1
|
Suwannarat S, Tephiruk N, Sunan S, Ruangwong K, Srisonphan S. Disinfection Efficacy of Electrohydraulic Discharge Plasma against Xanthomonas campestris pv campestris: A Sustainable Seed Treatment Approach. ACS APPLIED BIO MATERIALS 2024; 7:1469-1477. [PMID: 38231151 PMCID: PMC11080453 DOI: 10.1021/acsabm.3c00862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/02/2024] [Accepted: 01/07/2024] [Indexed: 01/18/2024]
Abstract
The prevalence of plant diseases caused by pathogens such as Xanthomonas campestris pv campestris (Xcc) poses a significant challenge to sustainable agriculture, necessitating the development of effective and eco-friendly disinfection methods. In this study, we investigated the efficacy of electrohydraulic discharge plasma (EHDP) as a promising alternative for disinfection against Xcc, a pathogen responsible for black rot in cruciferous vegetables. Unlike conventional gas-phase plasma, EHDP introduces two pivotal components: gas-liquid interface plasma (GLIP) and its consequential byproduct, plasma-activated water (PAW). While GLIP enables dual-phase production of reactive oxygen and nitrogen species (RONS), PAW is a reservoir of liquid-phase long-lived RONS, thereby enhancing its bactericidal efficacy. In our evaluations, we tested EHDP-induced GLIP and EHDP-induced PAW against Xcc cells in both in vitro (Xcc suspension) and in vivo (Xcc-inoculated cabbage seeds) settings, achieving noteworthy results. Within 15 min, these methods eliminated ∼98% of the Xcc cells in suspension. For in vivo assessments, nontreated seeds exhibited an infection rate of 98%. In contrast, both EHDP treatments showed a significant reduction, with ∼60% fewer seeds infected while maintaining ∼90% germination rate. In addition, the liquid-phase RONS in EHDP-PAW may enhance seed vigor with a faster germination rate within the initial 5 days. Remarkably, around 90% of EHDP-PAW-treated seeds yielded healthy seedlings, indicating dual benefits in bacterial suppression and seed growth stimulation. In contrast, the percentage of healthy seedlings from nontreated, Xcc-inoculated seeds was approximately 70%. Our research demonstrates the feasibility of using eco-friendly EHDP in the seed disinfection process.
Collapse
Affiliation(s)
- Sawita Suwannarat
- Department
of Plant Pathology, Faculty of Agriculture, Kasetsart University, 50 Ngam Wong Wan Rd, Ladyaow Chatuchak, Bangkok 10900, Thailand
| | - Naowarat Tephiruk
- Department
of Electrical Engineering, Faculty of Engineering, Kasetsart University, 50 Ngam Wong Wan Rd, Ladyaow Chatuchak, Bangkok 10900, Thailand
| | - Suwanna Sunan
- Department
of Plant Pathology, Faculty of Agriculture, Kasetsart University, 50 Ngam Wong Wan Rd, Ladyaow Chatuchak, Bangkok 10900, Thailand
| | - Khomsan Ruangwong
- Department
of Electrical Engineering, Faculty of Engineering, Kasetsart University, 50 Ngam Wong Wan Rd, Ladyaow Chatuchak, Bangkok 10900, Thailand
| | - Siwapon Srisonphan
- Department
of Electrical Engineering, Faculty of Engineering, Kasetsart University, 50 Ngam Wong Wan Rd, Ladyaow Chatuchak, Bangkok 10900, Thailand
| |
Collapse
|
2
|
Nishioka T, Takai Y, Mishima T, Tanimoto H, Okada K, Misawa T, Kusakari S. Inactivation efficacy of low-pressure plasma treatment against seed-borne tomato pathogen Clavibacter michiganensis and effect of seed setting position and mesh sheet usage. JOURNAL OF MICROORGANISM CONTROL 2023; 28:123-128. [PMID: 37866894 DOI: 10.4265/jmc.28.3_123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Clavibacter michiganensis, a gram-positive actinomycete, is a major seed-borne tomato pathogen. We investigated the inactivation efficacy of low-pressure plasma treatment against C. michiganensis inoculated on tomato seeds by placing them on a mesh sheet above the bottom dielectric glass plate. The 2- and 5-minute plasma treatment reduced C. michiganensis populations on the tomato seeds by 0.8 and 1.8 log cfu/seed, respectively. The reduction rates were similar to those of C. michiganensis on shirona (cruciferous) seeds, which have different shapes and surface structures. In contrast, the inactivation of C. michiganensis cells using plasma was more difficult than that of X. campestris cells. Additionally, it was found that placing seeds on a mesh sheet laid on the dielectric glass plate was remarkably effective in inactivating the pathogens on tomato seeds. Since the tomato seeds were susceptible to damage from plasma treatment, methods to reduce its damage need to be investigated.
