1
|
Aggrey S, Egeru A, Kalule JB, Lukwa AT, Mutai N, Hartnack S. Household satisfaction with health services and response strategies to malaria in mountain communities of Uganda. Trans R Soc Trop Med Hyg 2024:trae084. [PMID: 39492781 DOI: 10.1093/trstmh/trae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 05/21/2024] [Accepted: 09/30/2024] [Indexed: 11/05/2024] Open
Abstract
BACKGROUND Measuring satisfaction with health service delivery in fragile communities provides an opportunity to improve the resilience of health systems to threats including climate change. Additionally, understanding factors associated with the choice of response strategies to certain public health threats provides an opportunity to design context-specific interventions. METHODS We used polytomous latent class analyses to group participants' responses and an additive Bayesian modelling network to explore satisfaction with health service delivery as well as factors associated with response strategies of households to malaria. We did this with a focus on the rural parts of Uganda in Mount Elgon. RESULTS We found that approaches to malaria control and management at household level include the use of traditional (54.5%), private (20.5%) and publicly available services (25%). Regarding satisfaction with health services, 66.6% of respondents were satisfied with health service components of information flow, drug/vaccine access and accessibility. Type of housing, livelihood sources, previous malaria experience and health services were strongly associated with responses to malaria occurrence at household level. The rest of the factors were weakly associated with malaria responses. CONCLUSIONS The indigenous interventions utilised by households to manage and control malaria were largely dependent on their satisfaction with health service delivery components. Interventions thus ought to leverage local existing knowledge to optimise outcomes and ensure sustainable health.
Collapse
Affiliation(s)
- Siya Aggrey
- Department of Environmental Management, Makerere University. P. O. Box 7062 Kampala Uganda
- Uganda Wildlife Research and Training Institute. P. O. Box 173 Kasese Uganda
| | - Anthony Egeru
- Department of Environmental Management, Makerere University. P. O. Box 7062 Kampala Uganda
| | - John Bosco Kalule
- College of Veterinary Medicine, Animal Resources and Biosecurity, Makerere University, P.O. Box 7062 Kampala, Uganda
| | - Akim Tafadzwa Lukwa
- Health Economics Unit, School of Public Health and Family Medicine, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory 7925, South Africa
- DSI-NRF Centre of Excellence in Epidemiological Modelling and Analysis (SACEMA), Stellenbosch University, Private Bag X1, Matieland, Stellenbosch 7602, South Africa
| | - Noah Mutai
- Faculty of Business and Economics, Berlin School of Business and Innovation, Berlin, Germany
| | - Sonja Hartnack
- Section of Epidemiology, Vetsuisse Faculty, University of Zurich, Winterthurerstrasse 270, 8057 Zurich, Switzerland
| |
Collapse
|
2
|
Tukwasibwe S, Lewis SN, Taremwa Y, van der Ploeg K, Press KD, Ty M, Namirimu Nankya F, Musinguzi K, Nansubuga E, Bach F, Chamai M, Okitwi M, Tumusiime G, Nakimuli A, Colucci F, Kamya MR, Nankabirwa JI, Arinaitwe E, Greenhouse B, Dorsey G, Rosenthal PJ, Ssewanyana I, Jagannathan P. Natural killer cell antibody-dependent cellular cytotoxicity to Plasmodium falciparum is impacted by cellular phenotypes, erythrocyte polymorphisms, parasite diversity and intensity of transmission. Clin Transl Immunology 2024; 13:e70005. [PMID: 39493859 PMCID: PMC11528551 DOI: 10.1002/cti2.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/09/2024] [Accepted: 09/12/2024] [Indexed: 11/05/2024] Open
Abstract
Objectives Natural killer (NK) cells make important contributions to anti-malarial immunity through antibody-dependent cellular cytotoxicity (ADCC), but the role of different components of this pathway in promoting NK cell activation remains unclear. Methods We compared the functions and phenotypes of NK cells from malaria-exposed and malaria-naive donors, and then varied the erythrocyte genetic background, Plasmodium falciparum strain and opsonising plasma used in ADCC to observe their impacts on NK cell degranulation as measured by CD107a mobilisation. Results Natural killer cells from malaria-exposed adult Ugandan donors had enhanced ADCC, but an impaired pro-inflammatory response to cytokine stimulation, compared to NK cells obtained from malaria-naive adult North American donors. Cellular phenotypes from malaria-exposed donors reflected this specialisation for ADCC, with a compartment-wide downregulation of the Fc receptor γ-chain and enrichment of highly differentiated CD56dim and CD56neg populations. NK cell degranulation was enhanced in response to opsonised P. falciparum schizonts cultured in sickle cell heterozygous erythrocytes relative to wild-type erythrocytes, and when using opsonising plasma collected from donors living in a high transmission area compared to a lower transmission area despite similar levels of 3D7 schizont-specific IgG levels. However, degranulation was lowered in response to opsonised field isolate P. falciparum schizonts isolated from clinical malaria infections, compared to the 3D7 laboratory strain typically used in these assays. Conclusion This work highlights important host and parasite factors that contribute to ADCC efficacy that should be considered in the design of ADCC assays.
Collapse
Affiliation(s)
- Stephen Tukwasibwe
- Infectious Diseases Research CollaborationKampalaUganda
- School of Medicine, Uganda Christian UniversityMukonoUganda
| | | | | | | | | | - Maureen Ty
- Department of MedicineStanford UniversityStanfordCAUSA
| | | | | | | | - Florian Bach
- Department of MedicineStanford UniversityStanfordCAUSA
| | - Martin Chamai
- Infectious Diseases Research CollaborationKampalaUganda
| | - Martin Okitwi
- Infectious Diseases Research CollaborationKampalaUganda
| | | | | | - Francesco Colucci
- Department of Obstetrics and GynaecologyUniversity of CambridgeCambridgeUK
| | - Moses R Kamya
- Infectious Diseases Research CollaborationKampalaUganda
- School of Medicine, Makerere UniversityKampalaUganda
| | - Joaniter I Nankabirwa
- Infectious Diseases Research CollaborationKampalaUganda
- School of Medicine, Makerere UniversityKampalaUganda
| | | | - Bryan Greenhouse
- Department of MedicineUniversity of California San FranciscoSan FranciscoCAUSA
| | - Grant Dorsey
- Department of MedicineUniversity of California San FranciscoSan FranciscoCAUSA
| | - Philip J Rosenthal
- Department of MedicineUniversity of California San FranciscoSan FranciscoCAUSA
| | | | | |
Collapse
|
3
|
Reyes RA, Turner L, Ssewanyana I, Jagannathan P, Feeney ME, Lavstsen T, Greenhouse B, Bol S, Bunnik EM. Differences in phenotype between long-lived memory B cells against Plasmodium falciparum merozoite antigens and variant surface antigens. PLoS Pathog 2024; 20:e1012661. [PMID: 39466842 DOI: 10.1371/journal.ppat.1012661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/07/2024] [Accepted: 10/12/2024] [Indexed: 10/30/2024] Open
Abstract
Plasmodium falciparum infections elicit strong humoral immune responses to two main groups of antigens expressed by blood-stage parasites: merozoite antigens that are involved in the erythrocyte invasion process and variant surface antigens that mediate endothelial sequestration of infected erythrocytes. Long-lived B cells against both antigen classes can be detected in the circulation for years after exposure, but have not been directly compared. Here, we studied the phenotype of long-lived memory and atypical B cells to merozoite antigens (MSP1 and AMA1) and variant surface antigens (the CIDRα1 domain of PfEMP1) in ten Ugandan adults before and after local reduction of P. falciparum transmission. After a median of 1.7 years without P. falciparum infections, the percentage of antigen-specific activated B cells declined, but long-lived antigen-specific B cells were still detectable in all individuals. The majority of MSP1/AMA1-specific B cells were CD95+CD11c+ memory B cells, which are primed for rapid differentiation into antibody-secreting cells, and FcRL5-T-bet- atypical B cells. On the other hand, most CIDRα1-specific B cells were CD95-CD11c- memory B cells. CIDRα1-specific B cells were also enriched among a subset of atypical B cells that seem poised for antigen presentation. These results point to differences in how these antigens are recognized or processed by the immune system and how P. falciparum-specific B cells will respond upon re-infection.
Collapse
Affiliation(s)
- Raphael A Reyes
- Department of Microbiology, Immunology & Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Louise Turner
- Centre for translational Medicine & Parasitology, Department of Immunology and Microbiology, University of Copenhagen, and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark
| | | | - Prasanna Jagannathan
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, California, United States of America
- Department of Microbiology & Immunology, Stanford University, Stanford, California, United States of America
| | - Margaret E Feeney
- Department of Pediatrics, University of California San Francisco, San Francisco, California, United States of America
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Thomas Lavstsen
- Centre for translational Medicine & Parasitology, Department of Immunology and Microbiology, University of Copenhagen, and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark
| | - Bryan Greenhouse
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Sebastiaan Bol
- Department of Microbiology, Immunology & Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Evelien M Bunnik
- Department of Microbiology, Immunology & Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| |
Collapse
|
4
|
Kamya MR, Nankabirwa JI, Arinaitwe E, Rek J, Zedi M, Maiteki-Sebuguzi C, Opigo J, Staedke SG, Oruni A, Donnelly MJ, Greenhouse B, Briggs J, Krezanoski PJ, Bousema T, Rosenthal PJ, Olwoch P, Jagannathan P, Rodriguez-Barraquer I, Dorsey G. Dramatic resurgence of malaria after 7 years of intensive vector control interventions in Eastern Uganda. PLOS GLOBAL PUBLIC HEALTH 2024; 4:e0003254. [PMID: 39208072 PMCID: PMC11361418 DOI: 10.1371/journal.pgph.0003254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 06/07/2024] [Indexed: 09/04/2024]
Abstract
Tororo District, Uganda experienced a dramatic decrease in malaria burden from 2015-19 during 5 years of indoor residual spraying (IRS) with carbamate (Bendiocarb) and then organophosphate (Actellic) insecticides. However, a marked resurgence occurred in 2020, which coincided with a change to a clothianidin-based IRS formulations (Fludora Fusion/SumiShield). To quantify the magnitude of the resurgence, investigate causes, and evaluate the impact of a shift back to IRS with Actellic in 2023, we assessed changes in malaria metrics in regions within and near Tororo District. Malaria surveillance data from Nagongera Health Center, Tororo District was included from 2011-2023. In addition, a cohort of 667 residents from 84 houses was followed from August 2020 through September 2023 from an area bordering Tororo and neighboring Busia District, where IRS has never been implemented. Cohort participants underwent passive surveillance for clinical malaria and active surveillance for parasitemia every 28 days. Mosquitoes were collected in cohort households every 2 weeks using CDC light traps. Female Anopheles were speciated and tested for sporozoites and phenotypic insecticide resistance. Temporal comparisons of malaria metrics were stratified by geographic regions. At Nagongera Health Center average monthly malaria cases varied from 419 prior to implementation of IRS; to 56 after 5 years of IRS with Bendiocarb and Actellic; to 1591 after the change in IRS to Fludora Fusion/SumiShield; to 155 after a change back to Actellic. Among cohort participants living away from the border in Tororo, malaria incidence increased over 8-fold (0.36 vs. 2.97 episodes per person year, p<0.0001) and parasite prevalence increased over 4-fold (17% vs. 70%, p<0.0001) from 2021 to 2022 when Fludora Fusion/SumiShield was used. Incidence decreased almost 5-fold (2.97 vs. 0.70, p<0.0001) and prevalence decreased by 39% (70% vs. 43%, p<0.0001) after shifting back to Actellic. There was a similar pattern among those living near the border in Tororo, with increased incidence between 2021 and 2022 (0.93 vs. 2.40, p<0.0001) followed by a decrease after the change to Actellic (2.40 vs. 1.33, p<0.001). Among residents of Busia, malaria incidence did not change significantly over the 3 years of observation. Malaria resurgence in Tororo was temporally correlated with the replacement of An. gambiae s.s. by An. funestus as the primary vector, with a marked decrease in the density of An. funestus following the shift back to IRS with Actellic. In Busia, An. gambiae s.s. remained the primary vector throughout the observation period. Sporozoite rates were approximately 50% higher among An. funestus compared to the other common malaria vectors. Insecticide resistance phenotyping of An. funestus revealed high tolerance to clothianidin, but full susceptibility to Actellic. A dramatic resurgence of malaria in Tororo was temporally associated with a change to clothianidin-based IRS formulations and emergence of An. funestus as the predominant vector. Malaria decreased after a shift back to IRS with Actellic. This study highlights the ability of malaria vectors to rapidly circumvent control efforts and the importance of high-quality surveillance systems to assess the impact of malaria control interventions and generate timely, actionable data.
Collapse
Affiliation(s)
- Moses R. Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
- School of Medicine, Makerere University Kampala, Kampala, Uganda
| | - Joaniter I. Nankabirwa
- Infectious Diseases Research Collaboration, Kampala, Uganda
- School of Medicine, Makerere University Kampala, Kampala, Uganda
| | | | - John Rek
- Infectious Diseases Research Collaboration, Kampala, Uganda
- National Malaria Control Division, Ministry of Health, Kampala, Uganda
| | - Maato Zedi
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Catherine Maiteki-Sebuguzi
- Infectious Diseases Research Collaboration, Kampala, Uganda
- National Malaria Control Division, Ministry of Health, Kampala, Uganda
| | - Jimmy Opigo
- National Malaria Control Division, Ministry of Health, Kampala, Uganda
| | - Sarah G. Staedke
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Ambrose Oruni
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Martin J. Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Bryan Greenhouse
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Jessica Briggs
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Paul J. Krezanoski
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Philip J. Rosenthal
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Peter Olwoch
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Prasanna Jagannathan
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, Stanford, California, United States of America
| | - Isabel Rodriguez-Barraquer
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Grant Dorsey
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
5
|
Nideffer J, Ty M, Donato M, John R, Kajubi R, Ji X, Nankya F, Musinguzi K, Press KD, Yang N, Camanag K, Greenhouse B, Kamya M, Feeney ME, Dorsey G, Utz PJ, Pulendran B, Khatri P, Jagannathan P. Clinical immunity to malaria involves epigenetic reprogramming of innate immune cells. PNAS NEXUS 2024; 3:pgae325. [PMID: 39161730 PMCID: PMC11331423 DOI: 10.1093/pnasnexus/pgae325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/23/2024] [Indexed: 08/21/2024]
Abstract
The regulation of inflammation is a critical aspect of disease tolerance and naturally acquired clinical immunity to malaria. Here, we demonstrate using RNA sequencing and epigenetic landscape profiling by cytometry by time-of-flight, that the regulation of inflammatory pathways during asymptomatic parasitemia occurs downstream of pathogen sensing-at the epigenetic level. The abundance of certain epigenetic markers (methylation of H3K27 and dimethylation of arginine residues) and decreased prevalence of histone variant H3.3 correlated with suppressed cytokine responses among monocytes of Ugandan children. Such an epigenetic signature was observed across diverse immune cell populations and not only characterized active asymptomatic parasitemia but also correlated with future long-term disease tolerance and clinical immunity when observed in uninfected children. Pseudotime analyses revealed a potential trajectory of epigenetic change that correlated with a child's age and recent parasite exposure and paralleled the acquisition of clinical immunity. Thus, our data support a model whereby exposure to Plasmodium falciparum induces epigenetic changes that regulate excessive inflammation and contribute to naturally acquire clinical immunity to malaria.
