Arezoo Khoradmehr
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 7514633196, Iran
| | - Alireza Afshar
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 7514633196, Iran
- PerciaVista R&D Co., Shiraz 7167683745, Iran
| | - Nazanin Jafari
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 7514633196, Iran
| | - Tuba Zendehboudi
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 7514633196, Iran
| | - Poorya Rasekh
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 7514633196, Iran
| | - Leila Gholamian Abolfathi
- MRI Department, Heart Hospital of Bushehr, Bushehr University of Medical Sciences, Bushehr 7514633196, Iran
| | - Alireza Barmak
- Food Laboratory, Bushehr University of Medical Sciences, Bushehr 7518759577, Iran
| | - Gholamhossein Mohebbi
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 7514633196, Iran
| | - Baspakova Akmaral
- Department for Scientific Work, West Kazakhstan Marat Ospanov Medical Unversity, Aktobe 030012, Kazakhstan
| | - Kaliyev Asset Askerovich
- General Surgery, West-Kazakhstan Medical University Named after Marat Ospanov, Aktobe 030012, Kazakhstan
| | - Mussin Nadiar Maratovich
- General Surgery, West-Kazakhstan Medical University Named after Marat Ospanov, Aktobe 030012, Kazakhstan
| | - Hossein Azari
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 7514633196, Iran
| | - Majid Assadi
- Nuclear Medicine and Molecular Imaging Research Center, School of Medicine, Bushehr University of Medical Sciences, Bushehr 7514633196, Iran
| | - Iraj Nabipour
- The Persian Gulf Marine Biotechnology Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 7514633196, Iran
| | | |
Collapse
|
23
|
Feng S, Li J, Tian J, Lu S, Zhao Y. Application of Single-Cell and Spatial Omics in Musculoskeletal Disorder Research. Int J Mol Sci 2023; 24:2271. [PMID: 36768592 PMCID: PMC9917071 DOI: 10.3390/ijms24032271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Musculoskeletal disorders, including fractures, scoliosis, heterotopic ossification, osteoporosis, osteoarthritis, disc degeneration, and muscular injury, etc., can occur at any stage of human life. Understanding the occurrence and development mechanism of musculoskeletal disorders, as well as the changes in tissues and cells during therapy, might help us find targeted treatment methods. Single-cell techniques provide excellent tools for studying alterations at the cellular level of disorders. However, the application of these techniques in research on musculoskeletal disorders is still limited. This review summarizes the current single-cell and spatial omics used in musculoskeletal disorders. Cell isolation, experimental methods, and feasible experimental designs for single-cell studies of musculoskeletal system diseases have been reviewed based on tissue characteristics. Then, the paper summarizes the latest findings of single-cell studies in musculoskeletal disorders from three aspects: bone and ossification, joint, and muscle and tendon disorders. Recent discoveries about the cell populations involved in these diseases are highlighted. Furthermore, the therapeutic responses of musculoskeletal disorders, especially single-cell changes after the treatments of implants, stem cell therapies, and drugs are described. Finally, the application potential and future development directions of single-cell and spatial omics in research on musculoskeletal diseases are discussed.
Collapse
Affiliation(s)
- Site Feng
- School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jiahao Li
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing 100730, China
| | - Jingjing Tian
- Medical Science Research Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Sheng Lu
- The Key Laboratory of Digital Orthopaedics of Yunnan Provincial, Department of Orthopedic Surgery, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, China
| | - Yu Zhao
- Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Science, Beijing 100730, China
| |
Collapse
|
24
|
Elmansi AM, Eisa NH, Periyasamy-Thandavan S, Kondrikova G, Kondrikov D, Calkins MM, Aguilar-Pérez A, Chen J, Johnson M, Shi XM, Reitman C, McGee-Lawrence ME, Crawford KS, Dwinell MB, Volkman BF, Blumer JB, Luttrell LM, McCorvy JD, Hill WD. DPP4-Truncated CXCL12 Alters CXCR4/ACKR3 Signaling, Osteogenic Cell Differentiation, Migration, and Senescence. ACS Pharmacol Transl Sci 2023; 6:22-39. [PMID: 36659961 PMCID: PMC9844133 DOI: 10.1021/acsptsci.2c00040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Indexed: 12/15/2022]
Abstract
Bone marrow skeletal stem cells (SSCs) secrete many cytokines including stromal derived factor-1 or CXCL12, which influences cell proliferation, migration, and differentiation. All CXCL12 splice variants are rapidly truncated on their N-terminus by dipeptidyl peptidase 4 (DPP4). This includes the common variant CXCL12 alpha (1-68) releasing a much less studied metabolite CXCL12(3-68). Here, we found that CXCL12(3-68) significantly inhibited SSC osteogenic differentiation and RAW-264.7 cell osteoclastogenic differentiation and induced a senescent phenotype in SSCs. Importantly, pre-incubation of SSCs with CXCL12(3-68) significantly diminished their ability to migrate toward CXCL12(1-68) in transwell migration assays. Using a high-throughput G-protein-coupled receptor (GPCR) screen (GPCRome) and bioluminescent resonance energy transfer molecular interaction assays, we revealed that CXCL12(3-68) acts via the atypical cytokine receptor 3-mediated β-arrestin recruitment and as a competitive antagonist to CXCR4-mediated signaling. Finally, a reverse phase protein array assay revealed that DPP4-cleaved CXCL12 possesses a different downstream signaling profile from that of intact CXCL12 or controls. The data presented herein provides insights into regulation of CXCL12 signaling. Importantly, it demonstrates that DPP4 proteolysis of CXCL12 generates a metabolite with significantly different and previously overlooked bioactivity that helps explain discrepancies in the literature. This also contributes to an understanding of the molecular mechanisms of osteoporosis and bone fracture repair and could potentially significantly affect the interpretation of experimental outcomes with clinical consequences in other fields where CXCL12 is vital, including cancer biology, immunology, cardiovascular biology, neurobiology, and associated pathologies.
Collapse
Affiliation(s)
- Ahmed M. Elmansi
- Department of Pathology and Laboratory Medicine,
Medical University of South Carolina, Charleston, South
Carolina 29403, United States
- Johnson Veterans Affairs Medical
Center, Charleston, South Carolina 29403, United
States
- Department of Pathology, University of
Michigan School of Medicine, Ann Arbor, Michigan 48109, United
States
| | - Nada H. Eisa
- Department of Pathology and Laboratory Medicine,
Medical University of South Carolina, Charleston, South
Carolina 29403, United States
- Johnson Veterans Affairs Medical
Center, Charleston, South Carolina 29403, United
States
- Department of Biochemistry, Faculty of Pharmacy,
Mansoura University, Mansoura 35516,
Egypt
| | | | - Galina Kondrikova
- Department of Pathology and Laboratory Medicine,
Medical University of South Carolina, Charleston, South
Carolina 29403, United States
- Johnson Veterans Affairs Medical
Center, Charleston, South Carolina 29403, United
States
| | - Dmitry Kondrikov
- Department of Pathology and Laboratory Medicine,
Medical University of South Carolina, Charleston, South
Carolina 29403, United States
- Johnson Veterans Affairs Medical
Center, Charleston, South Carolina 29403, United
States
| | - Maggie M. Calkins
- Department of Cell Biology, Neurobiology and Anatomy,
Medical College of Wisconsin, 8701 W. Watertown Plank Road,
Milwaukee, Wisconsin 53226, United States
| | - Alexandra Aguilar-Pérez
- Department of Anatomy and Cell Biology,
Indiana University School of Medicine in Indianapolis,
Indianapolis, Indiana 46202, United States
- Department of Cellular and Molecular Biology, School
of Medicine, Universidad Central Del Caribe, Bayamon, Puerto
Rico 00956, United States
- Cellular Biology and Anatomy, Medical College of
Georgia, Augusta University, Augusta, Georgia 30912,
United States
| | - Jie Chen
- Division of Biostatistics and Data Science,
Department of Population Health Science, Medical College of Georgia, Augusta
University, Augusta, Georgia 30912, United States
| | - Maribeth Johnson
- Division of Biostatistics and Data Science,
Department of Population Health Science, Medical College of Georgia, Augusta
University, Augusta, Georgia 30912, United States
| | - Xing-ming Shi
- Department of Orthopaedic Surgery, Medical
College of Georgia, Augusta University, Augusta, Georgia 30912,
United States
- Department of Neuroscience and Regenerative
Medicine, Medical College of Georgia, Augusta University,
Augusta, Georgia 30912, United States
| | - Charles Reitman
- Orthopaedics and Physical Medicine Department,
Medical University of South Carolina, Charleston, South
Carolina 29403, United States
| | - Meghan E. McGee-Lawrence
- Cellular Biology and Anatomy, Medical College of
Georgia, Augusta University, Augusta, Georgia 30912,
United States
- Department of Orthopaedic Surgery, Medical
College of Georgia, Augusta University, Augusta, Georgia 30912,
United States
- Center for Healthy Aging, Medical College of
Georgia, Augusta University, Augusta, Georgia 30912,
United States
| | - Kyler S. Crawford
- Department of Biochemistry,
Medical College of Wisconsin, Milwaukee, Wisconsin 53226,
United States
| | - Michael B. Dwinell
- Department of Microbiology and Immunology,
Medical College of Wisconsin, Milwaukee, Wisconsin 53226,
United States
| | - Brian F. Volkman
- Department of Biochemistry,
Medical College of Wisconsin, Milwaukee, Wisconsin 53226,
United States
