1
|
Dash P, Hakim A, Akter A, Banna HA, Kaisar MH, Aktar A, Jahan SR, Ferdous J, Basher SR, Kamruzzaman M, Chowdhury F, Akter A, Tauheed I, Weil AA, Charles RC, Calderwood SB, Ryan ET, LaRocque RC, Harris JB, Bhuiyan TR, Qadri F. Cholera toxin and O-specific polysaccharide immune responses after oral cholera vaccination with Dukoral in different age groups of Bangladeshi participants. mSphere 2024; 9:e0056523. [PMID: 38391226 PMCID: PMC10964428 DOI: 10.1128/msphere.00565-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 12/20/2023] [Indexed: 02/24/2024] Open
Abstract
Vaccination is important to prevent cholera. There are limited data comparing anti-O-specific polysaccharide (OSP) and anti-cholera toxin-specific immune responses following oral whole-cell with cholera toxin B-subunit (WC-rBS) vaccine (Dukoral, Valneva) administration in different age groups. An understanding of the differences is relevant because young children are less well protected by oral cholera vaccines than older children and adults. We compared responses in 50 adults and 49 children (ages 2 to <18) who were administered two doses of WC-rBS at a standard 14-day interval. All age groups had significant IgA and IgG plasma-blast responses to the OSP and cholera toxin B-subunit (CtxB) antigens that peaked 7 days after vaccination. However, in adults and older children (ages 5 to <18), antibody responses directed at the OSP antigen were largely IgA and IgG, with a minimal IgM response, while younger children (ages 2 to <5) mounted significant increases in IgM with minimal increases in IgA and IgG antibody responses 30 days after vaccination. In adults, anti-OSP and CtxB memory B-cell responses were detected after completion of the vaccination series, while children only mounted CtxB-specific IgG memory B-cell responses and no OSP-memory B-cell responses. In summary, children and adults living in a cholera endemic area mounted different responses to the WC-rBS vaccine, which may be a result of more prior exposure to Vibrio cholerae in older participants. The absence of class-switched antibody responses and memory B-cell responses to OSP may explain why protection wanes more rapidly after vaccination in young children compared to older vaccinees.IMPORTANCEVaccination is an important strategy to prevent cholera. Though immune responses targeting the OSP of V. cholerae are believed to mediate protection against cholera, there are limited data on anti-OSP responses after vaccination in different age groups, which is important as young children are not well protected by current oral cholera vaccines. In this study, we found that adults mounted memory B-cell responses to OSP, which were not seen in children. Adults and older children mounted class-switched (IgG and IgA) serum antibody responses to OSP, which were not seen in young children who had only IgM responses to OSP. The lack of class-switched antibody responses and memory B-cell responses to OSP in younger participants may be due to lack of prior exposure to V. cholerae and could explain why protection wanes more rapidly after vaccination in young children.
Collapse
Affiliation(s)
- Pinki Dash
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Al Hakim
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
- Department of Genetic Engineering and Biotechnology, Jagannath University, Dhaka, Bangladesh
| | - Aklima Akter
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Hasan Al Banna
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - M. Hasanul Kaisar
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Amena Aktar
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Sultana Rownok Jahan
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Jannatul Ferdous
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Salima Raiyan Basher
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Mohammad Kamruzzaman
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
- Department of Biochemistry and Molecular Biology, Mawlana Bhashani Science and Technology University, Santosh, Tangail, Bangladesh
| | - Fahima Chowdhury
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Afroza Akter
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Imam Tauheed
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Ana A. Weil
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Richelle C. Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Stephen B. Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Edward T. Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Regina C. LaRocque
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Jason B. Harris
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
- Division of Global Health, Massachusetts General Hospital for Children, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Taufiqur Rahman Bhuiyan
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Firdausi Qadri
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| |
Collapse
|
2
|
Kaisar MH, Kelly M, Kamruzzaman M, Bhuiyan TR, Chowdhury F, Khan AI, LaRocque RC, Calderwood SB, Harris JB, Charles RC, Čížová A, Mečárová J, Korcová J, Bystrický S, Kováč P, Xu P, Qadri F, Ryan ET. Comparison of O-specific polysaccharide responses in patients following infection with Vibrio cholerae O139 versus vaccination with a bivalent (O1/O139) oral killed cholera vaccine in Bangladesh. mSphere 2023; 8:e0025523. [PMID: 37646517 PMCID: PMC10597347 DOI: 10.1128/msphere.00255-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/05/2023] [Indexed: 09/01/2023] Open
Abstract
Cholera caused by Vibrio cholerae O139 emerged in the early 1990s and spread rapidly to 11 Asian countries before receding for unclear reasons. Protection against cholera is serogroup-specific, which is defined by the O-specific polysaccharide (OSP) component of lipopolysaccharide (LPS). V. cholerae O139 also expresses the OSP-capsule. We, therefore, assessed antibody responses targeting V. cholerae O139 OSP, LPS, capsule, and vibriocidal responses in patients in Bangladesh with cholera caused by V. cholerae O139. We compared these responses to those of age-gender-blood group-matched recipients of the bivalent oral cholera vaccine (OCV O1/O139). We found prominent OSP, LPS, and vibriocidal responses in patients, with a high correlation between these responses. OSP responses primarily targeted the terminal tetrasaccharide of OSP. Vaccinees developed OSP, LPS, and vibriocidal antibody responses, but of significantly lower magnitude and responder frequency (RF) than matched patients. We separately analyzed responses in pediatric vaccinees born after V. cholerae O139 had receded in Bangladesh. We found that OSP responses were boosted in children who had previously received a single dose of bivalent OCV 3 yr previously but not in vaccinated immunologically naïve children. Our results suggest that OSP-specific responses occur during cholera caused by V. cholerae O139 despite the presence of capsules, that vaccination with bivalent OCV is poorly immunogenic in the short term in immunologically naïve individuals, but that OSP-specific immune responses can be primed by previous exposure, although whether such responses can protect against O139 cholera is uncertain. IMPORTANCE Cholera is a severe dehydrating illness in humans caused by Vibrio cholerae serogroups O1 or O139. Protection against cholera is serogroup-specific, which is defined by the O-specific polysaccharide (OSP) of V. cholerae LPS. Yet, little is known about immunity to O139 OSP. In this study, we assessed immune responses targeting OSP in patients from an endemic region with cholera caused by V. cholerae O139. We compared these responses to those of the age-gender-blood group-matched recipients of the bivalent oral cholera vaccine. Our results suggest that OSP-specific responses occur during cholera caused by V. cholerae O139 and that the OSP responses primarily target the terminal tetrasaccharide of OSP. Our results further suggest that vaccination with the bivalent vaccine is poorly immunogenic in the short term for inducing O139-specific OSP responses in immunologically naïve individuals, but OSP-specific immune responses can be primed by previous exposure or vaccination.
Collapse
Affiliation(s)
- M. Hasanul Kaisar
- International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Meagan Kelly
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Mohammad Kamruzzaman
- International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Taufiqur R. Bhuiyan
- International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Fahima Chowdhury
- International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Ashraful Islam Khan
- International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Regina C. LaRocque
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Stephen B. Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Jason B. Harris
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Division of Global Health, MassGeneral Hospital for Children, Boston, Massachusetts, USA
| | - Richelle C. Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| | - Alžbeta Čížová
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jana Mečárová
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jana Korcová
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
- Department of Chemical Theory of Drugs, Faculty of Pharmacy, Comenius University in Bratislava, Bratislava, Slovakia
| | - Slavomír Bystrický
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Pavol Kováč
- Laboratory of Bioorganic Chemistry (LBC), National Institute of Diabetes, Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, Maryland, USA
| | - Peng Xu
- Laboratory of Bioorganic Chemistry (LBC), National Institute of Diabetes, Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, Maryland, USA
| | - Firdausi Qadri
- International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Edward T. Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Roy VL, Majumder PP. Genomic associations with antibody response to an oral cholera vaccine. Vaccine 2023; 41:6391-6400. [PMID: 37699782 DOI: 10.1016/j.vaccine.2023.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/03/2023] [Accepted: 09/07/2023] [Indexed: 09/14/2023]
Abstract
Oral cholera vaccine is one of the key interventions used in our fight to end the longest pandemic of our time, cholera. The immune response conferred by the currently available cholera vaccines, as measured by serum antibody levels, is variable amongst its recipients. We undertook a genome wide association study (GWAS) on antibody response to the cholera vaccine; globally, the first GWAS on cholera vaccine response. We identified three clusters of bi-allelic SNPs, in high within-cluster linkage disequilibrium that were moderately (p < 5 × 10-6) associated with antibody response to the cholera vaccine and mapped to chromosomal regions 4p14, 4p16.1 and 6q23.3. Intronic SNPs of TBC1D1 comprised the cluster on 4p14, intronic SNPs of TBC1D14 comprised that on 4p16.1 and SNPs upstream of TNFAIP3 formed the cluster on 6q23.3. SNPs within and around these clusters have been implicated in immune cell function and immunological aspects of autoimmune or infectious diseases (e.g., diseases caused by Helicobacter pylori and malarial parasite). 6q23.3 is a prominent region harbouring many loci associated with immune related diseases, including multiple sclerosis, rheumatoid arthritis and systemic lupus erythematosus, as well as IL2 and INFα response to a smallpox vaccine. The gene clusters identified in this study play roles in vesicle-mediated pathway, autophagy and NF-κB signaling. No significant effect of O blood group on antibody response to the cholera vaccine was observed in this study.