Collapse
Affiliation(s)
- Jason Nideffer
- Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Maureen Ty
- Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Michele Donato
- Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Rek John
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Richard Kajubi
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Xuhuai Ji
- Institute for Immunity, Infection, and Transplantation, Stanford University, Stanford, CA 94305, USA
| | | | | | | | - Nora Yang
- Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Kylie Camanag
- Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Bryan Greenhouse
- Department of Medicine, University of California, San Francisco, CA 94142, USA
| | - Moses Kamya
- School of Medicine, Makerere University, Kampala, Uganda
| | - Margaret E Feeney
- Department of Pediatrics, University of California, San Francisco, CA 94142, USA
| | - Grant Dorsey
- Department of Medicine, University of California, San Francisco, CA 94142, USA
| | - Paul J Utz
- Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Bali Pulendran
- Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Purvesh Khatri
- Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
6
|
Nankabirwa JI, Gonahasa S, Katureebe A, Mutungi P, Nassali M, Kamya MR, Westercamp N. The Uganda housing modification study - association between housing characteristics and malaria burden in a moderate to high transmission setting in Uganda. Malar J 2024; 23:223. [PMID: 39080697 PMCID: PMC11290271 DOI: 10.1186/s12936-024-05051-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/20/2024] [Indexed: 08/02/2024] Open
Abstract
BACKGROUND Scale up of proven malaria control interventions has not been sufficient to control malaria in Uganda, emphasizing the need to explore innovative new approaches. Improved housing is one such promising strategy. This paper describes housing characteristics and their association with malaria burden in a moderate to high transmission setting in Uganda. METHODS Between October and November 2021, a household survey was conducted in 1500 randomly selected households in Jinja and Luuka districts. Information on demographics, housing characteristics, use of malaria prevention measures, and proxy indicators of wealth were collected for each household. A finger-prick blood sample was obtained for thick blood smears for malaria from all children aged 6 months to 14 years in the surveyed households. Febrile children had a malaria rapid diagnostics test (RDT) done; positive cases were managed according to national treatment guidelines. Haemoglobin was assessed in children aged < 5 years. Households were stratified as having modern houses (defined as having finished materials for roofs, walls, and floors and closed eaves) or traditional houses (those not meeting the definition of modern house). Associations between malaria burden and house type were estimated using mixed effects models and adjusted for age, wealth, and bed net use. RESULTS Most (65.5%) of the households surveyed lived in traditional houses. Most of the houses had closed eaves (85.5%), however, the use of other protective features like window/vent screens and installed ceilings was limited (0.4% had screened windows, 2.8% had screened air vents, and 5.2% had ceiling). Overall, 3,443 children were included in the clinical survey, of which 31.4% had a positive smear. RDT test positivity rate was 56.6% among children with fever. Participants living in modern houses had a significantly lower parasite prevalence by microscopy (adjusted prevalence ratio [aPR = 0.80]; 95% confidence interval [CI] 0.71 - 0.90), RDT test positivity rate (aPR = 0.90, 95%CI 0.81 - 0.99), and anaemia (aPR = 0.80, 95%CI 0.65 - 0.97) compared to those in traditional houses. CONCLUSION The study found that even after adjusting for wealth, higher quality housing had a moderate protective effect against malaria, on top of the protection already afforded by recently distributed nets.
Collapse
Affiliation(s)
- Joaniter I Nankabirwa
- Infectious Diseases Research Collaboration, Kampala, Uganda.
- Department of Internal Medicine, Makerere University College of Health Science, Kampala, Uganda.
| | | | | | - Peter Mutungi
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Martha Nassali
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Moses R Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Department of Internal Medicine, Makerere University College of Health Science, Kampala, Uganda
| | - Nelli Westercamp
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention (CDC), Atlanta, Georgia
| |
Collapse
|
7
|
Reyes RA, Turner L, Ssewanyana I, Jagannathan P, Feeney ME, Lavstsen T, Greenhouse B, Bol S, Bunnik EM. Differences in phenotype between long-lived memory B cells against Plasmodium falciparum merozoite antigens and variant surface antigens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.01.596978. [PMID: 38895251 PMCID: PMC11185507 DOI: 10.1101/2024.06.01.596978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Plasmodium falciparum infections elicit strong humoral immune responses to two main groups of antigens expressed by blood-stage parasites: merozoite antigens that are involved in the erythrocyte invasion process and variant surface antigens that mediate endothelial sequestration of infected erythrocytes. Long-lived B cells against both antigen classes can be detected in the circulation for years after exposure, but have not been directly compared. Here, we studied the phenotype of long-lived memory and atypical B cells to merozoite antigens (MSP1 and AMA1) and variant surface antigens (the CIDRα1 domain of PfEMP1) in Ugandan adults before and after local reduction of P. falciparum transmission. After a median of 1.7 years without P. falciparum infections, the percentage of antigen-specific activated B cells declined, but long-lived antigen-specific B cells were still detectable in all individuals. The majority of MSP1/AMA1-specific B cells were CD95+CD11c+ memory B cells, which are primed for rapid differentiation into antibody-secreting cells, and FcRL5-T-bet- atypical B cells. On the other hand, most CIDRα1-specific B cells were CD95-CD11c- memory B cells. CIDRα1-specific B cells were also enriched among a subset of atypical B cells that seem poised for antigen presentation. These results point to differences in how these antigens are recognized or processed by the immune system and how P. falciparum-specific B cells will respond upon re-infection.
Collapse
Affiliation(s)
- Raphael A Reyes
- Department of Microbiology, Immunology & Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Louise Turner
- Centre for translational Medicine & Parasitology, Department of Immunology and Microbiology, University of Copenhagen, and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark
| | | | - Prasanna Jagannathan
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA, USA
- Department of Microbiology & Immunology, Stanford University, Stanford, CA, USA
| | - Margaret E. Feeney
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Thomas Lavstsen
- Centre for translational Medicine & Parasitology, Department of Immunology and Microbiology, University of Copenhagen, and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark
| | - Bryan Greenhouse
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Sebastiaan Bol
- Department of Microbiology, Immunology & Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Evelien M Bunnik
- Department of Microbiology, Immunology & Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
8
|
Kamya MR, Nankabirwa JI, Arinaitwe E, Rek J, Zedi M, Maiteki-Sebuguzi C, Opigo J, Staedke SG, Oruni A, Donnelly MJ, Greenhouse B, Briggs J, Krezanoski PJ, Bousema T, Rosenthal PJ, Olwoch P, Jagannathan P, Rodriguez-Barraquer I, Dorsey G. Dramatic resurgence of malaria after 7 years of intensive vector control interventions in Eastern Uganda. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.03.15.24304352. [PMID: 38559091 PMCID: PMC10980127 DOI: 10.1101/2024.03.15.24304352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background Tororo District, Uganda experienced a dramatic decrease in malaria burden from 2015-19 following 5 years of indoor residual spraying (IRS) with carbamate (Bendiocarb) and then organophosphate (Actellic) insecticides. However, a marked resurgence occurred in 2020, which coincided with a change to a clothianidin-based IRS formulations (Fludora Fusion/SumiShield). To quantify the magnitude of the resurgence, investigate causes, and evaluate the impact of a shift back to IRS with Actellic in 2023, we assessed changes in malaria metrics in regions within and near Tororo District. Methods Malaria surveillance data from Nagongera Health Center, Tororo District was included from 2011-2023. In addition, a cohort of 667 residents from 84 houses was followed from August 2020 through September 2023 from an area bordering Tororo and neighboring Busia District, where IRS has never been implemented. Cohort participants underwent passive surveillance for clinical malaria and active surveillance for parasitemia every 28 days. Mosquitoes were collected in cohort households every 2 weeks using CDC light traps. Female Anopheles were speciated and tested for sporozoites and phenotypic insecticide resistance. Temporal comparisons of malaria metrics were stratified by geographic regions. Findings At Nagongera Health Center average monthly malaria cases varied from 419 prior to implementation of IRS; to 56 after 5 years of IRS with Bendiocarb and Actellic; to 1591 after the change in IRS to Fludora Fusion/SumiShield; to 155 after a change back to Actellic. Among cohort participants living away from the border in Tororo, malaria incidence increased over 8-fold (0.36 vs. 2.97 episodes per person year, p<0.0001) and parasite prevalence increased over 4-fold (17% vs. 70%, p<0.0001) from 2021 to 2022 when Fludora Fusion/SumiShield was used. Incidence decreased almost 5-fold (2.97 vs. 0.70, p<0.0001) and prevalence decreased by 39% (70% vs. 43%, p<0.0001) after shifting back to Actellic. There was a similar pattern among those living near the border in Tororo, with increased incidence between 2021 and 2022 (0.93 vs. 2.40, p<0.0001) followed by a decrease after the change to Actellic (2.40 vs. 1.33, p<0.001). Among residents of Busia, malaria incidence did not change significantly over the 3 years of observation. Malaria resurgence in Tororo was temporally correlated with the replacement of An. gambiae s.s. by An. funestus as the primary vector, with a marked decrease in the density of An. funestus following the shift back to IRS with Actellic. In Busia, An. gambiae s.s. remained the primary vector throughout the observation period. Sporozoite rates were approximately 50% higher among An. funestus compared to the other common malaria vectors. Insecticide resistance phenotyping of An. funestus revealed high tolerance to clothianidin, but full susceptibility to Actellic. Conclusions A dramatic resurgence of malaria in Tororo was temporally associated with a change to clothianidin-based IRS formulations and emergence of An. funestus as the predominant vector. Malaria decreased after a shift back to IRS with Actellic. This study highlights the ability of malaria vectors to rapidly circumvent control efforts and the importance of high-quality surveillance systems to assess the impact of malaria control interventions and generate timely, actionable data.
Collapse
Affiliation(s)
- Moses R. Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
- School of Medicine, Makerere University Kampala, Uganda
| | - Joaniter I. Nankabirwa
- Infectious Diseases Research Collaboration, Kampala, Uganda
- School of Medicine, Makerere University Kampala, Uganda
| | | | - John Rek
- Infectious Diseases Research Collaboration, Kampala, Uganda
- National Malaria Control Division, Ministry of Health, Kampala, Uganda
| | - Maato Zedi
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Catherine Maiteki-Sebuguzi
- Infectious Diseases Research Collaboration, Kampala, Uganda
- National Malaria Control Division, Ministry of Health, Kampala, Uganda
| | - Jimmy Opigo
- National Malaria Control Division, Ministry of Health, Kampala, Uganda
| | - Sarah G. Staedke
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Ambrose Oruni
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Martin J. Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Bryan Greenhouse
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Jessica Briggs
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Paul J. Krezanoski
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Medical Center, Netherlands
| | - Philip J. Rosenthal
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Peter Olwoch
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Prasanna Jagannathan
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University, USA
| | | | - Grant Dorsey
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
9
|
Reyes RA, Raghavan SSR, Hurlburt NK, Introini V, Kana IH, Jensen RW, Martinez-Scholze E, Gestal-Mato M, Bau CB, Fernández-Quintero ML, Loeffler JR, Ferguson JA, Lee WH, Martin GM, Theander TG, Ssewanyana I, Feeney ME, Greenhouse B, Bol S, Ward AB, Bernabeu M, Pancera M, Turner L, Bunnik EM, Lavstsen T. Broadly inhibitory antibodies against severe malaria virulence proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.25.577124. [PMID: 38328068 PMCID: PMC10849712 DOI: 10.1101/2024.01.25.577124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Plasmodium falciparum pathology is driven by the accumulation of parasite-infected erythrocytes in microvessels. This process is mediated by the parasite's polymorphic erythrocyte membrane protein 1 (PfEMP1) adhesion proteins. A subset of PfEMP1 variants that bind human endothelial protein C receptor (EPCR) through their CIDRα1 domains is responsible for severe malaria pathogenesis. A longstanding question is whether individual antibodies can recognize the large repertoire of circulating PfEMP1 variants. Here, we describe two broadly reactive and binding-inhibitory human monoclonal antibodies against CIDRα1. The antibodies isolated from two different individuals exhibited a similar and consistent EPCR-binding inhibition of 34 CIDRα1 domains, representing five of the six subclasses of CIDRα1. Both antibodies inhibited EPCR binding of both recombinant full-length and native PfEMP1 proteins as well as parasite sequestration in bioengineered 3D brain microvessels under physiologically relevant flow conditions. Structural analyses of the two antibodies in complex with two different CIDRα1 antigen variants reveal similar binding mechanisms that depend on interactions with three highly conserved amino acid residues of the EPCR-binding site in CIDRα1. These broadly reactive antibodies likely represent a common mechanism of acquired immunity to severe malaria and offer novel insights for the design of a vaccine or treatment targeting severe malaria.
Collapse
Affiliation(s)
- Raphael A. Reyes
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Sai Sundar Rajan Raghavan
- Centre for translational Medicine & Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nicholas K. Hurlburt
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Viola Introini
- European Molecular Biology Laboratory (EMBL) Barcelona, Barcelona 08003, Spain
| | - Ikhlaq Hussain Kana
- Centre for translational Medicine & Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark
| | - Rasmus W. Jensen
- Centre for translational Medicine & Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark
| | - Elizabeth Martinez-Scholze
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Maria Gestal-Mato
- European Molecular Biology Laboratory (EMBL) Barcelona, Barcelona 08003, Spain
| | | | | | - Johannes R. Loeffler
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - James Alexander Ferguson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Wen-Hsin Lee
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Greg Michael Martin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Thor G. Theander
- Centre for translational Medicine & Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark
| | | | - Margaret E. Feeney
- Department of Medicine, University of California San Francisco, San Francisco, CA 94110, USA
- Department of Pediatrics, University of California San Francisco, San Francisco, CA 94110, USA
| | - Bryan Greenhouse
- Department of Medicine, University of California San Francisco, San Francisco, CA 94110, USA
| | - Sebastiaan Bol
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Andrew B. Ward
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Maria Bernabeu
- European Molecular Biology Laboratory (EMBL) Barcelona, Barcelona 08003, Spain
| | - Marie Pancera
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Louise Turner
- Centre for translational Medicine & Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark
| | - Evelien M. Bunnik
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Thomas Lavstsen
- Centre for translational Medicine & Parasitology, Department of Immunology and Microbiology, University of Copenhagen and Department of Infectious Diseases, Righospitalet, Copenhagen, Denmark
| |
Collapse
|
10
|
Zalwango MG, Zalwango JF, Kadobera D, Bulage L, Nanziri C, Migisha R, Agaba BB, Kwesiga B, Opigo J, Ario AR, Harris JR. Evaluation of malaria outbreak detection methods, Uganda, 2022. Malar J 2024; 23:18. [PMID: 38218860 PMCID: PMC10787982 DOI: 10.1186/s12936-024-04838-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024] Open
Abstract
BACKGROUND Malaria outbreaks are detected by applying the World Health Organization (WHO)-recommended thresholds (the less sensitive 75th percentile or mean + 2 standard deviations [2SD] for medium-to high-transmission areas, and the more sensitive cumulative sum [C-SUM] method for low and very low-transmission areas). During 2022, > 50% of districts in Uganda were in an epidemic mode according to the 75th percentile method used, resulting in a need to restrict national response to districts with the highest rates of complicated malaria. The three threshold approaches were evaluated to compare their outbreak-signaling outputs and help identify prioritization approaches and method appropriateness across Uganda. METHODS The three methods were applied as well as adjusted approaches (85th percentile and C-SUM + 2SD) for all weeks in 2022 for 16 districts with good reporting rates ( ≥ 80%). Districts were selected from regions originally categorized as very low, low, medium, and high transmission; district thresholds were calculated based on 2017-2021 data and re-categorized them for this analysis. RESULTS Using district-level data to categorize transmission levels resulted in re-categorization of 8/16 districts from their original transmission level categories. In all districts, more outbreak weeks were detected by the 75th percentile than the mean + 2SD method (p < 0.001). For all 9 very low or low-transmission districts, the number of outbreak weeks detected by C-SUM were similar to those detected by the 75th percentile. On adjustment of the 75th percentile method to the 85th percentile, there was no significant difference in the number of outbreak weeks detected for medium and low transmission districts. The number of outbreak weeks detected by C-SUM + 2SD was similar to those detected by the mean + 2SD method for all districts across all transmission intensities. CONCLUSION District data may be more appropriate than regional data to categorize malaria transmission and choose epidemic threshold approaches. The 75th percentile method, meant for medium- to high-transmission areas, was as sensitive as C-SUM for low- and very low-transmission areas. For medium and high-transmission areas, more outbreak weeks were detected with the 75th percentile than the mean + 2SD method. Using the 75th percentile method for outbreak detection in all areas and the mean + 2SD for prioritization of medium- and high-transmission areas in response may be helpful.