| | - Joe B. Blumer
- Department of Cell and Molecular Pharmacology and
Experimental Therapeutics, Medical University of South
Carolina, Charleston, South Carolina 29425, United
States
| | - Louis M. Luttrell
- Division of Endocrinology, Diabetes and
Medical Genetics, Medical University of South Carolina,
Charleston, South Carolina 29403, United States
| | - John D. McCorvy
- Department of Cell Biology, Neurobiology and Anatomy,
Medical College of Wisconsin, 8701 W. Watertown Plank Road,
Milwaukee, Wisconsin 53226, United States
| | - William D. Hill
- Department of Pathology and Laboratory Medicine,
Medical University of South Carolina, Charleston, South
Carolina 29403, United States
- Johnson Veterans Affairs Medical
Center, Charleston, South Carolina 29403, United
States
- Cellular Biology and Anatomy, Medical College of
Georgia, Augusta University, Augusta, Georgia 30912,
United States
- Center for Healthy Aging, Medical College of
Georgia, Augusta University, Augusta, Georgia 30912,
United States
- Charlie Norwood Veterans Affairs
Medical Center, Augusta, Georgia 30904, United
States
| |
Collapse
|
25
|
Zanoletti L, Valdata A, Nehlsen K, Faris P, Casali C, Cacciatore R, Sbarsi I, Carriero F, Arfini D, van Baarle L, De Simone V, Barbieri G, Raimondi E, May T, Moccia F, Bozzola M, Matteoli G, Comincini S, Manai F. Cytological, molecular, cytogenetic, and physiological characterization of a novel immortalized human enteric glial cell line. Front Cell Neurosci 2023; 17:1170309. [PMID: 37153631 PMCID: PMC10158601 DOI: 10.3389/fncel.2023.1170309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 03/22/2023] [Indexed: 05/10/2023] Open
Abstract
Enteric glial cells (EGCs), the major components of the enteric nervous system (ENS), are implicated in the maintenance of gut homeostasis, thereby leading to severe pathological conditions when impaired. However, due to technical difficulties associated with EGCs isolation and cell culture maintenance that results in a lack of valuable in vitro models, their roles in physiological and pathological contexts have been poorly investigated so far. To this aim, we developed for the first time, a human immortalized EGC line (referred as ClK clone) through a validated lentiviral transgene protocol. As a result, ClK phenotypic glial features were confirmed by morphological and molecular evaluations, also providing the consensus karyotype and finely mapping the chromosomal rearrangements as well as HLA-related genotypes. Lastly, we investigated the ATP- and acetylcholine, serotonin and glutamate neurotransmitters mediated intracellular Ca2+ signaling activation and the response of EGCs markers (GFAP, SOX10, S100β, PLP1, and CCL2) upon inflammatory stimuli, further confirming the glial nature of the analyzed cells. Overall, this contribution provided a novel potential in vitro tool to finely characterize the EGCs behavior under physiological and pathological conditions in humans.
Collapse
Affiliation(s)
- Lisa Zanoletti
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
- Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - Aurora Valdata
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | | | - Pawan Faris
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
- Department of Biology, College of Science, Salahaddin University-Erbil, Erbil, Iraq
| | - Claudio Casali
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Rosalia Cacciatore
- Immunohematology and Transfusion Service, I.R.C.C.S. Policlinico San Matteo, Pavia, Italy
| | - Ilaria Sbarsi
- Immunohematology and Transfusion Service, I.R.C.C.S. Policlinico San Matteo, Pavia, Italy
| | - Francesca Carriero
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Davide Arfini
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Lies van Baarle
- Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - Veronica De Simone
- Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - Giulia Barbieri
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Elena Raimondi
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | | | - Francesco Moccia
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | | | - Gianluca Matteoli
- Department of Chronic Diseases and Metabolism (CHROMETA), KU Leuven, Leuven, Belgium
| | - Sergio Comincini
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
| | - Federico Manai
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, Pavia, Italy
- *Correspondence: Federico Manai,
| |
Collapse
|
26
|
Fujii S, Endo K, Matsuta S, Komori K, Sekiya I. Comparison of the yields and properties of dedifferentiated fat cells and mesenchymal stem cells derived from infrapatellar fat pads. Regen Ther 2022; 21:611-619. [DOI: 10.1016/j.reth.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 11/07/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
|
27
|
Yudintceva N, Mikhailova N, Fedorov V, Samochernych K, Vinogradova T, Muraviov A, Shevtsov M. Mesenchymal Stem Cells and MSCs-Derived Extracellular Vesicles in Infectious Diseases: From Basic Research to Clinical Practice. Bioengineering (Basel) 2022; 9:662. [PMID: 36354573 PMCID: PMC9687734 DOI: 10.3390/bioengineering9110662] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/30/2022] [Accepted: 11/04/2022] [Indexed: 08/10/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are attractive in various fields of regenerative medicine due to their therapeutic potential and complex unique properties. Basic stem cell research and the global COVID-19 pandemic have given impetus to the development of cell therapy for infectious diseases. The aim of this review was to systematize scientific data on the applications of mesenchymal stem cells (MSCs) and MSC-derived extracellular vesicles (MSC-EVs) in the combined treatment of infectious diseases. Application of MSCs and MSC-EVs in the treatment of infectious diseases has immunomodulatory, anti-inflammatory, and antibacterial effects, and also promotes the restoration of the epithelium and stimulates tissue regeneration. The use of MSC-EVs is a promising cell-free treatment strategy that allows solving the problems associated with the safety of cell therapy and increasing its effectiveness. In this review, experimental data and clinical trials based on MSCs and MSC-EVs for the treatment of infectious diseases are presented. MSCs and MSC-EVs can be a promising tool for the treatment of various infectious diseases, particularly in combination with antiviral drugs. Employment of MSC-derived EVs represents a more promising strategy for cell-free treatment, demonstrating a high therapeutic potential in preclinical studies.
Collapse
Affiliation(s)
- Natalia Yudintceva
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg 194064, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Natalia Mikhailova
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg 194064, Russia
| | - Viacheslav Fedorov
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Konstantin Samochernych
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| | - Tatiana Vinogradova
- Saint-Petersburg State Research Institute of Phthisiopulmonology of the Ministry of Health of the Russian Federation, St. Petersburg 191036, Russia
| | - Alexandr Muraviov
- Saint-Petersburg State Research Institute of Phthisiopulmonology of the Ministry of Health of the Russian Federation, St. Petersburg 191036, Russia
| | - Maxim Shevtsov
- Institute of Cytology of the Russian Academy of Sciences (RAS), St. Petersburg 194064, Russia
- Personalized Medicine Centre, Almazov National Medical Research Centre, St. Petersburg 197341, Russia
| |
Collapse
|
28
|
Lebeau G, Ah-Pine F, Daniel M, Bedoui Y, Vagner D, Frumence E, Gasque P. Perivascular Mesenchymal Stem/Stromal Cells, an Immune Privileged Niche for Viruses? Int J Mol Sci 2022; 23:ijms23148038. [PMID: 35887383 PMCID: PMC9317325 DOI: 10.3390/ijms23148038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/16/2022] [Accepted: 07/20/2022] [Indexed: 11/16/2022] Open
Abstract
Mesenchymal stem cells (MSCs) play a critical role in response to stress such as infection. They initiate the removal of cell debris, exert major immunoregulatory activities, control pathogens, and lead to a remodeling/scarring phase. Thus, host-derived ‘danger’ factors released from damaged/infected cells (called alarmins, e.g., HMGB1, ATP, DNA) as well as pathogen-associated molecular patterns (LPS, single strand RNA) can activate MSCs located in the parenchyma and around vessels to upregulate the expression of growth factors and chemoattractant molecules that influence immune cell recruitment and stem cell mobilization. MSC, in an ultimate contribution to tissue repair, may also directly trans- or de-differentiate into specific cellular phenotypes such as osteoblasts, chondrocytes, lipofibroblasts, myofibroblasts, Schwann cells, and they may somehow recapitulate their neural crest embryonic origin. Failure to terminate such repair processes induces pathological scarring, termed fibrosis, or vascular calcification. Interestingly, many viruses and particularly those associated to chronic infection and inflammation may hijack and polarize MSC’s immune regulatory activities. Several reports argue that MSC may constitute immune privileged sanctuaries for viruses and contributing to long-lasting effects posing infectious challenges, such as viruses rebounding in immunocompromised patients or following regenerative medicine therapies using MSC. We will herein review the capacity of several viruses not only to infect but also to polarize directly or indirectly the functions of MSC (immunoregulation, differentiation potential, and tissue repair) in clinical settings.
Collapse
Affiliation(s)
- Grégorie Lebeau
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France; (G.L.); (F.A.-P.); (M.D.); (Y.B.); (E.F.)