Collapse
Affiliation(s)
- Vijay Laxmi Roy
- National Institute of Biomedical Genomics, P.O.: N.S.S., Kalyani, West Bengal 741251, India
| | - Partha P Majumder
- National Institute of Biomedical Genomics, P.O.: N.S.S., Kalyani, West Bengal 741251, India; Indian Statistical Institute, 203, Barrackpore Trunk Road, Kolkata, West Bengal 700108, India.
| |
Collapse
|
4
|
Chowdhury F, Akter A, Bhuiyan TR, Biswas R, Firoj MG, Tauheed I, Harris JB, Larocque RC, Ross AG, McMillan NAJ, Charles RC, Ryan ET, Calderwood SB, Qadri F. Long-term sialidase-specific immune responses after natural infection with cholera: Findings from a longitudinal cohort study in Bangladesh. Front Immunol 2022; 13:1067737. [PMID: 36618409 PMCID: PMC9813220 DOI: 10.3389/fimmu.2022.1067737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 12/02/2022] [Indexed: 12/24/2022] Open
Abstract
Background Immune responses that target sialidase occur following natural cholera and have been associated with protection against cholera. Sialidase is a neuraminidase that facilitates the binding of cholera toxin (CT) to intestinal epithelial cells. Despite this, little is known about age-related sialidase-specific immune responses and the impact of nutritional status and co-infection on sialidase-specific immunity. Methods We enrolled 50 culture-confirmed Vibrio cholerae O1 cholera cases presenting to the icddr,b Dhaka hospital with moderate to severe dehydration. We evaluated antibody responses out to 18 months (day 540) following cholera. We assessed immune responses targeting sialidase, lipopolysaccharide (LPS), cholera toxin B subunit (CtxB), and vibriocidal responses. We also explored the association of sialidase-specific immune responses to nutritional parameters and parasitic co-infection of cases. Results This longitudinal cohort study showed age-dependent differences in anti-sialidase immune response after natural cholera infection. Adult patients developed plasma anti-sialidase IgA and IgG responses after acute infection (P<0.05), which gradually decreased from day 30 on. In children, no significant anti-sialidase IgA, IgM, and IgG response was seen with the exception of a late IgG response at study day 540 (p=0.05 compared to adults). There was a correlation between anti-sialidase IgA with vibriocidal titers, as well as anti-sialidase IgA and IgG with anti-LPS and anti-CtxB antibody responses in adult patients, whereas in children, a significant positive correlation was seen only between anti-sialidase IgA and CtxB IgA responses. Stunted children showed significantly lower anti-sialidase IgA, IgG, and IgM antibody responses and higher LPS IgG and IgM antibody responses than healthy children. The anti-sialidase IgA and IgG responses were significantly higher in cases with concomitant parasitic infection. Conclusion Our data suggest that cholera patients develop age-distinct systemic and mucosal immune responses against sialidase. The stunted children have a lower anti-sialidase antibody response which may be associated with gut enteropathy and the neuraminidase plays an important role in augmented immune response in cholera patients infected with parasites.
Collapse
Affiliation(s)
- Fahima Chowdhury
- Infectious Diseases Division, icddr, b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia
| | - Afroza Akter
- Infectious Diseases Division, icddr, b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Taufiqur Rahman Bhuiyan
- Infectious Diseases Division, icddr, b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Rajib Biswas
- Infectious Diseases Division, icddr, b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
- Department of Biology, Xavier University of Louisiana, New Orleans, AK, United States
| | - Md. Golam Firoj
- Infectious Diseases Division, icddr, b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Imam Tauheed
- Infectious Diseases Division, icddr, b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Jason B. Harris
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, United States
| | - Regina C. Larocque
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Allen G. Ross
- Rural Health Research Institute, Charles Sturt University, Orange, New South Wales, Australia
| | | | - Richelle C. Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, United States
| | - Edward T. Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, United States
| | - Stephen B. Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Department of Microbiology, Harvard Medical School, Boston, MA, United States
| | - Firdausi Qadri
- Infectious Diseases Division, icddr, b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| |
Collapse
|
5
|
Naidu A, Lulu S S. Mucosal and systemic immune responses to Vibrio cholerae infection and oral cholera vaccines (OCVs) in humans: a systematic review. Expert Rev Clin Immunol 2022; 18:1307-1318. [PMID: 36255170 DOI: 10.1080/1744666x.2022.2136650] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Cholera is an enteric disease caused by Vibrio cholerae, a water-borne pathogen, and characterized by severe diarrhea. Vaccines have been recommended for use by the WHO in resource-limited settings. Efficacies of the currently licensed cholera vaccines are not optimal in endemic settings and low in children below the age of five, a section of the population most susceptible to the disease. Development of next generation of cholera vaccines would require a detailed understanding of the required protective immune responses. AREA COVERED In this review, we revisit clinical trials which are focused on the early transcriptional mucosal responses elicited during Vibrio cholerae infection and upon vaccination along with summarizing various components of the effector immune response against Vibrio cholerae. EXPERT OPINION The inability of currently licensed killed/inactivated vaccines to elicit key inflammatory pathways locally may explain their restricted efficacy in endemic settings. More studies are required to understand the immunogenicity of the live attenuated cholera vaccine in these regions. Various extrinsic and intrinsic factors influence anti-cholera immunity and need to be considered to develop region-specific next generation vaccines.
Collapse
Affiliation(s)
- Akshayata Naidu
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Sajitha Lulu S
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, India
| |
Collapse
|
6
|
Ryan ET, Leung DT, Jensen O, Weil AA, Bhuiyan TR, Khan AI, Chowdhury F, LaRocque RC, Harris JB, Calderwood SB, Qadri F, Charles RC. Systemic, Mucosal, and Memory Immune Responses following Cholera. Trop Med Infect Dis 2021; 6:192. [PMID: 34842841 PMCID: PMC8628923 DOI: 10.3390/tropicalmed6040192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/21/2021] [Accepted: 10/23/2021] [Indexed: 01/13/2023] Open
Abstract
Vibrio cholerae O1, the major causative agent of cholera, remains a significant public health threat. Although there are available vaccines for cholera, the protection provided by killed whole-cell cholera vaccines in young children is poor. An obstacle to the development of improved cholera vaccines is the need for a better understanding of the primary mechanisms of cholera immunity and identification of improved correlates of protection. Considerable progress has been made over the last decade in understanding the adaptive and innate immune responses to cholera disease as well as V. cholerae infection. This review will assess what is currently known about the systemic, mucosal, memory, and innate immune responses to clinical cholera, as well as recent advances in our understanding of the mechanisms and correlates of protection against V. cholerae O1 infection.
Collapse
Affiliation(s)
- Edward T. Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA; (E.T.R.); (R.C.L.); (J.B.H.); (S.B.C.)
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Daniel T. Leung
- Division of Infectious Diseases, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, USA; (D.T.L.); (O.J.)
| | - Owen Jensen
- Division of Infectious Diseases, Department of Internal Medicine, University of Utah School of Medicine, Salt Lake City, UT 84132, USA; (D.T.L.); (O.J.)
| | - Ana A. Weil
- Division of Allergy and Infectious Diseases, University of Washington, Seattle, WA 98109, USA;
| | - Taufiqur Rahman Bhuiyan
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh; (T.R.B.); (A.I.K.); (F.C.); (F.Q.)
| | - Ashraful Islam Khan
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh; (T.R.B.); (A.I.K.); (F.C.); (F.Q.)
| | - Fahima Chowdhury
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh; (T.R.B.); (A.I.K.); (F.C.); (F.Q.)
| | - Regina C. LaRocque
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA; (E.T.R.); (R.C.L.); (J.B.H.); (S.B.C.)
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Jason B. Harris
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA; (E.T.R.); (R.C.L.); (J.B.H.); (S.B.C.)
- Department of Pediatrics, MassGeneral Hospital for Children, Boston, MA 02114, USA
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, MA 02115, USA
- Division of Pediatric Global Health, Massachusetts General Hospital, Boston, MA 02115, USA
| | - Stephen B. Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA; (E.T.R.); (R.C.L.); (J.B.H.); (S.B.C.)
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Firdausi Qadri
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka 1212, Bangladesh; (T.R.B.); (A.I.K.); (F.C.); (F.Q.)
| | - Richelle C. Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA; (E.T.R.); (R.C.L.); (J.B.H.); (S.B.C.)
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
7
|
Longitudinal analysis of human humoral responses after vaccination with a live attenuated V. cholerae vaccine. PLoS Negl Trop Dis 2021; 15:e0009743. [PMID: 34478460 PMCID: PMC8445443 DOI: 10.1371/journal.pntd.0009743] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 09/16/2021] [Accepted: 08/18/2021] [Indexed: 02/07/2023] Open
Abstract
Vibrio cholerae is a bacterial pathogen which causes the severe acute diarrheal disease cholera. Given that a symptomatic incident of cholera can lead to long term protection, a thorough understanding of the immune response to this pathogen is needed to identify parameters critical to the generation and durability of immunity. To approach this, we utilized a live attenuated cholera vaccine to model the response to V. cholerae infection in 12 naïve subjects. We found that this live attenuated vaccine induced durable vibriocidal antibody titers that were maintained at least one year after vaccination. Similar to what we previously reported in infected patients from Bangladesh, we found that vaccination induced plasmablast responses were primarily specific to the two immunodominant antigens lipopolysaccharide (LPS) and cholera toxin (CT). Interestingly, the magnitude of the early plasmablast response at day 7 predicted the serological outcome of vaccination at day 30. However, this correlation was no longer present at later timepoints. The acute responses displayed preferential immunoglobulin isotype usage, with LPS specific cells being largely IgM or IgA producing, while cholera toxin responses were predominantly IgG. Finally, CCR9 was highly expressed on vaccine induced plasmablasts, especially on IgM and IgA producing cells, suggesting a role in migration to the gastrointestinal tract. Collectively, these findings demonstrate that the use of a live attenuated cholera vaccine is an effective tool to examine the primary and long-term immune response following V. cholerae exposure. Additionally, it provides insight into the phenotype and specificity of the cells which likely return to and mediate immunity at the intestinal mucosa. A thorough understanding of these properties both in peripheral blood and in the intestinal mucosae will inform future vaccine development against both cholera and other mucosal pathogens. Trial Registration: NCT03251495.