Collapse
Affiliation(s)
- Marie Gorreti Zalwango
- Uganda Public Health Fellowship Programme-Uganda National Institute of Public Health, Kampala, Uganda.
| | - Jane F Zalwango
- Uganda Public Health Fellowship Programme-Uganda National Institute of Public Health, Kampala, Uganda
| | - Daniel Kadobera
- Uganda Public Health Fellowship Programme-Uganda National Institute of Public Health, Kampala, Uganda
| | - Lilian Bulage
- Uganda Public Health Fellowship Programme-Uganda National Institute of Public Health, Kampala, Uganda
| | - Carol Nanziri
- Uganda Public Health Fellowship Programme-Uganda National Institute of Public Health, Kampala, Uganda
| | - Richard Migisha
- Uganda Public Health Fellowship Programme-Uganda National Institute of Public Health, Kampala, Uganda
| | - Bosco B Agaba
- National Malaria Control Division, Ministry of Health, Kampala, Uganda
| | - Benon Kwesiga
- Uganda Public Health Fellowship Programme-Uganda National Institute of Public Health, Kampala, Uganda
| | - Jimmy Opigo
- National Malaria Control Division, Ministry of Health, Kampala, Uganda
| | - Alex Riolexus Ario
- Uganda Public Health Fellowship Programme-Uganda National Institute of Public Health, Kampala, Uganda
| | - Julie R Harris
- Division of Global Health Protection, US Centers for Disease Control and Prevention, Kampala, Uganda
| |
Collapse
|
11
|
Reyes RA, Batugedara G, Dutta P, Reers AB, Garza R, Ssewanyana I, Jagannathan P, Feeney ME, Greenhouse B, Bol S, Ay F, Bunnik EM. Atypical B cells consist of subsets with distinct functional profiles. iScience 2023; 26:108496. [PMID: 38098745 PMCID: PMC10720271 DOI: 10.1016/j.isci.2023.108496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/30/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023] Open
Abstract
Atypical B cells are a population of activated B cells that are commonly enriched in individuals with chronic immune activation but are also part of a normal immune response to infection or vaccination. To better define the role of atypical B cells in the human adaptive immune response, we performed single-cell sequencing of transcriptomes, cell surface markers, and B cell receptors in individuals with chronic exposure to the malaria parasite Plasmodium falciparum, a condition known to lead to accumulation of circulating atypical B cells. We identified three previously uncharacterized populations of atypical B cells with distinct transcriptional and functional profiles and observed marked differences among these three subsets in their ability to produce immunoglobulin G upon T-cell-dependent activation. Our findings help explain the conflicting observations in prior studies regarding the function of atypical B cells and highlight their different roles in the adaptive immune response in chronic inflammatory conditions.
Collapse
Affiliation(s)
- Raphael A. Reyes
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Gayani Batugedara
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Paramita Dutta
- Centers for Cancer Immunotherapy and Autoimmunity, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
| | - Ashley B. Reers
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Rolando Garza
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Isaac Ssewanyana
- Infectious Disease Research Collaboration, Kampala, Uganda
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Prasanna Jagannathan
- Department of Medicine, Division of Infectious Diseases, Stanford University, Stanford, CA 94305, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Margaret E. Feeney
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Bryan Greenhouse
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Sebastiaan Bol
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Ferhat Ay
- Centers for Cancer Immunotherapy and Autoimmunity, La Jolla Institute for Immunology, La Jolla, CA 92037, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
| | - Evelien M. Bunnik
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
12
|
Ocan M, Bakubi R, Tayebwa M, Basemera J, Nsobya S. Experiences of healthcare personnel on the efficacy of artemisinin-based combination therapy and malaria diagnosis in hospitals in Uganda. Malar J 2023; 22:362. [PMID: 38012717 PMCID: PMC10683277 DOI: 10.1186/s12936-023-04800-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 11/20/2023] [Indexed: 11/29/2023] Open
Abstract
BACKGROUND The risk of widespread resistance to artemisinin-based combination therapy (ACT) remains high in Uganda following detection of Plasmodium falciparum parasites with delayed artemisinin clearance genotype and phenotype. Establishment of context specific interventions to mitigate emergence and spread of artemisinin resistance is thus key in the fight against malaria in the country. The aim of this study was to explore the experiences of healthcare personnel on malaria diagnosis and self-reported efficacy of ACT in the management of malaria symptomatic patients in hospitals in low and high malaria transmission settings in Uganda. METHODS This was a qualitative study in which data was collected from healthcare personnel in hospitals using key informant interviews. The key informant interview guide was developed, pre-tested prior to use and covered the following areas, (i) sociodemographic characteristics, (ii) malaria diagnosis (clinical and parasite based), (iii) quality-assured artemisinin-based combination therapy, (iv) malaria patient follow-up, (v) artemisinin resistance, (vi) anti-malarial self-medication. Data was entered in Atlas.ti ver 9.0 and analysis done following a framework criterion. RESULTS A total of 22 respondents were interviewed of which 16 (72.7%) were clinicians. Majority, 81.8% (18/22) of the respondents were male. The following themes were developed from the analysis, malaria diagnosis (procedures and challenges), use of malaria laboratory test results, malaria treatment in hospitals, use of quality assured ACT (QAACT) in malaria treatment, and efficacy of ACT in malaria treatment. CONCLUSION Most healthcare personnel-initiated malaria treatment after a positive laboratory test. Cases of malaria patients who report remaining symptomatic after prior use of ACT exist especially in high malaria transmission settings in Uganda. There is need for regular monitoring of artemisinin resistance emergence and spread in the country.
Collapse
Affiliation(s)
- Moses Ocan
- Department of Pharmacology & Therapeutics, College of Health Sciences, Makerere University, P. O. Box 7072, Kampala, Uganda.
| | - Racheal Bakubi
- Department of Health Policy, Planning and Management, College of Health Sciences, Makerere University, P. O. Box 7072, Kampala, Uganda
| | - Mordecai Tayebwa
- Grants office, College of Health Sciences, Makerere University, P. O. Box 7072, Kampala, Uganda
| | - Joan Basemera
- Department of Immunology and Molecular Biology, College of Health Sciences, P. O. Box 7072, Kampala, Uganda
| | - Sam Nsobya
- Infectious Disease Research Collaboration (IDRC), P. O. Box 7475, Kampala, Uganda
| |
Collapse
|
13
|
Ocen E, Opito R, Tegu C, Oula A, Olupot-Olupot P. Severe malaria burden, clinical spectrum and outcomes at Apac district hospital, Uganda: a retrospective study of routine health facility-based data. Malar J 2023; 22:325. [PMID: 37880694 PMCID: PMC10601152 DOI: 10.1186/s12936-023-04761-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/19/2023] [Indexed: 10/27/2023] Open
Abstract
BACKGROUND Most data describing severe malaria (SM) in sub-Saharan Africa (SSA) are from research settings outside disease endemic areas. Using routinely collected data from Apac District Hospital, this study aimed at determining the burden and clinical spectrum of severe malaria. METHODS This was a retrospective study that reviewed all paediatric admission records for malaria in the 24 months period from Jan 2019 to Dec 2020 at Apac District Hospital. Data on children aged 60 days to 12 years who at admission tested positive for malaria and fulfilled the World Health Organization clinical criteria for surveillance of severe malaria were abstracted using a customized proforma designed to capture variables on social demographic, clinical presentation, treatment, and outcomes. In addition, the tool included laboratory variables for complete blood counts, haemoglobin, and glucose levels. Data were analysed using STATA V15.0. The study had ethical approval from Mbale Regional Referral Hospital REC, Approval No. MRRH-REC 053/2019. RESULTS A total of 5631 admission records were retrieved for this study period. Of these, 3649 (64.8%) were malaria admissions and 3422/3649 were children below 12years, with only 1864 (54.5%) of children having complete data. Of the 1864 children, 745 (40.0%) fulfilled the severe malaria inclusion criteria. Of the 745 children, 51.4% (n = 381) were males. The median age at admission was 31 months (IQR = 17-60). The most common clinical presentations among children with severe malaria were fever 722 (97.3%), cough 478 (64.2%), and difficulty in breathing 122 (17.9%). The median length of hospital stay was 2 (IQR; 2-4) days and 133 (17.9%) had prolonged hospital stay (> 4 days). Factors independently associated with prolonged hospital stay were, presenting with difficulty in breathing, aOR 1.83 (95% CI 1.02-3.27, P = 0.042) and prostration aOR 8.47 (95% CI 1.94-36.99, P = 0.004). A majority of admitted children, 735 (98.7%) survived, while 10 (1.3%) died of SM. CONCLUSION A high proportion (40.0%) of malaria admissions were due to SM. Prolonged Hospital stay was associated with prostration and difficulty in breathing. Overall mortality was low, 1.3% compared to mortality in the previously reported series. This study was able to use routinely collected data to describe the burden and clinical spectrum of SM. Improvement in the quality of data from such settings would improve disease descriptions for policy, monitoring of epidemics, response to interventions and to inform research.
Collapse
Affiliation(s)
- Emmanuel Ocen
- Department of Public Health, Faculty of Health Sciences, Busitema University, Mbale, Uganda
- Department of Health, Apac District Local Government, Apac, Uganda
| | - Ronald Opito
- Departmemnt of Public Health, School of Health Sciences, Soroti University, Soroti, Uganda
| | - Crispus Tegu
- Department of Paediatric and Child Health, Faculty of Health Sciences, Busitema University, Mbale, Uganda
| | - Alex Oula
- Department of Health, Apac District Local Government, Apac, Uganda
| | - Peter Olupot-Olupot
- Department of Public Health, Faculty of Health Sciences, Busitema University, Mbale, Uganda.
- Mbale Clinical Research Institute, Mbale, Uganda.
| |
Collapse
|
14
|
Andolina C, Ramjith J, Rek J, Lanke K, Okoth J, Grignard L, Arinaitwe E, Briggs J, Bailey J, Aydemir O, Kamya MR, Greenhouse B, Dorsey G, Staedke SG, Drakeley C, Jonker M, Bousema T. Plasmodium falciparum gametocyte carriage in longitudinally monitored incident infections is associated with duration of infection and human host factors. Sci Rep 2023; 13:7072. [PMID: 37127688 PMCID: PMC10150352 DOI: 10.1038/s41598-023-33657-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 04/17/2023] [Indexed: 05/03/2023] Open
Abstract
Malaria transmission depends on the presence of Plasmodium gametocytes that are the only parasite life stage that can infect mosquitoes. Gametocyte production varies between infections and over the course of infections. Infection duration is highly important for gametocyte production but poorly quantified. Between 2017 and 2019 an all-age cohort of individuals from Tororo, eastern Uganda was followed by continuous passive and routine assessments. We longitudinally monitored 104 incident infections from 98 individuals who were sampled once every 28 days and on any day of symptoms. Among infections that lasted ≥ 3 months, gametocyte appearance was near-universal with 96% of infections having detectable gametocytes prior to clearance. However, most infections were of much shorter duration; 55.7% of asymptomatic infections were detected only once. When considering all asymptomatic infections, regardless of their duration, only 36.3% had detectable gametocytes on at least one time-point prior to parasite clearance. Infections in individuals with sickle-cell trait (HbAS) were more likely to have gametocytes detected (Hazard Rate (HR) = 2.68, 95% CI 1.12, 6.38; p = 0.0231) and had gametocytes detected at higher densities (Density Ratio (DR) = 9.19, 95% CI 2.79, 30.23; p = 0.0002) compared to infections in wildtype (HbAA) individuals. Our findings suggest that a large proportion of incident infections is too short in duration and of too low density to contribute to onward transmission.
Collapse
Affiliation(s)
- Chiara Andolina
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Jordache Ramjith
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
- Department for Health Evidence, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - John Rek
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Kjerstin Lanke
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Joseph Okoth
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Lynn Grignard
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | | | - Jessica Briggs
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, USA
| | - Jeffrey Bailey
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Ozkan Aydemir
- Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Moses R Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Bryan Greenhouse
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, USA
| | - Grant Dorsey
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, USA
| | - Sarah G Staedke
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, UK
| | - Chris Drakeley
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Marianne Jonker
- Department for Health Evidence, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands.
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
15
|
Ali AM, Wallender E, Hughes E, Dorsey G, Savic RM. Interplay among malnutrition, chemoprevention, and the risk of malaria in young Ugandan children: Longitudinal pharmacodynamic and growth analysis. CPT Pharmacometrics Syst Pharmacol 2023; 12:656-667. [PMID: 36919202 DOI: 10.1002/psp4.12892] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 07/30/2022] [Accepted: 10/06/2022] [Indexed: 03/16/2023] Open
Abstract
African children are at risk of malaria and malnutrition. We quantified relationships between malaria and malnutrition among young Ugandan children in a high malaria transmission region. Data were used from a randomized controlled trial where Ugandan HIV-unexposed (n = 393) and HIV-exposed (n = 186) children were randomized to receive no malaria chemoprevention, monthly sulfadoxine-pyrimethamine, daily trimethoprim-sulfamethoxazole, or monthly dihydroartemisinin-piperaquine (DP) from age 6-24 months, and then were followed off chemoprevention until age 36 months. Monthly height and weight, and time of incident malaria episodes were obtained; 89 children who received DP contributed piperaquine (PQ) concentrations. Malaria hazard was modeled using parametric survival analysis adjusted for repeated events, and height and weight were modeled using a Brody growth model. Among 579 children, stunting (height-for-age z-score [ZHA] < -2) was associated with a 17% increased malaria hazard (95% confidence interval [CI] 10-23%) compared with children with a ZHA of zero. DP was associated with a 35% lower malaria hazard (hazard ratio [HR] [95% CI], 0.65 [0.41-0.97]), compared to no chemoprevention. After accounting for PQ levels, stunted children who received DP had 2.1 times the hazard of malaria (HR [95% CI] 2.1 [1.6-3.0]) compared with children with a ZHA of zero who received DP. Each additional malaria episode was associated with a 0.4% reduced growth rate for height. Better dosing regimens are needed to optimize malaria prevention in malnourished populations, but, importantly, malaria chemoprevention may reduce the burden of malnutrition in early childhood.
Collapse
Affiliation(s)
- Ali Mohamed Ali
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA.,Bagamoyo Research and Training Center, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Erika Wallender
- Department of Clinical Pharmacy, University of California, San Francisco, San Francisco, California, USA
| | - Emma Hughes
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Grant Dorsey
- Department of Medicine, University of California, San Francisco, San Francisco, California, USA
| | - Radojka M Savic
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
16
|
Raghavan M, Kalantar KL, Duarte E, Teyssier N, Takahashi S, Kung AF, Rajan JV, Rek J, Tetteh KKA, Drakeley C, Ssewanyana I, Rodriguez-Barraquer I, Greenhouse B, DeRisi JL. Antibodies to repeat-containing antigens in Plasmodium falciparum are exposure-dependent and short-lived in children in natural malaria infections. eLife 2023; 12:e81401. [PMID: 36790168 PMCID: PMC10005774 DOI: 10.7554/elife.81401] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 02/14/2023] [Indexed: 02/16/2023] Open
Abstract
Protection against Plasmodium falciparum, which is primarily antibody-mediated, requires recurrent exposure to develop. The study of both naturally acquired limited immunity and vaccine induced protection against malaria remains critical for ongoing eradication efforts. Towards this goal, we deployed a customized P. falciparum PhIP-seq T7 phage display library containing 238,068 tiled 62-amino acid peptides, covering all known coding regions, including antigenic variants, to systematically profile antibody targets in 198 Ugandan children and adults from high and moderate transmission settings. Repeat elements - short amino acid sequences repeated within a protein - were significantly enriched in antibody targets. While breadth of responses to repeat-containing peptides was twofold higher in children living in the high versus moderate exposure setting, no such differences were observed for peptides without repeats, suggesting that antibody responses to repeat-containing regions may be more exposure dependent and/or less durable in children than responses to regions without repeats. Additionally, short motifs associated with seroreactivity were extensively shared among hundreds of antigens, potentially representing cross-reactive epitopes. PfEMP1 shared motifs with the greatest number of other antigens, partly driven by the diversity of PfEMP1 sequences. These data suggest that the large number of repeat elements and potential cross-reactive epitopes found within antigenic regions of P. falciparum could contribute to the inefficient nature of malaria immunity.