- Laboratoire d’Immunologie Clinique et Expérimentale de la ZOI (LICE-OI), Pôle de Biologie, CHU de La Réunion, 97400 Saint-Denis, France
| | - Franck Ah-Pine
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France; (G.L.); (F.A.-P.); (M.D.); (Y.B.); (E.F.)
- Service Anatomo-Pathologie, CHU de la Réunion, 97400 Saint-Denis, France
| | - Matthieu Daniel
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France; (G.L.); (F.A.-P.); (M.D.); (Y.B.); (E.F.)
- Laboratoire d’Immunologie Clinique et Expérimentale de la ZOI (LICE-OI), Pôle de Biologie, CHU de La Réunion, 97400 Saint-Denis, France
| | - Yosra Bedoui
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France; (G.L.); (F.A.-P.); (M.D.); (Y.B.); (E.F.)
- Laboratoire d’Immunologie Clinique et Expérimentale de la ZOI (LICE-OI), Pôle de Biologie, CHU de La Réunion, 97400 Saint-Denis, France
| | - Damien Vagner
- Service de Médecine Interne, CHU de la Réunion, 97400 Saint-Denis, France;
| | - Etienne Frumence
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France; (G.L.); (F.A.-P.); (M.D.); (Y.B.); (E.F.)
- Laboratoire d’Immunologie Clinique et Expérimentale de la ZOI (LICE-OI), Pôle de Biologie, CHU de La Réunion, 97400 Saint-Denis, France
| | - Philippe Gasque
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France; (G.L.); (F.A.-P.); (M.D.); (Y.B.); (E.F.)
- Laboratoire d’Immunologie Clinique et Expérimentale de la ZOI (LICE-OI), Pôle de Biologie, CHU de La Réunion, 97400 Saint-Denis, France
- Correspondence:
| |
Collapse
|
29
|
Barbon S, Stocco E, Rajendran S, Zardo L, Macchi V, Grandi C, Tagariello G, Porzionato A, Radossi P, De Caro R, Parnigotto PP. In Vitro Conditioning of Adipose-Derived Mesenchymal Stem Cells by the Endothelial Microenvironment: Modeling Cell Responsiveness towards Non-Genetic Correction of Haemophilia A. Int J Mol Sci 2022; 23:ijms23137282. [PMID: 35806285 PMCID: PMC9266329 DOI: 10.3390/ijms23137282] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/22/2022] [Accepted: 06/27/2022] [Indexed: 11/24/2022] Open
Abstract
In recent decades, the use of adult multipotent stem cells has paved the way for the identification of new therapeutic approaches for the treatment of monogenic diseases such as Haemophilia A. Being already studied for regenerative purposes, adipose-derived mesenchymal stem cells (Ad-MSCs) are still poorly considered for Haemophilia A cell therapy and their capacity to produce coagulation factor VIII (FVIII) after proper stimulation and without resorting to gene transfection. In this work, Ad-MSCs were in vitro conditioned towards the endothelial lineage, considered to be responsible for coagulation factor production. The cells were cultured in an inductive medium enriched with endothelial growth factors for up to 21 days. In addition to significantly responding to the chemotactic endothelial stimuli, the cell populations started to form capillary-like structures and up-regulated the expression of specific endothelial markers (CD34, PDGFRα, VEGFR2, VE-cadherin, CD31, and vWF). A dot blot protein study detected the presence of FVIII in culture media collected from both unstimulated and stimulated Ad-MSCs. Remarkably, the activated partial thromboplastin time test demonstrated that the clot formation was accelerated, and FVIII activity was enhanced when FVIII deficient plasma was mixed with culture media from the untreated/stimulated Ad-MSCs. Overall, the collected evidence supported a possible Ad-MSC contribution to HA correction via specific stimulation by the endothelial microenvironment and without any need for gene transfection.
Collapse
Affiliation(s)
- Silvia Barbon
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy; (S.B.); (E.S.); (V.M.); (A.P.); (R.D.C.)
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling—TES, Onlus, 35030 Padova, Italy; (C.G.); (P.P.P.)
| | - Elena Stocco
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy; (S.B.); (E.S.); (V.M.); (A.P.); (R.D.C.)
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling—TES, Onlus, 35030 Padova, Italy; (C.G.); (P.P.P.)
| | - Senthilkumar Rajendran
- Department of Surgery Oncology and Gastroenterology, University of Padova, 35124 Padova, Italy;
| | - Lorena Zardo
- Haematology and Haemophilia Centre, Castelfranco Veneto Hospital, 31033 Castelfranco Veneto, Italy; (L.Z.); (G.T.)
| | - Veronica Macchi
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy; (S.B.); (E.S.); (V.M.); (A.P.); (R.D.C.)
| | - Claudio Grandi
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling—TES, Onlus, 35030 Padova, Italy; (C.G.); (P.P.P.)
| | - Giuseppe Tagariello
- Haematology and Haemophilia Centre, Castelfranco Veneto Hospital, 31033 Castelfranco Veneto, Italy; (L.Z.); (G.T.)
| | - Andrea Porzionato
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy; (S.B.); (E.S.); (V.M.); (A.P.); (R.D.C.)
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling—TES, Onlus, 35030 Padova, Italy; (C.G.); (P.P.P.)
| | - Paolo Radossi
- Haematology and Haemophilia Centre, Castelfranco Veneto Hospital, 31033 Castelfranco Veneto, Italy; (L.Z.); (G.T.)
- Correspondence:
| | - Raffaele De Caro
- Section of Human Anatomy, Department of Neuroscience, University of Padova, 35121 Padova, Italy; (S.B.); (E.S.); (V.M.); (A.P.); (R.D.C.)
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling—TES, Onlus, 35030 Padova, Italy; (C.G.); (P.P.P.)
| | - Pier Paolo Parnigotto
- Foundation for Biology and Regenerative Medicine, Tissue Engineering and Signaling—TES, Onlus, 35030 Padova, Italy; (C.G.); (P.P.P.)
| |
Collapse
|
30
|
Cancer Stem Cells: From an Insight into the Basics to Recent Advances and Therapeutic Targeting. Stem Cells Int 2022; 2022:9653244. [PMID: 35800881 PMCID: PMC9256444 DOI: 10.1155/2022/9653244] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 06/07/2022] [Indexed: 12/22/2022] Open
Abstract
Cancer is characterized by an abnormal growth of the cells in an uncontrolled manner. These cells have the potential to invade and can eventually turn into malignancy, leading to highly fatal forms of tumor. Small subpopulations of cancer cells that are long-lived with the potential of excessive self-renewal and tumor formation are called cancer stem cells (CSCs) or cancer-initiating cells or tumor stem cells. CSCs can be found in tissues, such as breast, brain, lung, liver, ovary, and testis; however, their origin is still a matter of debate. These cells can differentiate and possess self-renewal capacity maintained by numerous intracellular signal transduction pathways, such as the Wnt/β-catenin signaling, Notch signaling, transforming growth factor-β signaling, and Hedgehog signaling. They can also contribute to numerous malignancies and are an important reason for tumor recurrence and metastasis because they are resistant to the known therapeutic strategies that mainly target the bulk of the tumor cells. This review contains collected and compiled information after analyzing published works of the last three decades. The goal was to gather information of recent breakthroughs related to CSCs, strategies to target CSCs' niche (e.g., nanotechnology with tumor biology), and their signaling pathways for cancer therapy. Moreover, the role of metformin, an antidiabetic drug, acting as a chemotherapeutic agent on CSCs by inhibiting cellular transformation and its selective killing is also addressed.
Collapse
|
31
|
Thomas R, Menon V, Mani R, Pruszak J. Glycan Epitope and Integrin Expression Dynamics Characterize Neural Crest Epithelial-to-Mesenchymal Transition (EMT) in Human Pluripotent Stem Cell Differentiation. Stem Cell Rev Rep 2022; 18:2952-2965. [PMID: 35727432 DOI: 10.1007/s12015-022-10393-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2022] [Indexed: 10/18/2022]
Abstract
The neural crest gives rise to progeny as diverse as peripheral neurons, myelinating cells, cranial muscle, bone and cartilage tissues, and melanocytes. Neural crest derivation encompasses complex morphological change, including epithelial-to-mesenchymal transition (EMT) and migration to the eventual target locations throughout the body. Neural crest cultures derived from stem cells provide an attractive source for developmental studies in human model systems, of immediate biomedical relevance for neurocristopathies, neural cancer biology and regenerative medicine, if only appropriate markers for lineage and cell type definition and quality control criteria were available. Implementing a defined, scalable protocol to generate neural crest cells from embryonic stem cells, we identify stage-defining cluster-of-differentiation (CD) surface markers during human neural crest development in vitro. Acquisition of increasingly mesenchymal phenotype was characterized by absence of neuroepithelial stemness markers (CD15, CD133, CD49f) and by decrease of CD57 and CD24. Increased per-cell-expression of CD29, CD44 and CD73 correlated with established EMT markers as determined by immunofluorescence and immunoblot analysis. The further development towards migratory neural crest was associated with decreased CD24, CD49f (ITGA6) and CD57 (HNK1) versus an enhanced CD49d (ITGA4), CD49e (ITGA5) and CD51/CD61 (ITGAV/ITGB3) expression. Notably, a shift from CD57 to CD51/CD61 was identified as a sensitive surrogate surface indicator of EMT in neural crest in vitro development. The reported changes in glycan epitope and integrin surface expression may prove useful for elucidating neural crest stemness, EMT progression and malignancies.
