1
|
Wang Y, Gao B, Jiao T, Zhang W, Shi H, Jiang H, Li X, Li J, Ge X, Pan K, Li C, Mao G, Lu S. CCL5/CCR5/CYP1A1 pathway prompts liver cancer cells to survive in the combination of targeted and immunological therapies. Cancer Sci 2024; 115:3552-3569. [PMID: 39183447 PMCID: PMC11531955 DOI: 10.1111/cas.16320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/31/2024] [Accepted: 08/05/2024] [Indexed: 08/27/2024] Open
Abstract
Combination therapy of anti-programmed cell death protein-1 (PD-1) antibodies and tyrosine kinase inhibitors (TKIs) has significantly improved the prognosis for hepatocellular carcinoma (HCC), but many patients still have unsatisfactory outcomes. CD8 T cells are known to exert a pivotal function in the immune response against tumors. Nevertheless, most CD8 T cells in HCC tissues are in a state of exhaustion, losing the cytotoxic activity against malignant cells. Cytokines, mainly secreted by immune cells, play an important role in the occurrence and development of tumors. Here, we demonstrated the changes in exhausted CD8T cells during combination therapy by single-cell RNA sequencing (scRNA-seq) analysis on tumor samples before and after treatment. Combination therapy exerted a substantial impact on the exhausted CD8T cells, particularly in terms of cytokine expression. CCL5 was the most abundantly expressed cytokine in CD8T cells and exhausted CD8T cells, and its expression increased further after treatment. Subsequently, we discovered the CCL5/CCR5/CYP1A1 pathway through RNA sequencing (RNA-seq) on CCL5-stimulated Huh7 cells and verified through a series of experiments that this pathway can mediate the resistance of liver cancer cells to lenvatinib. Tissue experiments showed that after combination therapy, the CCL5/CCR5/CYP1A1 pathway was activated, which can benefit the residual tumor cells to survive treatment. Tumor-bearing mouse experiments demonstrated that bergamottin (BGM), a competitive inhibitor of CYP1A1, can enhance the efficacy of both lenvatinib and combination therapy. Our research revealed one mechanism by which hepatoma cells can survive the combination therapy, providing a theoretical basis for the refined treatment of HCC.
Collapse
Affiliation(s)
- Yafei Wang
- Nankai University School of Medicine, Nankai UniversityTianjinChina
- Faculty of Hepato‐Pancreato‐Biliary SurgeryChinese PLA General HospitalBeijingChina
- Institute of Hepatobiliary Surgery of Chinese PLABeijingChina
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLABeijingChina
| | - Biao Gao
- Nankai University School of Medicine, Nankai UniversityTianjinChina
- Faculty of Hepato‐Pancreato‐Biliary SurgeryChinese PLA General HospitalBeijingChina
- Institute of Hepatobiliary Surgery of Chinese PLABeijingChina
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLABeijingChina
| | - Tianyu Jiao
- Faculty of Hepato‐Pancreato‐Biliary SurgeryChinese PLA General HospitalBeijingChina
- Institute of Hepatobiliary Surgery of Chinese PLABeijingChina
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLABeijingChina
| | - Wenwen Zhang
- Faculty of Hepato‐Pancreato‐Biliary SurgeryChinese PLA General HospitalBeijingChina
- Institute of Hepatobiliary Surgery of Chinese PLABeijingChina
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLABeijingChina
| | - Huizhong Shi
- Faculty of Hepato‐Pancreato‐Biliary SurgeryChinese PLA General HospitalBeijingChina
- Institute of Hepatobiliary Surgery of Chinese PLABeijingChina
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLABeijingChina
| | - Hao Jiang
- Faculty of Hepato‐Pancreato‐Biliary SurgeryChinese PLA General HospitalBeijingChina
- Institute of Hepatobiliary Surgery of Chinese PLABeijingChina
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLABeijingChina
| | - Xuerui Li
- Nankai University School of Medicine, Nankai UniversityTianjinChina
- Faculty of Hepato‐Pancreato‐Biliary SurgeryChinese PLA General HospitalBeijingChina
- Institute of Hepatobiliary Surgery of Chinese PLABeijingChina
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLABeijingChina
| | - Junfeng Li
- Faculty of Hepato‐Pancreato‐Biliary SurgeryChinese PLA General HospitalBeijingChina
- Institute of Hepatobiliary Surgery of Chinese PLABeijingChina
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLABeijingChina
| | - Xinlan Ge
- Faculty of Hepato‐Pancreato‐Biliary SurgeryChinese PLA General HospitalBeijingChina
- Institute of Hepatobiliary Surgery of Chinese PLABeijingChina
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLABeijingChina
| | - Ke Pan
- Faculty of Hepato‐Pancreato‐Biliary SurgeryChinese PLA General HospitalBeijingChina
- Institute of Hepatobiliary Surgery of Chinese PLABeijingChina
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLABeijingChina
| | - Chonghui Li
- Faculty of Hepato‐Pancreato‐Biliary SurgeryChinese PLA General HospitalBeijingChina
- Institute of Hepatobiliary Surgery of Chinese PLABeijingChina
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLABeijingChina
| | - Guankun Mao
- Faculty of Hepato‐Pancreato‐Biliary SurgeryChinese PLA General HospitalBeijingChina
- Institute of Hepatobiliary Surgery of Chinese PLABeijingChina
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLABeijingChina
| | - Shichun Lu
- Nankai University School of Medicine, Nankai UniversityTianjinChina
- Faculty of Hepato‐Pancreato‐Biliary SurgeryChinese PLA General HospitalBeijingChina
- Institute of Hepatobiliary Surgery of Chinese PLABeijingChina
- Key Laboratory of Digital Hepatobiliary Surgery of Chinese PLABeijingChina
| |
Collapse
|
2
|
Khanam A, Ghosh A, Chua JV, Kottilil S. Blockade of CCR4 breaks immune tolerance in chronic hepatitis B patients by modulating regulatory pathways. J Transl Med 2023; 21:271. [PMID: 37081509 PMCID: PMC10120209 DOI: 10.1186/s12967-023-04104-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/04/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND Immunotargets including checkpoint inhibitors and toll-like receptor 8 agonists have recently gained attention for the recovery of hepatitis B virus (HBV)-specific T cell exhaustion in chronic hepatitis B(CHB). Chemokine receptors have a similar significant role during viral infections; however, their role in CHB remains poorly understood. Therefore, in this study we evaluated the role of chemokine receptor 4 (CCR4) in deriving immunosuppression during CHB. METHODS We characterized CCR4+CD8+ T cells in CHB and identified their involvement in immunosuppression. Further, we examined if CCR4 blockade with mogamulizumab antibody can recover the functional exhaustion in HBsAg-specific T cells. RESULTS CHB patients exhibit higher frequency of CCR4+CD8+ T cells that increase with higher HBsAg levels and fibrosis scores. In vitro, HBs antigen triggers CCR4 expression. These cells express multiple inhibitory receptors and exhibit immunosuppressive functions by producing excessive immunoregulatory cytokines IL-4, IL-5, IL-10 and TGF-β1. CCR4 Blockade significantly boosted HBsAg-specific antiviral-cytokine production(IFN-γ, TNF-α and IL-21) in T cells through enhancing their proliferation capacity and polarizing these cells towards T helper 1(Th1) and T follicular helper cells(TFH) in case of CD4 cells, and cytotoxic T cell 1(TC1) and cytotoxic T follicular(TCF) cells in case of CD8. Cytotoxic potential was improved, while no induction of immunosuppressive-cytokines was seen after anti-CCR4 treatment thereby eliminating the risk of treatment-induced immunosuppression. CCR4 blockade inhibited the development and effector function of Tregs by controlling their expansion and TGF-β1 production preventing Tregs-induced immunotolearance. CONCLUSIONS CCR4 blockade reconstitutes antiviral immune response in T cells and limits the immunosuppressive functions of Tregs, representing them as a promising immunotherapeutic target for functional cure of CHB.
Collapse
Affiliation(s)
- Arshi Khanam
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Alip Ghosh
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Joel V Chua
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Shyam Kottilil
- Division of Clinical Care and Research, Institute of Human Virology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Cancer Immunology: Impact of Radioembolization of Hepatocellular Carcinoma on Immune Response Modulation. AJR Am J Roentgenol 2023; 220:863-872. [PMID: 36752368 DOI: 10.2214/ajr.22.28800] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent primary liver cancer and the fourth most common cause of cancer mortality. The tumor microenvironment (TME) is increasingly recognized as having a central role in HCC carcinogenesis, with factors such as tumor and immune cell interactions, cytokines, and extracellular matrix serving key roles. Transarterial radioembolization (TARE) is a locoregional therapy for HCC that not only has a direct tumoricidal effect, but induces an immune response against tumor cells with subsequent immunogenic cell death. This TARE-induced tumor immunogenicity occurs through enhancement of tumor-associated antigen expression, as well as recruitment and diversification of tumor-infiltrating lymphocytes. In addition, immunologically related biomarkers, including the neutrophil-to-lymphocyte ratio, lymphocyte count, and cytokine levels, may be useful tools to predict outcomes after TARE. Early data are promising regarding the potential synergistic benefit from treatment algorithms that combine TARE and immunotherapies, and interest is growing in the clinical application of such combinations. This review provides an overview of cancer immunology, summarizes the available data regarding the biologic effects of TARE on local and systemic immune responses, and explores the potential role of the combination of TARE and immunotherapy for HCC.
Collapse
|
4
|
Kogue Y, Kobayashi H, Nakamura Y, Takano T, Furuta C, Kawano O, Yasuma T, Nishimura T, D’Alessandro-Gabazza CN, Fujimoto H, Gabazza EC, Kobayashi T, Fukai I. Prognostic Value of CXCL12 in Non-Small Cell Lung Cancer Patients Undergoing Tumor Resection. Pharmaceuticals (Basel) 2023; 16:255. [PMID: 37227446 PMCID: PMC9967107 DOI: 10.3390/ph16020255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/23/2023] [Accepted: 02/04/2023] [Indexed: 08/30/2023] Open
Abstract
Adjuvant chemotherapy is commonly indicated in lung cancer patients undergoing surgical therapy because tumor recurrence is frequent. A biomarker that can predict tumor recurrence in the postoperative period is currently unavailable. CXCR4 receptor and its ligand CXCL12 play important roles in metastasis. This study investigated the value of tumor CXCL12 expression to predict prognosis and indicate adjuvant chemotherapy in non-small cell lung cancer patients. This study enrolled 82 non-small cell lung cancer patients. The expression of CXCL12 was evaluated by immunohistochemistry. The degree of CXCL12 expression was assessed using the Allred score system. Among all subjects, the progression-free survival and overall survival were significantly prolonged in cancer patients with low tumor expression of CXCL12 compared to patients with high tumor expression. Multivariate analysis showed that the increased level of CXCL12 is a significant predictor of progression-free survival and overall survival in NSCLC patients. Among subjects with high tumor CXCL12 expression, progression-free survival and overall survival were significantly improved in patients treated with adjuvant chemotherapy compared to untreated patients. These results suggest the potential value of tumor CXCL12 expression as a marker to predict prognosis and to indicate adjuvant chemotherapy after surgical tumor resection in non-small cell lung cancer patients.