Collapse
Affiliation(s)
- Madhura Raghavan
- University of California, San FranciscoSan FranciscoUnited States
| | | | - Elias Duarte
- University of California, BerkeleyBerkeleyUnited States
| | - Noam Teyssier
- University of California, San FranciscoSan FranciscoUnited States
| | - Saki Takahashi
- University of California, San FranciscoSan FranciscoUnited States
| | - Andrew F Kung
- University of California, San FranciscoSan FranciscoUnited States
| | - Jayant V Rajan
- University of California, San FranciscoSan FranciscoUnited States
| | - John Rek
- Infectious Diseases Research CollaborationKampalaUganda
| | - Kevin KA Tetteh
- London School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | - Chris Drakeley
- London School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | - Isaac Ssewanyana
- Infectious Diseases Research CollaborationKampalaUganda
- London School of Hygiene and Tropical MedicineLondonUnited Kingdom
| | - Isabel Rodriguez-Barraquer
- University of California, San FranciscoSan FranciscoUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Bryan Greenhouse
- University of California, San FranciscoSan FranciscoUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Joseph L DeRisi
- University of California, San FranciscoSan FranciscoUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| |
Collapse
|
17
|
Ivanochko D, Fabra-García A, Teelen K, van de Vegte-Bolmer M, van Gemert GJ, Newton J, Semesi A, de Bruijni M, Bolscher J, Ramjith J, Szabat M, Vogt S, Kraft L, Duncan S, Lee SM, Kamya MR, Feeney ME, Jagannathan P, Greenhouse B, Sauerwein RW, Richter King C, MacGill RS, Bousema T, Jore MM, Julien JP. Potent transmission-blocking monoclonal antibodies from naturally exposed individuals target a conserved epitope on Plasmodium falciparum Pfs230. Immunity 2023; 56:420-432.e7. [PMID: 36792575 PMCID: PMC9942874 DOI: 10.1016/j.immuni.2023.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/04/2022] [Accepted: 01/12/2023] [Indexed: 02/16/2023]
Abstract
Pfs230 is essential for Plasmodium falciparum transmission to mosquitoes and is the protein targeted by the most advanced malaria-transmission-blocking vaccine candidate. Prior understanding of functional epitopes on Pfs230 is based on two monoclonal antibodies (mAbs) with moderate transmission-reducing activity (TRA), elicited from subunit immunization. Here, we screened the B cell repertoire of two naturally exposed individuals possessing serum TRA and identified five potent mAbs from sixteen Pfs230 domain-1-specific mAbs. Structures of three potent and three low-activity antibodies bound to Pfs230 domain 1 revealed four distinct epitopes. Highly potent mAbs from natural infection recognized a common conformational epitope that is highly conserved across P. falciparum field isolates, while antibodies with negligible TRA derived from natural infection or immunization recognized three distinct sites. Our study provides molecular blueprints describing P. falciparum TRA, informed by contrasting potent and non-functional epitopes elicited by natural exposure and vaccination.
Collapse
Affiliation(s)
- Danton Ivanochko
- Program in Molecular Medicine, the Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | | | - Karina Teelen
- Department of Medical Microbiology, Radboudumc, Nijmegen, the Netherlands
| | | | | | - Jocelyn Newton
- Program in Molecular Medicine, the Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Anthony Semesi
- Program in Molecular Medicine, the Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | | | | | - Jordache Ramjith
- Radboud Institute for Health Sciences, Department for Health Evidence, Biostatistics Section, Radboudumc, Nijmegen, the Netherlands
| | | | | | - Lucas Kraft
- AbCellera Biologics Inc., Vancouver, BC, Canada
| | | | - Shwu-Maan Lee
- PATH's Malaria Vaccine Initiative, Washington, DC 20001, USA
| | - Moses R Kamya
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - Margaret E Feeney
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Prasanna Jagannathan
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Bryan Greenhouse
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | | | - C Richter King
- PATH's Malaria Vaccine Initiative, Washington, DC 20001, USA
| | | | - Teun Bousema
- Department of Medical Microbiology, Radboudumc, Nijmegen, the Netherlands.
| | - Matthijs M Jore
- Department of Medical Microbiology, Radboudumc, Nijmegen, the Netherlands.
| | - Jean-Philippe Julien
- Program in Molecular Medicine, the Hospital for Sick Children Research Institute, Toronto, ON, Canada; Departments of Biochemistry and Immunology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
18
|
Fabra-García A, Hailemariam S, de Jong RM, Janssen K, Teelen K, van de Vegte-Bolmer M, van Gemert GJ, Ivanochko D, Semesi A, McLeod B, Vos MW, de Bruijni MHC, Bolscher JM, Szabat M, Vogt S, Kraft L, Duncan S, Kamya MR, Feeney ME, Jagannathan P, Greenhouse B, Dechering KJ, Sauerwein RW, King CR, MacGill RS, Bousema T, Julien JP, Jore MM. Highly potent, naturally acquired human monoclonal antibodies against Pfs48/45 block Plasmodium falciparum transmission to mosquitoes. Immunity 2023; 56:406-419.e7. [PMID: 36792574 PMCID: PMC9942873 DOI: 10.1016/j.immuni.2023.01.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/05/2022] [Accepted: 01/11/2023] [Indexed: 02/16/2023]
Abstract
Malaria transmission-blocking vaccines (TBVs) aim to induce antibodies that interrupt malaria parasite development in the mosquito, thereby blocking onward transmission, and provide a much-needed tool for malaria control and elimination. The parasite surface protein Pfs48/45 is a leading TBV candidate. Here, we isolated and characterized a panel of 81 human Pfs48/45-specific monoclonal antibodies (mAbs) from donors naturally exposed to Plasmodium parasites. Genetically diverse mAbs against each of the three domains (D1-D3) of Pfs48/45 were identified. The most potent mAbs targeted D1 and D3 and achieved >80% transmission-reducing activity in standard membrane-feeding assays, at 10 and 2 μg/mL, respectively. Co-crystal structures of D3 in complex with four different mAbs delineated two conserved protective epitopes. Altogether, these Pfs48/45-specific human mAbs provide important insight into protective and non-protective epitopes that can further our understanding of transmission and inform the design of refined malaria transmission-blocking vaccine candidates.
Collapse
Affiliation(s)
| | - Sophia Hailemariam
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Roos M de Jong
- Department of Medical Microbiology, Radboudumc, Nijmegen, the Netherlands
| | - Kirsten Janssen
- Department of Medical Microbiology, Radboudumc, Nijmegen, the Netherlands
| | - Karina Teelen
- Department of Medical Microbiology, Radboudumc, Nijmegen, the Netherlands
| | | | | | - Danton Ivanochko
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Anthony Semesi
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Brandon McLeod
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | | - Lucas Kraft
- AbCellera Biologics Inc., Vancouver, BC, Canada
| | | | - Moses R Kamya
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - Margaret E Feeney
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA; Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | - Prasanna Jagannathan
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| | - Bryan Greenhouse
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | | | | | - C Richter King
- PATH's Malaria Vaccine Initiative, Washington, DC 20001, USA
| | | | - Teun Bousema
- Department of Medical Microbiology, Radboudumc, Nijmegen, the Netherlands.
| | - Jean-Philippe Julien
- Program in Molecular Medicine, The Hospital for Sick Children Research Institute, Toronto, ON, Canada; Department of Biochemistry, University of Toronto, Toronto, ON, Canada; Department of Immunology, University of Toronto, Toronto, ON, Canada.
| | - Matthijs M Jore
- Department of Medical Microbiology, Radboudumc, Nijmegen, the Netherlands.
| |
Collapse
|
19
|
Hauser M, Kabuya JBB, Mantus M, Kamavu LK, Sichivula JL, Matende WM, Fritschi N, Shields T, Curriero F, Kvit A, Chongwe G, Moss WJ, Ritz N, Ippolito MM. Malaria in Refugee Children Resettled to a Holoendemic Area of Sub-Saharan Africa. Clin Infect Dis 2023; 76:e1104-e1113. [PMID: 35640824 PMCID: PMC10169438 DOI: 10.1093/cid/ciac417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 05/06/2022] [Accepted: 05/20/2022] [Indexed: 01/27/2023] Open
Abstract
BACKGROUND Malaria is a leading cause of morbidity and mortality in refugee children in high-transmission parts of Africa. Characterizing the clinical features of malaria in refugees can inform approaches to reduce its burden. METHODS The study was conducted in a high-transmission region of northern Zambia hosting Congolese refugees. We analyzed surveillance data and hospital records of children with severe malaria from refugee and local sites using multivariable regression models and geospatial visualization. RESULTS Malaria prevalence in the refugee settlement was similar to the highest burden areas in the district, consistent with the local ecology and leading to frequent rapid diagnostic test stockouts. We identified 2197 children hospitalized for severe malaria during the refugee crisis in 2017 and 2018. Refugee children referred from a refugee transit center (n = 63) experienced similar in-hospital mortality to local children and presented with less advanced infection. However, refugee children from a permanent refugee settlement (n = 110) had more than double the mortality of local children (P < .001), had lower referral rates, and presented more frequently with advanced infection and malnutrition. Distance from the hospital was an important mediator of the association between refugee status and mortality but did not account for all of the increased risk. CONCLUSIONS Malaria outcomes were more favorable in refugee children referred from a highly outfitted refugee transit center than those referred later from a permanent refugee settlement. Refugee children experienced higher in-hospital malaria mortality due in part to delayed presentation and higher rates of malnutrition. Interventions tailored to the refugee context are required to ensure capacity for rapid diagnosis and referral to reduce malaria mortality.
Collapse
Affiliation(s)
- Manuela Hauser
- Faculty of Medicine, University of Basel, Basel, Switzerland.,Children's Research Center, University Children's Hospital Zurich, Zurich, Switzerland
| | - Jean-Bertin B Kabuya
- Department of Clinical Sciences, Tropical Diseases Research Centre, Ndola, Zambia
| | - Molly Mantus
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Luc K Kamavu
- Office of Hospital Administration, Saint Paul's General Hospital, Nchelenge, Zambia
| | - James L Sichivula
- Department of Clinical Sciences, Tropical Diseases Research Centre, Ndola, Zambia
| | - Wycliffe M Matende
- United Nations High Commissioner for Refugees, Country Representation Office, Lusaka, Zambia
| | - Nora Fritschi
- Mycobacterial and Migrant Health Research Group, University of Basel Children's Hospital, Basel, Switzerland.,Department of Clinical Research, University of Basel, Basel, Switzerland
| | - Timothy Shields
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Frank Curriero
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Anton Kvit
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Gershom Chongwe
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - William J Moss
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.,Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Nicole Ritz
- Mycobacterial and Migrant Health Research Group, University of Basel Children's Hospital, Basel, Switzerland.,Infectious Disease and Vaccinology Unit, University Children's Hospital Basel, University of Basel, Basel, Switzerland.,Department of Pediatrics, The Royal Children's Hospital Melbourne, The University of Melbourne, Melbourne, Australia.,Department of Paediatrics and Paediatric Infectious Diseases, Children's Hospital, Lucerne Cantonal Hospital, Lucerne, Switzerland
| | - Matthew M Ippolito
- Johns Hopkins Malaria Research Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA.,Division of Clinical Pharmacology and Division of Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
20
|
Liu M, Liu Y, Po L, Xia S, Huy R, Zhou XN, Liu J. Assessing the spatiotemporal malaria transmission intensity with heterogeneous risk factors: A modeling study in Cambodia. Infect Dis Model 2023; 8:253-269. [PMID: 36844760 PMCID: PMC9944205 DOI: 10.1016/j.idm.2023.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/08/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Malaria control can significantly benefit from a holistic and precise way of quantitatively measuring the transmission intensity, which needs to incorporate spatiotemporally varying risk factors. In this study, we conduct a systematic investigation to characterize malaria transmission intensity by taking a spatiotemporal network perspective, where nodes capture the local transmission intensities resulting from dominant vector species, the population density, and land cover, and edges describe the cross-region human mobility patterns. The inferred network enables us to accurately assess the transmission intensity over time and space from available empirical observations. Our study focuses on malaria-severe districts in Cambodia. The malaria transmission intensities determined using our transmission network reveal both qualitatively and quantitatively their seasonal and geographical characteristics: the risks increase in the rainy season and decrease in the dry season; remote and sparsely populated areas generally show higher transmission intensities than other areas. Our findings suggest that: the human mobility (e.g., in planting/harvest seasons), environment (e.g., temperature), and contact risk (coexistences of human and vector occurrence) contribute to malaria transmission in spatiotemporally varying degrees; quantitative relationships between these influential factors and the resulting malaria transmission risk can inform evidence-based tailor-made responses at the right locations and times.
Collapse
Affiliation(s)
- Mutong Liu
- Department of Computer Science, Hong Kong Baptist University, Hong Kong Special administrative region of China
- HKBU-CSD & NIPD Joint Research Laboratory for Intelligent Disease Surveillance and Control, China
| | - Yang Liu
- Department of Computer Science, Hong Kong Baptist University, Hong Kong Special administrative region of China
- HKBU-CSD & NIPD Joint Research Laboratory for Intelligent Disease Surveillance and Control, China
- Corresponding author. Department of Computer Science, Hong Kong Baptist University, Hong Kong Special administrative region of China.
| | - Ly Po
- National Center for Parasitology, Entomology & Malaria Control (CNM), Ministry of Health, Phnom Penh, Cambodia
| | - Shang Xia
- HKBU-CSD & NIPD Joint Research Laboratory for Intelligent Disease Surveillance and Control, China
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- Key Laboratory of Parasite and Vector Biology, National Health and Commission of the People's Republic of China, Shanghai, China
- WHO Collaborating Center for Tropical Diseases, Shanghai, China
| | - Rekol Huy
- National Center for Parasitology, Entomology & Malaria Control (CNM), Ministry of Health, Phnom Penh, Cambodia
| | - Xiao-Nong Zhou
- HKBU-CSD & NIPD Joint Research Laboratory for Intelligent Disease Surveillance and Control, China
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai, China
- Key Laboratory of Parasite and Vector Biology, National Health and Commission of the People's Republic of China, Shanghai, China
- WHO Collaborating Center for Tropical Diseases, Shanghai, China
| | - Jiming Liu
- Department of Computer Science, Hong Kong Baptist University, Hong Kong Special administrative region of China
- HKBU-CSD & NIPD Joint Research Laboratory for Intelligent Disease Surveillance and Control, China
- Corresponding author. Department of Computer Science, Hong Kong Baptist University, Hong Kong Special administrative region of China.
| |
Collapse
|
21
|
Ty M, Sun S, Callaway PC, Rek J, Press KD, van der Ploeg K, Nideffer J, Hu Z, Klemm S, Greenleaf W, Donato M, Tukwasibwe S, Arinaitwe E, Nankya F, Musinguzi K, Andrew D, de la Parte L, Mori DM, Lewis SN, Takahashi S, Rodriguez-Barraquer I, Greenhouse B, Blish C, Utz PJ, Khatri P, Dorsey G, Kamya M, Boyle M, Feeney M, Ssewanyana I, Jagannathan P. Malaria-driven expansion of adaptive-like functional CD56-negative NK cells correlates with clinical immunity to malaria. Sci Transl Med 2023; 15:eadd9012. [PMID: 36696483 PMCID: PMC9976268 DOI: 10.1126/scitranslmed.add9012] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 01/05/2023] [Indexed: 01/26/2023]
Abstract
Natural killer (NK) cells likely play an important role in immunity to malaria, but the effect of repeated malaria on NK cell responses remains unclear. Here, we comprehensively profiled the NK cell response in a cohort of 264 Ugandan children. Repeated malaria exposure was associated with expansion of an atypical, CD56neg population of NK cells that differed transcriptionally, epigenetically, and phenotypically from CD56dim NK cells, including decreased expression of PLZF and the Fc receptor γ-chain, increased histone methylation, and increased protein expression of LAG-3, KIR, and LILRB1. CD56neg NK cells were highly functional and displayed greater antibody-dependent cellular cytotoxicity than CD56dim NK cells. Higher frequencies of CD56neg NK cells were associated with protection against symptomatic malaria and high parasite densities. After marked reductions in malaria transmission, frequencies of these cells rapidly declined, suggesting that continuous exposure to Plasmodium falciparum is required to maintain this modified, adaptive-like NK cell subset.