Collapse
|
8
|
Kamruzzaman M, Kelly M, Charles RC, Harris JB, Calderwood SB, Akter A, Biswas R, Kaisar MH, Bhuiyan TR, Ivers LC, Ternier R, Jerome JG, Pfister HB, Lu X, Soliman SE, Ruttens B, Saksena R, Mečárová J, Čížová A, Qadri F, Bystrický S, Kováč P, Xu P, Ryan ET. Defining Polysaccharide-Specific Antibody Targets against Vibrio cholerae O139 in Humans following O139 Cholera and following Vaccination with a Commercial Bivalent Oral Cholera Vaccine, and Evaluation of Conjugate Vaccines Targeting O139. mSphere 2021; 6:e0011421. [PMID: 34232076 PMCID: PMC8386440 DOI: 10.1128/msphere.00114-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 06/02/2021] [Indexed: 11/20/2022] Open
Abstract
Cholera caused by Vibrio cholerae O139 could reemerge, and proactive development of an effective O139 vaccine would be prudent. To define immunoreactive and potentially immunogenic carbohydrate targets of Vibrio cholerae O139, we assessed immunoreactivities of various O-specific polysaccharide (OSP)-related saccharides with plasma from humans hospitalized with cholera caused by O139, comparing responses to those induced in recipients of a commercial oral whole-cell killed bivalent (O1 and O139) cholera vaccine (WC-O1/O139). We also assessed conjugate vaccines containing selected subsets of these saccharides for their ability to induce protective immunity using a mouse model of cholera. We found that patients with wild-type O139 cholera develop IgM, IgA, and IgG immune responses against O139 OSP and many of its fragments, but we were able to detect only a moderate IgM response to purified O139 OSP-core, and none to its fragments, in immunologically naive recipients of WC-O1/O139. We found that immunoreactivity of O139-specific polysaccharides with antibodies elicited by wild-type infection markedly increase when saccharides contain colitose and phosphate residues, that a synthetic terminal tetrasaccharide fragment of OSP is more immunoreactive and protectively immunogenic than complete OSP, that native OSP-core is a better protective immunogen than the synthetic OSP lacking core, and that functional vibriocidal activity of antibodies predicts in vivo protection in our model but depends on capsule thickness. Our results suggest that O139 OSP-specific responses are not prominent following vaccination with a currently available oral cholera vaccine in immunologically naive humans and that vaccines targeting V. cholerae O139 should be based on native OSP-core or terminal tetrasaccharide. IMPORTANCE Cholera is a severe dehydrating illness of humans caused by Vibrio cholerae serogroup O1 or O139. Protection against cholera is serogroup specific, and serogroup specificity is defined by O-specific polysaccharide (OSP). Little is known about immunity to O139 OSP. In this study, we used synthetic fragments of the O139 OSP to define immune responses to OSP in humans recovering from cholera caused by V. cholerae O139, compared these responses to those induced by the available O139 vaccine, and evaluated O139 fragments in next-generation conjugate vaccines. We found that the terminal tetrasaccharide of O139 is a primary immune target but that the currently available bivalent cholera vaccine poorly induces an anti-O139 OSP response in immunologically naive individuals.
Collapse
Affiliation(s)
- Mohammad Kamruzzaman
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh
| | - Meagan Kelly
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Richelle C. Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Jason B. Harris
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
- Division of Global Health, MassGeneral Hospital for Children, Boston, Massachusetts, USA
| | - Stephen B. Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Aklima Akter
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh
| | - Rajib Biswas
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh
| | - M. Hasanul Kaisar
- International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh
| | - Taufiqur R. Bhuiyan
- International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh
| | - Louise C. Ivers
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Global Health and Social Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | | - Xiaowei Lu
- NIDDK, LBC, National Institutes of Health, Bethesda, Maryland, USA
| | - Sameh E. Soliman
- NIDDK, LBC, National Institutes of Health, Bethesda, Maryland, USA
| | - Bart Ruttens
- NIDDK, LBC, National Institutes of Health, Bethesda, Maryland, USA
| | - Rina Saksena
- NIDDK, LBC, National Institutes of Health, Bethesda, Maryland, USA
| | - Jana Mečárová
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Alžbeta Čížová
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Firdausi Qadri
- International Centre for Diarrhoeal Disease Research Bangladesh, Dhaka, Bangladesh
| | - Slavomír Bystrický
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Pavol Kováč
- NIDDK, LBC, National Institutes of Health, Bethesda, Maryland, USA
| | - Peng Xu
- NIDDK, LBC, National Institutes of Health, Bethesda, Maryland, USA
| | - Edward T. Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Leung T, Matrajt L. Protection afforded by previous Vibrio cholerae infection against subsequent disease and infection: A review. PLoS Negl Trop Dis 2021; 15:e0009383. [PMID: 34014927 PMCID: PMC8136710 DOI: 10.1371/journal.pntd.0009383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Cholera is an acute, diarrheal disease caused by Vibrio cholerae O1 or 139 that is associated with a high global burden. METHODS We analyzed the estimated duration of immunity following cholera infection from available published studies. We searched PubMed and Web of Science for studies of the long-term immunity following cholera infection. We identified 22 eligible studies and categorized them as either observational, challenge, or serological. RESULTS We found strong evidence of protection at 3 years after infection in observational and challenge studies. However, serological studies show that elevated humoral markers of potential correlates of protection returned to baseline within 1 year. Additionally, a subclinical cholera infection may confer lower protection than a clinical one, as suggested by 3 studies that found that, albeit with small sample sizes, most participants with a subclinical infection from an initial challenge with cholera had a symptomatic infection when rechallenged with a homologous biotype. CONCLUSIONS This review underscores the need to elucidate potential differences in the protection provided by clinical and subclinical cholera infections. Further, more studies are warranted to bridge the gap between the correlates of protection and cholera immunity. Understanding the duration of natural immunity to cholera can help guide control strategies and policy.
Collapse
Affiliation(s)
- Tiffany Leung
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | - Laura Matrajt
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| |
Collapse
|
10
|
Pearce K, Estanislao D, Fareed S, Tremellen K. Metabolic Endotoxemia, Feeding Studies and the Use of the Limulus Amebocyte (LAL) Assay; Is It Fit for Purpose? Diagnostics (Basel) 2020; 10:diagnostics10060428. [PMID: 32599766 PMCID: PMC7345849 DOI: 10.3390/diagnostics10060428] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/18/2020] [Accepted: 06/22/2020] [Indexed: 12/14/2022] Open
Abstract
The Limulus amebocyte assay (LAL) is increasingly used to quantify metabolic endotoxemia (ME), particularly in feeding studies. However, the assay was not intended to assess plasma at levels typically seen in ME. We aimed to optimize and validate the LAL assay under a range of pre-treatment conditions against the well-established lipopolysaccharide binding protein assay (LBP). Fifteen healthy overweight and obese males aged 28.8 ± 9.1years provided plasma. The LAL assay employed a range of pre-treatments; 70 °C for 15 and 30 min and 80 °C for 15 and 30 min, ultrasonication (70 °C for 10 min and then 40 °C for 10 min), and dilution (1:50, 1:75, 1:100, and 1:200 parts) or diluted using 0.5% pyrosperse. Seventeen different plasma pre-treatment methods employed prior to the use of the LAL analytical technique failed to show any relationships with either LBP, or body mass index (BMI; obesity), the biological trigger for ME (p > 0.05 for all). As expected, BMI positively correlated with LBP (r = 0.523, p = 0.052. No relationships were observed between LAL with any of the sample pre-treatments and LBP or BMI. In its current form, the LAL assay is unsuitable for detecting levels of endotoxin typically seen in ME.
Collapse
Affiliation(s)
- Karma Pearce
- Division of Health Sciences, School of Pharmacy and Medical Sciences & Alliance for Research in Exercise Nutrition and Activity (ARENA), University of South Australia, Adelaide SA 5001, Australia; (D.E.); (S.F.)