Collapse
Affiliation(s)
- Yurie Kogue
- Department of Pulmonary Medicine, Suzuka Chuo General Hospital, 1275-53, Yasuzukacho, Suzuka 513-8630, Japan
- Department of Pulmonary and Critical Care Medicine, Graduate School of Medicine, Mie University Faculty, Edobashi, Tsu 514-8507, Japan
| | - Hiroyasu Kobayashi
- Department of Pulmonary Medicine, Suzuka Chuo General Hospital, 1275-53, Yasuzukacho, Suzuka 513-8630, Japan
| | - Yutaka Nakamura
- Department of Pathology, Suzuka Chuo General Hospital, 1275-53, Yasuzukacho, Suzuka 513-8630, Japan
| | - Takatsugu Takano
- Department of Pulmonary Surgery, Suzuka Chuo General Hospital, 1275-53, Yasuzukacho, Suzuka 513-8630, Japan
| | - Chihiro Furuta
- Department of Pulmonary Surgery, Suzuka Chuo General Hospital, 1275-53, Yasuzukacho, Suzuka 513-8630, Japan
| | - Osamu Kawano
- Department of Pulmonary Surgery, Suzuka Chuo General Hospital, 1275-53, Yasuzukacho, Suzuka 513-8630, Japan
| | - Taro Yasuma
- Department of Immunology, Graduate School of Medicine, Mie University Faculty, Edobashi, Tsu 514-8507, Japan
| | - Tadashi Nishimura
- Department of Pulmonary Medicine, Mie Chuo Medical Center, Hisaimyojincho, Tsu 514-1101, Japan
| | | | - Hajime Fujimoto
- Department of Pulmonary and Critical Care Medicine, Graduate School of Medicine, Mie University Faculty, Edobashi, Tsu 514-8507, Japan
| | - Esteban C. Gabazza
- Department of Immunology, Graduate School of Medicine, Mie University Faculty, Edobashi, Tsu 514-8507, Japan
| | - Tetsu Kobayashi
- Department of Pulmonary and Critical Care Medicine, Graduate School of Medicine, Mie University Faculty, Edobashi, Tsu 514-8507, Japan
| | - Ichiro Fukai
- Department of Pulmonary Surgery, Suzuka Chuo General Hospital, 1275-53, Yasuzukacho, Suzuka 513-8630, Japan
| |
Collapse
|
5
|
Ahmad M, Dhasmana A, Harne PS, Zamir A, Hafeez BB. Chemokine clouding and liver cancer heterogeneity: Does it impact clinical outcomes? Semin Cancer Biol 2022; 86:1175-1185. [PMID: 35189322 DOI: 10.1016/j.semcancer.2022.02.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 02/08/2023]
Abstract
Tumor heterogeneity is a predominant feature of hepatocellular carcinoma (HCC) that plays a crucial role in chemoresistance and limits the efficacy of available chemo/immunotherapy regimens. Thus, a better understanding regarding the molecular determinants of tumor heterogeneity will help in developing newer strategies for effective HCC management. Chemokines, a sub-family of cytokines are one of the key molecular determinants of tumor heterogeneity in HCC and are involved in cell survival, growth, migration, and angiogenesis. Herein, we provide a panoramic insight into the role of chemokines in HCC heterogeneity at genetic, epigenetic, metabolic, immune cell composition, and tumor microenvironment levels and its impact on clinical outcomes. Interestingly, our in-silico analysis data showed that expression of chemokine receptors impacts infiltration of various immune cell populations into the liver tumor and leads to heterogeneity. Thus, it is evident that aberrant chemokines clouding impacts HCC tumor heterogeneity and understanding this phenomenon in depth could be harnessed for the development of personalized medicine strategies in future.
Collapse
Affiliation(s)
- Mudassier Ahmad
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, TX 78504, United States
| | - Anupam Dhasmana
- Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, TX 78504, United States; Department of Biosciences and Cancer Research Institute, Himalayan Institute of Medical Sciences, Swami Rama Himalayan University, Dehradun, India
| | - Prateek Suresh Harne
- DHR Health Gastroenterology, 5520 Leonardo da Vinci Drive, Suite 100, Edinburg, TX 78539, United States
| | - Asif Zamir
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, TX 78504, United States; DHR Health Gastroenterology, 5520 Leonardo da Vinci Drive, Suite 100, Edinburg, TX 78539, United States
| | - Bilal Bin Hafeez
- South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, TX 78504, United States; Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, TX 78504, United States.
| |
Collapse
|
6
|
Investigation of Anti-Liver Cancer Activity of the Herbal Drug FDY003 Using Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5765233. [PMID: 36118098 PMCID: PMC9481369 DOI: 10.1155/2022/5765233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022]
Abstract
Globally, liver cancer (LC) is the sixth-most frequently occurring and the second-most fatal malignancy, responsible for 0.83 million deaths annually. Although the application of herbal drugs in cancer therapies has increased, their anti-LC activity and relevant mechanisms have not been fully studied from a systems perspective. To address these issues, we conducted a system-perspective network pharmacological investigation into the activity and mechanisms underlying the action of the herbal drug. FDY003 reduced the viability of human LC treatment. FDY003 reduced the viability of human LC cells and elevated their chemosensitivity. There were a total of 16 potential bioactive chemical components in FDY003 and they had 91 corresponding targets responsible for the pathological processes in LC. These FDY003 targets were functionally involved in regulating the survival, proliferation, apoptosis, and cell cycle of LC cells. Additionally, we found that FDY003 may target key signaling cascades connected to diverse LC pathological mechanisms, namely, PI3K-Akt, focal adhesion, IL-17, FoxO, MAPK, and TNF pathways. Overall, this study contributed to integrative mechanistic insights into the anti-LC potential of FDY003.
Collapse
|
7
|
EMT and Inflammation: Crossroads in HCC. J Gastrointest Cancer 2022; 54:204-212. [PMID: 35020133 DOI: 10.1007/s12029-021-00801-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2021] [Indexed: 10/19/2022]
Abstract
Hepatocellular carcinoma is one of the major causes of cancer-related deaths worldwide and is associated with several inflammatory mediators, since 90% of HCCs occur based on chronic hepatitis B or C, alcoholism or increasingly metabolic syndrome-associated inflammation. EMT is a physiological process, with coordinated changes in epithelial gene signatures and is regulated by multiple factors, including cytokines and growth factors such as TGFβ, EGF, and FGF. Recent reports propose a strong association between EMT and inflammation, which is also correlated with tumor aggressiveness and poor outcomes. Cellular heterogeneity results collectively as an outcome of EMT, inflammation, and the tumor microenvironment, and it plays a fundamental role in the progression, complexity of cancer, and chemoresistance. In this review, we highlight recent developments concerning the association of EMT and inflammation in the context of HCC progression. Identifying potential EMT-related biomarkers and understanding EMT regulatory molecules will likely contribute to promising developments in clinical practice and will be a valuable tool for predicting metastasis in general and specifically in HCC.
Collapse
|
8
|
Barros JS, Aguiar TFM, Costa SS, Rivas MP, Cypriano M, Toledo SRC, Novak EM, Odone V, Cristofani LM, Carraro DM, Werneck da Cunha I, Costa CML, Vianna-Morgante AM, Rosenberg C, Krepischi ACV. Copy Number Alterations in Hepatoblastoma: Literature Review and a Brazilian Cohort Analysis Highlight New Biological Pathways. Front Oncol 2021; 11:741526. [PMID: 34956867 PMCID: PMC8692715 DOI: 10.3389/fonc.2021.741526] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 11/10/2021] [Indexed: 12/19/2022] Open
Abstract
Hepatoblastoma (HB) is a rare embryonal tumor, although it is the most common pediatric liver cancer. The aim of this study was to provide an accurate cytogenomic profile of this type of cancer, for which information in cancer databases is lacking. We performed an extensive literature review of cytogenetic studies on HBs disclosing that the most frequent copy number alterations (CNAs) are gains of 1q, 2/2q, 8/8q, and 20; and losses at 1p and 4q. Furthermore, the CNA profile of a Brazilian cohort of 26 HBs was obtained by array-CGH; the most recurrent CNAs were the same as shown in the literature review. Importantly, HBs from female patients, high-risk stratification tumors, tumors who developed in older patients (> 3 years at diagnosis) or from patients with metastasis and/or deceased carried a higher diversity of chromosomal alterations, specifically chromosomal losses at 1p, 4, 11q and 18q. In addition, we distinguished three major CNA profiles: no detectable CNA, few CNAs and tumors with complex genomes. Tumors with simpler genomes exhibited a significant association with the epithelial fetal subtype of HBs; in contrast, the complex genome group included three cases with epithelial embryonal histology, as well as the only HB with HCC features. A significant association of complex HB genomes was observed with older patients who developed high-risk tumors, metastasis, and deceased. Moreover, two patients with HBs exhibiting complex genomes were born with congenital anomalies. Together, these findings suggest that a high load of CNAs, mainly chromosomal losses, particularly losses at 1p and 18, increases the tendency to HB aggressiveness. Additionally, we identified six hot-spot chromosome regions most frequently affected in the entire group: 1q31.3q42.3, 2q23.3q37.3, and 20p13p11.1 gains, besides a 5,3 Mb amplification at 2q24.2q24.3, and losses at 1p36.33p35.1, 4p14 and 4q21.22q25. An in-silico analysis using the genes mapped to these six regions revealed several enriched biological pathways such as ERK Signaling, MicroRNAs in Cancer, and the PI3K-Akt Signaling, in addition to the WNT Signaling pathway; further investigation is required to evaluate if disturbances of these pathways can contribute to HB tumorigenesis. The analyzed gene set was found to be associated with neoplasms, abnormalities of metabolism/homeostasis and liver morphology, as well as abnormal embryonic development and cytokine secretion. In conclusion, we have provided a comprehensive characterization of the spectrum of chromosomal alterations reported in HBs and identified specific genomic regions recurrently altered in a Brazilian HB group, pointing to new biological pathways, and relevant clinical associations.
Collapse
Affiliation(s)
- Juliana Sobral Barros
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Talita Ferreira Marques Aguiar
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil.,Department of Urology, New York University (NYU) Grossman School of Medicine, New York, NY, United States
| | - Silvia Souza Costa
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Maria Prates Rivas
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Monica Cypriano
- Department of Pediatrics, Institute of Pediatric Oncology, Support Group for Children and Adolescents with Cancer (IOP-GRAACC), Federal University of São Paulo, São Paulo, Brazil
| | - Silvia Regina Caminada Toledo
- Department of Pediatrics, Institute of Pediatric Oncology, Support Group for Children and Adolescents with Cancer (IOP-GRAACC), Federal University of São Paulo, São Paulo, Brazil
| | - Estela Maria Novak
- Department of Pediatrics, Institute of Childhood Cancer Treatment (ITACI), Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Vicente Odone
- Department of Pediatrics, Institute of Childhood Cancer Treatment (ITACI), Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Lilian Maria Cristofani
- Department of Pediatrics, Institute of Childhood Cancer Treatment (ITACI), Faculty of Medicine, University of São Paulo, São Paulo, Brazil
| | - Dirce Maria Carraro
- International Research Center, AC Camargo Cancer Center (ACCCC), São Paulo, Brazil
| | | | | | - Angela M Vianna-Morgante
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Carla Rosenberg
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| | - Ana Cristina Victorino Krepischi
- Human Genome and Stem Cell Research Center, Department of Genetics and Evolutionary Biology, Institute of Biosciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
9
|
Wang CI, Chu PM, Chen YL, Lin YH, Chen CY. Chemotherapeutic Drug-Regulated Cytokines Might Influence Therapeutic Efficacy in HCC. Int J Mol Sci 2021; 22:ijms222413627. [PMID: 34948424 PMCID: PMC8707970 DOI: 10.3390/ijms222413627] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/04/2021] [Accepted: 12/16/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC), the most common type of liver cancer, is the second leading cause of cancer-related mortality worldwide. Processes involved in HCC progression and development, including cell transformation, proliferation, metastasis, and angiogenesis, are inflammation-associated carcinogenic processes because most cases of HCC develop from chronic liver damage and inflammation. Inflammation has been demonstrated to be a crucial factor inducing tumor development in various cancers, including HCC. Cytokines play critical roles in inflammation to accelerate tumor invasion and metastasis by mediating the migration of immune cells into damaged tissues in response to proinflammatory stimuli. Currently, surgical resection followed by chemotherapy is the most common curative therapeutic regimen for HCC. However, after chemotherapy, drug resistance is clearly observed, and cytokine secretion is dysregulated. Various chemotherapeutic agents, including cisplatin, etoposide, and 5-fluorouracil, demonstrate even lower efficacy in HCC than in other cancers. Tumor resistance to chemotherapeutic drugs is the key limitation of curative treatment and is responsible for treatment failure and recurrence, thus limiting the ability to treat patients with advanced HCC. Therefore, the capability to counteract drug resistance would be a major clinical advancement. In this review, we provide an overview of links between chemotherapeutic agents and inflammatory cytokine secretion in HCC. These links might provide insight into overcoming inflammatory reactions and cytokine secretion, ultimately counteracting chemotherapeutic resistance.