Collapse
Affiliation(s)
- Ria Thomas
- Emmy Noether-Group for Stem Cell Biology, Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine and Faculty of Biology, University of Freiburg, Freiburg, Germany.,Neuroregeneration Research Institute, McLean Hospital/ Harvard Medical School, Belmont, MB, USA
| | - Vishal Menon
- Emmy Noether-Group for Stem Cell Biology, Department of Molecular Embryology, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Spemann Graduate School of Biology and Medicine and Faculty of Biology, University of Freiburg, Freiburg, Germany.,Wellcome Trust/ Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge, UK
| | - Rakesh Mani
- Institute of Anatomy and Cell Biology, Salzburg, Paracelsus Medical University (PMU), Salzburg, Austria.,Center of Anatomy and Cell Biology, Salzburg and Nuremberg, Paracelsus Medical University (PMU), Salzburg, Austria
| | - Jan Pruszak
- Neuroregeneration Research Institute, McLean Hospital/ Harvard Medical School, Belmont, MB, USA. .,Institute of Anatomy and Cell Biology, Salzburg, Paracelsus Medical University (PMU), Salzburg, Austria. .,Center of Anatomy and Cell Biology, Salzburg and Nuremberg, Paracelsus Medical University (PMU), Salzburg, Austria.
| |
Collapse
|
32
|
Tsukagoshi Y, Matsushita Y. Bone regeneration: A message from clinical medicine and basic science. Clin Anat 2022; 35:808-819. [PMID: 35654609 DOI: 10.1002/ca.23917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 05/27/2022] [Indexed: 11/08/2022]
Abstract
Population aging is a global phenomenon and with it, the number of bone fractures increases due to higher incidences of osteoporosis. Bone fractures in the elderly increase the risk of bedridden status and mortality. Therefore, the control of osteoporosis and bone fracture is important for healthy life expectancy, and the fundamental understanding of its pathogenesis and its application in treatment is of great social significance. To solve these clinical problems, it is necessary to integrate clinical medicine and basic research. Bone regeneration after a fracture is an essential function of the living body. The prevailing view is that a small number of resident skeletal stem cells are solely responsible for regenerative capacity. Although these cells have long been considered to be in the bone marrow, it has been shown that they are also present in the growth plate and periosteum. More recently, distinct types of cells in the bone marrow, including bone marrow stromal cells, osteoblast progenitor cells, and osteoblasts, have been shown to participate in bone regeneration. Interestingly, the cellular plasticity of differentiated cells, rather than active recruitment of resident stem cell populations, may largely account for regeneration of bone tissues; terminally differentiated cells de-differentiate into a stem cell-like state, and then re-differentiate into regenerating bone. In this review, we discuss the clinical risk and preventive therapy of bone fractures and the current concept of bone regeneration in basic mechanical insights, which may prove useful to both clinicians and researchers.
Collapse
Affiliation(s)
- Yuta Tsukagoshi
- Department of Orthopedic Surgery, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yuki Matsushita
- Department of Cell Biology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
33
|
Yahara Y, Nguyen T, Ishikawa K, Kamei K, Alman BA. The origins and roles of osteoclasts in bone development, homeostasis and repair. Development 2022; 149:275249. [PMID: 35502779 PMCID: PMC9124578 DOI: 10.1242/dev.199908] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The mechanisms underlying bone development, repair and regeneration are reliant on the interplay and communication between osteoclasts and other surrounding cells. Osteoclasts are multinucleated monocyte lineage cells with resorptive abilities, forming the bone marrow cavity during development. This marrow cavity, essential to hematopoiesis and osteoclast-osteoblast interactions, provides a setting to investigate the origin of osteoclasts and their multi-faceted roles. This Review examines recent developments in the embryonic understanding of osteoclast origin, as well as interactions within the immune environment to regulate normal and pathological bone development, homeostasis and repair.
Collapse
Affiliation(s)
- Yasuhito Yahara
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, United States.,Department of Molecular and Medical Pharmacology, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan.,Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Tuyet Nguyen
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, United States.,Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, United States
| | - Koji Ishikawa
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, United States.,Department of Orthopaedic Surgery, Showa University School of Medicine, Tokyo, 142-8666, Japan
| | - Katsuhiko Kamei
- Department of Orthopaedic Surgery, Faculty of Medicine, University of Toyama, Toyama, 930-0194, Japan
| | - Benjamin A Alman
- Department of Orthopaedic Surgery, Duke University School of Medicine, Durham, NC 27710, United States.,Department of Cell Biology, Duke University School of Medicine, Durham, NC 27710, United States
| |
Collapse
|
34
|
Xu J, Li Z, Tower RJ, Negri S, Wang Y, Meyers CA, Sono T, Qin Q, Lu A, Xing X, McCarthy EF, Clemens TL, James AW. NGF-p75 signaling coordinates skeletal cell migration during bone repair. SCIENCE ADVANCES 2022; 8:eabl5716. [PMID: 35302859 PMCID: PMC8932666 DOI: 10.1126/sciadv.abl5716] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/26/2022] [Indexed: 05/26/2023]
Abstract
Bone regeneration following injury is initiated by inflammatory signals and occurs in association with infiltration by sensory nerve fibers. Together, these events are believed to coordinate angiogenesis and tissue reprogramming, but the mechanism of coupling immune signals to reinnervation and osteogenesis is unknown. Here, we found that nerve growth factor (NGF) is expressed following cranial bone injury and signals via p75 in resident mesenchymal osteogenic precursors to affect their migration into the damaged tissue. Mice lacking Ngf in myeloid cells demonstrated reduced migration of osteogenic precursors to the injury site with consequently delayed bone healing. These features were phenocopied by mice lacking p75 in Pdgfra+ osteoblast precursors. Single-cell transcriptomics identified mesenchymal subpopulations with potential roles in cell migration and immune response, altered in the context of p75 deletion. Together, these results identify the role of p75 signaling pathway in coordinating skeletal cell migration during early bone repair.
Collapse
Affiliation(s)
- Jiajia Xu
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Zhao Li
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Robert J. Tower
- Department of Orthopaedics, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Stefano Negri
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
- Department of Orthopaedics and Traumatology, University of Verona, Verona 37129, Italy
| | - Yiyun Wang
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Carolyn A. Meyers
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Takashi Sono
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Qizhi Qin
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Amy Lu
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Xin Xing
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Edward F. McCarthy
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Thomas L. Clemens
- Department of Orthopaedics, Johns Hopkins University, Baltimore, MD 21205, USA
- Baltimore Veterans Administration Medical Center, Baltimore, MD 21201, USA
| | - Aaron W. James
- Department of Pathology, Johns Hopkins University, Baltimore, MD 21205, USA
| |
Collapse
|
35
|
Jin W, He Y, Li T, Long F, Qin X, Yuan Y, Gao G, Shakhawat HM, Liu X, Jin G, Zhou Z. Rapid and robust derivation of mesenchymal stem cells from human pluripotent stem cells via temporal induction of neuralized ectoderm. Cell Biosci 2022; 12:31. [PMID: 35292115 PMCID: PMC8922747 DOI: 10.1186/s13578-022-00753-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 01/31/2022] [Indexed: 11/10/2022] Open
Abstract
Background Mesenchymal stem cells (MSCs) are emerging as the mainstay of regenerative medicine because of their ability to differentiate into multiple cell lineages. The infinite proliferative potential of human pluripotent stem cells (PSCs) grants an unlimited supply of MSCs. Despite their great potential in therapeutic applications, several drawbacks have hindered its clinical translation, including limited number of replication, compromised potential and altered function in late passages. The aim of this study is to establish an efficient method for the production of MSCs from pluripotent stem cells for potential clinical application in rare human disease Hutchinson-Gilford progeria syndrome. Results We established a robust method allowing rapid derivation of MSCs from both human iPSCs and ESCs via a temporal induction of neural ectoderm in chemically defined media. The iPSC- and ESC-derived MSCs satisfy the standard criteria of surface markers. They exhibited a high tri-lineage differentiation potential with over 90% transcriptional similarity to the primary MSCs derived from bone marrow. To evaluate the potential application of this method in disease modeling, MSCs were generated from iPSCs derived from a patient with Hutchinson-Gilford progeria syndrome (HGPS-MSCs) and from mutation-rectified HGPS-iPSCs (cHGPS-MSCs). HGPS-MSCs manifested accelerated senescence whereas mutation rectification rescued cellular senescence in HGPS-MSCs. Conclusions The robust method of MSC derivation from ESCs and iPSCs provides an efficient approach to rapidly generate sufficient MSCs for in vitro disease modeling and clinical applications. Supplementary Information The online version contains supplementary material available at 10.1186/s13578-022-00753-2.