- Correspondence: ; Tel.: +61-8-830-21133 or +61-8-8302-2389
| | - Dianne Estanislao
- Division of Health Sciences, School of Pharmacy and Medical Sciences & Alliance for Research in Exercise Nutrition and Activity (ARENA), University of South Australia, Adelaide SA 5001, Australia; (D.E.); (S.F.)
| | - Sinan Fareed
- Division of Health Sciences, School of Pharmacy and Medical Sciences & Alliance for Research in Exercise Nutrition and Activity (ARENA), University of South Australia, Adelaide SA 5001, Australia; (D.E.); (S.F.)
| | - Kelton Tremellen
- Department of Obstetrics Gynaecology and Reproductive Medicine, Flinders University, Bedford Park SA 5042, Australia;
- Repromed IVF Adelaide, 180 Fullarton Road, Dulwich SA 5065, Australia
| |
Collapse
|
11
|
Karimi Bavandpour A, Bakhshi B, Najar-Peerayeh S. The roles of mesoporous silica and carbon nanoparticles in antigen stability and intensity of immune response against recombinant subunit B of cholera toxin in a rabbit animal model. Int J Pharm 2019; 573:118868. [PMID: 31765785 DOI: 10.1016/j.ijpharm.2019.118868] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 11/09/2019] [Accepted: 11/11/2019] [Indexed: 01/21/2023]
Abstract
Vaccines are the front line in the fight against diseases. However, setbacks with existing cholera vaccines have ignited a considerable effort to develop more suitable vaccine formulations. In this study, we aim to investigate the effect of antigen stability and controlled release in inducing an immune response. Therefore, two types of silica and carbon mesoporous nanoparticles of the same size and shape but different pore architectures were synthesized and loaded with recombinant cholera toxin subunit B to serve as a model for antigen stability and controlled release of antigenic CTB. In order to evaluate immune response efficacy for these model formulations, IgG and IgA responses and fluid accumulation (FA) index were measured in immunized rabbits, which were challenged with wild-type Vibrio cholerae. Our result suggests that mesoporous silica nanoparticles have greater efficacy in inducing mucosal immune responses, and it proved more proficiency in overall immune responses in challenge experiments and FA index (p < 0.05). These findings indicate that mesoporous nanoparticles and, in particular, mesoporous silica nanoparticles, could be used in oral vaccine formulation against cholera.
Collapse
Affiliation(s)
- Ali Karimi Bavandpour
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bita Bakhshi
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Shahin Najar-Peerayeh
- Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
12
|
Hossain M, Islam K, Kelly M, Mayo Smith LM, Charles RC, Weil AA, Bhuiyan TR, Kováč P, Xu P, Calderwood SB, Simon JK, Chen WH, Lock M, Lyon CE, Kirkpatrick BD, Cohen M, Levine MM, Gurwith M, Leung DT, Azman AS, Harris JB, Qadri F, Ryan ET. Immune responses to O-specific polysaccharide (OSP) in North American adults infected with Vibrio cholerae O1 Inaba. PLoS Negl Trop Dis 2019; 13:e0007874. [PMID: 31743334 PMCID: PMC6863522 DOI: 10.1371/journal.pntd.0007874] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 10/25/2019] [Indexed: 01/01/2023] Open
Abstract
Background Antibodies targeting O-specific polysaccharide (OSP) of Vibrio cholerae may protect against cholera; however, little is known about this immune response in infected immunologically naïve humans. Methodology We measured serum anti-OSP antibodies in adult North American volunteers experimentally infected with V. cholerae O1 Inaba El Tor N16961. We also measured vibriocidal and anti-cholera toxin B subunit (CtxB) antibodies and compared responses to those in matched cholera patients in Dhaka, Bangladesh, an area endemic for cholera. Principal findings We found prominent anti-OSP antibody responses following initial cholera infection: these responses were largely IgM and IgA, and highest to infecting serotype with significant cross-serotype reactivity. The anti-OSP responses peaked 10 days after infection and remained elevated over baseline for ≥ 6 months, correlated with vibriocidal responses, and may have been blunted in blood group O individuals (IgA anti-OSP). We found significant differences in immune responses between naïve and endemic zone cohorts, presumably reflecting previous exposure in the latter. Conclusions Our results define immune responses to O-specific polysaccharide in immunologically naive humans with cholera, find that they are largely IgM and IgA, may be blunted in blood group O individuals, and differ in a number of significant ways from responses in previously humans. These differences may explain in part varying degrees of protective efficacy afforded by cholera vaccination between these two populations. Trial registration number ClinicalTrials.gov NCT01895855. Cholera is an acute, secretory diarrheal disease caused by Vibrio cholerae O1. There is a growing body of evidence that immune responses targetting the O-specific polysaccharide (OSP) of V. cholerae are associated with protecton against cholera. Despite this, little is known about immune responses targeting OSP in immunologically naive individals. Cholera affects populations in severely resource-limited areas. To address this, we assessed anti-OSP immune responses in North American volunteers experimentally infected with wild type V. cholerae O1 El Tor Inaba strain N16961. We found that antibody responses were largely IgM and IgA, cross-reacted to both Inaba and Ogawa serotypes, and correlated with vibriocidal responses. We found no association of responses to severity of disease, but did find that blood group O individuals mounted lower IgA fold-changes to OSP than did non-blood group O individuals. Individuals with blood group O are at particular risk for severe cholera, and are less well protected against cholera following oral vaccination. We also compared anti-OSP responses in previously unexposed individuals to responses in matched endemic zone patients, and found a number of significant differences. Such differences may explain in part the varying degrees of protective efficacy afforded by cholera vaccination between these two populations.
Collapse
Affiliation(s)
- Motaher Hossain
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
- * E-mail:
| | - Kamrul Islam
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Meagan Kelly
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Leslie M. Mayo Smith
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Richelle C. Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ana A. Weil
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Taufiqur Rahman Bhuiyan
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Pavol Kováč
- National Institute of Diabetes, Digestive and Kidney Diseases (NIDDK), Laboratory of Bioorganic Chemistry (LBC), National Institutes of Health, Bethesda, Maryland, United States of America
| | - Peng Xu
- National Institute of Diabetes, Digestive and Kidney Diseases (NIDDK), Laboratory of Bioorganic Chemistry (LBC), National Institutes of Health, Bethesda, Maryland, United States of America
| | - Stephen B. Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jakub K. Simon
- Merck & Co., Inc., Kenilworth, New Jersey, United States of America
| | - Wilbur H. Chen
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Michael Lock
- PaxVax, Inc., Redwood City, California, United States of America
| | - Caroline E. Lyon
- Vaccine Testing Center, Departments of Medicine and Microbiology and Molecular Genetics, University of Vermont College of Medicine, Burlington, Vermont, United States of America
| | - Beth D. Kirkpatrick
- Vaccine Testing Center, Departments of Medicine and Microbiology and Molecular Genetics, University of Vermont College of Medicine, Burlington, Vermont, United States of America
| | - Mitchell Cohen
- Cincinnati Children’s Hospital Medical Center, and the Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Myron M. Levine
- Center for Vaccine Development, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Marc Gurwith
- PaxVax, Inc., Redwood City, California, United States of America
| | - Daniel T. Leung
- Division of Infectious Diseases, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
| | - Andrew S. Azman
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Jason B. Harris
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Firdausi Qadri
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Edward T. Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Immunology and Infectious Disease, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| |
Collapse
|
13
|
Akter A, Dash P, Aktar A, Jahan SR, Afrin S, Basher SR, Hakim A, Lisa AK, Chowdhury F, Khan AI, Xu P, Charles RC, Kelly M, Kováč P, Harris JB, Bhuiyan TR, Calderwood SB, Ryan ET, Qadri F. Induction of systemic, mucosal and memory antibody responses targeting Vibrio cholerae O1 O-specific polysaccharide (OSP) in adults following oral vaccination with an oral killed whole cell cholera vaccine in Bangladesh. PLoS Negl Trop Dis 2019; 13:e0007634. [PMID: 31369553 PMCID: PMC6692040 DOI: 10.1371/journal.pntd.0007634] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/13/2019] [Accepted: 07/15/2019] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Oral cholera vaccine (OCV) containing killed Vibrio cholerae O1 and O139 organisms (Bivalent-OCV; Biv-OCV) are playing a central role in global cholera control strategies. OCV is currently administered in a 2-dose regimen (day 0 and 14). There is a growing body of evidence that immune responses targeting the O-specific polysaccharide (OSP) of V. cholerae mediate protection against cholera. There are limited data on anti-OSP responses in recipients of Biv-OCV. We assessed serum antibody responses against O1 OSP, as well as antibody secreting cell (ASC) responses (a surrogate marker for mucosal immunity) and memory B cell responses in blood of adult recipients of Biv-OCV in Dhaka, Bangladesh. METHODOLOGY/PRINCIPAL FINDINGS We enrolled 30 healthy adults in this study and administered two doses of OCV (Shanchol) at days 0 and 14. Blood samples were collected before vaccination (day 0) and 7 days after each vaccination (day 7 and day 21), as well as on day 44. Serum responses were largely IgA with minimal IgG and IgM responses in this population. There was no appreciable boosting following day 14 vaccination. There were significant anti-OSP IgA ASC responses on day 7 following the first vaccination, but none after the second immunization. Anti-OSP IgA memory B cell responses were detectable 30 days after completion of the vaccination series, with no evident induction of IgG memory responses. In this population, anti-Ogawa OSP responses were more prominent than anti-Inaba responses, perhaps reflecting impact of previous exposure. Serum anti-OSP responses returned to baseline within 30 days of completing the vaccine series. CONCLUSION Our results call into question the utility of the 2-dose regimen separated by 14 days in adults in cholera endemic areas, and also suggest that Biv-OCV-induced immune responses targeting OSP are largely IgA in this highly endemic cholera area. Studies in children in cholera-endemic areas need to be performed. Protective efficacy that extends for more than a month after vaccination presumably is mediated by direct mucosal immune response which is not assessed in this study. Our results suggest a single dose of OCV in adults in a cholera endemic zone may be sufficient to mediate at least short-term protection.