Collapse
Affiliation(s)
- Chun-I Wang
- Radiation Biology Research Center, Institute for Radiological Research, Chang Gung Memorial Hospital, Chang Gung University, Taoyuan 333, Taiwan;
| | - Pei-Ming Chu
- Department of Anatomy, School of Medicine, China Medical University, Taichung 404, Taiwan;
| | - Yi-Li Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
| | - Yang-Hsiang Lin
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 333, Taiwan;
| | - Cheng-Yi Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 70101, Taiwan;
- Correspondence: ; Tel./Fax: +886-6-2353535 (ext. 5329)
| |
Collapse
|
10
|
Makkouk A, Yang XC, Barca T, Lucas A, Turkoz M, Wong JTS, Nishimoto KP, Brodey MM, Tabrizizad M, Gundurao SRY, Bai L, Bhat A, An Z, Abbot S, Satpayev D, Aftab BT, Herrman M. Off-the-shelf Vδ1 gamma delta T cells engineered with glypican-3 (GPC-3)-specific chimeric antigen receptor (CAR) and soluble IL-15 display robust antitumor efficacy against hepatocellular carcinoma. J Immunother Cancer 2021; 9:jitc-2021-003441. [PMID: 34916256 PMCID: PMC8679077 DOI: 10.1136/jitc-2021-003441] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Glypican-3 (GPC-3) is an oncofetal protein that is highly expressed in various solid tumors, but rarely expressed in healthy adult tissues and represents a rational target of particular relevance in hepatocellular carcinoma (HCC). Autologous chimeric antigen receptor (CAR) αβ T cell therapies have established significant clinical benefit in hematologic malignancies, although efficacy in solid tumors has been limited due to several challenges including T cell homing, target antigen heterogeneity, and immunosuppressive tumor microenvironments. Gamma delta (γδ) T cells are highly cytolytic effectors that can recognize and kill tumor cells through major histocompatibility complex (MHC)-independent antigens upregulated under stress. The Vδ1 subset is preferentially localized in peripheral tissue and engineering with CARs to further enhance intrinsic antitumor activity represents an attractive approach to overcome challenges for conventional T cell therapies in solid tumors. Allogeneic Vδ1 CAR T cell therapy may also overcome other hurdles faced by allogeneic αβ T cell therapy, including graft-versus-host disease (GvHD). METHODS We developed the first example of allogeneic CAR Vδ1 T cells that have been expanded from peripheral blood mononuclear cells (PBMCs) and genetically modified to express a 4-1BB/CD3z CAR against GPC-3. The CAR construct (GPC-3.CAR/secreted interleukin-15 (sIL)-15) additionally encodes a constitutively-secreted form of IL-15, which we hypothesized could sustain proliferation and antitumor activity of intratumoral Vδ1 T cells expressing GPC-3.CAR. RESULTS GPC-3.CAR/sIL-15 Vδ1 T cells expanded from PBMCs on average 20,000-fold and routinely reached >80% purity. Expanded Vδ1 T cells showed a primarily naïve-like memory phenotype with limited exhaustion marker expression and displayed robust in vitro proliferation, cytokine production, and cytotoxic activity against HCC cell lines expressing low (PLC/PRF/5) and high (HepG2) GPC-3 levels. In a subcutaneous HepG2 mouse model in immunodeficient NSG mice, GPC-3.CAR/sIL-15 Vδ1 T cells primarily accumulated and proliferated in the tumor, and a single dose efficiently controlled tumor growth without evidence of xenogeneic GvHD. Importantly, compared with GPC-3.CAR Vδ1 T cells lacking sIL-15, GPC-3.CAR/sIL-15 Vδ1 T cells displayed greater proliferation and resulted in enhanced therapeutic activity. CONCLUSIONS Expanded Vδ1 T cells engineered with a GPC-3 CAR and sIL-15 represent a promising platform warranting further clinical evaluation as an off-the-shelf treatment of HCC and potentially other GPC-3-expressing solid tumors.
Collapse
Affiliation(s)
| | | | - Taylor Barca
- Adicet Therapeutics, Menlo Park, California, USA
| | | | | | | | | | | | | | | | - Lu Bai
- Adicet Therapeutics, Menlo Park, California, USA
| | - Arun Bhat
- Adicet Therapeutics, Menlo Park, California, USA
| | - Zili An
- Adicet Therapeutics, Menlo Park, California, USA
| | | | | | | | | |
Collapse
|
11
|
Yang J, Sontag D, Gong Y, Minuk GY. Alterations in chemokine receptor CCR5 activity influence tumor cell biology in human cholangiocarcinoma cell lines. Ann Hepatol 2021; 21:100265. [PMID: 33045415 DOI: 10.1016/j.aohep.2020.09.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/08/2020] [Accepted: 09/18/2020] [Indexed: 02/07/2023]
Abstract
INTRODUCTION AND OBJECTIVES Intrahepatic (I-CCA) and extrahepatic (E-CCA) cholangiocarcinoma (CCA) have different growth patterns and risks for tumor metastasis. Inhibition and/or activation of the chemokine receptor CCR subclasses have been reported to alter tumor cell biology in non-CCA cancers. In this study we documented CCR expression profiles in representative human I-CCA and E-CCA cell lines and the in vitro effects of CCR antagonists and agonists on tumor cell biology. MATERIALS AND METHODS CCR expression profiles were documented by real-time reverse transcription polymerase chain reaction; cell proliferation by WST-1; spheroid formation by sphere dimensions in anchorage-free medium; cell migration by wound healing and invasion by Transwell invasion chambers. RESULTS All 10 CCR motifs (CCR1-10) were expressed in the I-CCA, HuCCT1 cell line and six (CCR4, 5, 6, 8, 9 and 10) in the E-CCA, KMBC cell line. In HuCCT1 cells, CCR5 expression was most abundant whereas in KMBC cells, CCR6 followed by CCR5 were most abundant. The CCR5 antagonist Maraviroc significantly inhibited cell proliferation, migration and invasion in HuCCT1 cells, and spheroid formation and invasion in KMBC cells. The CCR5 agonist RANTES had no effect on HuCCT1 cells but increased cell proliferation, migration and invasion of KMBC cells. CONCLUSION These results suggest that CCR expression profiles differ in I-CCA and E-CCA. They also indicate that CCR5 antagonists and agonists have cell-specific effects but in general, CCR5 inactivation inhibits CCA tumor cell aggressiveness. Additional research is required to determine whether CCR5 inactivation is of value in the treatment of CCA in humans.
Collapse
MESH Headings
- Bile Duct Neoplasms/genetics
- Bile Duct Neoplasms/metabolism
- Bile Duct Neoplasms/pathology
- Bile Ducts, Extrahepatic/metabolism
- Bile Ducts, Extrahepatic/pathology
- Bile Ducts, Intrahepatic/metabolism
- Bile Ducts, Intrahepatic/pathology
- Biomarkers, Tumor/biosynthesis
- Biomarkers, Tumor/genetics
- Cell Line, Tumor
- Cell Proliferation/genetics
- Cholangiocarcinoma/genetics
- Cholangiocarcinoma/metabolism
- Cholangiocarcinoma/pathology
- DNA, Neoplasm/genetics
- DNA, Neoplasm/metabolism
- Gene Expression Regulation, Neoplastic
- Humans
- Receptors, CCR5/biosynthesis
- Receptors, CCR5/genetics
- Signal Transduction
Collapse
Affiliation(s)
- Jiaqi Yang
- Section of Hepatology, Department of Internal Medicine, Rudy Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - David Sontag
- College of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Yuewen Gong
- College of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Gerald Y Minuk
- Section of Hepatology, Department of Internal Medicine, Rudy Faculty of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada; College of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
12
|
Lin T, Zhang Y, Lin Z, Peng L. ZWINT is a Promising Therapeutic Biomarker Associated with the Immune Microenvironment of Hepatocellular Carcinoma. Int J Gen Med 2021; 14:7487-7501. [PMID: 34744456 PMCID: PMC8566006 DOI: 10.2147/ijgm.s340057] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 10/20/2021] [Indexed: 12/15/2022] Open
Abstract
Background The prognosis of patients with advanced hepatocellular carcinoma (HCC) is still poor, effective therapeutic targets are needed. ZW10 interacting kinetochore protein (Zwint) is an essential component of the mitotic spindle checkpoint and is upregulated in cancers. Disappointing, the role of ZWINT in HCC has not been fully illuminated. Methods Multiple tools, including TIMER2.0, Oncomine, GEPIA2, UALCAN, LinkedOmics, Kaplan-Meier Plotter, cBioPortal, and MethSurv, etc. were applied to comprehensively analyze the expression, genetic alternations, clinicopathological relevance, prognostic value, and DNA methylation of ZWINT, along with its correlations with immune infiltration in HCC. Besides, gene set enrichment analysis (GSEA) and protein-protein interaction (PPI) analysis were performed for the correlated genes of ZWINT, closely interconnected clusters and hub proteins in the PPI network were discovered to learn the underlying biological mechanisms. Results We found ZWINT was significantly upregulated in diverse cancers including HCC, compared with the corresponding normal controls. ZWINT upregulation was significantly associated with unfavorable clinicopathological features and survivals of HCC patients. Genetic alternations of ZWINT frequently occurred, which were linked to worse outcomes of HCC patients. The results of GSEA displayed ZWINT and its correlated genes might be components of condensed chromosomes and spindles, which participated in biological processes and signaling pathways involving DNA replication, cytokinesis, and cell cycle checkpoint, etc. Three highly interconnected clusters and 10 hub proteins were identified from the PPI network constructed with the correlated genes of ZWINT. Moreover, ZWINT expression was found positively correlated with infiltration levels of various immune cells, especially myeloid-derived suppressor cells. Conclusion This study demonstrated ZWINT might be a promising unfavorable prognostic biomarker and a therapeutic target of HCC, which could regulate HCC progression through cell division and immunosuppression.
Collapse
Affiliation(s)
- Tong Lin
- The Fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen, People's Republic of China
| | - Yingzhao Zhang
- The Fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen, People's Republic of China
| | - Zhimei Lin
- The Fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen, People's Republic of China
| | - Lisheng Peng
- Department of Science and Education, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, People's Republic of China
| |
Collapse
|
13
|
Yuan G, Chen B, Meng Y, Lu J, Shi X, Hu A, Hu Y, Wang D. Role of the CXCR3‑mediated TLRs/MyD88 signaling pathway in promoting the development of hepatitis B into cirrhosis and liver cancer. Mol Med Rep 2021; 24:738. [PMID: 34435646 PMCID: PMC8404096 DOI: 10.3892/mmr.2021.12378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 05/18/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic hepatitis B can lead to liver cirrhosis and primary hepatocellular carcinoma. The present study aimed to investigate whether C‑X‑C motif chemokine receptor 3 (CXCR3) regulates the genes in Toll‑like receptors (TLRs)/myeloid differentiation primary response protein 88 (MyD88) signaling pathway in the development of hepatitis B into cirrhosis and liver cancer in vitro. A hepatitis B virus (HBV) overexpression lentivirus was constructed and infected into a LX‑2 cell line to obtain stable HBV‑overexpressing cells (named HBV‑LX‑2 cells). The CXCR3 gene was knocked down using small interfering RNA in HBV‑LX‑2 cells. Cell Counting Kit‑8 assays, cell scratch tests and flow cytometry were used to detect cell proliferation, migration and apoptosis, respectively. The levels of IL‑1β and IL‑6 in serum samples of patients with liver cancer were measured via ELISA, and the collagen content in liver cancer tissues was detected using Masson staining. Western blotting was used to detect the expression levels of proteins in the TLRs/MyD88 signaling pathway. Excessive fibrosis was identified in the liver cancer tissues, and the serum levels of IL‑6 and IL‑1β were abnormally increased in patients with liver cancer. It was found that interfering with CXCR3 inhibited cell proliferation and migration, as well as promoted the apoptosis of HBV‑LX‑2 cells. Moreover, interfering with CXCR3 inhibited the expression levels of collagen type I α 1 chain and the proteins in the TLRs/MyD88 pathway. In conclusion, CXCR3 knockdown could inhibit the expression levels of proteins in the TLR4/MyD88 signaling pathway, decrease cell proliferation and migration, and promote cell apoptosis, thus inhibiting the development of liver cirrhosis to liver cancer.