Collapse
Affiliation(s)
- Wei Jin
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Chinese Academy of Sciences Regenerative Medicine of Hong Kong, Hong Kong, China
| | - Yi He
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Tuo Li
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Endocrinology, Chang Zheng Hospital, Shanghai, 200003, China
| | - Fei Long
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xin Qin
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Yuan Yuan
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute for Aging Research, Guangdong Medical University, Dongguan, China
| | - Ge Gao
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hosen Md Shakhawat
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Xinguang Liu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Institute for Aging Research, Guangdong Medical University, Dongguan, China
| | - Guoxiang Jin
- Medical Research Center, Guangdong Provincial People's Hospital, Guangzhou, China.
| | - Zhongjun Zhou
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China. .,Shenzhen Hospital, The University of Hong Kong, Shenzhen, China.
| |
Collapse
|
36
|
Yamada H, Naito R, Nishimura M, Kawakami R, Morinaga E, Morita Y, Shimizu M, Yoshimatsu G, Sawamoto O, Matsumoto S, Imafuku S, Sakata N, Kodama S. Xenotransplantation of neonatal porcine bone marrow–derived mesenchymal stem cells improves diabetic wound healing by promoting angiogenesis and lymphangiogenesis. Xenotransplantation 2022; 29:e12739. [DOI: 10.1111/xen.12739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/25/2022] [Accepted: 02/15/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Hideaki Yamada
- Department of Regenerative Medicine & Transplantation Faculty of Medicine Fukuoka University Fukuoka Japan
- Center for Regenerative Medicine Fukuoka University Hospital Fukuoka Japan
- Department of Cardiovascular Surgery Faculty of Medicine Fukuoka University Fukuoka Japan
| | - Reiko Naito
- Department of Dermatology Fukuoka Central Hospital Fukuoka Japan
| | - Masuhiro Nishimura
- Research and Development Center Otsuka Pharmaceutical Factory, Inc. Naruto Tokushima Japan
| | - Ryo Kawakami
- Department of Regenerative Medicine & Transplantation Faculty of Medicine Fukuoka University Fukuoka Japan
- Research Institute for Regenerative Medicine Fukuoka University Fukuoka Japan
| | - Eri Morinaga
- Department of Regenerative Medicine & Transplantation Faculty of Medicine Fukuoka University Fukuoka Japan
- Center for Regenerative Medicine Fukuoka University Hospital Fukuoka Japan
- Department of Plastic Reconstructive & Aesthetic Surgery Faculty of Medicine Fukuoka University Fukuoka Japan
| | - Yuichi Morita
- Department of Regenerative Medicine & Transplantation Faculty of Medicine Fukuoka University Fukuoka Japan
- Center for Regenerative Medicine Fukuoka University Hospital Fukuoka Japan
- Department of Cardiovascular Surgery Faculty of Medicine Fukuoka University Fukuoka Japan
| | - Masayuki Shimizu
- Department of Regenerative Medicine & Transplantation Faculty of Medicine Fukuoka University Fukuoka Japan
- Center for Regenerative Medicine Fukuoka University Hospital Fukuoka Japan
- Department of Cardiovascular Surgery Faculty of Medicine Fukuoka University Fukuoka Japan
| | - Gumpei Yoshimatsu
- Department of Regenerative Medicine & Transplantation Faculty of Medicine Fukuoka University Fukuoka Japan
- Center for Regenerative Medicine Fukuoka University Hospital Fukuoka Japan
- Research Institute for Regenerative Medicine Fukuoka University Fukuoka Japan
| | - Osamu Sawamoto
- Research and Development Center Otsuka Pharmaceutical Factory, Inc. Naruto Tokushima Japan
| | - Shinichi Matsumoto
- Research and Development Center Otsuka Pharmaceutical Factory, Inc. Naruto Tokushima Japan
| | - Shinichi Imafuku
- Department of Dermatology Faculty of Medicine Fukuoka University Fukuoka Japan
| | - Naoaki Sakata
- Department of Regenerative Medicine & Transplantation Faculty of Medicine Fukuoka University Fukuoka Japan
- Center for Regenerative Medicine Fukuoka University Hospital Fukuoka Japan
- Research Institute for Regenerative Medicine Fukuoka University Fukuoka Japan
| | - Shohta Kodama
- Department of Regenerative Medicine & Transplantation Faculty of Medicine Fukuoka University Fukuoka Japan
- Center for Regenerative Medicine Fukuoka University Hospital Fukuoka Japan
- Research Institute for Regenerative Medicine Fukuoka University Fukuoka Japan
| |
Collapse
|
37
|
Cell Surface Proteins for Enrichment and In Vitro Characterization of Human Pluripotent Stem Cell-Derived Myogenic Progenitors. Stem Cells Int 2022; 2022:2735414. [PMID: 35251185 PMCID: PMC8894063 DOI: 10.1155/2022/2735414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/04/2022] [Accepted: 01/12/2022] [Indexed: 11/17/2022] Open
Abstract
Human myogenic progenitors can be derived from pluripotent stem cells (PSCs) for use in modeling natural and pathological myogenesis, as well as treating muscle diseases. Transgene-free methods of deriving myogenic progenitors from different PSC lines often produce mixed populations that are heterogeneous in myogenic differentiation potential, yet detailed and accurate characterization of human PSC-derived myogenic progenitors remains elusive in the field. The isolation and purification of human PSC-derived myogenic progenitors is thus an important methodological consideration when we investigate the properties and behaviors of these cells in culture. We previously reported a transgene-free, serum-free floating sphere culture method for the derivation of myogenic progenitors from human PSCs. In this study, we first performed comprehensive cell surface protein profiling of the sphere culture cells through the screening of 255 antibodies. Next, we used magnetic activated cell sorting and enriched the cells according to the expression of specific surface markers. The ability of muscle differentiation in the resulting cells was characterized by immunofluorescent labeling and quantification of positively stained cells. Our results revealed that myotube-forming cells resided in the differentiated cultures of CD29+, CD56+, CD271+, and CD15– fractions, while thick and multinucleated myotubes were identified in the differentiated cultures from CD9+ and CD146+ fractions. We found that PAX7 localization to the nucleus correlates with myotube-forming ability in these sorted populations. We also demonstrated that cells in unsorted, CD271+, and CD15– fractions responded differently to cryopreservation and prolonged culture expansion. Lastly, we showed that CD271 expression is essential for terminal differentiation of human PSC-derived myogenic progenitors. Taken together, these cell surface proteins are not only useful markers to identify unique cellular populations in human PSC-derived myogenic progenitors but also functionally important molecules that can provide valuable insight into human myogenesis.
Collapse
|
38
|
Alvites R, Branquinho M, Sousa AC, Lopes B, Sousa P, Maurício AC. Mesenchymal Stem/Stromal Cells and Their Paracrine Activity-Immunomodulation Mechanisms and How to Influence the Therapeutic Potential. Pharmaceutics 2022; 14:381. [PMID: 35214113 PMCID: PMC8875256 DOI: 10.3390/pharmaceutics14020381] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 02/07/2023] Open
Abstract
With high clinical interest to be applied in regenerative medicine, Mesenchymal Stem/Stromal Cells have been widely studied due to their multipotency, wide distribution, and relative ease of isolation and expansion in vitro. Their remarkable biological characteristics and high immunomodulatory influence have opened doors to the application of MSCs in many clinical settings. The therapeutic influence of these cells and the interaction with the immune system seems to occur both directly and through a paracrine route, with the production and secretion of soluble factors and extracellular vesicles. The complex mechanisms through which this influence takes place is not fully understood, but several functional manipulation techniques, such as cell engineering, priming, and preconditioning, have been developed. In this review, the knowledge about the immunoregulatory and immunomodulatory capacity of MSCs and their secretion products is revisited, with a special focus on the phenomena of migration and homing, direct cell action and paracrine activity. The techniques for homing improvement, cell modulation and conditioning prior to the application of paracrine factors were also explored. Finally, multiple assays where different approaches were applied with varying success were used as examples to justify their exploration.
Collapse
Affiliation(s)
- Rui Alvites
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (R.A.); (M.B.); (A.C.S.); (B.L.); (P.S.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Mariana Branquinho
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (R.A.); (M.B.); (A.C.S.); (B.L.); (P.S.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Ana C. Sousa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (R.A.); (M.B.); (A.C.S.); (B.L.); (P.S.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Bruna Lopes
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (R.A.); (M.B.); (A.C.S.); (B.L.); (P.S.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Patrícia Sousa
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (R.A.); (M.B.); (A.C.S.); (B.L.); (P.S.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| | - Ana Colette Maurício
- Centro de Estudos de Ciência Animal (CECA), Instituto de Ciências, Tecnologias e Agroambiente (ICETA) da Universidade do Porto, Praça Gomes Teixeira, Apartado 55142, 4051-401 Porto, Portugal; (R.A.); (M.B.); (A.C.S.); (B.L.); (P.S.)