Collapse
Affiliation(s)
- Maureen Ty
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Shenghuan Sun
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Perri C Callaway
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - John Rek
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | | | - Jason Nideffer
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Zicheng Hu
- Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Sandy Klemm
- Department of Genetics, Stanford University, Stanford, CA, USA
| | | | - Michele Donato
- Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA, USA
| | | | | | | | | | - Dean Andrew
- Queensland Institute for Medical Research, Queensland, Australia
| | | | | | | | - Saki Takahashi
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | | | - Bryan Greenhouse
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Catherine Blish
- Department of Medicine, Stanford University, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - P J Utz
- Department of Medicine, Stanford University, Stanford, CA, USA
| | - Purvesh Khatri
- Institute for Immunity, Transplantation, and Infection, Stanford University, Stanford, CA, USA
| | - Grant Dorsey
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Moses Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Department of Medicine, Makerere University, Kampala, Uganda
| | - Michelle Boyle
- Queensland Institute for Medical Research, Queensland, Australia
| | - Margaret Feeney
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, USA
| | | | - Prasanna Jagannathan
- Department of Medicine, Stanford University, Stanford, CA, USA
- Department of Microbiology and Immunology, Stanford University, Stanford, CA, USA
| |
Collapse
|
22
|
Martins A, Herzog SA, Mugenyi L, Faes C, Hens N, Abrams S. Modelling longitudinal binary outcomes with outcome dependent observation times: an application to a malaria cohort study. Malar J 2022; 21:380. [PMID: 36496382 PMCID: PMC9741489 DOI: 10.1186/s12936-022-04386-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 11/14/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND : In spite of the global reduction of 21% in malaria incidence between 2010 and 2015, the disease still threatens many lives of children and pregnant mothers in African countries. A correct assessment and evaluation of the impact of malaria control strategies still remains quintessential in order to eliminate the disease and its burden. Malaria follow-up studies typically involve routine visits at pre-scheduled time points and/or clinical visits whenever individuals experience malaria-like symptoms. In the latter case, infection triggers outcome assessment, thereby leading to outcome-dependent sampling (ODS). Commonly used methods to analyze such longitudinal data ignore ODS and potentially lead to biased estimates of malaria-specific transmission parameters, hence, inducing an incorrect assessment and evaluation of malaria control strategies. METHODS : In this paper, a new method is proposed to handle ODS by use of a joint model for the longitudinal binary outcome measured at routine visits and the clinical event times. The methodology is applied to malaria parasitaemia data from a cohort of [Formula: see text] Ugandan children aged 0.5-10 years from 3 regions (Walukuba-300 children, Kihihi-355 children and Nagongera-333 children) with varying transmission intensities (entomological inoculation rate equal to 2.8, 32 and 310 infectious bites per unit year, respectively) collected between 2011-2014. RESULTS : The results indicate that malaria parasite prevalence and force of infection (FOI) increase with age in the region of high malaria intensity with highest FOI in age group 5-10 years. For the region of medium intensity, the prevalence slightly increases with age and the FOI for the routine process is highest in age group 5-10 years, yet for the clinical infections, the FOI gradually decreases with increasing age. For the region with low intensity, both the prevalence and FOI peak at the age of 1 year after which the former remains constant with age yet the latter suddenly decreases with age for the clinically observed infections. CONCLUSION : Malaria parasite prevalence and FOI increase with age in the region of high malaria intensity. In all study sites, both the prevalence and FOI are highest among previously asymptomatic children and lowest among their symptomatic counterparts. Using a simulation study inspired by the malaria data at hand, the proposed methodology shows to have the smallest bias, especially when consecutive positive malaria parasitaemia presence results within a time period of 35 days were considered to be due to the same infection.
Collapse
Affiliation(s)
- Adelino Martins
- grid.12155.320000 0001 0604 5662Interuniversity Institute for Biostatistics and statistical Bioinformatics, Data Science Institute, UHasselt, Diepenbeek, Belgium ,grid.8295.60000 0001 0943 5818Department of Mathematics and Informatics, Eduardo Mondlane University, Maputo, Mozambique
| | - Sereina A. Herzog
- grid.11598.340000 0000 8988 2476Institute for Medical Informatics, Statistics and Documentation (IMI), Medical University of Graz, Graz, Austria ,grid.5284.b0000 0001 0790 3681Centre for Health Economics Research and Modelling Infectious Diseases, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium
| | - Levicatus Mugenyi
- grid.463352.50000 0004 8340 3103Infectious Diseases Research Collaboration, Plot 2C Nakasero Hill road, Kampala, Uganda
| | - Christel Faes
- grid.12155.320000 0001 0604 5662Interuniversity Institute for Biostatistics and statistical Bioinformatics, Data Science Institute, UHasselt, Diepenbeek, Belgium
| | - Niel Hens
- grid.12155.320000 0001 0604 5662Interuniversity Institute for Biostatistics and statistical Bioinformatics, Data Science Institute, UHasselt, Diepenbeek, Belgium ,grid.5284.b0000 0001 0790 3681Centre for Health Economics Research and Modelling Infectious Diseases, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium ,grid.5284.b0000 0001 0790 3681Family Medicine and Population Health, University of Antwerp, Antwerp, Belgium
| | - Steven Abrams
- grid.12155.320000 0001 0604 5662Interuniversity Institute for Biostatistics and statistical Bioinformatics, Data Science Institute, UHasselt, Diepenbeek, Belgium ,grid.5284.b0000 0001 0790 3681Family Medicine and Population Health, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
23
|
Elmardi KA, Adam I, Malik EM, Kafy HT, Abdin MS, Kleinschmidt I, Kremers S, Gubbels JS. Impact of malaria control interventions on malaria infection and anaemia in low malaria transmission settings: a cross-sectional population-based study in Sudan. BMC Infect Dis 2022; 22:927. [PMID: 36496398 PMCID: PMC9737986 DOI: 10.1186/s12879-022-07926-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The past two decades were associated with innovation and strengthening of malaria control interventions, which have been increasingly adopted at large scale. Impact evaluations of these interventions were mostly performed in moderate or high malaria transmission areas. This study aimed to evaluate the use and performance of malaria interventions in low transmission areas on malaria infections and anaemia. METHODS Data from the 2016 Sudan malaria indicator survey was used. Multi-level logistic regression analysis was used to assess the strength of association between real-life community-level utilization of malaria interventions [diagnosis, artemisinin-based combination therapies (ACTs) and long-lasting insecticidal nets (LLINs)] and the study outcomes: malaria infections and anaemia (both overall and moderate-to-severe anaemia). RESULTS The study analysis involved 26,469 individuals over 242 clusters. Malaria infection rate was 7.6%, overall anaemia prevalence was 47.5% and moderate-to-severe anaemia prevalence was 4.5%. The average community-level utilization was 31.5% for malaria diagnosis, 29.9% for ACTs and 35.7% for LLINs. The odds of malaria infection was significantly reduced by 14% for each 10% increase in the utilization of malaria diagnosis (adjusted odds ratio (aOR) per 10% utilization 0.86, 95% CI 0.78-0.95, p = 0.004). However, the odds of infection was positively associated with the utilization of LLINs at community-level (aOR per 10% utilization 1.20, 95% CI 1.11-1.29, p < 0.001). No association between malaria infection and utilization of ACTs was identified (aOR per 10% utilization 0.97, 95% CI 0.91-1.04, p = 0.413). None of the interventions was associated with overall anaemia nor moderate-to-severe anaemia. CONCLUSION There was strong evidence that utilization of malaria diagnosis at the community level was highly protective against malaria infection. No protective effect was seen for community utilization of ACTs or LLINs. No association was established between any of the interventions and overall anaemia or moderate-to-severe anaemia. This lack of effectiveness could be due to the low utilization of interventions or the low level of malaria transmission in the study area. Identification and response to barriers of access and low utilization of malaria interventions are crucial. It is crucial to ensure that every suspected malaria case is tested in a timely way, notably in low transmission settings.
Collapse
Affiliation(s)
- Khalid Abdelmutalab Elmardi
- grid.414827.cHealth Information, Monitoring and Evaluation and Evidence Department, Federal Ministry of Health, Khartoum, Sudan ,grid.5012.60000 0001 0481 6099Department of Health Promotion, Faculty of Health, Medicine and Life Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht, The Netherlands
| | - Ishag Adam
- grid.412602.30000 0000 9421 8094Department of Obstetrics and Gynecology, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Saudi Arabia
| | - Elfatih Mohamed Malik
- grid.9763.b0000 0001 0674 6207Faculty of Medicine, University of Khartoum, Khartoum, Sudan
| | - Hmooda Toto Kafy
- grid.414827.cDirectorate General of Primary Health Care, Federal Ministry of Health, Khartoum, Sudan
| | - Mogahid Sheikheldien Abdin
- grid.414827.cHealth Information, Monitoring and Evaluation and Evidence Department, Federal Ministry of Health, Khartoum, Sudan
| | - Immo Kleinschmidt
- grid.8991.90000 0004 0425 469XMRC International Statistics and Epidemiology Group, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK ,grid.11951.3d0000 0004 1937 1135Faculty of Health Sciences, School of Pathology, Wits Research Institute for Malaria, University of the Witwatersrand, Johannesburg, South Africa ,Southern African Development Community Malaria Elimination Eight Secretariat, Windhoek, Namibia
| | - Stef Kremers
- grid.5012.60000 0001 0481 6099Department of Health Promotion, Faculty of Health, Medicine and Life Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht, The Netherlands
| | - Jessica Sophia Gubbels
- grid.5012.60000 0001 0481 6099Department of Health Promotion, Faculty of Health, Medicine and Life Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht, The Netherlands
| |
Collapse
|
24
|
Nankabirwa JI, Arinaitwe E, Briggs J, Rek J, Rosenthal PJ, Kamya MR, Olwoch P, Smith DL, Rodriguez-Barraquer I, Dorsey G, Greenhouse B. Simulating the Impacts of Augmenting Intensive Vector Control with Mass Drug Administration or Test-and-Treat Strategies on the Malaria Infectious Reservoir. Am J Trop Med Hyg 2022; 107:1028-1035. [PMID: 36191870 PMCID: PMC9709029 DOI: 10.4269/ajtmh.21-0953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 06/29/2022] [Indexed: 12/24/2022] Open
Abstract
Highly effective vector control can reduce malaria burden significantly, but individuals with parasitemia provide a potential reservoir for onward transmission. We performed an empirical, non-parametric simulation based on cohort data from Tororo District, Uganda-an area with historically high but recently reduced malaria transmission-to estimate the effects of mass drug administration (MDA) and test-and-treat on parasite prevalence. We estimate that a single round of MDA would have accelerated declines in parasite prevalence dramatically over 2 years (cumulative parasite prevalence ratio [PPR], 0.34). This decline was mostly during the first year of administration (PPR, 0.23) and waned by 23 months (PPR, 0.74). Test-and-treat using a highly sensitive diagnostic had nearly the same effect as MDA at 1 year (PPR, 0.27) and required many fewer treatments. The impact of test-and-treat using a standard diagnostic was modest (PPR, 0.58 at 1 year). Our analysis suggests that in areas experiencing a dramatic reduction in malaria prevalence, MDA or test-and-treat with a highly sensitive diagnostic may be an effective way of reducing or eliminating the infectious reservoir temporarily. However, for sustained benefits, repeated rounds of the intervention or additional interventions are required.
Collapse
Affiliation(s)
- Joaniter I. Nankabirwa
- Department of Internal Medicine, Makerere University College of Health Sciences, Kampala, Uganda
- Infectious Disease Research Collaboration, Kampala, Uganda
| | | | - Jessica Briggs
- Department of Infectious Diseases, School of Medicine, University of California, San Francisco, California
| | - John Rek
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - Philip J. Rosenthal
- Department of Infectious Diseases, School of Medicine, University of California, San Francisco, California
| | - Moses R. Kamya
- Department of Internal Medicine, Makerere University College of Health Sciences, Kampala, Uganda
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - Peter Olwoch
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - David L. Smith
- Department of Health Metrics Sciences, University of Washington, Seattle, Washington
| | - Isabel Rodriguez-Barraquer
- Department of Infectious Diseases, School of Medicine, University of California, San Francisco, California
| | - Grant Dorsey
- Department of Infectious Diseases, School of Medicine, University of California, San Francisco, California
| | - Bryan Greenhouse
- Department of Infectious Diseases, School of Medicine, University of California, San Francisco, California
| |
Collapse
|
25
|
Nabatanzi M, Ntono V, Kamulegeya J, Kwesiga B, Bulage L, Lubwama B, Ario AR, Harris J. Malaria outbreak facilitated by increased mosquito breeding sites near houses and cessation of indoor residual spraying, Kole district, Uganda, January-June 2019. BMC Public Health 2022; 22:1898. [PMID: 36224655 PMCID: PMC9554998 DOI: 10.1186/s12889-022-14245-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/21/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In June 2019, surveillance data from the Uganda's District Health Information System revealed an outbreak of malaria in Kole District. Analysis revealed that cases had exceeded the outbreak threshold from January 2019. The Ministry of Health deployed our team to investigate the areas and people affected, identify risk factors for disease transmission, and recommend control and prevention measures. METHODS We conducted an outbreak investigation involving a matched case-control study. We defined a confirmed case as a positive malaria test in a resident of Aboke, Akalo, Alito, and Bala sub-counties of Kole District January-June 2019. We identified cases by reviewing outpatient health records. Exposures were assessed in a 1:1 matched case-control study (n = 282) in Aboke sub-county. We selected cases systematically from 10 villages using probability proportionate to size and identified age- and village-matched controls. We conducted entomological and environmental assessments to identify mosquito breeding sites. We plotted epidemic curves and overlaid rainfall, and indoor residual spraying (IRS). Case-control exposures were combined into: breeding site near house, proximity to swamp and breeding site, and proximity to swamp; these were compared to no exposure in a logistic regression analysis. RESULTS Of 18,737 confirmed case-patients (AR = 68/1,000), Aboke sub-county residents (AR = 180/1,000), children < 5 years (AR = 94/1,000), and females (AR = 90/1,000) were most affected. Longitudinal analysis of surveillance data showed decline in cases after an IRS campaign in 2017 but an increase after IRS cessation in 2018-2019. Overlay of rainfall and case data showed two malaria upsurges during 2019, occurring 35-42 days after rainfall increases. Among 141 case-patients and 141 controls, the combination of having mosquito breeding sites near the house and proximity to swamps increased the odds of malaria 6-fold (OR = 6.6, 95% CI = 2.24-19.7) compared to no exposures. Among 84 abandoned containers found near case-patients' and controls' houses, 14 (17%) had mosquito larvae. Adult Anopheles mosquitoes, larvae, pupae, and pupal exuviae were identified near affected houses. CONCLUSION Stagnant water formed by increased rainfall likely provided increased breeding sites that drove this outbreak. Cessation of IRS preceded the malaria upsurges. We recommend re-introduction of IRS and removal of mosquito breeding sites in Kole District.