Collapse
Affiliation(s)
- Gang Yuan
- Department of Acute Infection, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| | - Bin Chen
- Hepatology Center, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| | - Yina Meng
- Institute of Hepatology, Ningbo University School of Medicine, Ningbo, Zhejiang 315211, P.R. China
| | - Jialin Lu
- Institute of Hepatology, Ningbo University School of Medicine, Ningbo, Zhejiang 315211, P.R. China
| | - Xiaojun Shi
- Department of Hepato-Oncology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| | - Airong Hu
- Institute of Hepatology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| | - Yaoren Hu
- Institute of Hepatology, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| | - Donghui Wang
- Department of Acute Infection, Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, Zhejiang 315010, P.R. China
| |
Collapse
|
14
|
Zhao Y, Wang J, Liu WN, Fong SY, Shuen TWH, Liu M, Harden S, Tan SY, Cheng JY, Tan WWS, Chan JKY, Chee CE, Lee GH, Toh HC, Lim SG, Wan Y, Chen Q. Analysis and Validation of Human Targets and Treatments Using a Hepatocellular Carcinoma-Immune Humanized Mouse Model. Hepatology 2021; 74:1395-1410. [PMID: 33738839 PMCID: PMC9540409 DOI: 10.1002/hep.31812] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 02/15/2021] [Accepted: 02/18/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS Recent development of multiple treatments for human hepatocellular carcinoma (HCC) has allowed for the selection of combination therapy to enhance the effectiveness of monotherapy. Optimal selection of therapies is based on both HCC and its microenvironment. Therefore, it is critical to develop and validate preclinical animal models for testing clinical therapeutic solutions. APPROACH AND RESULTS We established cell line-based or patient-derived xenograft-based humanized-immune-system mouse models with subcutaneous and orthotopic HCC. Mice were injected with human-specific antibodies (Abs) to deplete human immune cells. We analyzed the transcription profiles of HCC cells and human immune cells by using real-time PCR and RNA sequencing. The protein level of HCC tumor cells/tissues or human immune cells was determined by using flow cytometry, western blotting, and immunohistochemistry. The HCC tumor size was measured after single, dual-combination, and triple-combination treatment using N-(1',2-Dihydroxy-1,2'-binaphthalen-4'-yl)-4-methoxybenzenesulfonamide (C188-9), bevacizumab, and pembrolizumab. In this study, human immune cells in the tumor microenvironment were strongly selected and modulated by HCC, which promoted the activation of the IL-6/Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling pathway in tumor cells and led to augmented HCC proliferation and angiogenesis by releasing angiogenic cytokines in humanized-immune-system mice with HCC. In particular, intratumor human cluster of differentiation-positive (hCD14+ ) cells could produce IL-33 through damage-associated molecular pattern/Toll-like receptor 4/activator protein 1, which up-regulated IL-6 in other intratumor immune cells and activated the JAK2/STAT3 pathway in HCC. Specific knockdown of the CD14 gene in human monocytes could impair IL-33 production induced by cell lysates. Subsequently, we evaluated the in vivo anti-HCC effect of C188-9, bevacizumab, and pembrolizumab. The results showed that the anti-HCC effect of triple-combination therapy was superior to that of single or dual treatments. CONCLUSIONS Humanized-immune-system HCC mouse models are suitable for identifying targets from cancer and immune components and for testing combinational therapies.
Collapse
Affiliation(s)
- Yue Zhao
- Institute of Molecular and Cell BiologyAgency for Science, Technology and ResearchSingapore
| | - Jiaxu Wang
- Genome Institute of SingaporeAgency for Science, Technology and ResearchSingapore
| | - Wai Nam Liu
- Institute of Molecular and Cell BiologyAgency for Science, Technology and ResearchSingapore
| | - Shin Yie Fong
- Institute of Molecular and Cell BiologyAgency for Science, Technology and ResearchSingapore
| | | | - Min Liu
- Institute of Molecular and Cell BiologyAgency for Science, Technology and ResearchSingapore
| | - Sarah Harden
- Institute of Molecular and Cell BiologyAgency for Science, Technology and ResearchSingapore
| | - Sue Yee Tan
- Institute of Molecular and Cell BiologyAgency for Science, Technology and ResearchSingapore
| | - Jia Ying Cheng
- Institute of Molecular and Cell BiologyAgency for Science, Technology and ResearchSingapore
| | - Wilson Wei Sheng Tan
- Institute of Molecular and Cell BiologyAgency for Science, Technology and ResearchSingapore
| | - Jerry Kok Yen Chan
- Department of Reproductive MedicineKandang Kerbau Women’s and Children's HospitalSingapore,Experimental Fetal Medicine GroupYong Loo Lin School of MedicineNational University of SingaporeSingapore
| | - Cheng Ean Chee
- Department of Hematology‐OncologyNational University Cancer InstituteSingapore
| | - Guan Huei Lee
- Division of Gastroenterology and HepatologyNational University Health SystemSingapore
| | - Han Chong Toh
- Division of Medical OncologyNational Cancer Centre SingaporeSingapore
| | - Seng Gee Lim
- Division of Gastroenterology and HepatologyNational University Health SystemSingapore
| | - Yue Wan
- Genome Institute of SingaporeAgency for Science, Technology and ResearchSingapore
| | - Qingfeng Chen
- Institute of Molecular and Cell BiologyAgency for Science, Technology and ResearchSingapore,Department of Microbiology and ImmunologyYong Loo Lin School of MedicineNational University of SingaporeSingapore
| |
Collapse
|
15
|
Uong TNT, Yoon MS, Lee KH, Hyun H, Nam TK, Min JJ, Nguyen HPQ, Kim SK. Live cell imaging of highly activated natural killer cells against human hepatocellular carcinoma in vivo. Cytotherapy 2021; 23:799-809. [PMID: 34176769 DOI: 10.1016/j.jcyt.2020.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 10/21/2022]
Abstract
BACKGROUND AIMS Tracking administered natural killer (NK) cells in vivo is critical for developing an effective NK cell-based immunotherapy against human hepatocellular carcinoma (HCC). Here the authors established a new molecular imaging using ex vivo-activated NK cells and investigated real-time biodistribution of administered NK cells during HCC progression. METHODS Ex vivo-expanded NK cells from healthy donors were labeled with a near-infrared lipophilic cytoplasmic dye, and their proliferation, surface receptor expression and cytotoxicity activity were evaluated. Human HCC HepG2 cells were implanted into the livers of NOD.Cg-Prkdcscid IL2rgtm1Wjl/SzJ (NSG) mice. The authors administered 1,1'-dioctadecyltetramethyl indotricarbocyanine iodide (DiR)-labeled NK cells intravenously to non-tumor-bearing and intrahepatic HCC tumor-bearing NSG mice. Fluorescent imaging was performed using a fluorescence-labeled organism bioimaging instrument. Single cell suspensions from the resected organs were analyzed using flow cytometry. RESULTS The fluorescent DiR dye was nontoxic and did not affect the proliferation or surface receptor expression levels of the NK cells, even at high doses. The administered DiR-labeled NK cells immediately migrated to the lungs of the non-tumor-bearing NSG mice, with increased NK cell signals evident in the liver and spleen after 4 h. NK cells migrated to the intrahepatic tumor-bearing livers of both early- and late-stage HCC mice within 1 h of injection. In early-stage intrahepatic tumor-bearing mice, the fluorescence signal increased in the liver until 48 h post-injection and decreased 7 days after NK injection. In late-stage HCC, the NK cell fluorescence signal was the highest in the liver for 7 days after NK injection and persisted for 14 days. The purity of long-term persistent CD45+CD56+CD3- NK cells was highest in early- and late-stage HepG2-bearing liver compared with normal liver 2 weeks after NK injection, whereas highest purity was still observed in the lungs of non-tumor-bearing mice. In addition, Ki-67 expression was detected in migrated human NK cells in the liver and lung up to 72 h after administration. With HepG2 tumor progression, NK cells reduced the expression of NKp30 and NKG2D. CONCLUSIONS Administered NK cells were successfully tracked in vivo by labeling the NK cells with near-infrared DiR dye. Highly expanded, activated NK cells migrated rapidly to the tumor-bearing liver, where they persisted for 14 days after administration, with high purity of CD45+CD56+CD3- NK cells. Liver biodistribution and persistence of administered NK cells showed significantly different accumulation patterns during HCC progression.
Collapse
Affiliation(s)
- Tung Nguyen Thanh Uong
- Department of Radiation Oncology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, Republic of Korea; Department of Biomedical Science, Chonnam National University Graduate School, Gwangju, Republic of Korea
| | - Mee Sun Yoon
- Department of Radiation Oncology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, Republic of Korea; Department of Biomedical Science, Chonnam National University Graduate School, Gwangju, Republic of Korea.
| | - Kyung-Hwa Lee
- Department of Pathology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, Republic of Korea.
| | - Hoon Hyun
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Taek-Keun Nam
- Department of Radiation Oncology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Jung-Joon Min
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Gwangju, Republic of Korea
| | - Huy Phuoc Quang Nguyen
- Department of Radiation Oncology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, Republic of Korea; Department of Biomedical Science, Chonnam National University Graduate School, Gwangju, Republic of Korea
| | - Sang-Ki Kim
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan, Republic of Korea
| |
Collapse
|
16
|
CXCL2/10/12/14 are prognostic biomarkers and correlated with immune infiltration in hepatocellular carcinoma. Biosci Rep 2021; 41:228875. [PMID: 34085699 PMCID: PMC8217985 DOI: 10.1042/bsr20204312] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 05/16/2021] [Accepted: 06/02/2021] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND C-x-C motif chemokine ligands (CXCLs) are critical regulators of cancer immunity and angiogenesis, which affect disease progression and treatment responses. The character of each CXCL in the prognosis and immune infiltration of hepatocellular carcinoma (HCC) patients is unclear yet. METHODS Differentially expressed CXCLs between HCC and normal control were screened by Oncomine and GEPIA2. Genetic alternations of CXCLs in HCC were analyzed by cBioPortal. Clinicopathological relevance of CXCLs in HCC patients was analyzed using UALCAN. The prognostic value of CXCLs was evaluated using univariate and multivariate analyses. Correlations of CXCLs' expression with immune infiltration, chemokines and their receptors were assessed integrating TIMER, TISIDB, and GEPIA2. The co-expressed genes of CXCLs were discovered, and functional enrichment analysis was performed for them. RESULTS CXCL9/10 was significantly higher expressed while CXCL2/12/14 was lower expressed in HCC than normal tissues, but they didn't show significant clinicopathological relevance in HCC patients. High-expression of CXCL2/10/12/14 indicated favorable outcomes of HCC patients. The expression of CXCL9/10/12/14 was significantly positively correlated with not only the infiltration and biomarkers' expression of various tumor-infiltrating immune cells but also the abundance of chemokines and their receptors. The co-expressed genes of the five CXCLs were extracellular components and regulated immune or inflammatory responses and signaling pathways of chemokine, Toll-like receptor and tumor necrosis factor might be involved. CONCLUSION The present study proposed CXCL2/10/12/14 might predict outcomes of HCC patients and were extensively related with the immune microenvironment in HCC. It would be a prospective therapeutic strategy for HCC to enhance effective immunity surveillance through intervening in these CXCLs.