Collapse
Affiliation(s)
- Aklima Akter
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Pinki Dash
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Amena Aktar
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Sultana Rownok Jahan
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Sadia Afrin
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Salima Raiyan Basher
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Al Hakim
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Asura Khanam Lisa
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Fahima Chowdhury
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Ashraful I. Khan
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Peng Xu
- NIDDK, LBC, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Richelle C. Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Meagan Kelly
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Pavol Kováč
- NIDDK, LBC, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Jason B. Harris
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Division of Global Health, Massachusetts General Hospital for Children, Boston, Massachusetts, United States of America
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Taufiqur Rahman Bhuiyan
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Stephen B. Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Edward T. Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, United States of America
| | - Firdausi Qadri
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| |
Collapse
|
14
|
Yang JS, An SJ, Jang MS, Song M, Han SH. IgM specific to lipopolysaccharide of Vibrio cholerae is a surrogate antibody isotype responsible for serum vibriocidal activity. PLoS One 2019; 14:e0213507. [PMID: 30845262 PMCID: PMC6405115 DOI: 10.1371/journal.pone.0213507] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 02/24/2019] [Indexed: 12/21/2022] Open
Abstract
Serum vibriocidal antibody assays have long been used to evaluate the immunogenicity of cholera vaccines formulated with killed whole-cell Vibrio cholerae. However, the antibody isotypes responsible for the serum vibriocidal activity are not fully characterized. In this study, we examined 20 clinical serum samples obtained from human subjects who had been vaccinated with a killed, whole-cell cholera vaccine and a positive control, human convalescent sera with high vibriocidal activity, to determine which isotype antibody is associated with the vibriocidal activity. Antibody isotypes from pooled convalescent sera were fractionated by size-exclusion column chromatography, and the major vibriocidal activity was detected in the IgM fraction. Depletion of IgM antibodies in the convalescent sera produced a significant (P<0.05) decrease in vibriocidal activity (16-fold decrease), whereas only a small change was observed with depletion of IgG or IgA. In addition, anti-LPS IgM antibody showed the highest correlation with vibriocidal activity (Spearman correlation coefficient r = 0.846) among antibody isotypes against heat-killed V. cholerae, lipopolysaccharide (LPS), or major outer membrane protein (Omp U), while total IgG, IgA, or IgM antibody level was not correlated with vibriocidal activity in the 20 human clinical serum samples. Furthermore, human convalescent sera significantly (P<0.001) inhibited the attachment of V. cholerae to HT-29, a human intestinal epithelial cell in vitro. Interestingly, IgM-depleted convalescent sera could not effectively inhibit bacterial adherence compared with non-depleted sera (P<0.05). Finally, bacterial adhesion was significantly inhibited by sera with high vibriocidal titer compared with low-titer sera (P = 0.014). Collectively, we demonstrated that anti-V. cholerae LPS IgM is highly correlated with serum vibriocidal activity and it could be a surrogate antibody isotype representing protective antibodies against V. cholerae.
Collapse
Affiliation(s)
- Jae Seung Yang
- Clinical Research Laboratory, International Vaccine Institute, Seoul, Republic of Korea
| | - So Jung An
- Vaccine Process Development, International Vaccine Institute, Seoul, Republic of Korea
| | - Mi Seon Jang
- Clinical Research Laboratory, International Vaccine Institute, Seoul, Republic of Korea
| | - Manki Song
- Clinical Research Laboratory, International Vaccine Institute, Seoul, Republic of Korea
| | - Seung Hyun Han
- Department of Oral Microbiology and Immunology, DRI, and BK21 Plus Program, School of Dentistry, Seoul National University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
15
|
Falkard B, Charles RC, Matias WR, Mayo-Smith LM, Jerome JG, Offord ES, Xu P, Kováč P, Ryan ET, Qadri F, Franke MF, Ivers LC, Harris JB. Bivalent oral cholera vaccination induces a memory B cell response to the V. cholerae O1-polysaccharide antigen in Haitian adults. PLoS Negl Trop Dis 2019; 13:e0007057. [PMID: 30703094 PMCID: PMC6372202 DOI: 10.1371/journal.pntd.0007057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 02/12/2019] [Accepted: 12/05/2018] [Indexed: 11/19/2022] Open
Abstract
The bivalent killed whole-cell oral cholera vaccine (BivWC) is being increasingly used to prevent cholera. The presence of O-antigen-specific memory B cells (MBC) has been associated with protective immunity against cholera, yet MBC responses have not been evaluated after BivWC vaccination. To address this knowledge gap, we measured V. cholerae O1-antigen MBC responses following BivWC vaccination. Adults in St. Marc, Haiti, received 2 doses of the BivWC vaccine, Shanchol, two weeks apart. Participants were invited to return at days 7, 21, 44, 90, 180 and 360 after the initial vaccination. Serum antibody and MBC responses were assessed at each time-point before and following vaccination. We observed that vaccination with BivWC resulted in significant O-antigen specific MBC responses to both Ogawa and Inaba serotypes that were detected by day 21 and remained significantly elevated over baseline for up to 12 months following vaccination. The BivWC oral cholera vaccine induces durable MBC responses to the V. cholerae O1-antigen. This suggests that long-term protection observed following vaccination with BivWC could be mediated or maintained by MBC responses. Oral cholera vaccines are being increasingly used throughout the world as a key component of cholera prevention programs. While several recent studies suggest oral cholera vaccines may provide durable protection, the potential mechanism that generates this long lasting immune memory and protection are unknown. Unlike antibody and antibody secreting cell responses, memory B cells are thought to be an important part of the immune responses because although these cells do not produce antibody, they are long lived and can be rapidly stimulated to produce antibodies upon re-exposure to infection. Previous studies have shown that memory B cell responses to the Vibrio cholerae O-antigen are associated with protection against cholera infection. In this study, we found that oral cholera vaccine generated long lasting antibody and memory B cell responses to the Vibrio cholerae O-antigen that remained elevated for 6 to 12 months. These findings show that oral cholera vaccination does induce a strong memory B cell response, which could play a role in the generation and maintenance of long-term protection following BivWC vaccination.
Collapse
Affiliation(s)
- Brie Falkard
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, United States of America
| | - Richelle C. Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, United States of America
- Department of Medicine, Harvard Medical School, Boston, MA, United States of America
| | - Wilfredo R. Matias
- Department of Medicine, Harvard Medical School, Boston, MA, United States of America
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA, United States of America
| | - Leslie M. Mayo-Smith
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, United States of America
| | | | - Evan S. Offord
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, United States of America
| | - Peng Xu
- NIDDK, LBC, Section on Carbohydrates, National Institutes of Health, Bethesda, MD, United States of America
| | - Pavol Kováč
- NIDDK, LBC, Section on Carbohydrates, National Institutes of Health, Bethesda, MD, United States of America
| | - Edward T. Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, United States of America
- Department of Medicine, Harvard Medical School, Boston, MA, United States of America
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA, United States of America
| | - Firdausi Qadri
- Infectious Diseases Division, icddr,b, (International Centre for Diarrhoeal Disease Research, Bangladesh), Dhaka, Bangladesh
| | - Molly F. Franke
- Department of Global Health & Social Medicine, Harvard Medical School, Boston, MA, United States of America
| | - Louise C. Ivers
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, United States of America
- Department of Medicine, Harvard Medical School, Boston, MA, United States of America
- Partners In Health, Boston, MA, United States of America
- Department of Global Health & Social Medicine, Harvard Medical School, Boston, MA, United States of America
- Center for Global Health, Massachusetts General Hospital, Boston, MA, United States of America
| | - Jason B. Harris
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, United States of America
- Division of Pediatric Global Health, Massachusetts General Hospital, Boston, MA, United States of America
- Department of Pediatrics, Harvard Medical School, Boston, MA, United States of America
- * E-mail:
| |
Collapse
|
16
|
Plasma and memory B cell responses targeting O-specific polysaccharide (OSP) are associated with protection against Vibrio cholerae O1 infection among household contacts of cholera patients in Bangladesh. PLoS Negl Trop Dis 2018; 12:e0006399. [PMID: 29684006 PMCID: PMC5912711 DOI: 10.1371/journal.pntd.0006399] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Accepted: 03/22/2018] [Indexed: 12/11/2022] Open
Abstract
Background The mediators of protection against cholera, a severe dehydrating illness of humans caused by Vibrio cholerae, are unknown. We have previously shown that plasma IgA as well as memory B IgG cells targeting lipopolysaccharide (LPS) of Vibrio cholerae O1 correlate with protection against V. cholerae O1 infection among household contacts of cholera patients. Protection against cholera is serogroup specific, and serogroup specificity is defined by the O-specific polysaccharide (OSP) component of LPS. Therefore, we prospectively followed household contacts of cholera patients to determine whether OSP-specific immune responses present at the time of enrollment are associated with protection against V. cholerae infection. Methodology In this study, we enrolled two hundred forty two household contacts of one hundred fifty index patients who were infected with Vibrio cholerae. We determined OSP-specific memory B cells and plasma IgA, IgG and IgM antibody responses on study entry (day 2). Principle findings The presence of OSP-specific plasma IgA, IgM, and IgG antibody responses on study entry were associated with a decrease in the risk of infection in household contacts (IgA, p = 0.015; IgM, p = 0.01, and IgG, p = 0.024). In addition, the presence of OSP-specific IgG memory B cell responses in peripheral blood on study entry was also associated with a decreased risk of infection (44% reduction; 95% CI: 31.1 to 99.8) in contacts. No protection was associated with cholera toxin B subunit (CtxB)-specific memory B cell responses. Conclusion These results suggest that immune responses that target OSP, both in plasma and memory responses, may be important in mediating protection against infection with V. cholerae O1. Vibrio cholerae is a non-invasive pathogen which causes watery diarrheal diseases both in adults and children. Natural infection with Vibrio cholerae provides protection against subsequent diseases and protection against cholera is serogroup specific. Serogroup specificity is defined by O-specific polysaccharide (OSP) of V. cholerae. In this study, we have found that uninfected household contacts had higher baseline OSP-specific plasma IgA, IgG and IgM antibody responses than infected contacts. These observations demonstrate those plasma antibodies responses against OSP are associated with a decrease of the risk of infection of household contacts of cholera patients. We also found that OSP-specific IgG memory B cells are associated with a decrease in the risk of infection in contacts of cholera patients. This result further supports the hypothesis that immune responses targeting V. cholerae OSP is a prime mediator of protection against cholera, and suggests that future work should focus on more detailed analysis of mucosal immune responses targeting OSP, as well as evaluation of potential mechanisms of how antibodies targeting V. cholerae OSP might mediate protection against cholera.
