1
|
Lkhagva-Yondon E, Seo MS, Oh Y, Jung J, Jeon E, Na K, Yoo HS, Kim WC, Esser C, Song SU, Jeon MS. The aryl hydrocarbon receptor controls mesenchymal stromal cell-mediated immunomodulation via ubiquitination of eukaryotic elongation factor-2 kinase. Cell Death Dis 2023; 14:812. [PMID: 38071243 PMCID: PMC10710493 DOI: 10.1038/s41419-023-06341-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 11/07/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023]
Abstract
Mesenchymal stem cells (MSCs) have great therapeutic advantages due to their immunosuppressive properties. The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor whose signaling plays an important role in the immune system. AHR may be involved in the regulation of MSC-associated immunomodulatory functions. However, the mechanisms by which AHR controls the immunosuppressive functions of MSCs are not well understood. Here, we report that Ahr-deficient MSCs show decreased therapeutic efficacy against graft-versus-host disease (GVHD) compared to wild-type (WT)-MSCs. This was probably due to decreased iNOS protein expression, which is a key regulatory enzyme in MSC immunomodulation. The expression of eukaryotic elongation factor 2 kinase (eEF2K), which inhibits the elongation stage of protein synthesis, is significantly increased in the Ahr-deficient MSCs. Inhibition of eEF2K restored iNOS protein expression. AHR is known to act as an E3 ligase together with CUL4B. We observed constitutive binding of AHR to eEF2K. Consequently, ubiquitination and degradation of eEF2K were inhibited in Ahr-deficient MSCs and by the AHR antagonist CH223191 in WT-MSCs. In summary, AHR regulates the immunomodulatory functions of MSCs through ubiquitination of eEF2K, thereby controlling iNOS protein synthesis and its product, nitric oxide levels.
Collapse
Affiliation(s)
- Enkhmaa Lkhagva-Yondon
- Translational Research Center, Inha University Hospital, Incheon, 22332, Republic of Korea
- Program in Biomedical Science & Engineering Inha University, Incheon, 22212, Republic of Korea
| | - Myeong Seong Seo
- Translational Research Center, Inha University Hospital, Incheon, 22332, Republic of Korea
- Program in Biomedical Science & Engineering Inha University, Incheon, 22212, Republic of Korea
| | - Yena Oh
- Translational Research Center, Inha University Hospital, Incheon, 22332, Republic of Korea
- Department of Molecular Biomedicine, College of Medicine Inha University, Incheon, 22212, Republic of Korea
| | - Jonghun Jung
- Translational Research Center, Inha University Hospital, Incheon, 22332, Republic of Korea
- Program in Biomedical Science & Engineering Inha University, Incheon, 22212, Republic of Korea
| | - Eunhae Jeon
- Translational Research Center, Inha University Hospital, Incheon, 22332, Republic of Korea
- Department of Molecular Biomedicine, College of Medicine Inha University, Incheon, 22212, Republic of Korea
| | - Kwangmin Na
- Translational Research Center, Inha University Hospital, Incheon, 22332, Republic of Korea
| | - Hyun Seung Yoo
- Translational Research Center, Inha University Hospital, Incheon, 22332, Republic of Korea
- Department of Molecular Biomedicine, College of Medicine Inha University, Incheon, 22212, Republic of Korea
| | - Woo Chul Kim
- Department of Radiation Oncology, Inha University Hospital, Incheon, 22332, Republic of Korea
| | - Charlotte Esser
- IUF-Leibniz Research Institute for Environmental Medicine, Düsseldorf, 40021, Germany
| | - Sun U Song
- Translational Research Center, Inha University Hospital, Incheon, 22332, Republic of Korea
- Department of Molecular Biomedicine, College of Medicine Inha University, Incheon, 22212, Republic of Korea
- SCM Lifescience, Incheon, 21999, Republic of Korea
| | - Myung-Shin Jeon
- Translational Research Center, Inha University Hospital, Incheon, 22332, Republic of Korea.
- Program in Biomedical Science & Engineering Inha University, Incheon, 22212, Republic of Korea.
- Department of Molecular Biomedicine, College of Medicine Inha University, Incheon, 22212, Republic of Korea.