Collapse
|
17
|
Zhuang Y, Zhao X, Yuan B, Zeng Z, Chen Y. Blocking the CCL5-CCR5 Axis Using Maraviroc Promotes M1 Polarization of Macrophages Cocultured with Irradiated Hepatoma Cells. J Hepatocell Carcinoma 2021; 8:599-611. [PMID: 34178876 PMCID: PMC8219307 DOI: 10.2147/jhc.s300165] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022] Open
Abstract
Purpose The C-C chemokine ligand 5 (CCL5)–C-C chemokine receptor (CCR5) axis facilitates tumor progression via multiple mechanisms. Herein, we elucidated the effect of a CCR5 antagonist (maraviroc [MVC]; blocking the CCL5–CCR5 axis) on the phenotype of macrophages cocultured with irradiated hepatoma cells. In addition, we investigated whether modulation of macrophage polarization can alter tumor cell sensitivity to radiation. Materials and Methods Quantitative reverse-transcription polymerase chain reaction, Western blotting, and enzyme-linked immunosorbent assays were applied to examine the levels of macrophage-associated markers. The mechanisms of macrophage polarization were explored by Western blotting in an in vitro model of coculture of human hepatoma cells with macrophages. The radiation sensitivity was examined in a clonogenic radiosensitivity assay. Tumor cell apoptosis was detected by Western blotting and flow cytometry. A mouse model of a subcutaneous tumor was also established. Results CCL5 skewed THP-1 M0 macrophages toward an M2-like phenotype. In coculture with hepatoma cells, macrophages manifested high levels of interleukin (IL) 10, IL-12, tumor necrosis factor α (TNF-α), transforming growth factor β1 (TGF-β1), arginase 1 (ARG1), and IL-1β. Tumor cell irradiation further upregulated these markers in macrophages. After incubation of macrophages with MVC for 24 h, levels of M1 cytokines significantly increased, whereas those of M2 phenotype factors ARG1, TGF-β1, and IL-10 decreased, accompanied by the activation of signal transducer and activator of transcription 3 (STAT3) and downregulation of suppressor of cytokine signaling 3 (SOCS3). The macrophage phenotype reverted to M2 states after treatment with a STAT3 inhibitor. The shift of macrophages toward the M1 phenotype enhanced the radiosensitivity and apoptosis of hepatoma cells. Mice receiving a combination of X-ray irradiation and MVC experienced a better antitumor effect than those receiving either MVC or irradiation alone did. Conclusion M2 polarization of macrophages induced by CCL5–CCR5 signaling can be inhibited using MVC via the STAT3–SOCS3 pathway. The shift of macrophages toward the M1 phenotype promotes the sensitivity of human hepatoma cells to X-ray irradiation.
Collapse
Affiliation(s)
- Yuan Zhuang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Xiaomei Zhao
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Baoying Yuan
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Zhaochong Zeng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| | - Yixing Chen
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
18
|
Pan X, Kaminga AC, Wen SW, Liu A. Chemokines in hepatocellular carcinoma: a meta-analysis. Carcinogenesis 2021; 41:1682-1694. [PMID: 33300549 DOI: 10.1093/carcin/bgaa106] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 09/17/2020] [Accepted: 10/08/2020] [Indexed: 12/17/2022] Open
Abstract
Accumulating evidence suggests that chemokines may play an important role in the formation and mediating of the immune microenvironment of hepatocellular carcinoma (HCC). The purpose of this meta-analysis was to explore the differences in blood or tissues chemokines concentrations between HCC patients and controls. Online databases, namely PubMed, Web of Science, Embase and Cochrane Library, were systematically searched for relevant articles published on or before 15 January 2020. Standardized mean differences (SMDs) with corresponding 95% confidence intervals of the chemokines concentrations were calculated as group differences between the HCC patients and the controls. Sixty-five studies met the inclusion criteria for the meta-analysis. Altogether they consisted of 26 different chemokines compared between 5828 HCC patients and 4909 controls; and 12 different chemokines receptors compared between 2053 patients and 2285 controls. The results of meta-analysis indicated that concentrations of CCL20, CXCL8 and CXCR4 in the HCC patients were significantly higher than those in the controls (SMD of 6.18, 1.81 and 1.04, respectively). Therefore, higher concentration levels of CCL20, CXCL8 and CXCR4 may indicate the occurrence of HCC Future research should explore the putative mechanisms underlying this linkage. Meanwhile, attempts can be made to replicate the existing findings in prospective cohort populations and explore the cause-and-effect relationships pertaining to this linkage in order to develop new diagnostic and therapeutic strategies for HCC.
Collapse
Affiliation(s)
- Xiongfeng Pan
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| | - Atipatsa C Kaminga
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China.,Department of Mathematics and Statistics, Mzuzu University, Mzuzu, Malawi
| | - Shi Wu Wen
- OMNI Research Group, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada.,Department of Obstetrics and Gynaecology, University of Ottawa Faculty of Medicine, Ottawa, Ontario, Canada.,School of Epidemiology and Public Health, University of Ottawa Faculty of Medicine, Ottawa, Ontario, Canada
| | - Aizhong Liu
- Department of Epidemiology and Health Statistics, Xiangya School of Public Health, Central South University, Changsha, China
| |
Collapse
|
19
|
Lin T, Lin Z, Mai P, Zhang E, Peng L. Identification of prognostic biomarkers associated with the occurrence of portal vein tumor thrombus in hepatocellular carcinoma. Aging (Albany NY) 2021; 13:11786-11807. [PMID: 33878734 PMCID: PMC8109071 DOI: 10.18632/aging.202876] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 03/14/2021] [Indexed: 04/28/2023]
Abstract
The occurrence of portal vein tumor thrombus (PVTT) is strongly correlated to the staging and poor prognosis of hepatocellular carcinoma (HCC) patients. However, the mechanisms of PVTT formation remain unclear. This study aimed to investigate differentially expressed genes (DEGs) between primary tumor (PT) and PVTT tissues and comprehensively explored the underlying mechanisms of PVTT formation. The DEGs between PT and paired PVTT tissues were analyzed using transcriptional data from the Gene Expression Omnibus (GEO) database. The expression, clinical relevance, prognostic significance, genetic alternations, DNA methylation, correlations with immune infiltration, co-expression correlations, and functional enrichment analysis of the DEGs were explored using multiple databases. As result, 12 DEGs were commonly down-expressed in PVTT compared with PT tissues among three datasets. The expression of DCN, CCL21, IGJ, CXCL14, FCN3, LAMA2, and NPY1R was progressively decreased from normal liver, PT, to PVTT tissues, whose up-expression associated with favorable survivals of HCC patients. The genetic alternations and DNA methylation of the DEGs frequently occurred, and several methylated CpG sites of the DEGs significantly correlated with outcomes of HCC patients. The immune infiltration in the tumor microenvironment of HCC was correlated with the expression level of the DEGs. Besides, the DEGs and their co-expressive genes participated in the biological processes of extracellular matrix (ECM) organization and focal adhesion. In summary, this study indicated the dysregulation of ECM and focal adhesion might contribute to the formation of PVTT. And the above seven genes might serve as potential biomarkers of PVTT occurrence and prognosis of HCC patients.
Collapse
Affiliation(s)
- Tong Lin
- The Fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Zhimei Lin
- The Fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Peipei Mai
- The Fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - E Zhang
- The Fourth Clinical Medical School, Guangzhou University of Chinese Medicine, Shenzhen, China
| | - Lisheng Peng
- Department of Science and Education, Shenzhen Hospital of Traditional Chinese Medicine, Shenzhen, China
| |
Collapse
|
20
|
Chen C, Ai QD, Wei YH. Kanglaite enhances the efficacy of cisplatin in suppression of hepatocellular carcinoma via inhibiting CKLF1 mediated NF-κB pathway and regulating transporter mediated drug efflux. JOURNAL OF ETHNOPHARMACOLOGY 2021; 264:113388. [PMID: 32918990 DOI: 10.1016/j.jep.2020.113388] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/30/2020] [Accepted: 09/07/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Kanglaite (KLT) is an active extract of the Coix lacryma-jobi seed, which can benefit Qi and nourish Yin, and disperse the accumulation of evils. It is used as a biphasic broad-spectrum anti-cancer drug, and shows synergistic effects with radiotherapy and chemotherapy. However, the mechanism of KLT combined with cisplatin (CDDP) against hepatocellular carcinoma (HCC) has not been elucidated. AIM OF THE STUDY The aim of present study was to investigate the potential synergistic effects of KLT and CDDP on HepG2 cells, discussing the possible mechanisms from the perspective of CKLF1 and NF-κB mediated inflammatory response and chemoresistance, and the involvement of drug efflux transporters. MATERIALS AND METHODS CDDP injured HepG2 cells were used to investigate the effects of KLT on chemotherapeutics treated HCC. Effects of KLT pretreatment on CDDP injured HepG2 cells were determined by MTT, wound healing assay, and transwell assay. Expression of chemokine-like factor 1 (CKLF1) and activation of nuclear factor κB (NF-κB) were examined by qPCR, western blot, and immunofluorescence staining. Furthermore, to study the role of CKLF1 in KLT mediated effects on this CDDP injured HCC cell model, HepG2 cells overexpressed with CKLF1 gene were used. Cell viability and NF-κB activation were investigated. Moreover, TNF-α and IL-1β levels were measured by Elisa analysis and western blot to evaluate the inflammatory response. Additionally, ATP-binding cassette (ABC) drug efflux transporters, MDR1, MRP2, and BCRP were also determined in present study. RESULTS KLT pretreatment followed by CDDP treatment was found to show synergistic effects, which showed by decreased cell viability, migration and invasion ability of HepG2 cells. Expression of CKLF1 enhanced significantly in CDDP treated HepG2 cells, and KLT decreased this elevation obviously. Furthermore, CDDP activated NF-κΒ and promoted translocation of NF-κB toward the nucleus. KLT inhibited the activation of NF-κΒ, which sensitized cancer cells. Overexpression of CKLF1 reversed the effects of KLT on CDDP injured HepG2 cells, which exhibited by increased cell viability and enhanced activation of NF-κΒ. CDDP induced NF-κΒ activation could also lead to excessive inflammatory response, and KLT can suppress the aggravating inflammation which may be beneficial for tumor progression. Furthermore, we found that ABC drug efflux transporters MDR1, MRP2, and BCRP in CDDP treated HepG2 cells were decreased when pretreated with KLT. CONCLUSIONS KLT pretreatment may increase the effects of CDDP on HepG2 cells, by exhibiting cooperative effects on suppression of HepG2 cells. The mechanisms may partly by inhibiting CKLF1 mediated NF-κB pathway, which may contribute to inflammation of tumor microenvironment and chemoresistance of CDDP. Inhibition of transporter-mediated drug efflux is also involved in KLT mediated sensitization effects of CDDP.
Collapse
Affiliation(s)
- Chen Chen
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
| | - Qi-di Ai
- Hunan University of Traditional Chinese Medicine, Changsha, 410208, China.
| | - Yu-Hui Wei
- Department of Pharmacy, The First Hospital of Lanzhou University, Lanzhou, 730000, China.
| |
Collapse
|
21
|
The Role of Chemokine Receptor CXCR3 and Its Ligands in Renal Cell Carcinoma. Int J Mol Sci 2020; 21:ijms21228582. [PMID: 33202536 PMCID: PMC7696621 DOI: 10.3390/ijms21228582] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/08/2020] [Accepted: 11/12/2020] [Indexed: 02/06/2023] Open
Abstract
The major invasive subtype of kidney cancer is renal cell carcinoma (RCC). The essential components of cancer development are chronic inflammation and neoangiogenesis. It has been suggested that the chemokine ligand 9, -10, –11 (CXCL9–11) and chemokine receptor 3 (CXCR3) chemokines receptor expressed on monocytes, T and NK cells may be involved in the inhibition of angiogenesis. However, to date, little is known about the potential clinical significance of these chemokines and their receptor in renal cell carcinoma. Therefore, in this review, we described the role of CXCR3 and its ligands in pathogenesis of RCC. We performed an extensive search of the current literature in our investigation, using the MEDLINE/PubMed database. The changes of chemokines and their specific receptor in renal cell carcinoma were observed. Published studies revealed an increased expression of CXCR3 and elevated concentration of its ligands in RCC. The association between treatment of RCC and CXCL9–11/CXCR3 concentration and expression was also observed. Moreover, CXCR3 and its ligands levels were related to patient’s prognosis, risk of metastasis and tumor growth. This review describes the potential role of CXCR3 and its ligands in pathogenesis of RCC, as well as their potential immune-therapeutic significance. However, future studies should aim to confirm the clinical and prognostic role of CXCL9–11/CXCR3 in renal cell carcinoma.