Collapse
Affiliation(s)
- Maureen Nabatanzi
- Uganda Public Health Fellowship Program, Ministry of Health, Kampala, Uganda.
| | - Vivian Ntono
- Uganda Public Health Fellowship Program, Ministry of Health, Kampala, Uganda
| | - John Kamulegeya
- Uganda Public Health Fellowship Program, Ministry of Health, Kampala, Uganda
| | - Benon Kwesiga
- Uganda Public Health Fellowship Program, Ministry of Health, Kampala, Uganda
| | - Lilian Bulage
- Uganda Public Health Fellowship Program, Ministry of Health, Kampala, Uganda
| | - Bernard Lubwama
- Integrated Epidemiology, Surveillance and Public Health Emergencies Department, Ministry of Health, Kampala, Uganda
| | - Alex R Ario
- Uganda Public Health Fellowship Program, Ministry of Health, Kampala, Uganda
| | - Julie Harris
- US Centers for Disease Control and Prevention, Kampala, Uganda
| |
Collapse
|
26
|
Oulton T, Obiero J, Rodriguez I, Ssewanyana I, Dabbs RA, Bachman CM, Greenhouse B, Drakeley C, Felgner PL, Stone W, Tetteh KKA. Plasmodium falciparum serology: A comparison of two protein production methods for analysis of antibody responses by protein microarray. PLoS One 2022; 17:e0273106. [PMID: 36037183 PMCID: PMC9423672 DOI: 10.1371/journal.pone.0273106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 08/02/2022] [Indexed: 12/02/2022] Open
Abstract
The evaluation of protein antigens as putative serologic biomarkers of infection has increasingly shifted to high-throughput, multiplex approaches such as the protein microarray. In vitro transcription/translation (IVTT) systems-a similarly high-throughput protein expression method-are already widely utilised in the production of protein microarrays, though purified recombinant proteins derived from more traditional whole cell based expression systems also play an important role in biomarker characterisation. Here we have performed a side-by-side comparison of antigen-matched protein targets from an IVTT and purified recombinant system, on the same protein microarray. The magnitude and range of antibody responses to purified recombinants was found to be greater than that of IVTT proteins, and responses between targets from different expression systems did not clearly correlate. However, responses between amino acid sequence-matched targets from each expression system were more closely correlated. Despite the lack of a clear correlation between antigen-matched targets produced in each expression system, our data indicate that protein microarrays produced using either method can be used confidently, in a context dependent manner, though care should be taken when comparing data derived from contrasting approaches.
Collapse
Affiliation(s)
- Tate Oulton
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Joshua Obiero
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States of America
| | - Isabel Rodriguez
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Isaac Ssewanyana
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Makerere University College of Health Sciences, Kampala, Uganda
| | - Rebecca A. Dabbs
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Bryan Greenhouse
- Department of Medicine, University of California San Francisco, San Francisco, California, United States of America
| | - Chris Drakeley
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Phil L. Felgner
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States of America
| | - Will Stone
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Kevin K. A. Tetteh
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
27
|
Walker-Sperling V, Digitale JC, Viard M, Martin MP, Bashirova A, Yuki Y, Ramsuran V, Kulkarni S, Naranbhai V, Li H, Anderson SK, Yum L, Clifford R, Kibuuka H, Ake J, Thomas R, Rowland-Jones S, Rek J, Arinaitwe E, Kamya M, Rodriguez-Barraquer I, Feeney ME, Carrington M. Genetic variation that determines TAPBP expression levels associates with the course of malaria in an HLA allotype-dependent manner. Proc Natl Acad Sci U S A 2022; 119:e2205498119. [PMID: 35858344 PMCID: PMC9303992 DOI: 10.1073/pnas.2205498119] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/27/2022] [Indexed: 11/26/2022] Open
Abstract
HLA class I (HLA-I) allotypes vary widely in their dependence on tapasin (TAPBP), an integral component of the peptide-loading complex, to present peptides on the cell surface. We identified two single-nucleotide polymorphisms that regulate TAPBP messenger RNA (mRNA) expression in Africans, rs111686073 (G/C) and rs59097151 (A/G), located in an AP-2α transcription factor binding site and a microRNA (miR)-4486 binding site, respectively. rs111686073G and rs59097151A induced significantly higher TAPBP mRNA expression relative to the alternative alleles due to higher affinity for AP-2α and abrogation of miR-4486 binding, respectively. These variants associated with lower Plasmodium falciparum parasite prevalence and lower incidence of clinical malaria specifically among individuals carrying tapasin-dependent HLA-I allotypes, presumably by augmenting peptide loading, whereas tapasin-independent allotypes associated with relative protection, regardless of imputed TAPBP mRNA expression levels. Thus, an attenuated course of malaria may occur through enhanced breadth and/or magnitude of antigen presentation, an important consideration when evaluating vaccine efficacy.
Collapse
Affiliation(s)
- Victoria Walker-Sperling
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, 20892
| | - Jean C. Digitale
- Department of Medicine, University of California San Francisco, San Francisco, California, 94158
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, 94143
| | - Mathias Viard
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, 20892
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland, 21702
| | - Maureen P. Martin
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, 20892
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland, 21702
| | - Arman Bashirova
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, 20892
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland, 21702
| | - Yuko Yuki
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, 20892
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland, 21702
| | - Veron Ramsuran
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| | - Smita Kulkarni
- Texas Biomedical Research Institute, Host Pathogen Interaction Program, San Antonio, Texas, 78227
| | - Vivek Naranbhai
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
- Dana Farber Cancer Institute, Department of Medical Oncology, Boston, Massachusetts, 02215
- MGH Cancer Center, Massachusetts General Hospital, Boston, Massachusetts, 02114
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, 02114
- Centre for the AIDS Programme of Research in South Africa (CAPRISA), Durban, 4041, South Africa
| | - Hongchuan Li
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland, 21702
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, 21702
| | - Stephen K. Anderson
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland, 21702
- Laboratory of Cancer Immunometabolism, Center for Cancer Research, National Cancer Institute, Frederick, Maryland, 21702
| | - Lauren Yum
- U.S. Military HIV Research Program,, Walter Reed Army Institute of Research, Silver Spring, Maryland, 20910
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, 20817
| | - Robert Clifford
- U.S. Military HIV Research Program,, Walter Reed Army Institute of Research, Silver Spring, Maryland, 20910
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, Maryland, 20817
| | - Hannah Kibuuka
- Makerere University Walter Reed Project, Kampala, Uganda
| | - Julie Ake
- U.S. Military HIV Research Program,, Walter Reed Army Institute of Research, Silver Spring, Maryland, 20910
| | - Rasmi Thomas
- U.S. Military HIV Research Program,, Walter Reed Army Institute of Research, Silver Spring, Maryland, 20910
| | - Sarah Rowland-Jones
- Viral Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, OX3 7FZ, UK
| | - John Rek
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | - Moses Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Department of Medicine, Makerere University, Kampala, Uganda
| | | | - Margaret E. Feeney
- Department of Medicine, University of California San Francisco, San Francisco, California, 94158
- Department of Pediatrics, University of California San Francisco, San Francisco, California, 94158
| | - Mary Carrington
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland, 20892
- Basic Science Program, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, Maryland, 21702
- Ragon Institute of MGH, MIT and Harvard, Cambridge, Massachusetts, 02139
| |
Collapse
|
28
|
Chan JA, Loughland JR, de la Parte L, Okano S, Ssewanyana I, Nalubega M, Nankya F, Musinguzi K, Rek J, Arinaitwe E, Tipping P, Bourke P, Andrew D, Dooley N, SheelaNair A, Wines BD, Hogarth PM, Beeson JG, Greenhouse B, Dorsey G, Kamya M, Hartel G, Minigo G, Feeney M, Jagannathan P, Boyle MJ. Age-dependent changes in circulating Tfh cells influence development of functional malaria antibodies in children. Nat Commun 2022; 13:4159. [PMID: 35851033 PMCID: PMC9293980 DOI: 10.1038/s41467-022-31880-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 07/08/2022] [Indexed: 01/29/2023] Open
Abstract
T-follicular helper (Tfh) cells are key drivers of antibodies that protect from malaria. However, little is known regarding the host and parasite factors that influence Tfh and functional antibody development. Here, we use samples from a large cross-sectional study of children residing in an area of high malaria transmission in Uganda to characterize Tfh cells and functional antibodies to multiple parasites stages. We identify a dramatic re-distribution of the Tfh cell compartment with age that is independent of malaria exposure, with Th2-Tfh cells predominating in early childhood, while Th1-Tfh cell gradually increase to adult levels over the first decade of life. Functional antibody acquisition is age-dependent and hierarchical acquired based on parasite stage, with merozoite responses followed by sporozoite and gametocyte antibodies. Antibodies are boosted in children with current infection, and are higher in females. The children with the very highest antibody levels have increased Tfh cell activation and proliferation, consistent with a key role of Tfh cells in antibody development. Together, these data reveal a complex relationship between the circulating Tfh compartment, antibody development and protection from malaria.
Collapse
Affiliation(s)
- Jo-Anne Chan
- Burnet Institute, Melbourne, VIC, Australia
- Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
| | - Jessica R Loughland
- QIMR-Berghofer Medical Research Institute, Herston, QLD, Australia
- Global and Tropical Health Division, Menzies School of Health Research, Tiwi, Australia
| | | | - Satomi Okano
- QIMR-Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Isaac Ssewanyana
- Infectious Diseases Research Collaboration, Kampala, Uganda
- London School of Hygiene and Tropical Medicine, London, UK
| | - Mayimuna Nalubega
- QIMR-Berghofer Medical Research Institute, Herston, QLD, Australia
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia
| | | | | | - John Rek
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | - Peta Tipping
- Global and Tropical Health Division, Menzies School of Health Research, Tiwi, Australia
| | - Peter Bourke
- Division of Medicine, Cairns Hospital, Manunda, QLD, Australia
| | - Dean Andrew
- QIMR-Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Nicholas Dooley
- QIMR-Berghofer Medical Research Institute, Herston, QLD, Australia
- Griffith University, Brisbane, QLD, Australia
| | - Arya SheelaNair
- QIMR-Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Bruce D Wines
- Burnet Institute, Melbourne, VIC, Australia
- Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia
| | - P Mark Hogarth
- Burnet Institute, Melbourne, VIC, Australia
- Department of Immunology, Central Clinical School, Monash University, Melbourne, VIC, Australia
- Department of Clinical Pathology, The University of Melbourne, Parkville, VIC, Australia
| | - James G Beeson
- Burnet Institute, Melbourne, VIC, Australia
- Department of Medicine, The University of Melbourne, Parkville, VIC, Australia
- Department of Microbiology, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | | | - Grant Dorsey
- University of California San Francisco, San Francisco, CA, USA
| | - Moses Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Gunter Hartel
- QIMR-Berghofer Medical Research Institute, Herston, QLD, Australia
| | - Gabriela Minigo
- Global and Tropical Health Division, Menzies School of Health Research, Tiwi, Australia
- College of Health and Human Sciences, Charles Darwin University, Darwin, NT, Australia
| | - Margaret Feeney
- University of California San Francisco, San Francisco, CA, USA
| | | | - Michelle J Boyle
- Burnet Institute, Melbourne, VIC, Australia.
- QIMR-Berghofer Medical Research Institute, Herston, QLD, Australia.
- Global and Tropical Health Division, Menzies School of Health Research, Tiwi, Australia.
- Faculty of Medicine, University of Queensland, Brisbane, QLD, Australia.
- Griffith University, Brisbane, QLD, Australia.
| |
Collapse
|
29
|
Sadoine ML, Smargiassi A, Liu Y, Gachon P, Dueymes G, Dorsey G, Fournier M, Nankabirwa JI, Rek J, Zinszer K. The influence of the environment and indoor residual spraying on malaria risk in a cohort of children in Uganda. Sci Rep 2022; 12:11537. [PMID: 35798826 PMCID: PMC9262898 DOI: 10.1038/s41598-022-15654-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 06/27/2022] [Indexed: 12/24/2022] Open
Abstract
Studies have estimated the impact of the environment on malaria incidence although few have explored the differential impact due to malaria control interventions. Therefore, the objective of the study was to evaluate the effect of indoor residual spraying (IRS) on the relationship between malaria and environment (i.e. rainfall, temperatures, humidity, and vegetation) using data from a dynamic cohort of children from three sub-counties in Uganda. Environmental variables were extracted from remote sensing sources and averaged over different time periods. General linear mixed models were constructed for each sub-counties based on a log-binomial distribution. The influence of IRS was analysed by comparing marginal effects of environment in models adjusted and unadjusted for IRS. Great regional variability in the shape (linear and non-linear), direction, and magnitude of environmental associations with malaria risk were observed between sub-counties. IRS was significantly associated with malaria risk reduction (risk ratios vary from RR = 0.03, CI 95% [0.03-0.08] to RR = 0.35, CI95% [0.28-0.42]). Model adjustment for this intervention changed the magnitude and/or direction of environment-malaria associations, suggesting an interaction effect. This study evaluated the potential influence of IRS in the malaria-environment association and highlighted the necessity to control for interventions when they are performed to properly estimate the environmental influence on malaria. Local models are more informative to guide intervention program compared to national models.
Collapse
Affiliation(s)
- Margaux L. Sadoine
- grid.14848.310000 0001 2292 3357School of Public Health, Université de Montréal, Montréal, Québec Canada ,grid.14848.310000 0001 2292 3357Public Health Research Center, Université de Montréal, Montréal, Québec Canada
| | - Audrey Smargiassi
- grid.14848.310000 0001 2292 3357School of Public Health, Université de Montréal, Montréal, Québec Canada ,grid.14848.310000 0001 2292 3357Public Health Research Center, Université de Montréal, Montréal, Québec Canada
| | - Ying Liu
- grid.14848.310000 0001 2292 3357School of Public Health, Université de Montréal, Montréal, Québec Canada ,grid.14848.310000 0001 2292 3357Public Health Research Center, Université de Montréal, Montréal, Québec Canada
| | - Philippe Gachon
- grid.38678.320000 0001 2181 0211ESCER (Étude et Simulation du Climat à l’Échelle Régionale) Centre, Université du Québec à Montréal, Montréal, Québec Canada
| | - Guillaume Dueymes
- grid.38678.320000 0001 2181 0211ESCER (Étude et Simulation du Climat à l’Échelle Régionale) Centre, Université du Québec à Montréal, Montréal, Québec Canada
| | - Grant Dorsey
- grid.266102.10000 0001 2297 6811University of California San Francisco, San Francisco, USA
| | - Michel Fournier
- Montreal Regional Department of Public Health, Montréal, Québec Canada
| | - Joaniter I. Nankabirwa
- grid.463352.50000 0004 8340 3103Infectious Disease Research Collaboration, Kampala, Uganda ,grid.11194.3c0000 0004 0620 0548Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - John Rek
- grid.463352.50000 0004 8340 3103Infectious Disease Research Collaboration, Kampala, Uganda
| | - Kate Zinszer
- grid.14848.310000 0001 2292 3357School of Public Health, Université de Montréal, Montréal, Québec Canada ,grid.14848.310000 0001 2292 3357Public Health Research Center, Université de Montréal, Montréal, Québec Canada
| |
Collapse
|
30
|
Gonzales SJ, Clarke KN, Batugedara G, Garza R, Braddom AE, Reyes RA, Ssewanyana I, Garrison KC, Ippolito GC, Greenhouse B, Bol S, Bunnik EM. A Molecular Analysis of Memory B Cell and Antibody Responses Against Plasmodium falciparum Merozoite Surface Protein 1 in Children and Adults From Uganda. Front Immunol 2022; 13:809264. [PMID: 35720313 PMCID: PMC9201334 DOI: 10.3389/fimmu.2022.809264] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 05/05/2022] [Indexed: 01/18/2023] Open
Abstract
Memory B cells (MBCs) and plasma antibodies against Plasmodium falciparum (Pf) merozoite antigens are important components of the protective immune response against malaria. To gain understanding of how responses against Pf develop in these two arms of the humoral immune system, we evaluated MBC and antibody responses against the most abundant merozoite antigen, full-length Pf merozoite surface protein 1 (PfMSP1FL), in individuals from a region in Uganda with high Pf transmission. Our results showed that PfMSP1FL-specific B cells in adults with immunological protection against malaria were predominantly IgG+ classical MBCs, while children with incomplete protection mainly harbored IgM+ PfMSP1FL-specific classical MBCs. In contrast, anti-PfMSP1FL plasma IgM reactivity was minimal in both children and adults. Instead, both groups showed high plasma IgG reactivity against PfMSP1FL, with broadening of the response against non-3D7 strains in adults. The B cell receptors encoded by PfMSP1FL-specific IgG+ MBCs carried high levels of amino acid substitutions and recognized relatively conserved epitopes on the highly variable PfMSP1 protein. Proteomics analysis of PfMSP119-specific IgG in plasma of an adult revealed a limited repertoire of anti-MSP1 antibodies, most of which were IgG1 or IgG3. Similar to B cell receptors of PfMSP1FL-specific MBCs, anti-PfMSP119 IgGs had high levels of amino acid substitutions and their sequences were predominantly found in classical MBCs, not atypical MBCs. Collectively, these results showed evolution of the PfMSP1-specific humoral immune response with cumulative Pf exposure, with a shift from IgM+ to IgG+ B cell memory, diversification of B cells from germline, and stronger recognition of PfMSP1 variants by the plasma IgG repertoire.