- SCM Lifescience, Incheon, 21999, Republic of Korea.
| |
Collapse
|
2
|
Alhamad DW, Bensreti H, Dorn J, Hill WD, Hamrick MW, McGee-Lawrence ME. Aryl hydrocarbon receptor (AhR)-mediated signaling as a critical regulator of skeletal cell biology. J Mol Endocrinol 2022; 69:R109-R124. [PMID: 35900841 PMCID: PMC9448512 DOI: 10.1530/jme-22-0076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 07/27/2022] [Indexed: 11/08/2022]
Abstract
The aryl hydrocarbon receptor (AhR) has been implicated in regulating skeletal progenitor cells and the activity of bone-forming osteoblasts and bone-resorbing osteoclasts, thereby impacting bone mass and the risk of skeletal fractures. The AhR also plays an important role in the immune system within the skeletal niche and in the differentiation of mesenchymal stem cells into other cell lineages including chondrocytes and adipocytes. This transcription factor responds to environmental pollutants which can act as AhR ligands, initiating or interfering with various signaling cascades to mediate downstream effects, and also responds to endogenous ligands including tryptophan metabolites. This review comprehensively describes the reported roles of the AhR in skeletal cell biology, focusing on mesenchymal stem cells, osteoblasts, and osteoclasts, and discusses how AhR exhibits sexually dimorphic effects in bone. The molecular mechanisms mediating AhR's downstream effects are highlighted to emphasize the potential importance of targeting this signaling cascade in skeletal disorders.
Collapse
Affiliation(s)
- Dima W. Alhamad
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd CB1101, Augusta, GA, USA
| | - Husam Bensreti
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd CB1101, Augusta, GA, USA
| | - Jennifer Dorn
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd CB1101, Augusta, GA, USA
| | - William D. Hill
- Department of Pathology, Medical University of South Carolina, Thurmond/Gazes Bldg-Room 506A, 30 Courtenay Drive, Charleston, SC 29403 Charleston, SC, USA
- Ralph H Johnson VA Medical Center, Charleston, SC, USA
| | - Mark W. Hamrick
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd CB1101, Augusta, GA, USA
| | - Meghan E. McGee-Lawrence
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, 1460 Laney Walker Blvd CB1101, Augusta, GA, USA
- Department of Orthopaedic Surgery, Augusta University, 1460 Laney Walker Blvd CB1101, Augusta, GA, USA
| |
Collapse
|
3
|
Lustig RH, Collier D, Kassotis C, Roepke TA, Ji Kim M, Blanc E, Barouki R, Bansal A, Cave MC, Chatterjee S, Choudhury M, Gilbertson M, Lagadic-Gossmann D, Howard S, Lind L, Tomlinson CR, Vondracek J, Heindel JJ. Obesity I: Overview and molecular and biochemical mechanisms. Biochem Pharmacol 2022; 199:115012. [PMID: 35393120 PMCID: PMC9050949 DOI: 10.1016/j.bcp.2022.115012] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 02/06/2023]
Abstract
Obesity is a chronic, relapsing condition characterized by excess body fat. Its prevalence has increased globally since the 1970s, and the number of obese and overweight people is now greater than those underweight. Obesity is a multifactorial condition, and as such, many components contribute to its development and pathogenesis. This is the first of three companion reviews that consider obesity. This review focuses on the genetics, viruses, insulin resistance, inflammation, gut microbiome, and circadian rhythms that promote obesity, along with hormones, growth factors, and organs and tissues that control its development. It shows that the regulation of energy balance (intake vs. expenditure) relies on the interplay of a variety of hormones from adipose tissue, gastrointestinal tract, pancreas, liver, and brain. It details how integrating central neurotransmitters and peripheral metabolic signals (e.g., leptin, insulin, ghrelin, peptide YY3-36) is essential for controlling energy homeostasis and feeding behavior. It describes the distinct types of adipocytes and how fat cell development is controlled by hormones and growth factors acting via a variety of receptors, including peroxisome proliferator-activated receptor-gamma, retinoid X, insulin, estrogen, androgen, glucocorticoid, thyroid hormone, liver X, constitutive androstane, pregnane X, farnesoid, and aryl hydrocarbon receptors. Finally, it demonstrates that obesity likely has origins in utero. Understanding these biochemical drivers of adiposity and metabolic dysfunction throughout the life cycle lends plausibility and credence to the "obesogen hypothesis" (i.e., the importance of environmental chemicals that disrupt these receptors to promote adiposity or alter metabolism), elucidated more fully in the two companion reviews.