Collapse
|
22
|
Hsu KH, Wei CW, Su YR, Chou T, Lin YL, Yang FC, Tsou AP, Hsu CL, Tseng PH, Chen NJ, Jeng KS, Leu CM. Upregulation of RelB in the miR-122 knockout mice contributes to increased levels of proinflammatory chemokines/cytokines in the liver and macrophages. Immunol Lett 2020; 226:22-30. [DOI: 10.1016/j.imlet.2020.06.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/04/2020] [Accepted: 06/23/2020] [Indexed: 12/15/2022]
|
23
|
Feder S, Bruckmann A, McMullen N, Sinal CJ, Buechler C. Chemerin Isoform-Specific Effects on Hepatocyte Migration and Immune Cell Inflammation. Int J Mol Sci 2020; 21:ijms21197205. [PMID: 33003572 PMCID: PMC7582997 DOI: 10.3390/ijms21197205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 02/07/2023] Open
Abstract
Murine chemerin is C-terminally processed to the bioactive isoforms, muChem-156 and muChem-155, among which the longer variant protects from hepatocellular carcinoma (HCC). However, the role of muChem-155 is mostly unknown. Here, we aimed to compare the effects of these isoforms on the proliferation, migration and the secretome of the human hepatocyte cell lines HepG2 and Huh7 and the murine Hepa1-6 cell line. Therefore, huChem-157 and -156 were overexpressed in the human cells, and the respective murine variants, muChem-156 and -155, in the murine hepatocytes. Both chemerin isoforms produced by HepG2 and Hepa1-6 cells activated the chemerin receptors chemokine-like receptor 1 (CMKLR1) and G protein-coupled receptor 1 (GPR1). HuChem-157 was the active isoform in the Huh7 cell culture medium. The potencies of muChem-155 and muChem-156 to activate human GPR1 and mouse CMKLR1 were equivalent. Human CMKLR1 was most responsive to muChem-156. Chemerin variants showed no effect on cell viability and proliferation. Activation of the mitogen-activated protein kinases Erk1/2 and p38, and protein levels of the epithelial–mesenchymal transition marker, E-cadherin, were not regulated by the chemerin variants. Migration was reduced in HepG2 and Hepa1-6 cells by the longer isoform. Protective effects of chemerin in HCC include the modulation of cytokines but huChem-156 and huChem-157 overexpression did not change IL-8, CCL20 or osteopontin in the hepatocytes. The conditioned medium of the transfected hepatocytes failed to alter these soluble factors in the cell culture medium of peripheral blood mononuclear cells (PBMCs). Interestingly, the cell culture medium of Huh7 cells producing the inactive variant huChem-155 reduced CCL2 and IL-8 in PBMCs. To sum up, huChem-157 and muChem-156 inhibited hepatocyte migration and may protect from HCC metastasis. HuChem-155 was the only human isoform exerting anti-inflammatory effects on immune cells.
Collapse
Affiliation(s)
- Susanne Feder
- Department of Internal Medicine I, Regensburg University Hospital, 93053 Regensburg, Germany;
| | - Astrid Bruckmann
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, 93042 Regensburg, Germany;
| | - Nichole McMullen
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (N.M.); (C.J.S.)
| | - Christopher J. Sinal
- Department of Pharmacology, Dalhousie University, Halifax, NS B3H 4R2, Canada; (N.M.); (C.J.S.)
| | - Christa Buechler
- Department of Internal Medicine I, Regensburg University Hospital, 93053 Regensburg, Germany;
- Correspondence: ; Tel.: +49-941-944-7009
| |
Collapse
|
24
|
Afzal M, Ali A, Sheikh N, Rafique S, Idrees M. Peripheral Expression of CXCL10 Gene in Chronic Hepatitis C Patients Treated with Sofosbuvir, Daclatasvir, and Ribavirin. J Interferon Cytokine Res 2020; 40:301-309. [PMID: 32486887 DOI: 10.1089/jir.2019.0185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hepatitis C virus (HCV) causes persistent infection and invades host's innate and adaptive immune systems. During the eradication of this pathogen, the components of immune system may cause bystander damage to host, which might be even worse than the viral pathogenesis. Thus, the therapy should not only eliminate primary virus infection but also improve the inflammatory immune responses. The breakthrough of interferon free direct acting antiviral (DAA) drugs has provided the opportunity to unravel the association of HCV with immune response. This study aimed to examine the expression level of C-X-C motif chemokine ligand 10 (CXCL10) in the Peripheral blood mononuclear cells (PBMCs) of HCV infected patients treated with DAAs + Ribavirin. In this study we analyzed the expression levels of CXCL10 mRNA in the 90 chronic HCV patients using quantitative PCR (qPCR) prior, after, and during therapy with sofosbuvir/ribavirin (SOF+RBV) and sofosbuvir/daclatasvir/ribavirin (SOF+DCV+RBV), and further, the results were analyzed relative to treatment response. Significantly elevated CXCL10 mRNA was seen in naive patients having higher viral load (P = 0.005) and those suffering from hepatocellular carcinoma (P = 0.006). HCV patients had remarkable decline in CXCL10 level after 4, 12, and 24 weeks of therapy with DAAs. An approximate one-fold decrease was observed in patients who attained sustained virological response compared to untreated patients (P < 0.0001). Comparing the 2 regimens, the reduction in peripheral CXCL10 expression was more pronounced in patients undergoing SOF+DCV+RBV therapy. The current study implicitly shows the role of CXCL10 as an indicator of disruption of host-virus equilibrium and consequent pathogenesis of HCV during successful antiviral therapy. Furthermore, the drop in CXCL10 level after HCV viral clearance might reflect the DAA-induced alleviation in the extrahepatic manifestation of this infection.
Collapse
Affiliation(s)
- Maira Afzal
- Molecular Virology Laboratory, Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, Pakistan
| | - Amjad Ali
- Department of Genetics, Hazara University Mansehra, Khyber Pakhtunkhwa, Pakistan
| | - Nadeem Sheikh
- Department of Zoology, University of the Punjab, Lahore, Pakistan
| | - Shazia Rafique
- Divison of Molecular Virology, Center of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| | - Muhammad Idrees
- Divison of Molecular Virology, Center of Excellence in Molecular Biology (CEMB), University of the Punjab, Lahore, Pakistan
| |
Collapse
|
25
|
Zahran AM, Hetta HF, Rayan A, Eldin AS, Hassan EA, Fakhry H, Soliman A, El-Badawy O. Differential expression of Tim-3, PD-1, and CCR5 on peripheral T and B lymphocytes in hepatitis C virus-related hepatocellular carcinoma and their impact on treatment outcomes. Cancer Immunol Immunother 2020; 69:1253-1263. [PMID: 32170378 DOI: 10.1007/s00262-019-02465-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 12/26/2019] [Indexed: 01/13/2023]
Abstract
BACKGROUND AND OBJECTIVE Activation of the immune checkpoints and expression of chemokines and chemokine receptors have been reported to promote HCC progression. This study aimed to assess the differential expression of Tim-3, PD-1, and CCR5 on peripheral blood lymphocytes from patients with HCV-related HCC and correlate their expression with the treatment outcomes. PATIENTS AND METHODS The study incorporated 40 patients with chronic HCV-related HCC and 40 healthy controls. Patients were radiologically assessed for hepatic focal lesions and portal vein thrombosis. Response to HCC treatment and overall survival (OS) outcomes were determined. The expression of Tim-3, PD-1, and CCR5 among CD19+, CD4+, and CD8+ lymphocytes was assessed by flow cytometry. RESULTS Higher frequencies of CD4+ and CD8+ cells expressing each of Tim-3 and PD-1 and PD-1+CD19+ cells were observed in the HCV-related HCC patients in comparison with controls. The highest expression of Tim-3 and PD-1 was by the CD8+ cells. Strong relations were detected among PD-1+CD19+, PD-1+CD4+ and PD-1+CD8+ cells. Elevated levels of PD-1+ lymphocytes were significantly associated with poor treatment response and shorter OS. CONCLUSION Modulation of the expression of immune checkpoints as Tim-3 and PD-1, and of CCR5 on T cells is somehow related to HCC. CD8+ T cells expressing PD-1 were the most relevant to HCC prognosis (OS and treatment response) and could represent a promising target for immune therapy against HCC. Future studies need to focus on exploring PD-1+ B cells and Tim-3+CD4+ cells, which seem to play a significant role in the pathogenesis of HCC.
Collapse
Affiliation(s)
- Asmaa M Zahran
- Clinical Pathology Department, South Egypt Cancer Institute, Assiut, Egypt
| | - Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt. .,Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA.
| | - Amal Rayan
- Clinical Oncology Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Abeer Sharaf Eldin
- Department of Gastroenterology and Tropical Medicine, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Elham Ahmed Hassan
- Department of Gastroenterology and Tropical Medicine, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Hussein Fakhry
- Surgical Oncology Department, South Egypt Cancer Institute, Assiut University, Assiut, Egypt
| | - Ahmed Soliman
- General Surgery Department, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Omnia El-Badawy
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
26
|
Discovery of small molecule antagonists of chemokine receptor CXCR6 that arrest tumor growth in SK-HEP-1 mouse xenografts as a model of hepatocellular carcinoma. Bioorg Med Chem Lett 2019; 30:126899. [PMID: 31882297 DOI: 10.1016/j.bmcl.2019.126899] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/06/2019] [Accepted: 12/09/2019] [Indexed: 11/20/2022]
Abstract
The chemokine system plays an important role in mediating a proinflammatory microenvironment for tumor growth in hepatocellular carcinoma (HCC). The CXCR6 receptor and its natural ligand CXCL16 are expressed at high levels in HCC cell lines and tumor tissues and receptor expression correlates with increased neutrophils in these tissues contributing to poor prognosis in patients. Availability of pharmacologcal tools targeting the CXCR6/CXCL16 axis are needed to elucidate the mechanism whereby neutrophils are affected in the tumor environment. We report the discovery of a series of small molecules with an exo-[3.3.1]azabicyclononane core. Our lead compound 81 is a potent (EC50 = 40 nM) and selective orally bioavailable small molecule antagonist of human CXCR6 receptor signaling that significantly decreases tumor growth in a 30-day mouse xenograft model of HCC.
Collapse
|
27
|
Fantuzzi L, Tagliamonte M, Gauzzi MC, Lopalco L. Dual CCR5/CCR2 targeting: opportunities for the cure of complex disorders. Cell Mol Life Sci 2019; 76:4869-4886. [PMID: 31377844 PMCID: PMC6892368 DOI: 10.1007/s00018-019-03255-6] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/27/2019] [Accepted: 07/24/2019] [Indexed: 02/06/2023]
Abstract
The chemokine system mediates acute inflammation by driving leukocyte migration to damaged or infected tissues. However, elevated expression of chemokines and their receptors can contribute to chronic inflammation and malignancy. Thus, great effort has been taken to target these molecules. The first hint of the druggability of the chemokine system was derived from the role of chemokine receptors in HIV infection. CCR5 and CXCR4 function as essential co-receptors for HIV entry, with the former accounting for most new HIV infections worldwide. Not by chance, an anti-CCR5 compound, maraviroc, was the first FDA-approved chemokine receptor-targeting drug. CCR5, by directing leukocytes to sites of inflammation and regulating their activation, also represents an important player in the inflammatory response. This function is shared with CCR2 and its selective ligand CCL2, which constitute the primary chemokine axis driving the recruitment of monocytes/macrophages to inflammatory sites. Both receptors are indeed involved in the pathogenesis of several immune-mediated diseases, and dual CCR5/CCR2 targeting is emerging as a more efficacious strategy than targeting either receptor alone in the treatment of complex human disorders. In this review, we focus on the distinctive and complementary contributions of CCR5 and CCR2/CCL2 in HIV infection, multiple sclerosis, liver fibrosis and associated hepatocellular carcinoma. The emerging therapeutic approaches based on the inhibition of these chemokine axes are highlighted.