Collapse
|
17
|
Anti-O-specific polysaccharide (OSP) immune responses following vaccination with oral cholera vaccine CVD 103-HgR correlate with protection against cholera after infection with wild-type Vibrio cholerae O1 El Tor Inaba in North American volunteers. PLoS Negl Trop Dis 2018; 12:e0006376. [PMID: 29624592 PMCID: PMC5906022 DOI: 10.1371/journal.pntd.0006376] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/18/2018] [Accepted: 03/08/2018] [Indexed: 01/27/2023] Open
Abstract
Background Cholera is an acute voluminous dehydrating diarrheal disease caused by toxigenic strains of Vibrio cholerae O1 and occasionally O139. A growing body of evidence indicates that immune responses targeting the O-specific polysaccharide (OSP) of V. cholerae are involved in mediating protection against cholera. We therefore assessed whether antibody responses against OSP occur after vaccination with live attenuated oral cholera vaccine CVD 103-HgR, and whether such responses correlate with protection against cholera. Methodology We assessed adult North American volunteers (n = 46) who were vaccinated with 5 × 108 colony-forming units (CFU) of oral cholera vaccine CVD 103-HgR and then orally challenged with approximately 1 × 105 CFU of wild-type V. cholerae O1 El Tor Inaba strain N16961, either 10 or 90 days post-vaccination. Principal findings Vaccination was associated with induction of significant serum IgM and IgA anti-OSP and vibriocidal antibody responses within 10 days of vaccination. There was significant correlation between anti-OSP and vibriocidal antibody responses. IgM and IgA anti-OSP responses on day 10 following vaccination were associated with lower post-challenge stool volume (r = −0.44, P = 0.002; r = −0.36, P = 0.01; respectively), and none of 27 vaccinees who developed a ≥1.5 fold increase in any antibody isotype targeting OSP on day 10 following vaccination compared to baseline developed moderate or severe cholera following experimental challenge, while 5 of 19 who did not develop such anti-OSP responses did (P = 0.01). Conclusion Oral vaccination with live attenuated cholera vaccine CVD 103-HgR induces antibodies that target V. cholerae OSP, and these anti-OSP responses correlate with protection against diarrhea following experimental challenge with V. cholerae O1. Trial registration ClinicalTrials.gov NCT01895855 Cholera is a severe watery diarrheal disease, caused by pathogenic strains of V. cholerae. Protective immunity against cholera is serogroup specific, and serogroup specificity is determined by the O-specific polysaccharide (OSP) of V. cholerae lipopolysaccharide (LPS). Despite this, no previous work has directly assessed correlation of OSP-immune responses and protection against cholera. In this study, we assessed adult North American volunteer’s antibody responses targeting OSP after vaccination with live attenuated oral cholera vaccine CVD 103-HgR, and we assessed correlation of protection against cholera with such antibody responses. Oral vaccination was associated with the induction of significant IgM and IgA responses against OSP, and these responses correlated with vibriocidal responses. There was significant negative correlation of OSP responses and post-challenge stool volume, and none of the volunteers who developed an anti-OSP antibody responses of any isotype of ≥1.5 fold developed moderate or severe cholera following experimental challenge. In summary, vaccination with live attenuated oral cholera vaccine CVD 103-HgR induces antibodies that target V. cholerae OSP, and these responses highly correlate with protection against cholera.
Collapse
|
18
|
Capeding MRZ, Gonzales MLAM, Dhingra MS, D'Cor NA, Midde VJ, Patnaik BN, Thollot Y, Desauziers E. Safety and immunogenicity of the killed bivalent (O1 and O139) whole-cell cholera vaccine in the Philippines. Hum Vaccin Immunother 2017; 13:2232-2239. [PMID: 28910563 PMCID: PMC5975480 DOI: 10.1080/21645515.2017.1342908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Revised: 05/30/2017] [Accepted: 06/20/2017] [Indexed: 10/25/2022] Open
Abstract
The killed bivalent (O1 and O139) whole cell oral cholera vaccine (OCV) (Shanchol™) was first licensed in India in 2009 and World Health Organization pre-qualified in 2011. We assessed the safety and immunogenicity of this OCV in the Philippines. This was a phase IV, single-arm, descriptive, open-label study. We recruited 336 participants from 2 centers: 112 participants in each age group (1-4, 5-14 and ≥ 15 years). Participants received 2 OCV doses 14 d apart. Safety was monitored throughout the trial. Blood samples were collected at baseline (pre-vaccination) and 14 d after each dose. Serum vibriocidal antibody titers to V. cholerae O1 (El Tor Inaba and El Tor Ogawa) and O139 strains were assessed, with seroconversion defined as ≥ 4-fold increase from baseline in titers. No immediate unsolicited systemic adverse events/reactions were observed. Unsolicited systemic adverse events were mostly grade 1 intensity. One serious adverse event occurred after the first dose, but was unrelated to vaccination. High seroconversion rates (range 69-92%) were achieved against the O1 serotypes with a trend toward higher rates in the 1-4 y (86-92%) and 5-14 y (86-88%) age groups than the ≥ 15 y age group (69-83%). Lower seroconversion rates were achieved against the O139 serotype (35-70%), particularly in those aged ≥ 15 y (35-42%). The 2-dose regimen of the killed bivalent whole cell OCV was well-tolerated in this study conducted in the Philippines, a cholera-endemic country. Robust immune responses were observed even after a single-dose.
Collapse
Affiliation(s)
| | | | | | | | - Venkat Jayanth Midde
- Shantha Biotechnics Private Limited (A Sanofi Company), Hyderabad, Telangana, India
| | | | | | | |
Collapse
|
19
|
Charles RC, Nakajima R, Liang L, Jasinskas A, Berger A, Leung DT, Kelly M, Xu P, Kovác P, Giffen SR, Harbison JD, Chowdhury F, Khan AI, Calderwood SB, Bhuiyan TR, Harris JB, Felgner PL, Qadri F, Ryan ET. Plasma and Mucosal Immunoglobulin M, Immunoglobulin A, and Immunoglobulin G Responses to the Vibrio cholerae O1 Protein Immunome in Adults With Cholera in Bangladesh. J Infect Dis 2017; 216:125-134. [PMID: 28535267 PMCID: PMC5853614 DOI: 10.1093/infdis/jix253] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/19/2017] [Indexed: 11/16/2022] Open
Abstract
Background. Cholera is a severe dehydrating illness of humans caused by toxigenic strains of Vibrio cholerae O1 or O139. Identification of immunogenic V. cholerae antigens could lead to a better understanding of protective immunity in human cholera. Methods. We probed microarrays containing 3652 V. cholerae antigens with plasma and antibody-in-lymphocyte supernatant (ALS, a surrogate marker of mucosal immune responses) from patients with severe cholera caused by V. cholerae O1 in Bangladesh and age-, sex-, and ABO-matched Bangladeshi controls. We validated a subset of identified antigens using enzyme-linked immunosorbent assay. Results. Overall, we identified 608 immunoreactive V. cholerae antigens in our screening, 59 of which had higher immunoreactivity in convalescent compared with acute-stage or healthy control samples (34 in plasma, 39 in mucosal ALS; 13 in both sample sets). Identified antigens included cholera toxin B and A subunits, V. cholerae O–specific polysaccharide and lipopolysaccharide, toxin coregulated pilus A, sialidase, hemolysin A, flagellins (FlaB, FlaC, and FlaD), phosphoenolpyruvate-protein phosphotransferase, and diaminobutyrate–2-oxoglutarate aminotransferase. Conclusions. This study is the first antibody profiling of the mucosal and systemic antibody responses to the nearly complete V. cholerae O1 protein immunome; it has identified antigens that may aid in the development of an improved cholera vaccine.