Collapse
Affiliation(s)
- Robert H Lustig
- Division of Endocrinology, Department of Pediatrics, University of California, San Francisco, CA 94143, United States
| | - David Collier
- Brody School of Medicine, East Carolina University, Greenville, NC 27834, United States
| | - Christopher Kassotis
- Institute of Environmental Health Sciences and Department of Pharmacology, Wayne State University, Detroit, MI 48202, United States
| | - Troy A Roepke
- School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901, United States
| | - Min Ji Kim
- Department of Biochemistry and Toxicology, University of Paris, INSERM U1224 (T3S), 75006 Paris, France
| | - Etienne Blanc
- Department of Biochemistry and Toxicology, University of Paris, INSERM U1224 (T3S), 75006 Paris, France
| | - Robert Barouki
- Department of Biochemistry and Toxicology, University of Paris, INSERM U1224 (T3S), 75006 Paris, France
| | - Amita Bansal
- College of Health & Medicine, Australian National University, Canberra, Australia
| | - Matthew C Cave
- Division of Gastroenterology, Hepatology and Nutrition, University of Louisville, Louisville, KY 40402, United States
| | - Saurabh Chatterjee
- Environmental Health and Disease Laboratory, University of South Carolina, Columbia, SC 29208, United States
| | - Mahua Choudhury
- College of Pharmacy, Texas A&M University, College Station, TX 77843, United States
| | - Michael Gilbertson
- Occupational and Environmental Health Research Group, University of Stirling, Stirling, Scotland, United Kingdom
| | - Dominique Lagadic-Gossmann
- Research Institute for Environmental and Occupational Health, University of Rennes, INSERM, EHESP, Rennes, France
| | - Sarah Howard
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, United States
| | - Lars Lind
- Department of Medical Sciences, University of Uppsala, Uppsala, Sweden
| | - Craig R Tomlinson
- Norris Cotton Cancer Center, Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756, United States
| | - Jan Vondracek
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, Czech Republic
| | - Jerrold J Heindel
- Healthy Environment and Endocrine Disruptor Strategies, Commonweal, Bolinas, CA 92924, United States.
| |
Collapse
|
4
|
Manganeli Polonio C, Longo de Freitas C, Garcia de Oliveira M, Rossato C, Nogueira Brandão W, Ghabdan Zanluqui N, Gomes de Oliveira L, Ayumi Nishiyama Mimura L, Braga Barros Silva M, Lúcia Garcia Calich V, Gil Nisenbaum M, Halpern S, Evangelista L, Maluf M, Perin P, Eduardo Czeresnia C, Schatzmann Peron JP. Murine endometrial-derived mesenchymal stem cells suppress experimental autoimmune encephalomyelitis depending on indoleamine-2,3-dioxygenase expression. Clin Sci (Lond) 2021; 135:1065-1082. [PMID: 33960391 DOI: 10.1042/cs20201544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/19/2021] [Accepted: 04/26/2021] [Indexed: 12/17/2022]
Abstract
Cellular therapy with mesenchymal stem cells (MSCs) is a huge challenge for scientists, as little translational relevance has been achieved. However, many studies using MSCs have proved their suppressive and regenerative capacity. Thus, there is still a need for a better understanding of MSCs biology and the establishment of newer protocols, or to test unexplored tissue sources. Here, we demonstrate that murine endometrial-derived MSCs (meMSCs) suppress Experimental Autoimmune Encephalomyelitis (EAE). MSC-treated animals had milder disease, with a significant reduction in Th1 and Th17 lymphocytes in the lymph nodes and in the central nervous system (CNS). This was associated with increased Il27 and Cyp1a1 expression, and presence of IL-10-secreting T CD4+ cells. At EAE peak, animals had reduced CNS infiltrating cells, histopathology and demyelination. qPCR analysis evidenced the down-regulation of several pro-inflammatory genes and up-regulation of indoleamine-2,3-dioxygenase (IDO). Consistently, co-culturing of WT and IDO-/- meMSCs with T CD4+ cells evidenced the necessity of IDO on the suppression of encephalitogenic lymphocytes, and IDO-/- meMSCs were not able to suppress EAE. In addition, WT meMSCs stimulated with IL-17A and IFN-γ increased IDO expression and secretion of kynurenines in vitro, indicating a negative feedback loop. Pathogenic cytokines were increased when CD4+ T cells from AhR-/- mice were co-cultured with WT meMSC. In summary, our research evidences the suppressive activity of the unexplored meMSCs population, and shows the mechanism depends on IDO-kynurenines-Aryl hydrocarbon receptor (AhR) axis. To our knowledge this is the first report evidencing that the therapeutic potential of meMSCs relying on IDO expression.