Collapse
Affiliation(s)
- Laura Fantuzzi
- National Center for Global Health, Istituto Superiore di Sanità, Rome, Italy.
| | - Maria Tagliamonte
- Cancer Immunoregulation Unit, Istituto Nazionale Tumori- IRCCS-"Fond G. Pascale", Naples, Italy
| | | | - Lucia Lopalco
- Immunobiology of HIV Unit, Division Immunology, Transplantation and Infectious Diseases, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
28
|
Wiedemann GM, Röhrle N, Makeschin MC, Fesseler J, Endres S, Mayr D, Anz D. Peritumoural CCL1 and CCL22 expressing cells in hepatocellular carcinomas shape the tumour immune infiltrate. Pathology 2019; 51:586-592. [PMID: 31445808 DOI: 10.1016/j.pathol.2019.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Revised: 05/16/2019] [Accepted: 06/06/2019] [Indexed: 12/21/2022]
Abstract
Development, course of disease and prognosis of hepatocellular carcinomas (HCC) are strongly influenced by the immune system. Immunosuppressive regulatory T cells (Treg) have been shown to negatively impact disease progression and survival. To further understand the mechanisms of Treg attraction to HCC lesions, this study provides an analysis of Treg attracting chemokines in human HCC tissues. We analysed the expression of the Treg attracting chemokines CCL1 and CCL22 as well as the infiltration of FoxP3+ Treg and CD8+ T cells in paraffin-embedded tissue sections of 62 HCC patients. Expression of both chemokines was detected in 47 of 62 tissue slides. Chemokine expression was generally higher in tumour stroma and peritumoural liver tissue than in the tumour tissue itself. CD8+ T cells and FoxP3+ Treg were found at high levels in many tumour tissues. Intratumoural infiltration of Treg positively correlated with CCL22 levels in peritumoural liver tissue. In contrast, no correlation of Treg numbers and expression of CCL1 was detected. In summary, we describe here that the chemokines CCL1 and CCL22 are expressed in HCC tissues and, to a higher extent, in the stroma and peritumoural liver tissue. CCL22 may contribute to Treg recruitment and immunosuppression, whereas the role of CCL1 remains to be defined. It will be interesting to investigate the potential of these chemokines as drug targets for cancer therapy.
Collapse
Affiliation(s)
- Gabriela M Wiedemann
- Center of Integrated Protein Science Munich (CIPS-M), Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany; Department of Medicine II, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Natascha Röhrle
- Center of Integrated Protein Science Munich (CIPS-M), Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Marie-Christine Makeschin
- Pathologisches Institut, Medizinische Fakultät der Ludwig-Maximilians Universität München, Munich, Germany
| | - Julia Fesseler
- Center of Integrated Protein Science Munich (CIPS-M), Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Stefan Endres
- Center of Integrated Protein Science Munich (CIPS-M), Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany
| | - Doris Mayr
- Pathologisches Institut, Medizinische Fakultät der Ludwig-Maximilians Universität München, Munich, Germany
| | - David Anz
- Center of Integrated Protein Science Munich (CIPS-M), Division of Clinical Pharmacology, Klinikum der Universität München, Munich, Germany; Department of Medicine II, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany.
| |
Collapse
|
29
|
Zhong J, Li J, Wei J, Huang D, Huo L, Zhao C, Lin Y, Chen W, Wei Y. Plumbagin Restrains Hepatocellular Carcinoma Angiogenesis by Stromal Cell-Derived Factor (SDF-1)/CXCR4-CXCR7 Axis. Med Sci Monit 2019; 25:6110-6119. [PMID: 31415486 PMCID: PMC6707097 DOI: 10.12659/msm.915782] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 04/25/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Anti-angiogenic therapy has recently emerged as a highly promising therapeutic strategy for treating hepatocellular carcinoma (HCC). MATERIAL AND METHODS We assessed cellular proliferation, invasion, and activation of growth factors (VEGF and IL-8) with SDF-1 induced in the hepatocellular carcinoma cell line SMMC-7721, and this progression was limited by plumbagin (PL). The human umbilical vein endothelial cell line HUVEC was co-cultured with SDF-1-induced SMMC-7721, and the expressions of CXCR7, CXCR4, and PI3K/Akt pathways after PL treatment were detected by RT-PCR and Western blot analysis. RESULTS The treatment of the hepatoma cell line SMMC-7721 with SDF-1 resulted in enhanced secretion of the angiogenic factors, IL-8 and VEGF, and shows that these stimulatory effects are abolished by PL. The study further demonstrated that PL not only abolishes SDF-1-induced formation of endothelial tubes, but also inhibits expression of CXCR4 and CXCR7, and partially prevents activation of angiogenic signaling pathways. CONCLUSIONS The effect of PL on the SDF-1-CXCR4/CXCR7 axis has become an attractive target for inhibiting angiogenesis in hepatoma cells. Our results provide more evidence for the clinical application of PL as part of traditional Chinese medicine in modern cancer treatment.
Collapse
Affiliation(s)
- Jing Zhong
- Department of Physiology, Faculty of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, P.R. China
| | - Junxuan Li
- Department of Physiology, Faculty of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, P.R. China
| | - Jiexiao Wei
- Department of Physiology, Faculty of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, P.R. China
| | - Delun Huang
- Department of Physiology, Faculty of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, P.R. China
| | - Lini Huo
- Department of Organic Chemistry, Faculty of Pharmacy, Guangxi University of Chinese Medicine, Nanning, Guangxi, P.R. China
| | - Chuan Zhao
- Department of Physiology, Faculty of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, P.R. China
| | - Yuning Lin
- Department of Physiology, Faculty of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, P.R. China
| | - Wanjun Chen
- Department of Physiology, Faculty of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, P.R. China
| | - Yanfei Wei
- Department of Physiology, Faculty of Basic Medicine, Guangxi University of Chinese Medicine, Nanning, Guangxi, P.R. China
| |
Collapse
|
30
|
Wang L, Wang FS. Clinical immunology and immunotherapy for hepatocellular carcinoma: current progress and challenges. Hepatol Int 2019; 13:521-533. [PMID: 31352593 DOI: 10.1007/s12072-019-09967-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 06/27/2019] [Indexed: 12/16/2022]
Abstract
At the time of hepatocellular carcinoma (HCC) diagnosis, patients are most often at an advanced stage; however, the current treatment regimens remain unsatisfactory. Thus, novel and more powerful therapeutic approaches for advanced HCC are urgently required. Exacerbation of immunotolerant signals and/or escaping immunosurveillance leads to the development of HCC, which appears to be a rational reason to use immunotherapy to restore anticancer immunity. Several novel immunotherapeutic methods, including the use of immune checkpoint inhibitors, new types of immune cell adoption [e.g., chimeric antigen receptor T cell (CAR-T), TCR gene-modified T cells and stem cells], and microRNAs have been used in clinical trials for the treatment of HCC. However, some crucial issues remain to be addressed for such novel immunotherapy techniques. Finally, immunotherapy is now standing on the threshold of great advances in the fight against HCC.
Collapse
Affiliation(s)
- Lifeng Wang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, 100 Western 4th Ring Road, Beijing, 100039, China
| | - Fu-Sheng Wang
- Treatment and Research Center for Infectious Diseases, The Fifth Medical Center of PLA General Hospital, 100 Western 4th Ring Road, Beijing, 100039, China.
| |
Collapse
|
31
|
Zhang X, Gao C, Liu L, Zhou C, Liu C, Li J, Zhuang J, Sun C. DNA methylation‐based diagnostic and prognostic biomarkers of nonsmoking lung adenocarcinoma patients. J Cell Biochem 2019; 120:13520-13530. [PMID: 30920015 DOI: 10.1002/jcb.28627] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/25/2019] [Accepted: 01/28/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Xiaoming Zhang
- College of Traditional Chinese Medicine Shandong University of Traditional Chinese Medicine Jinan Shandong PR China
| | - Chundi Gao
- College of First Clinical Medicine Shandong University of Traditional Chinese Medicine Jinan Shandong PR China
| | - Lijuan Liu
- Department of Traditional Chinese Medicine Oncology Weifang Traditional Chinese Hospital Weifang Shandong PR China
- Department of Oncology Affiliated Hospital of Weifang Medical University Weifang Shandong PR China
| | - Chao Zhou
- Department of Traditional Chinese Medicine Oncology Weifang Traditional Chinese Hospital Weifang Shandong PR China
- Department of Oncology Affiliated Hospital of Weifang Medical University Weifang Shandong PR China
| | - Cun Liu
- College of First Clinical Medicine Shandong University of Traditional Chinese Medicine Jinan Shandong PR China
| | - Jia Li
- School of Clinical Medicine Weifang Medical University Weifang Shandong PR China
| | - Jing Zhuang
- Department of Traditional Chinese Medicine Oncology Weifang Traditional Chinese Hospital Weifang Shandong PR China
- Department of Oncology Affiliated Hospital of Weifang Medical University Weifang Shandong PR China
| | - Changgang Sun
- Department of Oncology Affiliated Hospital of Weifang Medical University Weifang Shandong PR China
| |
Collapse
|
32
|
Madduru D, Ijaq J, Dhar S, Sarkar S, Poondla N, Das PS, Vasquez S, Suravajhala P. Systems Challenges of Hepatic Carcinomas: A Review. J Clin Exp Hepatol 2019; 9:233-244. [PMID: 31024206 PMCID: PMC6477144 DOI: 10.1016/j.jceh.2018.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/10/2018] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular Carcinoma (HCC) is ubiquitous in its prevalence in most of the developing countries. In the era of systems biology, multi-omics has evinced an extensive approach to define the underlying mechanism of disease progression. HCC is a multifactorial disease and the investigation of progression of liver cirrhosis becomes much extensive with cultivating omics approaches. We have performed a comprehensive review about such challenges in multi-omics approaches that are concerned to identify the immunological, genetics and epidemiological factors associated with HCC.
Collapse
Affiliation(s)
- Dhatri Madduru
- Department of Biochemistry, Osmania University, Hyderabad 500007, TG, India
- Bioclues.org
| | - Johny Ijaq
- Department of Genetics and Biotechnology, Osmania University, Hyderabad 500007, TG, India
- Bioclues.org
| | | | | | | | - Partha S. Das
- Bioclues.org
- Patient MD, Chicago, IL 60640-5710, United States
| | - Silvia Vasquez
- Bioclues.org
- Instituto Peruano de Energía Nuclear, Avenida Canadá 1470, Lima, Peru
| | - Prashanth Suravajhala
- Bioclues.org
- Department of Biotechnology and Bioinformatics, Birla Institute of Scientific Research, Statue Circle 302001, RJ, India
| |
Collapse
|
33
|
Jiao X, Shu G, Liu H, Zhang Q, Ma Z, Ren C, Guo H, Shi J, Liu J, Zhang C, Wang Y, Gao Y. The Diagnostic Value of Chemokine/Chemokine Receptor Pairs in Hepatocellular Carcinoma and Colorectal Liver Metastasis. J Histochem Cytochem 2019; 67:299-308. [PMID: 30633620 DOI: 10.1369/0022155418824274] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Chemokines and their receptors have been proposed to play important roles in tumor progression and metastasis. To investigate their roles in the progression of primary and metastatic malignant liver tumors and their prognosis, we compared expression profiles of CXCL12/CXCR4, CCL20/CCR6, and CCL21/CCR7 in hepatocellular carcinoma (HCC) and colorectal liver metastases (CRLM). Immunohistochemistry was used to analyze the expression levels of the chemokine/chemokine receptor pairs in 29 HCC and 11 CRLM specimens and adjacent non-cancerous tissues, and correlations with clinicopathological variables and overall survival were determined. CCL20/CCR6 expression was higher in HCC than in adjacent non-cancerous tissues. High CCR6 expression in HCC was negatively associated with 5-year survival rate and was an independent prognostic factor for overall survival of HCC patients, whereas differences were not observed between CRLM and adjacent tissues. Furthermore, significantly higher expression of CCL21/CCR7 was found in CRLM than in HCC. In summary, the CCL20/CCR6 axis was elevated in HCC but not in CRLM, whereas the CCL21/CCR7 axis was elevated in CRLM but not in HCC.