Collapse
Affiliation(s)
- Terumi Nishioka
- Research Institute of Environment, Agriculture and Fisheries, Osaka Prefecture
| | - Yuichiro Takai
- Research Institute of Environment, Agriculture and Fisheries, Osaka Prefecture
| | - Tomoko Mishima
- Research Institute of Environment, Agriculture and Fisheries, Osaka Prefecture
- Present address: Industrial Technology Center of Nagasaki
| | - Hideo Tanimoto
- Research Institute of Environment, Agriculture and Fisheries, Osaka Prefecture
| | - Kiyotsugu Okada
- Research Institute of Environment, Agriculture and Fisheries, Osaka Prefecture
| | | | - Shinichi Kusakari
- Research Institute of Environment, Agriculture and Fisheries, Osaka Prefecture
| |
Collapse
|
3
|
Mildaziene V, Ivankov A, Sera B, Baniulis D. Biochemical and Physiological Plant Processes Affected by Seed Treatment with Non-Thermal Plasma. PLANTS (BASEL, SWITZERLAND) 2022; 11:856. [PMID: 35406836 PMCID: PMC9003542 DOI: 10.3390/plants11070856] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 12/22/2022]
Abstract
Among the innovative technologies being elaborated for sustainable agriculture, one of the most rapidly developing fields relies on the positive effects of non-thermal plasma (NTP) treatment on the agronomic performance of plants. A large number of recent publications have indicated that NTP effects are far more persistent and complex than it was supposed before. Knowledge of the molecular basis and the resulting outcomes of seed treatment with NTP is rapidly accumulating and requires to be analyzed and presented in a systematic way. This review focuses on the biochemical and physiological processes in seeds and plants affected by seed treatment with NTP and the resulting impact on plant metabolism, growth, adaptability and productivity. Wide-scale changes evolving at the epigenomic, transcriptomic, proteomic and metabolic levels are triggered by seed irradiation with NTP and contribute to changes in germination, early seedling growth, phytohormone amounts, metabolic and defense enzyme activity, secondary metabolism, photosynthesis, adaptability to biotic and abiotic stress, microbiome composition, and increased plant fitness, productivity and growth on a longer time scale. This review highlights the importance of these novel findings, as well as unresolved issues that remain to be investigated.
Collapse
Affiliation(s)
- Vida Mildaziene
- Faculty of Natural Sciences, Vytautas Magnus University, LT-44404 Kaunas, Lithuania;
| | - Anatolii Ivankov
- Faculty of Natural Sciences, Vytautas Magnus University, LT-44404 Kaunas, Lithuania;
| | - Bozena Sera
- Department of Environmental Ecology and Landscape Management, Faculty of Natural Sciences, Comenius University in Bratislava, 84215 Bratislava, Slovakia;
| | - Danas Baniulis
- Institute of Horticulture, Lithuanian Research Centre for Agriculture and Forestry, LT-54333 Babtai, Lithuania;
| |
Collapse
|
4
|
Motyka-Pomagruk A, Dzimitrowicz A, Orlowski J, Babinska W, Terefinko D, Rychlowski M, Prusinski M, Pohl P, Lojkowska E, Jamroz P, Sledz W. Implementation of a Non-Thermal Atmospheric Pressure Plasma for Eradication of Plant Pathogens from a Surface of Economically Important Seeds. Int J Mol Sci 2021; 22:9256. [PMID: 34502164 PMCID: PMC8431735 DOI: 10.3390/ijms22179256] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/13/2021] [Accepted: 08/14/2021] [Indexed: 02/03/2023] Open
Abstract
Plant pathogenic bacteria cause significant economic losses in the global food production sector. To secure an adequate amount of high-quality nutrition for the growing human population, novel approaches need to be undertaken to combat plant disease-causing agents. As the currently available methods to eliminate bacterial phytopathogens are scarce, we evaluated the effectiveness and mechanism of action of a non-thermal atmospheric pressure plasma (NTAPP). It was ignited from a dielectric barrier discharge (DBD) operation in a plasma pencil, and applied for the first time for eradication of Dickeya and Pectobacterium spp., inoculated either on glass spheres or mung bean seeds. Furthermore, the impact of the DBD exposure on mung bean seeds germination and seedlings growth was estimated. The observed bacterial inactivation rates exceeded 3.07 logs. The two-minute DBD exposure stimulated by 3-4% the germination rate of mung bean seeds and by 13.4% subsequent early growth of the seedlings. On the contrary, a detrimental action of the four-minute DBD subjection on seed germination and early growth of the sprouts was noted shortly after the treatment. However, this effect was no longer observed or reduced to 9.7% after the 96 h incubation period. Due to the application of optical emission spectrometry (OES), transmission electron microscopy (TEM), and confocal laser scanning microscopy (CLSM), we found that the generated reactive oxygen and nitrogen species (RONS), i.e., N2, N2+, NO, OH, NH, and O, probably led to the denaturation and aggregation of DNA, proteins, and ribosomes. Furthermore, the cellular membrane disrupted, leading to an outflow of the cytoplasm from the DBD-exposed cells. This study suggests the potential applicability of NTAPPs as eco-friendly and innovative plant protection methods.