Collapse
Affiliation(s)
- Carolina Manganeli Polonio
- Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Carla Longo de Freitas
- Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Marília Garcia de Oliveira
- Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Cristiano Rossato
- Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Wesley Nogueira Brandão
- Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Nágela Ghabdan Zanluqui
- Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo (USP), São Paulo, SP, Brazil
- Immunopathology and Allergy Post Graduate Program, School of Medicine, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Lilian Gomes de Oliveira
- Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo (USP), São Paulo, SP, Brazil
| | | | - Maysa Braga Barros Silva
- Clinical Biochemistry Laboratory, Clinical Analysis Department, University of São Paulo (USP), São Paulo, SP, Brazil
| | - Vera Lúcia Garcia Calich
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo (USP), São Paulo, SP, Brazil
| | | | - Silvio Halpern
- Division of Reproductive Medicine, Halpern Clinic, São Paulo, SP, Brazil
| | | | | | - Paulo Perin
- Division of Reproductive Medicine, CEERH, São Paulo, SP, Brazil
| | | | - Jean Pierre Schatzmann Peron
- Neuroimmune Interactions Laboratory, Department of Immunology, University of São Paulo (USP), São Paulo, SP, Brazil
- Immunopathology and Allergy Post Graduate Program, School of Medicine, University of São Paulo (USP), São Paulo, SP, Brazil
| |
Collapse
|
5
|
de Castro LL, Lopes-Pacheco M, Weiss DJ, Cruz FF, Rocco PRM. Current understanding of the immunosuppressive properties of mesenchymal stromal cells. J Mol Med (Berl) 2019; 97:605-618. [PMID: 30903229 DOI: 10.1007/s00109-019-01776-y] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/17/2019] [Accepted: 03/11/2019] [Indexed: 12/14/2022]
Abstract
Several studies have demonstrated the anti-inflammatory potential of mesenchymal stromal cells (MSCs) isolated from bone marrow, adipose tissue, placenta, and other sources. Nevertheless, MSCs may also induce immunosuppression when administered systemically or directly to injured environments, as shown in different preclinical disease models. MSCs express certain receptors, including toll-like receptors and the aryl-hydrocarbon receptor, that are activated by the surrounding environment, thus leading to modulation of their immunosuppressive activity. Once MSCs are activated, they can affect a wide range of immune cells (e.g., neutrophils, monocytes/macrophages, dendritic cells, natural killer cells, T and B lymphocytes), a phenomenon that has been correlated to secretion of several mediators (e.g., indolamine 2,3-dioxygenase, galectins, prostaglandin E2, nitric oxide, and damage- and pathogen-associated molecular patterns) and stimulation of certain signaling pathways (e.g., protein kinase R, signal transducer and activator of transcription-1, nuclear factor-κB). Additionally, MSC manipulation and culture conditions, as well as the number of passages, duration of cryopreservation, and O2 content available, can significantly affect the immunosuppressive properties of MSCs. This review sheds light on current knowledge regarding the mechanisms by which MSCs exert immunosuppressive effects both in vitro and in vivo, focusing on the receptors expressed by MSCs, the correlation between soluble factors secreted by MSCs and their immunosuppressive effects, and interactions between MSCs and immune cells.
Collapse
Affiliation(s)
- Ligia Lins de Castro
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Miquéias Lopes-Pacheco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Daniel Jay Weiss
- Department of Medicine, College of Medicine, University of Vermont, Burlington, VT, USA
| | - Fernanda Ferreira Cruz
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil
| | - Patricia Rieken Macêdo Rocco
- Laboratory of Pulmonary Investigation, Carlos Chagas Filho Institute of Biophysics, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil. .,National Institute of Science and Technology for Regenerative Medicine, Rio de Janeiro, Brazil.
| |
Collapse
|
6
|
Lipoxin A 4 Attenuates the Inflammatory Response in Stem Cells of the Apical Papilla via ALX/FPR2. Sci Rep 2018; 8:8921. [PMID: 29892010 PMCID: PMC5995968 DOI: 10.1038/s41598-018-27194-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 05/25/2018] [Indexed: 01/01/2023] Open
Abstract
Similar to the onset phase of inflammation, its resolution is a process that unfolds in a manner that is coordinated and regulated by a panel of mediators. Lipoxin A4 (LXA4) has been implicated as an anti-inflammatory, pro-resolving mediator. We hypothesized that LXA4 attenuates or prevents an inflammatory response via the immunosuppressive activity of Stem Cells of the Apical Papilla (SCAP). Here, we report for the first time in vitro that in a SCAP population, lipoxin receptor ALX/FPR2 was constitutively expressed and upregulated after stimulation with lipopolysaccharide and/or TNF-α. Moreover, LXA4 significantly enhanced proliferation, migration, and wound healing capacity of SCAP through the activation of its receptor, ALX/FPR2. Cytokine, chemokine and growth factor secretion by SCAP was inhibited in a dose dependent manner by LXA4. Finally, LXA4 enhanced immunomodulatory properties of SCAP towards Peripheral Blood Mononuclear Cells. These findings provide the first evidence that the LXA4-ALX/FPR2 axis in SCAP regulates inflammatory mediators and enhances immunomodulatory properties. Such features of SCAP may also support the role of these cells in the resolution phase of inflammation and suggest a novel molecular target for ALX/FPR2 receptor to enhance a stem cell-mediated pro-resolving pathway.
Collapse
|