Collapse
Affiliation(s)
- S. Jake Gonzales
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Kathleen N. Clarke
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Gayani Batugedara
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Rolando Garza
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Ashley E. Braddom
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Raphael A. Reyes
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Isaac Ssewanyana
- Infectious Disease Research Collaboration, Kampala, Uganda
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Kendra C. Garrison
- Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Gregory C. Ippolito
- Department of Molecular Biosciences and Department of Oncology, Dell Medical School, University of Texas at Austin, Austin, TX, United States
| | - Bryan Greenhouse
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Sebastiaan Bol
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Evelien M. Bunnik
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
31
|
Nayiga S, Denyer Willis L, Staedke SG, Chandler CI. Taking Opportunities, Taking Medicines: Antibiotic Use in Rural Eastern Uganda. Med Anthropol 2022; 41:418-430. [PMID: 35324360 PMCID: PMC10040720 DOI: 10.1080/01459740.2022.2047676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The ways in which dimensions of health and healthcare intersect with economics and politics in particular contexts requires close attention. In this article we connect concerns about antibiotic overuse in Uganda to the social milieu created through policies that follow President Museveni's vision for a population who kulembeka, "tap wealth." Ethnographic fieldwork in rural Eastern Uganda illustrates how taking medicines in rural households reflects a wider landscape of everyday imperatives to "tap" opportunities in a context of acute precarity. We argue for a closer connection between medical and economic anthropology to push forward understanding of health, medicines and wellbeing in Africa.
Collapse
Affiliation(s)
- Susan Nayiga
- Infectious Diseases Research Collaboration, Kampala, Uganda.,Department of Global Health and Development, London School of Hygiene & Tropical Medicine, London, UK
| | | | - Sarah G Staedke
- Infectious Diseases Research Collaboration, Kampala, Uganda.,Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| | - Clare Ir Chandler
- Department of Global Health and Development, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
32
|
Chaudhury S, Bolton JS, Eller LA, Robb M, Ake J, Ngauy V, Regules JA, Kamau E, Bergmann-Leitner ES. Assessing Prevalence and Transmission Rates of Malaria through Simultaneous Profiling of Antibody Responses against Plasmodium and Anopheles Antigens. J Clin Med 2022; 11:jcm11071839. [PMID: 35407447 PMCID: PMC9000160 DOI: 10.3390/jcm11071839] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/12/2022] [Accepted: 03/23/2022] [Indexed: 01/23/2023] Open
Abstract
Reliably assessing exposure to mosquitoes carrying malaria parasites continues to be a challenge due to the lack of reliable, highly sensitive diagnostics with high-throughput potential. Here, we describe an approach that meets these requirements by simultaneously measuring immune responses to both disease vector and pathogen, using an electro-chemiluminescence-based multiplex assay platform. While using the same logistical steps as a classic ELISA, this platform allows for the multiplexing of up to ten antigens in a single well. This simple, reproducible, quantitative readout reports the magnitude, incidence, and prevalence of malaria infections in residents of malaria-endemic areas. By reporting exposure to both insect vectors and pathogen, the approach also provides insights into the efficacy of drugs and/or other countermeasures deployed against insect vectors aimed at reducing or eliminating arthropod-borne diseases. The high throughput of the assay enables the quick and efficient screening of sera from individuals for exposure to Plasmodium even if they are taking drug prophylaxis. We applied this assay to samples collected from controlled malaria infection studies, as well as those collected in field studies in malaria-endemic regions in Uganda and Kenya. The assay was sensitive to vector exposure, malaria infection, and endemicity, demonstrating its potential for use in malaria serosurveillance.
Collapse
Affiliation(s)
- Sidhartha Chaudhury
- Center Enabling Capabilities, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA;
| | - Jessica S. Bolton
- Biologics Research & Development, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (J.S.B.); (V.N.); (J.A.R.)
| | - Leigh Anne Eller
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (L.A.E.); (M.R.)
| | - Merlin Robb
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA; (L.A.E.); (M.R.)
| | - Julie Ake
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (J.A.); (E.K.)
| | - Viseth Ngauy
- Biologics Research & Development, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (J.S.B.); (V.N.); (J.A.R.)
| | - Jason A. Regules
- Biologics Research & Development, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (J.S.B.); (V.N.); (J.A.R.)
| | - Edwin Kamau
- U.S. Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (J.A.); (E.K.)
- Laboratory Medicine, Department of Pathology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | - Elke S. Bergmann-Leitner
- Biologics Research & Development, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA; (J.S.B.); (V.N.); (J.A.R.)
- Correspondence:
| |
Collapse
|
33
|
Oseno B, Marura F, Ogwang R, Muturi M, Njunge J, Nkumama I, Mwakesi R, Mwai K, Rono MK, Mwakubambanya R, Osier F, Tuju J. Characterization of Anopheles gambiae D7 salivary proteins as markers of human-mosquito bite contact. Parasit Vectors 2022; 15:11. [PMID: 34996508 PMCID: PMC8742437 DOI: 10.1186/s13071-021-05130-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/11/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria is transmitted when infected Anopheles mosquitoes take a blood meal. During this process, the mosquitoes inject a cocktail of bioactive proteins that elicit antibody responses in humans and could be used as biomarkers of exposure to mosquito bites. This study evaluated the utility of IgG responses to members of the Anopheles gambiae D7 protein family as serological markers of human-vector contact. METHODS The D7L2, D7r1, D7r2, D7r3, D7r4 and SG6 salivary proteins from An. gambiae were expressed as recombinant antigens in Escherichia coli. Antibody responses to the salivary proteins were compared in Europeans with no prior exposure to malaria and lifelong residents of Junju in Kenya and Kitgum in Uganda where the intensity of malaria transmission is moderate and high, respectively. In addition, to evaluate the feasibility of using anti-D7 IgG responses as a tool to evaluate the impact of vector control interventions, we compared responses between individuals using insecticide-treated bednets to those who did not in Junju, Kenya where bednet data were available. RESULTS We show that both the long and short forms of the D7 salivary gland antigens elicit a strong antibody response in humans. IgG responses against the D7 antigens reflected the transmission intensities of the three study areas, with the highest to lowest responses observed in Kitgum (northern Uganda), Junju (Kenya) and malaria-naïve Europeans, respectively. Specifically, the long form D7L2 induced an IgG antibody response that increased with age and that was lower in individuals who slept under a bednet, indicating its potential as a serological tool for estimating human-vector contact and monitoring the effectiveness of vector control interventions. CONCLUSIONS This study reveals that D7L2 salivary antigen has great potential as a biomarker of exposure to mosquito bites and as a tool for assessing the efficacy of vector control strategies such as bednet use.
Collapse
Affiliation(s)
- Brenda Oseno
- KEMRI-Wellcome Trust Research Programme CGMRC, P.O. Box 230-80108, Kilifi, Kenya.,Egerton University, P.O. Box 536-20115, Nakuru, Kenya
| | - Faith Marura
- KEMRI-Wellcome Trust Research Programme CGMRC, P.O. Box 230-80108, Kilifi, Kenya
| | - Rodney Ogwang
- KEMRI-Wellcome Trust Research Programme CGMRC, P.O. Box 230-80108, Kilifi, Kenya
| | - Martha Muturi
- KEMRI-Wellcome Trust Research Programme CGMRC, P.O. Box 230-80108, Kilifi, Kenya
| | - James Njunge
- KEMRI-Wellcome Trust Research Programme CGMRC, P.O. Box 230-80108, Kilifi, Kenya
| | - Irene Nkumama
- KEMRI-Wellcome Trust Research Programme CGMRC, P.O. Box 230-80108, Kilifi, Kenya.,Heidelberg University Hospital, Neuenheimer Feld, 672 69120, Heidelberg, Germany
| | - Robert Mwakesi
- KEMRI-Wellcome Trust Research Programme CGMRC, P.O. Box 230-80108, Kilifi, Kenya
| | - Kennedy Mwai
- KEMRI-Wellcome Trust Research Programme CGMRC, P.O. Box 230-80108, Kilifi, Kenya.,School of Public Health, University of the Witwatersrand, 1 Jan Smuts Avenue, Braamfontein 2000, Johannesburg, South Africa
| | - Martin K Rono
- KEMRI-Wellcome Trust Research Programme CGMRC, P.O. Box 230-80108, Kilifi, Kenya.,Pwani University, P.O. Box 195-80108, Kilifi, Kenya
| | | | - Faith Osier
- KEMRI-Wellcome Trust Research Programme CGMRC, P.O. Box 230-80108, Kilifi, Kenya.,Pwani University, P.O. Box 195-80108, Kilifi, Kenya.,Heidelberg University Hospital, Neuenheimer Feld, 672 69120, Heidelberg, Germany
| | - James Tuju
- KEMRI-Wellcome Trust Research Programme CGMRC, P.O. Box 230-80108, Kilifi, Kenya. .,Pwani University, P.O. Box 195-80108, Kilifi, Kenya.
| |
Collapse
|
34
|
Musiime AK, Krezanoski PJ, Smith DL, Kilama M, Conrad MD, Otto G, Kyagamba P, Asiimwe J, Rek J, Nankabirwa JI, Arinaitwe E, Akol AM, Kamya MR, Staedke SG, Drakeley C, Bousema T, Lindsay SW, Dorsey G, Tusting LS. House design and risk of malaria, acute respiratory infection and gastrointestinal illness in Uganda: A cohort study. PLOS GLOBAL PUBLIC HEALTH 2022; 2:e0000063. [PMID: 36962263 PMCID: PMC10022195 DOI: 10.1371/journal.pgph.0000063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/15/2021] [Indexed: 11/18/2022]
Abstract
House construction is rapidly modernizing across Africa but the potential benefits for human health are poorly understood. We hypothesised that improvements to housing would be associated with reductions in malaria, acute respiratory infection (ARI) and gastrointestinal illness in an area of low malaria endemicity in Uganda. Data were analysed from a cohort study of male and female child and adult residents (n = 531) of 80 randomly-selected households in Nagongera sub-county, followed for 24 months (October 4, 2017 to October 31, 2019). Houses were classified as modern (brick walls, metal roof and closed eaves) or traditional (all other homes). Light trap collections of mosquitoes were done every two weeks in all sleeping rooms. Every four weeks, we measured malaria infection (using microscopy and qPCR to detect malaria parasites), incidence of malaria, ARI and gastrointestinal illness. We collected 15,780 adult female Anopheles over 7,631 nights. We collected 13,277 blood samples of which 10.2% (1,347) were positive for malaria parasites. Over 958 person years we diagnosed 38 episodes of uncomplicated malaria (incidence 0.04 episodes per person-year at risk), 2,553 episodes of ARI (incidence 2.7 episodes per person-year) and 387 episodes of gastrointestinal illness (incidence 0.4 episodes per person-year). Modern houses were associated with a 53% lower human biting rate compared to traditional houses (adjusted incidence rate ratio [aIRR] 0.47, 95% confidence interval [CI] 0.32-0.67, p<0.001) and a 24% lower incidence of gastrointestinal illness (aIRR 0.76, 95% CI 0.59-0.98, p = 0.04) but no changes in malaria prevalence, malaria incidence nor ARI incidence. House improvements may reduce mosquito-biting rates and gastrointestinal illness among children and adults. For the health sector to leverage Africa's housing modernization, research is urgently needed to identify the healthiest house designs and to assess their effectiveness across a range of epidemiological settings in sub-Saharan Africa.
Collapse
Affiliation(s)
- Alex K Musiime
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Department of Zoology, Entomology and Fisheries Sciences, College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Paul J Krezanoski
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, United States of America
| | - David L Smith
- Department of Health Metrics Sciences, University of Washington, Seattle, United States of America
| | - Maxwell Kilama
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Melissa D Conrad
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, United States of America
| | - Geoffrey Otto
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | | | - John Rek
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Joaniter I Nankabirwa
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | | | - Anne M Akol
- Department of Zoology, Entomology and Fisheries Sciences, College of Natural Sciences, Makerere University, Kampala, Uganda
| | - Moses R Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Sarah G Staedke
- Faculty of Infectious and Tropical Diseases, Clinical Research Department, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Chris Drakeley
- Faculty of Infectious and Tropical Diseases, Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Steve W Lindsay
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Grant Dorsey
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, United States of America
| | - Lucy S Tusting
- Faculty of Infectious and Tropical Diseases, Department of Disease Control, London School of Hygiene & Tropical Medicine, London, United Kingdom
- Centre on Climate Change and Planetary Health, London School of Hygiene & Tropical Medicine, London, United Kingdom
| |
Collapse
|
35
|
Ocan M, Ashaba FK, Mwesigwa S, Edgar K, Kamya MR, Nsobya SL. Prevalence of arps10, fd, pfmdr-2, pfcrt and pfkelch13 gene mutations in Plasmodium falciparum parasite population in Uganda. PLoS One 2022; 17:e0268095. [PMID: 35511795 PMCID: PMC9070901 DOI: 10.1371/journal.pone.0268095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 04/21/2022] [Indexed: 11/18/2022] Open
Abstract
In Uganda, Artemether-Lumefantrine and Artesunate are recommended for uncomplicated and severe malaria respectively, but are currently threatened by parasite resistance. Genetic and epigenetic factors play a role in predisposing Plasmodium falciparum parasites to acquiring Pfkelch13 (K13) mutations associated with delayed artemisinin parasite clearance as reported in Southeast Asia. In this study, we report on the prevalence of mutations in the K13, pfmdr-2 (P. falciparum multidrug resistance protein 2), fd (ferredoxin), pfcrt (P. falciparum chloroquine resistance transporter), and arps10 (apicoplast ribosomal protein S10) genes in Plasmodium falciparum parasites prior to (2005) and after (2013) introduction of artemisinin combination therapies for malaria treatment in Uganda. A total of 200 P. falciparum parasite DNA samples were screened. Parasite DNA was extracted using QIAamp DNA mini kit (Qiagen, GmbH, Germany) procedure. The PCR products were sequenced using Sanger dideoxy sequencing method. Of the 200 P. falciparum DNA samples screened, sequencing for mutations in K13, pfmdr-2, fd, pfcrt, arps10 genes was successful in 142, 186, 141, 128 and 74 samples respectively. Overall, we detected six (4.2%, 6/142; 95%CI: 1.4-7.0) K13 single nucleotide polymorphisms (SNPs), of which 3.9% (2/51), 4.4% (4/91) occurred in 2005 and 2013 samples respectively. All four K13 SNPs in 2013 samples were non-synonymous (A578S, E596V, S600C and E643K) while of the two SNPs in 2005 samples, one (Y588N) is non-synonymous and the other (I587I) is synonymous. There was no statistically significant difference in the prevalence of K13 (p = 0.112) SNPs in the samples collected in 2005 and 2013. The overall prevalence of SNPs in pfmdr-2 gene was 39.8% (74/186, 95%CI: 25.1-50.4). Of this, 4.2% (4/95), 76.9% (70/91) occurred in 2005 and 2013 samples respectively. In 2005 samples only one SNP, Y423F (4.2%, 4/95) was found while in 2013, Y423F (38.5%, 35/91) and I492V (38.5%, 35/91) SNPs in the pfmdr-2 gene were found. There was a statistically significant difference in the prevalence of pfmdr-2 SNPs in the samples collected in 2005 and 2013 (p<0.001). The overall prevalence of arps10 mutations was 2.7% (2/72, 95%CI: 0.3-4.2). Two mutations, V127M (4.5%: 1/22) and D128H (4.5%: 1/22) in the arps10 gene were each found in P. falciparum parasite samples collected in 2013. There was no statistically significant difference in the prevalence of arps10 SNPs in the samples collected in 2005 and 2013 (p = 0.238). There were more pfmdr-2 SNPs in P. falciparum parasites collected after introduction of Artemisinin combination therapies in malaria treatment. This is an indicator of the need for continuous surveillance to monitor emergence of molecular markers of artemisinin resistance and its potential drivers in malaria affected regions globally.