Collapse
Affiliation(s)
- Agata Motyka-Pomagruk
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, University of Gdansk, 58 Abrahama, 80-307 Gdansk, Poland; (J.O.); (W.B.); (M.P.); (E.L.); (W.S.)
| | - Anna Dzimitrowicz
- Department of Analytical Chemistry and Chemical Metallurgy, Wroclaw University of Science and Technology, 27 Wybrzeze St. Wyspianskiego, 50-370 Wroclaw, Poland; (A.D.); (D.T.); (P.P.); (P.J.)
| | - Jakub Orlowski
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, University of Gdansk, 58 Abrahama, 80-307 Gdansk, Poland; (J.O.); (W.B.); (M.P.); (E.L.); (W.S.)
| | - Weronika Babinska
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, University of Gdansk, 58 Abrahama, 80-307 Gdansk, Poland; (J.O.); (W.B.); (M.P.); (E.L.); (W.S.)
| | - Dominik Terefinko
- Department of Analytical Chemistry and Chemical Metallurgy, Wroclaw University of Science and Technology, 27 Wybrzeze St. Wyspianskiego, 50-370 Wroclaw, Poland; (A.D.); (D.T.); (P.P.); (P.J.)
| | - Michal Rychlowski
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, University of Gdansk, 58 Abrahama, 80-307 Gdansk, Poland;
| | - Michal Prusinski
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, University of Gdansk, 58 Abrahama, 80-307 Gdansk, Poland; (J.O.); (W.B.); (M.P.); (E.L.); (W.S.)
| | - Pawel Pohl
- Department of Analytical Chemistry and Chemical Metallurgy, Wroclaw University of Science and Technology, 27 Wybrzeze St. Wyspianskiego, 50-370 Wroclaw, Poland; (A.D.); (D.T.); (P.P.); (P.J.)
| | - Ewa Lojkowska
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, University of Gdansk, 58 Abrahama, 80-307 Gdansk, Poland; (J.O.); (W.B.); (M.P.); (E.L.); (W.S.)
| | - Piotr Jamroz
- Department of Analytical Chemistry and Chemical Metallurgy, Wroclaw University of Science and Technology, 27 Wybrzeze St. Wyspianskiego, 50-370 Wroclaw, Poland; (A.D.); (D.T.); (P.P.); (P.J.)
| | - Wojciech Sledz
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdansk, University of Gdansk, 58 Abrahama, 80-307 Gdansk, Poland; (J.O.); (W.B.); (M.P.); (E.L.); (W.S.)