Collapse
Affiliation(s)
- Xiaolei Jiao
- Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin Key Laboratory of Artificial Cells, Tianjin Institute for Hepatobiliary Disease, Tianjin Third Central Hospital, Tianjin, China
| | - Guiming Shu
- Department of Hepatobiliary Surgery, Tianjin Third Central Hospital, Tianjin, China
| | - Hui Liu
- Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin Key Laboratory of Artificial Cells, Tianjin Institute for Hepatobiliary Disease, Tianjin Third Central Hospital, Tianjin, China
| | - Qin Zhang
- Department of Pathology, Tianjin Third Central Hospital, Tianjin, China
| | - Zhe Ma
- Department of Pathology, Tianjin Third Central Hospital, Tianjin, China
| | - Chaoyi Ren
- Department of Hepatobiliary Surgery, Tianjin Third Central Hospital, Tianjin, China
| | - Hongsheng Guo
- Department of Hepatobiliary Surgery, Tianjin Third Central Hospital, Tianjin, China
| | - Jingxiang Shi
- Department of Hepatobiliary Surgery, Tianjin Third Central Hospital, Tianjin, China
| | - Junguo Liu
- Department of Hepatobiliary Surgery, Tianjin Third Central Hospital, Tianjin, China
| | - Chuanshan Zhang
- Department of Pathology, Tianjin Third Central Hospital, Tianjin, China
| | - Yijun Wang
- Department of Hepatobiliary Surgery, Tianjin Third Central Hospital, Tianjin, China
| | - Yingtang Gao
- Artificial Cell Engineering Technology Research Center of Public Health Ministry, Tianjin Key Laboratory of Artificial Cells, Tianjin Institute for Hepatobiliary Disease, Tianjin Third Central Hospital, Tianjin, China
| |
Collapse
|
34
|
Wang FJ, Wang P, Chen LY, Geng YW, Chen H, Meng ZQ, Liu LM, Chen Z. TAM Infiltration Differences in "Tumor-First" and " ZHENG-First" Models and the Underlying Inflammatory Molecular Mechanism in Pancreatic Cancer. Integr Cancer Ther 2018; 17:707-716. [PMID: 29681184 PMCID: PMC6142096 DOI: 10.1177/1534735418771193] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Background: Syndrome (ZHENG in Chinese) in
traditional Chinese medicine (TCM) refers to the intrinsic characteristics of a
pathological process at a certain stage; these characteristics are influenced by
internal and external environments and reveal the nature of a disease. Proper
syndrome differentiation is the basic principle that guides clinical treatment.
Objective: To have a good understanding of tumor progression
and the different mechanisms related to ZHENG that have
occurred before and after tumor development and to explore the valid evaluation
criteria of different pancreatic cancer syndromes to improve the guiding role of
TCM syndrome differentiation in pancreatic cancer treatment.
Methods: In this study, we established mouse subcutaneous
pancreatic cancer models, namely, Con (control), Pi-Xu (Spleen-Deficiency),
Shi-Re (Dampness-Heat), and Xue-Yu (Blood-Stasis). Then, for the first time, we
compared the different effects of “ZHENG-first” (referring to a
different disease status that occurred before tumor occurrence) and
“Tumor-first” (referring to the change in the tumor microenvironment and the
resulting changes in the state of the body) conditions on tumor progression and
evaluated the associated molecular mechanisms. Results: We found
that tumor growth in the “ZHENG-first” and “Tumor-first”
conditions was different. In the “Tumor-first” model, the tumor growth in the
Pi-Xu group was faster than that in the other groups. However, in the
“ZHENG-first” model, the tumor growth trend was most
obvious in the Shi-Re group. There was a difference in tumor-associated
macrophage infiltration between the 2 models. The expression levels of the
inflammatory cytokines IL-6, IL-10, and P-STAT3 were also
differentially altered. Conclusion: The emergence of
ZHENG conditions before or after tumor occurrence had
different impacts on pancreatic cancer development, and these impacts may be
related to differences in tumor-associated macrophage infiltration and the
involved inflammatory cytokines IL-6, IL-10, and P-STAT3. The
study results uncovered the molecular basis of syndrome differentiation in
pancreatic cancer progression, which might provide more specific guidance for
TCM treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Feng-Jiao Wang
- 1 Department of Integrative Oncology, Fudan University, Shanghai Cancer Center, Shanghai, China.,2 Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Peng Wang
- 1 Department of Integrative Oncology, Fudan University, Shanghai Cancer Center, Shanghai, China.,2 Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lian-Yu Chen
- 1 Department of Integrative Oncology, Fudan University, Shanghai Cancer Center, Shanghai, China.,2 Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ya-Wen Geng
- 1 Department of Integrative Oncology, Fudan University, Shanghai Cancer Center, Shanghai, China.,2 Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Hao Chen
- 1 Department of Integrative Oncology, Fudan University, Shanghai Cancer Center, Shanghai, China.,2 Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhi-Qiang Meng
- 1 Department of Integrative Oncology, Fudan University, Shanghai Cancer Center, Shanghai, China.,2 Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lu-Ming Liu
- 1 Department of Integrative Oncology, Fudan University, Shanghai Cancer Center, Shanghai, China.,2 Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhen Chen
- 1 Department of Integrative Oncology, Fudan University, Shanghai Cancer Center, Shanghai, China.,2 Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
35
|
Mortezaee K. Human hepatocellular carcinoma: Protection by melatonin. J Cell Physiol 2018; 233:6486-6508. [DOI: 10.1002/jcp.26586] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/08/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Keywan Mortezaee
- Department of Anatomy, School of Medicine Kurdistan University of Medical Sciences Sanandaj Iran
| |
Collapse
|
36
|
Fan W, Ye G. Microarray analysis for the identification of specific proteins and functional modules involved in the process of hepatocellular carcinoma originating from cirrhotic liver. Mol Med Rep 2018; 17:5619-5626. [PMID: 29436633 PMCID: PMC5866002 DOI: 10.3892/mmr.2018.8555] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 06/30/2017] [Indexed: 02/06/2023] Open
Abstract
In order to identify the potential pathogenesis of hepatocellular carcinoma (HCC) developing from cirrhosis, a microarray‑based transcriptome profile was analyzed. The GSE63898 expression profile was downloaded from the Gene Expression Omnibus database, which included data from 228 HCC tissue samples and 168 cirrhotic tissue samples. The Robust Multi‑array Average in the Affy package of R was used for raw data processing and Student's t‑test was used to screen differentially expressed genes (DEGs). An enrichment analysis was then conducted using the Database for Annotation, Visualization and Integrated Discovery online tool, and the protein‑protein interaction (PPI) network was constructed using the Search Tool for the Retrieval of Interacting Genes and Cytoscape. Furthermore, the MCODE plug‑in of Cytoscape was used to conduct a sub‑module analysis. A total of 634 DEGs were identified between HCC and cirrhosis, of which 165 were upregulated and 469 were downregulated. According to the cut‑off criteria, the PPI network was constructed and Jun proto‑oncogene, AP‑1 transcription factor subunit (degree, 39), Fos proto‑oncogene, AP‑1 transcription factor subunit (degree, 34) and v‑myc avian myelocytomatosis viral oncogene homolog (degree, 32) were identified as the hub nodes of the PPI network. Based on the sub‑module analysis, four specific modules were identified. In particular, module 1 was significantly enriched in the chemokine signaling pathway, and C‑X‑C motif chemokine ligand 12, C‑C motif chemokine receptor 7 (CCR7) and C‑C motif chemokine ligand 5 (CCL5) were three important proteins in this module. Module 4 was significantly enriched in chemical carcinogenesis, and cytochrome P450 family 2 subfamily E member 1, cytochrome P450 family 2 subfamily C member 9 (CYP2C9) and cytochrome P450 family 2 subfamily A member 6 (CYP2A6) were three important proteins in this module. In conclusion, the present study revealed that CCR7, CCL5, CYP2C9 and CYP2A6 are novel genes identified in the development of HCC; however, the actual functions of these genes require verification.
Collapse
Affiliation(s)
- Wufeng Fan
- Section of Medical Affairs, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, Hubei 441000, P.R. China
| | - Guangming Ye
- Center for Gene Diagnosis, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
37
|
Katsura M, Shoji F, Okamoto T, Shimamatsu S, Hirai F, Toyokawa G, Morodomi Y, Tagawa T, Oda Y, Maehara Y. Correlation between CXCR4/CXCR7/CXCL12 chemokine axis expression and prognosis in lymph-node-positive lung cancer patients. Cancer Sci 2017; 109:154-165. [PMID: 29032612 PMCID: PMC5765305 DOI: 10.1111/cas.13422] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/06/2017] [Accepted: 10/09/2017] [Indexed: 12/14/2022] Open
Abstract
The CXCR4/CXCR7/CXCL12 chemokine axis plays important roles in the migration of tumor cells during cancer development by modulating site‐specific distant metastasis including to regional lymph nodes. We investigated the correlation of these chemokine expressions to prognosis in lymph‐node‐positive non‐small‐cell lung cancer (NSCLC) patients. A total of 140 surgically resected specimens of primary site (PS) and metastatic lymph nodes (MLN) of NSCLC involving hilar and/or mediastinal lymph nodes (N1‐2) were collected. CXCR4, CXCR7 and CXCL12 expressions were evaluated. Cox regression analysis was performed to determine whether these chemokines were independent prognostic factors in N1‐2 NSCLC. High expression of CXCR4 in PS and CXCL12 in MLN was associated with poor overall survival (OS) (P = .025 and .033, respectively). Significant correlations between CXCR4 expression in PS and CXCL12 expression in MLN were observed (P = .040). There was significant difference in OS between 2 groups according to expressions of CXCR4 in PS and CXCL12 in MLN (P = .0033). Expression of CXCL12 in MLN was identified as an independent prognostic factor (HR 1.79, 95% CI 1.08‐3.04, P = .023). CXCL12 in MLN was mainly expressed by tumor cells compared with stromal cells (56% vs 25%, respectively, P < .0001). CXCR4/CXCL12 may play roles in tumor progression in MLN and is associated with poor prognosis of lymph‐node‐positive NSCLC patients.
Collapse
Affiliation(s)
- Masakazu Katsura
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Fumihiro Shoji
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tatsuro Okamoto
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Shinichiro Shimamatsu
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Fumihiko Hirai
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Gouji Toyokawa
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yosuke Morodomi
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Tetsuzo Tagawa
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshinao Oda
- Department of Anatomic Pathology, Pathological Sciences, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Yoshihiko Maehara
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
38
|
Novikova MV, Khromova NV, Kopnin PB. Components of the Hepatocellular Carcinoma Microenvironment and Their Role in Tumor Progression. BIOCHEMISTRY (MOSCOW) 2017; 82:861-873. [PMID: 28941454 DOI: 10.1134/s0006297917080016] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review summarizes recently published data on the mechanisms of tumor cell interaction with the tumor microenvironment. Tumor stroma influences the processes of hepatocarcinogenesis, epithelial-to-mesenchymal transition, invasion, and metastasis. The tumor microenvironment includes both cellular and noncellular components. Main cellular components of hepatocellular carcinoma (HCC) stroma are tumor-associated fibroblasts, hepatic stellate cells, immune cells, and endothelial cells that produce extracellular components of tumor microenvironment such as extracellular matrix, various proteins, proteolytic enzymes, growth factors, and cytokines. The noncellular components of the stroma modulate signaling pathways in tumor cells and stimulate invasion and metastasis. The tumor microenvironment composition and organization can serve as prognostic factors in HCC pathogenesis. Current approaches in HCC targeted therapy are aimed at creating efficient strategies for interrupting tumor interactions with the stroma. Recent data on the composition and role of the microenvironment in HCC pathogenesis, as well as new developments in antitumor drug design are discussed.
Collapse
Affiliation(s)
- M V Novikova
- Blokhin Russian Cancer Research Center, Ministry of Health of Russia, Moscow, 115478, Russia.
| | | | | |
Collapse
|
39
|
Ma HY, Liu XZ, Liang CM. Inflammatory microenvironment contributes to epithelial-mesenchymal transition in gastric cancer. World J Gastroenterol 2016; 22:6619-6628. [PMID: 27547005 PMCID: PMC4970470 DOI: 10.3748/wjg.v22.i29.6619] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/12/2016] [Accepted: 07/06/2016] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer (GC) is the fifth most common malignancy in the world. The major cause of GC is chronic infection with Helicobacter pylori (H. pylori). Infection with H. pylori leads to an active inflammatory microenvironment that is maintained by immune cells such as T cells, macrophages, natural killer cells, among other cells. Immune cell dysfunction allows the initiation and accumulation of mutations in GC cells, inducing aberrant proliferation and protection from apoptosis. Meanwhile, immune cells can secrete certain signals, including cytokines, and chemokines, to alter intracellular signaling pathways in GC cells. Thus, GC cells obtain the ability to metastasize to lymph nodes by undergoing the epithelial-mesenchymal transition (EMT), whereby epithelial cells lose their epithelial attributes and acquire a mesenchymal cell phenotype. Metastasis is a leading cause of death for GC patients, and the involved mechanisms are still under investigation. In this review, we summarize the current research on how the inflammatory environment affects GC initiation and metastasis via EMT.
Collapse
|