- Departamento de Clínicas Veterinárias, Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto (UP), Rua de Jorge Viterbo Ferreira, nº 228, 4050-313 Porto, Portugal
| |
Collapse
|
39
|
Strategies to enhance immunomodulatory properties and reduce heterogeneity in mesenchymal stromal cells during ex vivo expansion. Cytotherapy 2022; 24:456-472. [PMID: 35227601 DOI: 10.1016/j.jcyt.2021.11.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/24/2021] [Accepted: 11/08/2021] [Indexed: 02/06/2023]
|
40
|
Shao R, Dong Y, Zhang S, Wu X, Huang X, Sun B, Zeng B, Xu F, Liang W. State of the art of bone biomaterials and their interactions with stem cells: Current state and future directions. Biotechnol J 2022; 17:e2100074. [PMID: 35073451 DOI: 10.1002/biot.202100074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 11/11/2022]
Affiliation(s)
- Ruyi Shao
- Department of Orthopedics Zhuji People's Hospital Shaoxing Zhejiang Province 312500 P. R. China
| | - Yongqiang Dong
- Department of Orthopaedics Xinchang People's Hospital Shaoxing Zhejiang Province 312500 P. R. China
| | - Songou Zhang
- College of Medicine Shaoxing University Shaoxing Zhejiang Province 312000 P. R. China
| | - Xudong Wu
- Department of Orthopedics Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University 355 Xinqiao Road, Dinghai District Zhoushan Zhejiang Province 316000 P. R. China
| | - Xiaogang Huang
- Department of Orthopedics Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University 355 Xinqiao Road, Dinghai District Zhoushan Zhejiang Province 316000 P. R. China
| | - Bin Sun
- Department of Orthopedics Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University 355 Xinqiao Road, Dinghai District Zhoushan Zhejiang Province 316000 P. R. China
| | - Bin Zeng
- Department of Orthopedics Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University 355 Xinqiao Road, Dinghai District Zhoushan Zhejiang Province 316000 P. R. China
| | - Fangming Xu
- Department of Orthopedics Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University 355 Xinqiao Road, Dinghai District Zhoushan Zhejiang Province 316000 P. R. China
| | - Wenqing Liang
- Department of Orthopedics Zhoushan Hospital of Traditional Chinese Medicine Affiliated to Zhejiang Chinese Medical University 355 Xinqiao Road, Dinghai District Zhoushan Zhejiang Province 316000 P. R. China
| |
Collapse
|
41
|
Hernaez-Estrada B, Gonzalez-Pujana A, Cuevas A, Izeta A, Spiller KL, Igartua M, Santos-Vizcaino E, Hernandez RM. Human Hair Follicle-Derived Mesenchymal Stromal Cells from the Lower Dermal Sheath as a Competitive Alternative for Immunomodulation. Biomedicines 2022; 10:biomedicines10020253. [PMID: 35203464 PMCID: PMC8868584 DOI: 10.3390/biomedicines10020253] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/01/2022] [Accepted: 01/14/2022] [Indexed: 12/16/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) have unique immunomodulatory capacities. We investigated hair follicle-derived MSCs (HF-MSCs) from the dermal sheath, which are advantageous as an alternative source because of their relatively painless and minimally risky extraction procedure. These cells expressed neural markers upon isolation and maintained stemness for a minimum of 10 passages. Furthermore, HF-MSCs showed responsiveness to pro-inflammatory environments by expressing type-II major histocompatibility complex antigens (MHC)-II to a lesser extent than adipose tissue-derived MSCs (AT-MSCs). HF-MSCs effectively inhibited the proliferation of peripheral blood mononuclear cells equivalently to AT-MSCs. Additionally, HF-MSCs promoted the induction of CD4+CD25+FOXP3+ regulatory T cells to the same extent as AT-MSCs. Finally, HF-MSCs, more so than AT-MSCs, skewed M0 and M1 macrophages towards M2 phenotypes, with upregulation of typical M2 markers CD163 and CD206 and downregulation of M1 markers such as CD64, CD86, and MHC-II. Thus, we conclude that HF-MSCs are a promising source for immunomodulation.
Collapse
Affiliation(s)
- Beatriz Hernaez-Estrada
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA; (B.H.-E.); (K.L.S.)
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.G.-P.); (M.I.)
| | - Ainhoa Gonzalez-Pujana
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.G.-P.); (M.I.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
| | | | - Ander Izeta
- Tissue Engineering Group, Biodonostia Health Research Institute, 20014 Donostia-San Sebastián, Spain;
- Department of Biomedical Engineering and Sciences, School of Engineering, Tecnun-University of Navarra, 20009 Donostia-San Sebastián, Spain
| | - Kara L. Spiller
- School of Biomedical Engineering, Science and Health Systems, Drexel University, Philadelphia, PA 19104, USA; (B.H.-E.); (K.L.S.)
| | - Manoli Igartua
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.G.-P.); (M.I.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
| | - Edorta Santos-Vizcaino
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.G.-P.); (M.I.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
- Correspondence: (E.S.-V.); (R.M.H.); Tel.: +34-945-01-3093 (E.S.-V.); +34-945-01-3095 (R.M.H.)
| | - Rosa Maria Hernandez
- NanoBioCel Research Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country (UPV/EHU), Paseo de la Universidad 7, 01006 Vitoria-Gasteiz, Spain; (A.G.-P.); (M.I.)
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, 28029 Madrid, Spain
- Bioaraba, NanoBioCel Research Group, 01006 Vitoria-Gasteiz, Spain
- Correspondence: (E.S.-V.); (R.M.H.); Tel.: +34-945-01-3093 (E.S.-V.); +34-945-01-3095 (R.M.H.)
| |
Collapse
|
42
|
Sun H, Guo Q, Shi C, McWilliam RH, Chen J, Zhu C, Han F, Zhou P, Yang H, Liu J, Sun X, Meng B, Shu W, Li B. CD271 antibody-functionalized microspheres capable of selective recruitment of reparative endogenous stem cells for in situ bone regeneration. Biomaterials 2021; 280:121243. [PMID: 34838337 DOI: 10.1016/j.biomaterials.2021.121243] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 05/31/2021] [Accepted: 11/06/2021] [Indexed: 12/13/2022]
Abstract
In the strategy of in situ bone regeneration, it used to be difficult to specifically recruit bone marrow mesenchymal stem cells (BM-MSCs) by a single marker. Recently, CD271 has been considered to be one of the most specific markers to isolate BM-MSCs; however, the effectiveness of CD271 antibodies in recruiting BM-MSCs has not been explored yet. In this study, we developed novel CD271 antibody-functionalized chitosan (CS) microspheres with the aid of polydopamine (PDA) coating to recruit endogenous BM-MSCs for in situ bone regeneration. The CS microspheres were sequentially modified with PDA and CD271 antibody through dopamine self-polymerization and bioconjugation, respectively. In vitro studies showed that the CD271 antibody-functionalized microspheres selectively captured significantly more BM-MSCs from a fluorescently labeled heterotypic cell population than non-functionalized controls. In addition, the PDA coating was critical for supporting stable adhesion and proliferation of the captured BM-MSCs. Effective early recruitment of CD271+ stem cells by the functionalized microspheres at bone defect site of SD rat was observed by the CD271/DAPI immunofluorescence staining, which led to significantly enhanced new bone formation in rat femoral condyle defect over long term. Together, findings from this study have demonstrated, for the first time, that the CD271 antibody-functionalized CS microspheres are promising for in situ bone regeneration.
Collapse
Affiliation(s)
- Han Sun
- Department of Articular Orthopaedics, Orthopaedic Institute, The Third Affiliated Hospital, Soochow University, Changzhou, Jiangsu, China; Department of Orthopaedic Surgery, The First Affiliated Hospital, Orthopedic Institute, Soochow University, Suzhou, Jiangsu, China
| | - Qianping Guo
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Orthopedic Institute, Soochow University, Suzhou, Jiangsu, China
| | - Chen Shi
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Orthopedic Institute, Soochow University, Suzhou, Jiangsu, China; Hangzhou R&L Medical Device Co. Ltd., Hangzhou, Zhejiang, China
| | - Ross H McWilliam
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, United Kingdom
| | - Jianquan Chen
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Orthopedic Institute, Soochow University, Suzhou, Jiangsu, China
| | - Caihong Zhu
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Orthopedic Institute, Soochow University, Suzhou, Jiangsu, China
| | - Fengxuan Han
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Orthopedic Institute, Soochow University, Suzhou, Jiangsu, China
| | - Pinghui Zhou
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Orthopedic Institute, Soochow University, Suzhou, Jiangsu, China; Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, China
| | - Huilin Yang
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Orthopedic Institute, Soochow University, Suzhou, Jiangsu, China
| | - Jinbo Liu
- Department of Articular Orthopaedics, Orthopaedic Institute, The Third Affiliated Hospital, Soochow University, Changzhou, Jiangsu, China
| | - Xiaoliang Sun
- Department of Articular Orthopaedics, Orthopaedic Institute, The Third Affiliated Hospital, Soochow University, Changzhou, Jiangsu, China
| | - Bin Meng
- Department of Orthopaedic Surgery, The First Affiliated Hospital, Orthopedic Institute, Soochow University, Suzhou, Jiangsu, China.