| |
Collapse
|
5
|
Electrically Charged Disinfectant Containing Calcium Hydrogen Carbonate Mesoscopic Crystals as a Potential Measure to Control Xanthomonas campestris pv. campestris on Cabbage Seeds. Microorganisms 2020; 8:microorganisms8101606. [PMID: 33086675 PMCID: PMC7589059 DOI: 10.3390/microorganisms8101606] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 11/24/2022] Open
Abstract
Xanthomonas campestris pv. campestris (Xcc) is an important seed-borne bacterial pathogen that causes black rot in brassica. Current seed disinfection methods for Xcc have disadvantages; chemical treatment has associated environmental risks, hot water immersion reduces germination, and dry heat treatment is protracted. Here, we treated Xcc-contaminated seeds with CAC-717, a recently developed disinfectant produced by applying an electric field and water flow to distilled water containing calcium hydrogen carbonate to produce mesoscopic crystals. The decimal reduction time (D-value) of Xcc suspension (8.22 log10 colony forming units (CFU)/mL) by CAC-717 treatment was 0.319 min. Treatment of Xcc-contaminated cabbage seeds at 25 °C for 30 min with CAC-717 significantly reduced bacterial cell numbers recovered from the seeds (0.36 log10 CFU/mL (SEM (standard error of the mean) = 0.23 log10 CFU/mL)) compared with distilled water treatment (3.52 log10 CFU/mL (SEM = 0.12 log10 CFU/mL)). Moreover, there was a lower incidence of black rot after treatment with CAC-717 (26.67% ± 3.33%) versus distilled water (56.67% ± 8.82%). For non-contaminated seeds, there was no significant difference in germination rate and plant stem length between distilled water and CAC-717 treatment after 5 days of cultivation. In conclusion, CAC-717 is a promising seed disinfectant without deleterious effects on germination or plant growth.
Collapse
|
6
|
Effects of Atmospheric Plasma Corona Discharges on Soil Bacteria Viability. Microorganisms 2020; 8:microorganisms8050704. [PMID: 32403235 PMCID: PMC7284381 DOI: 10.3390/microorganisms8050704] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 05/07/2020] [Accepted: 05/07/2020] [Indexed: 11/17/2022] Open
Abstract
Crop contamination by soil-borne pathogenic microorganisms often leads to serious infection outbreaks. Plant protection requires disinfection of agricultural lands. The chemical and the physical disinfection procedures have several disadvantages, including an irreversible change in the soil ecosystem. Plasma, the "fourth state of matter" is defined as an ionized gas containing an equal number of negatively and positively charged particles. Cold-plasma technology with air or oxygen as the working gas generates reactive oxygen species, which are found to efficiently eradicate bacteria. In this study, we examined the effect of atmospheric plasma corona discharges on soil bacteria viability. Soil that was exposed to plasma for 60 s resulted in bacterial reduction by two orders of magnitude, from 1.1 × 105 to 2.3 × 103 cells g-1 soil. Exposure for a longer period of 5 min did not lead to further significant reduction in bacterial concentration (a final reduction of only 2.5 orders of magnitude). The bacterial viability was evaluated using a colorimetric assay based on the bacterial hydrogenases immediately after exposure and at selected times during 24 h. The result showed no recovery in the bacterial viability. Plasma discharged directly on bacteria that were isolated from the soil resulted in a reduction by four orders of magnitude in the bacterial concentration compared to untreated isolated bacteria: 2.6 × 10-3 and 1.7 × 10-7, respectively. The plasma-resistant bacteria were found to be related to the taxonomic phylum Firmicutes (98.5%) and comprised the taxonomic orders Bacillales (95%) and Clostridiales (2%). To our knowledge, this is the first study of soil bacteria eradication using plasma corona discharges.