Collapse
Affiliation(s)
- Richelle C Charles
- Division of Infectious Diseases, Massachusetts General Hospital.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Rie Nakajima
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine
| | - Li Liang
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine
| | - Al Jasinskas
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine
| | - Amanda Berger
- Division of Infectious Diseases, Massachusetts General Hospital
| | - Daniel T Leung
- Division of Infectious Diseases, Department of Medicine, University of Utah School of Medicine, Salt Lake City
| | - Meagan Kelly
- Division of Infectious Diseases, Massachusetts General Hospital
| | - Peng Xu
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Pavol Kovác
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Samantha R Giffen
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | | | - Fahima Chowdhury
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka
| | - Ashraful I Khan
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka
| | - Stephen B Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital.,Department of Medicine, Harvard Medical School, Boston, Massachusetts.,Department of Microbiology and Immunobiology, Harvard Medical School, Boston, Massachusetts
| | | | - Jason B Harris
- Division of Infectious Diseases, Massachusetts General Hospital.,Department of Medicine, Harvard Medical School, Boston, Massachusetts
| | - Philip L Felgner
- Division of Infectious Diseases, Department of Medicine, University of California, Irvine
| | - Firdausi Qadri
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka
| | - Edward T Ryan
- Division of Infectious Diseases, Massachusetts General Hospital.,Department of Medicine, Harvard Medical School, Boston, Massachusetts.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
20
|
Host defenses against metabolic endotoxaemia and their impact on lipopolysaccharide detection. Int Rev Immunol 2017; 36:125-144. [DOI: 10.1080/08830185.2017.1280483] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
21
|
Fasihi-Ramandi M, Ghobadi-Ghadikolaee H, Ahmadi-Renani S, Taheri RA, Ahmadi K. Vibrio cholerae lipopolysaccharide loaded chitosan nanoparticle could save life by induction of specific immunoglobulin isotype. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:56-61. [DOI: 10.1080/21691401.2017.1290646] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Mahdi Fasihi-Ramandi
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Hamideh Ghobadi-Ghadikolaee
- Department of Microbiology, Faculty of Biological Science, Islamic Azad University, North Tehran Branch, Tehran, Iran
| | | | - Ramezan Ali Taheri
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Kazem Ahmadi
- Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Single-Cell Analysis of the Plasmablast Response to Vibrio cholerae Demonstrates Expansion of Cross-Reactive Memory B Cells. mBio 2016; 7:mBio.02021-16. [PMID: 27999163 PMCID: PMC5181778 DOI: 10.1128/mbio.02021-16] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
We characterized the acute B cell response in adults with cholera by analyzing the repertoire, specificity, and functional characteristics of 138 monoclonal antibodies (MAbs) generated from single-cell-sorted plasmablasts. We found that the cholera-induced responses were characterized by high levels of somatic hypermutation and large clonal expansions. A majority of the expansions targeted cholera toxin (CT) or lipopolysaccharide (LPS). Using a novel proteomics approach, we were able to identify sialidase as another major antigen targeted by the antibody response to Vibrio cholerae infection. Antitoxin MAbs targeted both the A and B subunits, and most were also potent neutralizers of enterotoxigenic Escherichia coli heat-labile toxin. LPS-specific MAbs uniformly targeted the O-specific polysaccharide, with no detectable responses to either the core or the lipid moiety of LPS. Interestingly, the LPS-specific antibodies varied widely in serotype specificity and functional characteristics. One participant infected with the Ogawa serotype produced highly mutated LPS-specific antibodies that preferentially bound the previously circulating Inaba serotype. This demonstrates durable memory against a polysaccharide antigen presented at the mucosal surface and provides a mechanism for the long-term, partial heterotypic immunity seen following cholera. Cholera is a diarrheal disease that results in significant mortality. While oral cholera vaccines are beneficial, they do not achieve equivalent protection compared to infection with Vibrio cholerae. Although antibodies likely mediate protection, the mechanisms of immunity following cholera are poorly understood, and a detailed understanding of antibody responses to cholera is of significance for human health. In this study, we characterized the human response to cholera at the single-plasmablast, monoclonal antibody level. Although this approach has not been widely applied to the study of human bacterial infection, we were able to uncover the basis of cross-reactivity between different V. cholerae serotypes and the likely impact of prior enterotoxigenic Escherichia coli exposure on the response to cholera, as well as identify novel antigenic targets. In addition to improving our understanding of the repertoire and function of the antibody response to cholera in humans, this study has implications for future cholera vaccination efforts.
Collapse
|
23
|
Uddin MI, Islam S, Nishat NS, Hossain M, Rafique TA, Rashu R, Hoq MR, Zhang Y, Saha A, Harris JB, Calderwood SB, Bhuiyan TR, Ryan ET, Leung DT, Qadri F. Biomarkers of Environmental Enteropathy are Positively Associated with Immune Responses to an Oral Cholera Vaccine in Bangladeshi Children. PLoS Negl Trop Dis 2016; 10:e0005039. [PMID: 27824883 PMCID: PMC5100882 DOI: 10.1371/journal.pntd.0005039] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 09/13/2016] [Indexed: 12/14/2022] Open
Abstract
Environmental enteropathy (EE) is a poorly understood condition that refers to chronic alterations in intestinal permeability, absorption, and inflammation, which mainly affects young children in resource-limited settings. Recently, EE has been linked to suboptimal oral vaccine responses in children, although immunological mechanisms are poorly defined. The objective of this study was to determine host factors associated with immune responses to an oral cholera vaccine (OCV). We measured antibody and memory T cell immune responses to cholera antigens, micronutrient markers in blood, and EE markers in blood and stool from 40 Bangladeshi children aged 3-14 years who received two doses of OCV given 14 days apart. EE markers included stool myeloperoxidase (MPO) and alpha anti-trypsin (AAT), and plasma endotoxin core antibody (EndoCab), intestinal fatty acid binding protein (i-FABP), and soluble CD14 (sCD14). We used multiple linear regression analysis with LASSO regularization to identify host factors, including EE markers, micronutrient (nutritional) status, age, and HAZ score, predictive for each response of interest. We found stool MPO to be positively associated with IgG antibody responses to the B subunit of cholera toxin (P = 0.03) and IgA responses to LPS (P = 0.02); plasma sCD14 to be positively associated with LPS IgG responses (P = 0.07); plasma i-FABP to be positively associated with LPS IgG responses (P = 0.01) and with memory T cell responses specific to cholera toxin (P = 0.01); stool AAT to be negatively associated with IL-10 (regulatory) T cell responses specific to cholera toxin (P = 0.02), and plasma EndoCab to be negatively associated with cholera toxin-specific memory T cell responses (P = 0.02). In summary, in a cohort of children 3-14 years old, we demonstrated that the majority of biomarkers of environmental enteropathy were positively associated with immune responses after vaccination with an OCV.
Collapse
Affiliation(s)
- Muhammad Ikhtear Uddin
- Mucosal Immunology and Vaccinology Laboratory, Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
| | - Shahidul Islam
- Mucosal Immunology and Vaccinology Laboratory, Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
| | - Naoshin S. Nishat
- Mucosal Immunology and Vaccinology Laboratory, Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
| | - Motaher Hossain
- Mucosal Immunology and Vaccinology Laboratory, Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
| | - Tanzeem Ahmed Rafique
- Mucosal Immunology and Vaccinology Laboratory, Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
| | - Rasheduzzaman Rashu
- Mucosal Immunology and Vaccinology Laboratory, Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
| | - Mohammad Rubel Hoq
- Mucosal Immunology and Vaccinology Laboratory, Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
| | - Yue Zhang
- Department of Internal Medicine, Division of Epidemiology, University of Utah, School of Medicine, Salt Lake City, Utah, United States of America
| | - Amit Saha
- Mucosal Immunology and Vaccinology Laboratory, Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
| | - Jason B. Harris
- Department of Immunology and Infectious Diseases, Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Stephen B. Calderwood
- Department of Immunology and Infectious Diseases, Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Taufiqur Rahman Bhuiyan
- Mucosal Immunology and Vaccinology Laboratory, Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
| | - Edward T. Ryan
- Department of Immunology and Infectious Diseases, Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Daniel T. Leung
- Mucosal Immunology and Vaccinology Laboratory, Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
- Department of Internal Medicine, Division of Infectious Diseases, University of Utah, School of Medicine, Salt Lake City, Utah, United States of America
- Department of Pathology, Division of Microbiology and Immunology, University of Utah, School of Medicine, Salt Lake City, Utah, United States of America
| | - Firdausi Qadri
- Mucosal Immunology and Vaccinology Laboratory, Infectious Diseases Division, icddr,b, Dhaka, Bangladesh
- * E-mail:
| |
Collapse
|
24
|
Levinson KJ, Baranova DE, Mantis NJ. A monoclonal antibody that targets the conserved core/lipid A region of lipopolysaccharide affects motility and reduces intestinal colonization of both classical and El Tor Vibrio cholerae biotypes. Vaccine 2016; 34:5833-5836. [PMID: 27773473 DOI: 10.1016/j.vaccine.2016.10.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 09/26/2016] [Accepted: 10/08/2016] [Indexed: 12/20/2022]
Abstract
Vibrio cholerae is the causative agent of cholera, an acute diarrheal disease that remains endemic in many parts of the world. The mechanisms underlying immunity to cholera remain poorly defined, though it is increasingly clear that protection is associated with antibodies against lipopolysaccharide (LPS). Here we report that ZAC-3, a monoclonal antibody against the core/lipid A region of V. cholerae LPS is a potent inhibitor of V. cholerae flagellum-based motility in viscous and liquid environments. ZAC-3 arrested motility of the classical Ogawa strain O395, as well as the El Tor Inaba strain C6706. In addition, we demonstrate, in the neonatal mouse model, that ZAC-3 IgG and Fab fragments significantly reduced the ability of both V. cholerae strains O395 and C6706 to colonize the intestinal epithelium, revealing the potential of antibodies against the core/lipid A to contribute to immunity across biotypes, possibly through a mechanism involving motility arrest.