| | - Wenmiao Shu
- Department of Biomedical Engineering, University of Strathclyde, Glasgow, United Kingdom.
| | - Bin Li
- Department of Articular Orthopaedics, Orthopaedic Institute, The Third Affiliated Hospital, Soochow University, Changzhou, Jiangsu, China; Department of Orthopaedic Surgery, The First Affiliated Hospital, Orthopedic Institute, Soochow University, Suzhou, Jiangsu, China; China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang, China.
| |
Collapse
|
43
|
Isolation, Culture and Comprehensive Characterization of Biological Properties of Human Urine-Derived Stem Cells. Int J Mol Sci 2021; 22:ijms222212503. [PMID: 34830384 PMCID: PMC8624597 DOI: 10.3390/ijms222212503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells (MSCs) represent an attractive source within the field of tissue engineering. However, their harvesting often requires invasive medical procedures. Urine-derived stem cells (UDSCs) display similar properties to MSCs, and their obtention and further processing is non-invasive for the donors as well as low cost. Here, we offer a comprehensive analysis of their biological properties. The goal of this study was to analyze their morphology, stemness, differentiation potential and cytokine profile. We have successfully isolated UDSCs from 25 urine samples. First colonies emerged up to 9 days after the initial seeding. Cell doubling time was 45 ± 0.24 SD, and when seeded at the density of 100 cells/cm2, they formed 42 ± 6.5 SD colonies within 10 days. Morphological analyzes revealed that two different types of the cell populations have been present. The first type had a rice-grain shape and the second one was characterized by a polyhedral shape. In several cell cultures, dome-shaped cells were observed as well. All examined UDSCs expressed typical MSC-like surface markers, CD73, CD90 and CD105. Moreover, conditioned media from UDSCs were harvested, and cytokine profile has been evaluated showing a significantly higher secretory rate of IL-8, IL-6 and chemokines MCP-1 and GM-CSF. We have also successfully induced human UDSCs into chondrogenic, osteogenic and myogenic cell lineages. Our findings indicate that UDSCs might have immense potential in the regeneration of the damaged tissues.
Collapse
|
44
|
Calcat-i-Cervera S, Sanz-Nogués C, O'Brien T. When Origin Matters: Properties of Mesenchymal Stromal Cells From Different Sources for Clinical Translation in Kidney Disease. Front Med (Lausanne) 2021; 8:728496. [PMID: 34616756 PMCID: PMC8488400 DOI: 10.3389/fmed.2021.728496] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022] Open
Abstract
Advanced therapy medicinal products (ATMPs) offer new prospects to improve the treatment of conditions with unmet medical needs. Kidney diseases are a current major health concern with an increasing global prevalence. Chronic renal failure appears after many years of impairment, which opens a temporary window to apply novel therapeutic approaches to delay or halt disease progression. The immunomodulatory, anti-inflammatory, and pro-regenerative properties of mesenchymal stromal cells (MSCs) have sparked interest for their use in cell-based regenerative therapies. Currently, several early-phase clinical trials have been completed and many are ongoing to explore MSC safety and efficacy in a wide range of nephropathies. However, one of the current roadblocks to the clinical translation of MSC therapies relates to the lack of standardization and harmonization of MSC manufacturing protocols, which currently hinders inter-study comparability. Studies have shown that cell culture processing variables can have significant effects on MSC phenotype and functionality, and these are highly variable across laboratories. In addition, heterogeneity within MSC populations is another obstacle. Furthermore, MSCs may be isolated from several sources which adds another variable to the comparative assessment of outcomes. There is now a growing body of literature highlighting unique and distinctive properties of MSCs according to the tissue origin, and that characteristics such as donor, age, sex and underlying medical conditions may alter the therapeutic effect of MSCs. These variables must be taken into consideration when developing a cell therapy product. Having an optimal scale-up strategy for MSC manufacturing is critical for ensuring product quality while minimizing costs and time of production, as well as avoiding potential risks. Ideally, optimal scale-up strategies must be carefully considered and identified during the early stages of development, as making changes later in the bioprocess workflow will require re-optimization and validation, which may have a significant long-term impact on the cost of the therapy. This article provides a summary of important cell culture processing variables to consider in the scale-up of MSC manufacturing as well as giving a comprehensive review of tissue of origin-specific biological characteristics of MSCs and their use in current clinical trials in a range of renal pathologies.
Collapse
Affiliation(s)
| | | | - Timothy O'Brien
- Regenerative Medicine Institute (REMEDI), CÚRAM, Biomedical Science Building, National University of Ireland, Galway, Ireland
| |
Collapse
|
45
|
Krešić N, Prišlin M, Vlahović D, Kostešić P, Ljolje I, Brnić D, Turk N, Musulin A, Habrun B. The Expression Pattern of Surface Markers in Canine Adipose-Derived Mesenchymal Stem Cells. Int J Mol Sci 2021; 22:ijms22147476. [PMID: 34299095 PMCID: PMC8303761 DOI: 10.3390/ijms22147476] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/30/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022] Open
Abstract
The influence of cultivation on the expression pattern of canine adipose-derived mesenchymal stem cells (cAD-MSCs) surface markers, contributing to, among others, the promotion of growth, proliferation, differentiation and immunomodulatory mechanisms of an excellent therapeutic, is still unknown. To fill the gap, we investigated CD90, CD44, CD73, CD29, CD271, CD105, CD45 and CD14 patterns of expression at the protein level with flow cytometry and mRNA level using a real-time polymerase chain reaction array. Gentle variations of expression occurred during cultivation, along with increased CD90, CD44 and CD29 expression, low and decreasing CD271 and CD73 expression and a decrease of initially high CD105. As expected, CD45 and CD14 were not expressed by cAD-MSCs. Interestingly, we discovered a significant decrease of CD73 expression, compared to early (P1–P3) to late (P4–P6) passages, although the CD73 gene expression was found to be stable. The percentage of positive cells was found to be higher for all positive markers up to P4. As CD73′s one important feature is a modulation from a pro-inflammatory environment to an anti-inflammatory milieu, the expression of CD73 in our conditions indicate the need to consider the time cells spend in vitro before being transplanted into patients, since it could impact their favourable therapeutical properties.
Collapse
Affiliation(s)
- Nina Krešić
- Virology Department, Croatian Veterinary Institute, Savska Cesta 143, 10 000 Zagreb, Croatia; (M.P.); (D.B.)
- Correspondence:
| | - Marina Prišlin
- Virology Department, Croatian Veterinary Institute, Savska Cesta 143, 10 000 Zagreb, Croatia; (M.P.); (D.B.)
| | - Dunja Vlahović
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia;
| | - Petar Kostešić
- Surgery, Orthopaedics and Ophthalmology Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia; (P.K.); (A.M.)
| | - Ivana Ljolje
- Veterinary Clinic for Small Animals Buba, Dore Pfanove 11, 10 000 Zagreb, Croatia;
| | - Dragan Brnić
- Virology Department, Croatian Veterinary Institute, Savska Cesta 143, 10 000 Zagreb, Croatia; (M.P.); (D.B.)
| | - Nenad Turk
- Department of Microbiology and Infectious Diseases with Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia;
| | - Andrija Musulin
- Surgery, Orthopaedics and Ophthalmology Clinic, Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, 10 000 Zagreb, Croatia; (P.K.); (A.M.)
| | - Boris Habrun
- Department for Bacteriology and Parasitology, Croatian Veterinary Institute, Savska Cesta 143, 10 000 Zagreb, Croatia;
| |
Collapse
|
46
|
Bone marrow/bone pre-metastatic niche for breast cancer cells colonization: The role of mesenchymal stromal cells. Crit Rev Oncol Hematol 2021; 164:103416. [PMID: 34237436 DOI: 10.1016/j.critrevonc.2021.103416] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/17/2021] [Accepted: 07/04/2021] [Indexed: 02/07/2023] Open
Abstract
Breast cancer is one of the most common oncological pathologies in women worldwide. While its early diagnosis has considerably improved, about 70 % of advanced patients develop bone metastases with a high mortality rate. Several authors demonstrated that primary breast cancer cells prepare their future metastatic niche -known as the pre-metastatic niche- to turn it into an "optimal soil" for colonization. The role of the different cellular components of the bone marrow/bone niche in bone metastasis has been well described. However, studying the changes that occur in this microenvironment before tumor cells arrival has become a novel research field. Therefore, the purpose of this review is to describe the current knowledge about the modulation of the normal bone marrow/bone niche by the primary breast tumor, in particular, highlighting the role of mesenchymal stem/stromal cells in transforming this soil into a pre-metastatic niche for breast cancer cells colonization.