Collapse
|
7
|
Dukare AS, Singh RK, Jangra RK, Bhushan B. Non-Fungicides-Based Promising Technologies for Managing Post-Production Penicillium Induced Spoilage in Horticultural Commodities: A Comprehensive Review. FOOD REVIEWS INTERNATIONAL 2020. [DOI: 10.1080/87559129.2020.1727497] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ajinath Shridhar Dukare
- Division of Horticultural Crop Processing, ICAR- Central Institute of Post Harvest Engineering and Technology (CIPHET), Abohar/Ludhiana, India
| | - Rajesh Kumar Singh
- ICAR- Central Institute of Post Harvest Engineering and Technology (CIPHET), Abohar/Ludhiana, India
| | - Ramesh Kumar Jangra
- Division of Horticultural Crop Processing, ICAR- Central Institute of Post Harvest Engineering and Technology (CIPHET), Abohar/Ludhiana, India
| | - Bharat Bhushan
- Plant Biochemistry, ICAR-Indian Institute of Maize Research, Ludhiana, India
| |
Collapse
|
8
|
Adhikari B, Pangomm K, Veerana M, Mitra S, Park G. Plant Disease Control by Non-Thermal Atmospheric-Pressure Plasma. FRONTIERS IN PLANT SCIENCE 2020; 11:77. [PMID: 32117403 PMCID: PMC7034391 DOI: 10.3389/fpls.2020.00077] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 01/20/2020] [Indexed: 05/28/2023]
Abstract
Disease stresses caused by pathogenic microorganisms are increasing, probably because of global warming. Conventional technologies for plant disease control have often revealed their limitations in efficiency, environmental safety, and economic costs. There is high demand for improvements in efficiency and safety. Non-thermal atmospheric-pressure plasma has demonstrated its potential as an alternative tool for efficient and environmentally safe control of plant pathogenic microorganisms in many studies, which are overviewed in this review. Efficient inactivation of phytopathogenic bacterial and fungal cells by various plasma sources under laboratory conditions has been frequently reported. In addition, plasma-treated water shows antimicrobial activity. Plasma and plasma-treated water exhibit a broad spectrum of efficiency in the decontamination and disinfection of plants, fruits, and seeds, indicating that the outcomes of plasma treatment can be significantly influenced by the microenvironments between plasma and plant tissues, such as the surface structures and properties, antioxidant systems, and surface chemistry of plants. More intense studies are required on the efficiency of decontamination and disinfection and underlying mechanisms. Recently, the induction of plant tolerance or resistance to pathogens by plasma (so-called "plasma vaccination") is emerging as a new area of study, with active research ongoing in this field.
Collapse
Affiliation(s)
- Bhawana Adhikari
- Plasma Bioscience Research Center, Kwangwoon University, Seoul, South Korea
| | - Kamonporn Pangomm
- Department of Basic Science, Maejo University Phrae Campus, Phrae, Thailand
| | - Mayura Veerana
- Plasma Bioscience Research Center, Kwangwoon University, Seoul, South Korea
| | - Sarmistha Mitra
- Plasma Bioscience Research Center, Kwangwoon University, Seoul, South Korea
| | - Gyungsoon Park
- Plasma Bioscience Research Center, Kwangwoon University, Seoul, South Korea
| |
Collapse
|
9
|
Pre-germination plasma treatment of seeds does not alter cotyledon DNA structure, nor phenotype and phenology of tomato and pepper plants. Biochem Biophys Res Commun 2019; 519:512-517. [DOI: 10.1016/j.bbrc.2019.09.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 09/09/2019] [Indexed: 12/20/2022]
|
10
|
Evrendilek GA, Karatas B, Uzuner S, Tanasov I. Design and effectiveness of pulsed electric fields towards seed disinfection. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:3475-3480. [PMID: 30623440 DOI: 10.1002/jsfa.9566] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/25/2018] [Accepted: 01/02/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Seeds harbor different microorganisms on their surfaces that degrade seed quality, thus causing an economic loss. Even though different approaches are available for the disinfection of seed surfaces, there is a need to develop environmentally friendly and sustainable technologies. A bench-scale pulsed electric field (PEF) unit was designed to inactivate microflora of eight seeds after which the resultant vigor of the treated seeds was determined. RESULTS Significant reductions were obtained in endogenous natural and inoculated pathogenic (Alternaria brassica and Xanthomonas campestris pv. campestris, Drechslera graminea and Fusarium graminearum) microflora of seeds. The survival ratios of total aerobic mesophilic bacteria and of total mold and yeast decreased significantly for winter wheat and barley, parsley, onion, lettuce, tomato, and garden rocket with the PEF treatments of 240 and 960 J. A significant increase in germination ratio was observed for winter wheat and barley, lettuce, and tomato with 960 J. Germination energy increased for parsley with 240 J and for winter wheat and barley, lettuce, tomato, and garden rocket with 960 J. A better root development and seedling were found for winter barley. CONCLUSION PEFs are a viable option to both disinfect seed surfaces and improve seed vigor. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Gulsun A Evrendilek
- Department of Food Engineering Faculty of Engineering, Bolu Abant Izzet Baysal University, Bolu, Turkey
- Department of Food Engineering, Ardahan University Faculty of Engineering, Ardahan, Turkey
| | - Berna Karatas
- Department of Food Engineering Faculty of Engineering, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | - Sibel Uzuner
- Department of Food Engineering Faculty of Engineering, Bolu Abant Izzet Baysal University, Bolu, Turkey
| | | |
Collapse
|