Collapse
Affiliation(s)
- Kara J Levinson
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY 12208, United States; Department of Biomedical Sciences, University at Albany, Albany, NY 12208, United States
| | - Danielle E Baranova
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY 12208, United States; Department of Biomedical Sciences, University at Albany, Albany, NY 12208, United States
| | - Nicholas J Mantis
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY 12208, United States; Department of Biomedical Sciences, University at Albany, Albany, NY 12208, United States.
| |
Collapse
|
25
|
Matias WR, Falkard B, Charles RC, Mayo-Smith LM, Teng JE, Xu P, Kováč P, Ryan ET, Qadri F, Franke MF, Ivers LC, Harris JB. Antibody Secreting Cell Responses following Vaccination with Bivalent Oral Cholera Vaccine among Haitian Adults. PLoS Negl Trop Dis 2016; 10:e0004753. [PMID: 27308825 PMCID: PMC4911095 DOI: 10.1371/journal.pntd.0004753] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/11/2016] [Indexed: 11/19/2022] Open
Abstract
Background The bivalent whole-cell (BivWC) oral cholera vaccine (Shanchol) is effective in preventing cholera. However, evaluations of immune responses following vaccination with BivWC have been limited. To determine whether BivWC induces significant mucosal immune responses, we measured V. cholerae O1 antigen-specific antibody secreting cell (ASC) responses following vaccination. Methodology/Principal Findings We enrolled 24 Haitian adults in this study, and administered doses of oral BivWC vaccine 14 days apart (day 0 and day 14). We drew blood at baseline, and 7 days following each vaccine dose (day 7 and 21). Peripheral blood mononuclear cells (PBMCs) were isolated, and ASCs were enumerated using an ELISPOT assay. Significant increases in Ogawa (6.9 cells per million PBMCs) and Inaba (9.5 cells per million PBMCs) OSP-specific IgA ASCs were detected 7 days following the first dose (P < 0.001), but not the second dose. The magnitude of V. cholerae-specific ASC responses did not appear to be associated with recent exposure to cholera. ASC responses measured against the whole lipolysaccharide (LPS) antigen and the OSP moiety of LPS were equivalent, suggesting that all or nearly all of the LPS response targets the OSP moiety. Conclusions/Significance Immunization with the BivWC oral cholera vaccine induced ASC responses among a cohort of healthy adults in Haiti after a single dose. The second dose of vaccine resulted in minimal ASC responses over baseline, suggesting that the current dosing schedule may not be optimal for boosting mucosal immune responses to V. cholerae antigens for adults in a cholera-endemic area. The bivalent whole-cell (BivWC) oral cholera vaccine (Shanchol) is effective in preventing cholera. Despite its increasing use as part of comprehensive cholera prevention and control efforts, evaluations of immune responses following vaccination with BivWC have been limited. In this study, we measured the development of cholera-specific antibody secreting cells, markers of mucosal immunity, following vaccination with BivWC among a population of adults in Haiti, where cholera is now endemic. BivWC induced development of robust immune responses following the first dose of vaccine, but similar ASC responses were not detected following the second dose, suggesting that the currently recommended 14-day interval between doses may not be optimal for boosting mucosal immune responses among adults in cholera endemic regions. These findings suggest that additional evaluation of the optimal dosing schedule for oral cholera vaccines is warranted with the goal of improving long-term immunity.
Collapse
Affiliation(s)
- Wilfredo R. Matias
- Department of Global Health & Social Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Partners In Health, Boston, Massachusetts, United States of America
| | - Brie Falkard
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Richelle C. Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Harvard Medical School, Boston, Massachusetts, United States of America
| | - Leslie M. Mayo-Smith
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Jessica E. Teng
- Division of Global Health Equity, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
| | - Peng Xu
- NIDDK, LBC, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Pavol Kováč
- NIDDK, LBC, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Edward T. Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Firdausi Qadri
- International Centre for Diarrhoeal Disease Research Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Molly F. Franke
- Department of Global Health & Social Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Louise C. Ivers
- Department of Global Health & Social Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- Partners In Health, Boston, Massachusetts, United States of America
- Division of Global Health Equity, Brigham & Women’s Hospital, Boston, Massachusetts, United States of America
| | - Jason B. Harris
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, United States of America
- Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
26
|
O-Specific Polysaccharide-Specific Memory B Cell Responses in Young Children, Older Children, and Adults Infected with Vibrio cholerae O1 Ogawa in Bangladesh. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:427-435. [PMID: 27009211 DOI: 10.1128/cvi.00647-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Accepted: 03/15/2016] [Indexed: 01/08/2023]
Abstract
Cholera caused by Vibrio cholerae O1 confers at least 3 to 10 years of protection against subsequent disease regardless of age, despite a relatively rapid fall in antibody levels in peripheral blood, suggesting that memory B cell responses may play an important role in protection. The V. cholerae O1-specific polysaccharide (OSP) component of lipopolysaccharide (LPS) is responsible for serogroup specificity, and it is unclear if young children are capable of developing memory B cell responses against OSP, a T cell-independent antigen, following cholera. To address this, we assessed OSP-specific memory B cell responses in young children (2 to 5 years, n = 11), older children (6 to 17 years, n = 21), and adults (18 to 55 years, n = 28) with cholera caused by V. cholerae O1 in Dhaka, Bangladesh. We also assessed memory B cell responses against LPS and vibriocidal responses, and plasma antibody responses against OSP, LPS, and cholera toxin B subunit (CtxB; a T cell-dependent antigen) on days 2 and 7, as well as days 30, 90, and 180 after convalescence. In all age cohorts, vibriocidal responses and plasma OSP, LPS, and CtxB-specific responses peaked on day 7 and fell toward baseline over the follow-up period. In comparison, we were able to detect OSP memory B cell responses in all age cohorts of patients with detectable responses over baseline for 90 to 180 days. Our results suggest that OSP-specific memory B cell responses can occur following cholera, even in the youngest children, and may explain in part the age-independent induction of long-term immunity following naturally acquired disease.
Collapse
|
27
|
Ivers LC, Charles RC, Hilaire IJ, Mayo-Smith LM, Teng JE, Jerome JG, Rychert J, LaRocque RC, Xu P, Kovácˇ P, Ryan ET, Qadri F, Almazor CP, Franke MF, Harris JB. Immunogenicity of the Bivalent Oral Cholera Vaccine Shanchol in Haitian Adults With HIV Infection. J Infect Dis 2015; 212:779-83. [PMID: 25722294 DOI: 10.1093/infdis/jiv108] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 02/17/2015] [Indexed: 11/12/2022] Open
Abstract
We evaluated immune responses following bivalent oral cholera vaccination (Shanchol [Shantha Biotechnics]; BivWC) in a cohort of 25 human immunodeficiency virus (HIV)-infected adults in Haiti. Compared with adults without HIV infection, vaccination in HIV-infected individuals resulted in lower vibriocidal responses against Vibrio cholerae O1, and there was a positive relationship between the CD4(+) T-cell count and vibriocidal responses following vaccination. Nevertheless, seroconversion occurred at a rate of 65% against the Ogawa serotype and 74% against the Inaba serotype in adults with HIV infection. These results suggest that the vaccine retains substantial immunogenicity in adults with HIV infection and may benefit this population by protecting against cholera.
Collapse
Affiliation(s)
- Louise C Ivers
- Division of Global Health Equity, Brigham and Women's Hospital Department of Global Health and Social Medicine Partners in Health
| | - Richelle C Charles
- Department of Medicine Division of Infectious Diseases, Massachusetts General Hospital, Boston
| | | | | | - Jessica E Teng
- Division of Global Health Equity, Brigham and Women's Hospital Partners in Health
| | | | - Jenna Rychert
- Division of Infectious Diseases, Massachusetts General Hospital, Boston
| | - Regina C LaRocque
- Department of Medicine Division of Infectious Diseases, Massachusetts General Hospital, Boston
| | - Peng Xu
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Pavol Kovácˇ
- Laboratory of Bioorganic Chemistry, National Institute of Diabetes, Digestive, and Kidney Diseases, National Institutes of Health, Bethesda, Maryland
| | - Edward T Ryan
- Department of Medicine Division of Infectious Diseases, Massachusetts General Hospital, Boston
| | - Firdausi Qadri
- International Centre for Diarrhoeal Disease Research-Bangladesh, Dhaka
| | | | - Molly F Franke
- Department of Global Health and Social Medicine Partners in Health
| | - Jason B Harris
- Department of Medicine Department of Pediatrics, Harvard Medical School Division of Infectious Diseases, Massachusetts General Hospital, Boston
| |
Collapse
|
28
|
Desai SN, Cravioto A, Sur D, Kanungo S. Maximizing protection from use of oral cholera vaccines in developing country settings: an immunological review of oral cholera vaccines. Hum Vaccin Immunother 2014; 10:1457-65. [PMID: 24861554 PMCID: PMC5396246 DOI: 10.4161/hv.29199] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 04/30/2014] [Accepted: 05/10/2014] [Indexed: 11/19/2022] Open
Abstract
When oral vaccines are administered to children in lower- and middle-income countries, they do not induce the same immune responses as they do in developed countries. Although not completely understood, reasons for this finding include maternal antibody interference, mucosal pathology secondary to infection, malnutrition, enteropathy, and previous exposure to the organism (or related organisms). Young children experience a high burden of cholera infection, which can lead to severe acute dehydrating diarrhea and substantial mortality and morbidity. Oral cholera vaccines show variations in their duration of protection and efficacy between children and adults. Evaluating innate and memory immune response is necessary to understand V. cholerae immunity and to improve current cholera vaccine candidates, especially in young children. Further research on the benefits of supplementary interventions and delivery schedules may also improve immunization strategies.
Collapse
Affiliation(s)
| | | | - Dipika Sur
- National Institute of Cholera and Enteric Diseases; Kolkata, India
| | - Suman Kanungo
- National Institute of Cholera and Enteric Diseases; Kolkata, India
| |
Collapse
|