Collapse
|
47
|
Characteristics, Classification, and Application of Stem Cells Derived from Human Teeth. Stem Cells Int 2021; 2021:8886854. [PMID: 34194509 PMCID: PMC8184333 DOI: 10.1155/2021/8886854] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/12/2021] [Accepted: 05/07/2021] [Indexed: 12/31/2022] Open
Abstract
Since mesenchymal stem cells derived from human teeth are characterized as having the properties of excellent proliferation, multilineage differentiation, and immune regulation. Dental stem cells exhibit fibroblast-like microscopic appearance and express mesenchymal markers, embryonic markers, and vascular markers but do not express hematopoietic markers. Dental stem cells are a mixed population with different sensitive markers, characteristics, and therapeutic effects. Single or combined surface markers are not only helpful for understanding the subpopulation of mixed stem cell populations according to cell function but also for improving the stable treatment effect of dental stem cells. Focusing on the discovery and characterization of stem cells isolated from human teeth over the past 20 years, this review outlines the effect of marker sorting on cell proliferation and differentiation ability and the assessment of the clinical application potential. Classified dental stem cells from markers and functional molecules can solve the problem of heterogeneity and ensure the efficacy of cell therapy strategies including dentistry, neurologic diseases, bone repair, and tissue engineering.
Collapse
|
48
|
Gorodetsky R, Aicher WK. Allogenic Use of Human Placenta-Derived Stromal Cells as a Highly Active Subtype of Mesenchymal Stromal Cells for Cell-Based Therapies. Int J Mol Sci 2021; 22:5302. [PMID: 34069909 PMCID: PMC8157571 DOI: 10.3390/ijms22105302] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 12/13/2022] Open
Abstract
The application of mesenchymal stromal cells (MSCs) from different sources, including bone marrow (BM, bmMSCs), adipose tissue (atMSCs), and human term placenta (hPSCs) has been proposed for various clinical purposes. Accumulated evidence suggests that the activity of the different MSCs is indirect and associated with paracrine release of pro-regenerative and anti-inflammatory factors. A major limitation of bmMSCs-based treatment for autologous application is the limited yield of cells harvested from BM and the invasiveness of the procedure. Similar effects of autologous and allogeneic MSCs isolated from various other tissues were reported. The easily available fresh human placenta seems to represent a preferred source for harvesting abundant numbers of human hPSCs for allogenic use. Cells derived from the neonate tissues of the placenta (f-hPSC) can undergo extended expansion with a low risk of senescence. The low expression of HLA class I and II on f-hPSCs reduces the risk of rejection in allogeneic or xenogeneic applications in normal immunocompetent hosts. The main advantage of hPSCs-based therapies seems to lie in the secretion of a wide range of pro-regenerative and anti-inflammatory factors. This renders hPSCs as a very competent cell for therapy in humans or animal models. This review summarizes the therapeutic potential of allogeneic applications of f-hPSCs, with reference to their indirect pro-regenerative and anti-inflammatory effects and discusses clinical feasibility studies.
Collapse
Affiliation(s)
- Raphael Gorodetsky
- Biotechnology and Radiobiology Laboratory, Sharett Institute of Oncology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Wilhelm K. Aicher
- Center of Medical Research, Department of Urology at UKT, Eberhard-Karls-University, 72076 Tuebingen, Germany
| |
Collapse
|
49
|
Li Y, Zhong X, Zhang Y, Lu X. Mesenchymal Stem Cells in Gastric Cancer: Vicious but Hopeful. Front Oncol 2021; 11:617677. [PMID: 34046337 PMCID: PMC8144497 DOI: 10.3389/fonc.2021.617677] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 04/22/2021] [Indexed: 12/24/2022] Open
Abstract
Tumor progression depends on the collaborative interactions between tumor cells and the surrounding stroma. First-line therapies direct against cancer cells may not reach a satisfactory outcome, such as gastric cancer (GC), with high risk of recurrence and metastasis. Therefore, novel treatments and drugs target the effects of stroma components are to be promising alternatives. Mesenchymal stem cells (MSC) represent the decisive components of tumor stroma that are found to strongly affect GC development and progression. MSC from bone marrow or adjacent normal tissues express homing profiles in timely response to GC-related inflammation signals and anchor into tumor bulks. Then the newly recruited “naïve” MSC would achieve phenotype and functional alternations and adopt the greater tumor-supporting potential under the reprogramming of GC cells. Conversely, both new-comers and tumor-resident MSC are able to modulate the tumor biology via aberrant activation of oncogenic signals, metabolic reprogramming and epithelial-to-mesenchymal transition. And they also engage in remodeling the stroma better suited for tumor progression through immunosuppression, pro-angiogenesis, as well as extracellular matrix reshaping. On the account of tumor tropism, MSC could be engineered to assist earlier diagnosis of GC and deliver tumor-killing agents precisely to the tumor microenvironment. Meanwhile, intercepting and abrogating vicious signals derived from MSC are of certain significance for the combat of GC. In this review, we mainly summarize current advances concerning the reciprocal metabolic interactions between MSC and GC and their underlying therapeutic implications in the future.
Collapse
Affiliation(s)
- Yuyi Li
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xingwei Zhong
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yunzhu Zhang
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xinliang Lu
- Department of Gastroenterology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
50
|
Yamada H, Sakata N, Nishimura M, Tanaka T, Shimizu M, Yoshimatsu G, Kawakami R, Wada H, Sawamoto O, Matsumoto S, Kodama S. Xenotransplantation of neonatal porcine bone marrow-derived mesenchymal stem cells improves murine hind limb ischemia through lymphangiogenesis and angiogenesis. Xenotransplantation 2021; 28:e12693. [PMID: 33960029 DOI: 10.1111/xen.12693] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 04/10/2021] [Accepted: 04/15/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND The clinical utility of stem cell therapy for peripheral artery disease has not been fully discussed, and one obstacle is limited donor supplies. In this study, we attempted to rescue mouse ischemic hind limb by xenotransplantation of neonatal porcine bone marrow-derived mesenchymal stem cells (npBM-MSCs). METHODS Neonatal porcine bone marrow-derived mesenchymal stem cells were transplanted to ischemic hind limbs of male C57BL/6J mice (npBM-MSCs group). Mice with syngeneic transplantation of mouse BM-MSCs (mBM-MSCs group) were also prepared for comparison. The angiogenic effects were evaluated by recovery of blood flow on laser Doppler imaging, histologic findings, and genetic and protein levels of angiogenic factors. RESULTS Regarding laser Doppler assessments, blood flow in the hind limb was rapidly recovered in the npBM-MSCs group, compared with that in the mBM-MSCs group (P = .016). Compared with the mBM-MSCs group, the npBM-MSCs group had early and prominent lymphangiogenesis [P < .05 on both post-operative days (PODs) 3 and 7] but had similar angiogenesis. Regarding genomic assessments, xenotransplantation of npBM-MSCs enhanced the expressions of both porcine and murine Vegfc in the hind limbs by POD 3. Interestingly, the level of murine Vegfc expression was significantly higher in the npBM-MSCs group than in the mBM-MSCs group on PODs 3 and 7 (P < .001 for both). Furthermore, the secreted VEGFC protein level was higher from npBM-MSCs than from mBM-MSCs (P < .001). CONCLUSION Xenotransplantation of npBM-MSCs contributed to the improvement of hind limb ischemia by both angiogenesis and lymphangiogenesis, especially promotion of the latter. npBM-MSCs may provide an alternative to autologous and allogeneic MSCs for stem cell therapy of critical limb ischemia.
Collapse
Affiliation(s)
- Hideaki Yamada
- Department of Regenerative Medicine & Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan.,Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan.,Department of Cardiovascular Surgery, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Naoaki Sakata
- Department of Regenerative Medicine & Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan.,Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan.,Research Institute for Regenerative Medicine, Fukuoka University, Fukuoka, Japan
| | - Masuhiro Nishimura
- Research and Development Center, Otsuka Pharmaceutical Factory, Inc., Naruto, Tokushima, Japan
| | - Tomoko Tanaka
- Department of Regenerative Medicine & Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan.,Research Institute for Regenerative Medicine, Fukuoka University, Fukuoka, Japan
| | - Masayuki Shimizu
- Department of Regenerative Medicine & Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan.,Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan.,Department of Cardiovascular Surgery, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Gumpei Yoshimatsu
- Department of Regenerative Medicine & Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan.,Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan.,Research Institute for Regenerative Medicine, Fukuoka University, Fukuoka, Japan
| | - Ryo Kawakami
- Department of Regenerative Medicine & Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan.,Research Institute for Regenerative Medicine, Fukuoka University, Fukuoka, Japan
| | - Hideichi Wada
- Department of Cardiovascular Surgery, Faculty of Medicine, Fukuoka University, Fukuoka, Japan.,Research Institute for Regenerative Medicine, Fukuoka University, Fukuoka, Japan
| | - Osamu Sawamoto
- Research and Development Center, Otsuka Pharmaceutical Factory, Inc., Naruto, Tokushima, Japan
| | - Shinichi Matsumoto
- Research and Development Center, Otsuka Pharmaceutical Factory, Inc., Naruto, Tokushima, Japan
| | - Shohta Kodama
- Department of Regenerative Medicine & Transplantation, Faculty of Medicine, Fukuoka University, Fukuoka, Japan.,Center for Regenerative Medicine, Fukuoka University Hospital, Fukuoka, Japan.,Research Institute for Regenerative Medicine, Fukuoka University, Fukuoka, Japan
| |
Collapse
|