Collapse
Affiliation(s)
- Moses Ocan
- Department of Pharmacology & Therapeutics, Makerere University, Kampala, Uganda
- * E-mail:
| | | | - Savannah Mwesigwa
- Department of Immunology and Molecular Biology, Makerere University, Kampala, Uganda
| | - Kigozi Edgar
- Makerere University Biomedical Research Center, Kampala, Uganda
| | - Moses R. Kamya
- Infectious Disease Research Collaboration (IDRC), Kampala, Uganda
- Department of Medicine, Makerere University, Kampala, Uganda
| | - Sam L. Nsobya
- Infectious Disease Research Collaboration (IDRC), Kampala, Uganda
- Department of Pathology, Kampala, Uganda
| |
Collapse
|
36
|
Elmardi KA, Adam I, Malik EM, Kafy HT, Abdin MS, Kleinschmidt I, Kremers S. Impact of malaria control interventions on malaria infection and anaemia in areas with irrigated schemes: a cross-sectional population-based study in Sudan. BMC Infect Dis 2021; 21:1248. [PMID: 34906083 PMCID: PMC8670187 DOI: 10.1186/s12879-021-06929-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/01/2021] [Indexed: 11/29/2022] Open
Abstract
Background While the overall burden of malaria is still high, the global technical strategy for malaria advocates for two sets of interventions: vector control-based prevention and diagnosis and prompt effective treatment of malaria cases. This study aimed to assess the performance of malaria interventions on malaria infection and anaemia in irrigated areas in Sudan. Methods Based on the Sudan 2016 national malaria indicator survey, data for two states (Gezira and Sennar), characterized by large-irrigated schemes, were analysed. Four community-level malaria interventions were used as contextual variables: utilization of malaria diagnosis, utilization of Artemisinin-based combination therapy (ACT), utilization of long-lasting insecticidal nets (LLINs) and coverage with indoor residual spraying (IRS). Association between these interventions and two outcomes: malaria infection and anaemia, was assessed separately. Malaria infection was assessed in all age groups while anaemia was assessed in children under 5 years. Multilevel multiple logistic regression analysis were conducted. Results Among 4478 individuals involved in this study distributed over 47 clusters, the overall malaria infection rate was 3.0% and 56.5% of the children under 5 years (total = 322) were anaemic. Except for IRS coverage (69.6%), the average utilization of interventions was relatively low: 52.3% for utilization of diagnosis, 33.0% for utilization of ACTs and 18.6% for LLINs utilization. The multi-level multiple logistic regression model showed that only IRS coverage was associated with malaria infection (Odds ratio 0.83 per 10% coverage, 95%Confidence Interval (95%CI) 0.74–0.94, p = 0.003) indicating that a higher level of IRS coverage was associated with less malaria infection. Anaemia was not associated with any intervention (all p values larger than 0.1). Conclusions Malaria transmission in Gezira and Sennar areas is low. IRS, with insecticide to which vectors are susceptible, is an effective malaria control intervention in irrigated schemes. Community utilization of other interventions was not associated with malaria infection in this study. This may be due to the low utilization of these interventions. However, individual use of LLINs provide personal protection. This study failed to establish an association between anaemia and malaria control interventions in low transmission areas. The higher level of malaria infection in urban areas is a cause for concern.
Collapse
Affiliation(s)
- Khalid Abdelmutalab Elmardi
- Health Information, Monitoring and Evaluation and Evidence Department, Federal Ministry of Health, Khartoum, Sudan. .,Department of Health Promotion, Faculty of Health, Medicine and Life Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht, The Netherlands.
| | - Ishag Adam
- Department of Obstetrics and Gynecology, Unaizah College of Medicine and Medical Sciences, Qassim University, Unaizah, Saudi Arabia
| | | | - Hmooda Toto Kafy
- Directorate General of Primary Health Care, Federal Ministry of Health, Khartoum, Sudan
| | - Mogahid Sheikheldien Abdin
- Health Information, Monitoring and Evaluation and Evidence Department, Federal Ministry of Health, Khartoum, Sudan
| | - Immo Kleinschmidt
- MRC International Statistics and Epidemiology Group, Departments of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, London, UK.,Wits Research Institute for Malaria, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Southern African Development Community Malaria Elimination Eight Secretariat, Windhoek, Namibia
| | - Stef Kremers
- Department of Health Promotion, Faculty of Health, Medicine and Life Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht, The Netherlands
| |
Collapse
|
37
|
Gonzales SJ, Bol S, Braddom AE, Sullivan R, Reyes RA, Ssewanyana I, Eggers E, Greenhouse B, Bunnik EM. Longitudinal analysis of FcRL5 expression and clonal relationships among classical and atypical memory B cells following malaria. Malar J 2021; 20:435. [PMID: 34758841 PMCID: PMC8579674 DOI: 10.1186/s12936-021-03970-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 10/30/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Chronic and frequently recurring infectious diseases, such as malaria, are associated with expanded populations of atypical memory B cells (MBCs). These cells are different from classical MBCs by the lack of surface markers CD21 and CD27 and increased expression of inhibitory receptors, such as FcRL5. While the phenotype and conditions leading to neogenesis of atypical MBCs in malaria-experienced individuals have been studied extensively, the origin of these cells remains equivocal. Functional similarities between FcRL5+ atypical MBCs and FcRL5+ classical MBCs have been reported, suggesting that these cells may be developmentally related. METHODS Here, a longitudinal analysis of FcRL5 expression in various B cell subsets was performed in two children from a high transmission region in Uganda over a 6-month period in which both children experienced a malaria episode. Using B-cell receptor (BCR)-sequencing to track clonally related cells, the connections between IgM+ and IgG+ atypical MBCs and other B cell subsets were studied. RESULTS The highest expression of FcRL5 was found among IgG+ atypical MBCs, but FcRL5+ cells were present in all MBC subsets. Following malaria, FcRL5 expression increased in all IgM+ MBC subsets analysed here: classical, activated, and atypical MBCs, while results for IgG+ MBC subsets were inconclusive. IgM+ atypical MBCs showed few connections with other B cell subsets, higher turnover than IgG+ atypical MBCs, and were predominantly derived from naïve B cells and FcRL5- IgM+ classical MBCs. In contrast, IgG+ atypical MBCs were clonally expanded and connected with classical MBCs. IgG+ atypical MBCs present after a malaria episode mainly originated from FcRL5+ IgG+ classical MBCs. CONCLUSIONS Collectively, these results suggest fundamental differences between unswitched and class-switched B cell populations and provide clues about the primary developmental pathways of atypical MBCs in malaria-experienced individuals.
Collapse
Affiliation(s)
- S Jake Gonzales
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Sebastiaan Bol
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Ashley E Braddom
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Richard Sullivan
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Shape Therapeutics, 219 Terry St., Seattle, WA, USA
| | - Raphael A Reyes
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Isaac Ssewanyana
- London School of Hygiene and Tropical Medicine, London, UK
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - Erica Eggers
- Department of Neurology, UCSF Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Bryan Greenhouse
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Evelien M Bunnik
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
38
|
Braddom AE, Bol S, Gonzales SJ, Reyes RA, Musinguzi K, Nankya F, Ssewanyana I, Greenhouse B, Bunnik EM. B Cell Receptor Repertoire Analysis in Malaria-Naive and Malaria-Experienced Individuals Reveals Unique Characteristics of Atypical Memory B Cells. mSphere 2021; 6:e0072621. [PMID: 34523978 PMCID: PMC8550134 DOI: 10.1128/msphere.00726-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 11/24/2022] Open
Abstract
Malaria, caused by parasites of the Plasmodium genus, is responsible for significant morbidity and mortality globally. Chronic Plasmodium falciparum exposure affects the B cell compartment, leading to the accumulation of atypical memory B cells (atMBCs). IgM-positive (IgM+) and IgG+ atMBCs have not been compared in-depth in the context of malaria, nor is it known if atMBCs in malaria-experienced individuals are different from phenotypically similar B cells in individuals with no known history of Plasmodium exposure. To address these questions, we characterized the B cell receptor (BCR) repertoire of naive B cells (NBCs), IgM+ and IgG+ classical MBCs (cMBCs), and IgM+ and IgG+ atMBCs from 13 malaria-naive American adults and 7 malaria-experienced Ugandan adults. Our results demonstrate that P. falciparum exposure mainly drives changes in atMBCs. In comparison to malaria-naive adults, the BCR repertoire of Plasmodium-exposed adults showed increased levels of somatic hypermutation in the heavy chain V region in IgM+ and IgG+ atMBCs, shorter heavy chain complementarity-determining region 3 (HCDR3) in IgG+ atMBCs, and increased usage of IGHV3-73 in IgG+ cMBCs and both IgM+ and IgG+ atMBCs. Irrespective of Plasmodium exposure, IgM+ atMBCs closely resembled NBCs, while IgG+ atMBCs resembled IgG+ cMBCs. Physicochemical properties of the HCDR3 seemed to be intrinsic to cell type and independent of malaria experience. The resemblance between atMBCs from Plasmodium-exposed and naive adults suggests similar differentiation pathways regardless of chronic antigen exposure. Moreover, these data demonstrate that IgM+ and IgG+ atMBCs are distinct populations that should be considered separately in future analyses. IMPORTANCE Malaria, caused by Plasmodium parasites, still contributes to a high global burden of disease, mainly in children under 5 years of age. Chronic and recurrent Plasmodium infections affect the development of B cell memory against the parasite and promote the accumulation of atypical memory B cells (atMBCs), which have an unclear function in the immune response. Understanding where these cells originate from and whether they are beneficial in the immune response to Plasmodium will help inform vaccination development efforts. We found differences in B cell receptor (BCR) properties of atMBCs between malaria-naive and malaria-experienced adults that are suggestive of divergent selection processes, resulting in more somatic hypermutation and differential immunoglobulin heavy chain V (IGHV) gene usage. Despite these differences, atMBCs from malaria-naive and malaria-experienced adults also showed many similarities in BCR characteristics, such as physicochemical properties of the HCDR3 region, suggesting that atMBCs undergo similar differentiation pathways in response to different pathogens. Our study provides new insights into the effects of malaria experience on the B cell compartment and the relationships between atMBCs and other B cell populations.
Collapse
Affiliation(s)
- Ashley E. Braddom
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Sebastiaan Bol
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - S. Jake Gonzales
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Raphael A. Reyes
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | | | | | - Isaac Ssewanyana
- Infectious Disease Research Collaboration, Kampala, Uganda
- London School of Hygiene and Tropical Medicine, London, UK
| | - Bryan Greenhouse
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Evelien M. Bunnik
- Department of Microbiology, Immunology and Molecular Genetics, Long School of Medicine, The University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
39
|
Paton RS, Kamau A, Akech S, Agweyu A, Ogero M, Mwandawiro C, Mturi N, Mohammed S, Mpimbaza A, Kariuki S, Otieno NA, Nyawanda BO, Mohamed AF, Mtove G, Reyburn H, Gupta S, Bejon P, Lourenço J, Snow RW. Malaria infection and severe disease risks in Africa. Science 2021; 373:926-931. [PMID: 34413238 PMCID: PMC7611598 DOI: 10.1126/science.abj0089] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/29/2021] [Indexed: 12/18/2022]
Abstract
The relationship between community prevalence of Plasmodium falciparum and the burden of severe, life-threatening disease remains poorly defined. To examine the three most common severe malaria phenotypes from catchment populations across East Africa, we assembled a dataset of 6506 hospital admissions for malaria in children aged 3 months to 9 years from 2006 to 2020. Admissions were paired with data from community parasite infection surveys. A Bayesian procedure was used to calibrate uncertainties in exposure (parasite prevalence) and outcomes (severe malaria phenotypes). Each 25% increase in prevalence conferred a doubling of severe malaria admission rates. Severe malaria remains a burden predominantly among young children (3 to 59 months) across a wide range of community prevalence typical of East Africa. This study offers a quantitative framework for linking malaria parasite prevalence and severe disease outcomes in children.
Collapse
Affiliation(s)
- Robert S Paton
- Department of Zoology, University of Oxford, Oxford, UK.
| | - Alice Kamau
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Nairobi, Kenya.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| | - Samuel Akech
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Nairobi, Kenya
| | - Ambrose Agweyu
- Kilimanjaro Christian Medical Centre/Joint Malaria Programme, Moshi, Tanzania
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Nairobi, Kenya
| | - Morris Ogero
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Nairobi, Kenya
| | - Charles Mwandawiro
- Eastern and Southern Africa Centre of International Parasite Control, Kenya Medical Research Institute (KEMRI), Nairobi, Kenya
| | - Neema Mturi
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Shebe Mohammed
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Arthur Mpimbaza
- Child Health and Development Centre, Makerere University, College of Health Sciences, Kampala, Uganda
| | - Simon Kariuki
- Kenya Medical Research Institute (KEMRI)-Centre for Global Health Research, Kisumu, Kenya
| | - Nancy A Otieno
- Kenya Medical Research Institute (KEMRI)-Centre for Global Health Research, Kisumu, Kenya
| | - Bryan O Nyawanda
- Kenya Medical Research Institute (KEMRI)-Centre for Global Health Research, Kisumu, Kenya
| | - Amina F Mohamed
- Kilimanjaro Christian Medical Centre/Joint Malaria Programme, Moshi, Tanzania
- London School of Hygiene and Tropical Medicine, London, UK
| | - George Mtove
- National Institute for Medical Research, Amani Research Centre, Muheza, Tanzania
| | - Hugh Reyburn
- London School of Hygiene and Tropical Medicine, London, UK
| | - Sunetra Gupta
- Department of Zoology, University of Oxford, Oxford, UK
| | - Philip Bejon
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Kilifi, Kenya
| | - José Lourenço
- Department of Zoology, University of Oxford, Oxford, UK
| | - Robert W Snow
- Kenya Medical Research Institute (KEMRI)-Wellcome Trust Research Programme, Nairobi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
40
|
Digitale JC, Callaway PC, Martin M, Nelson G, Viard M, Rek J, Arinaitwe E, Dorsey G, Kamya M, Carrington M, Rodriguez-Barraquer I, Feeney ME. Association of Inhibitory Killer Cell Immunoglobulin-like Receptor Ligands With Higher Plasmodium falciparum Parasite Prevalence. J Infect Dis 2021; 224:175-183. [PMID: 33165540 PMCID: PMC8491837 DOI: 10.1093/infdis/jiaa698] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 11/05/2020] [Indexed: 01/01/2023] Open
Abstract
Killer cell immunoglobulin-like receptors (KIRs) and their HLA ligands influence the outcome of many infectious diseases. We analyzed the relationship of compound KIR-HLA genotypes with risk of Plasmodium falciparum infection in a longitudinal cohort of 890 Ugandan individuals. We found that presence of HLA-C2 and HLA-Bw4, ligands for inhibitory KIR2DL1 and KIR3DL1, respectively, increased the likelihood of P. falciparum parasitemia in an additive manner. Individuals homozygous for HLA-C2, which mediates strong inhibition via KIR2DL1, had the highest odds of parasitemia, HLA-C1/C2 heterozygotes had intermediate odds, and individuals homozygous for HLA-C1, which mediates weaker inhibition through KIR2DL2/3, had the lowest odds of parasitemia. In addition, higher surface expression of HLA-C, the ligand for inhibitory KIR2DL1/2/3, was associated with a higher likelihood of parasitemia. Together these data indicate that stronger KIR-mediated inhibition confers a higher risk of P. falciparum parasitemia and suggest that KIR-expressing effector cells play a role in mediating antiparasite immunity.
Collapse
Affiliation(s)
- Jean C Digitale
- Department of Medicine, University of California, San
Francisco, San Francisco, California, USA
- Department of Epidemiology and Biostatistics, University
of California, San Francisco, San Francisco, California, USA
| | - Perri C Callaway
- Department of Medicine, University of California, San
Francisco, San Francisco, California, USA
- Infectious Disease and Immunity Graduate Group, University
of California, Berkeley, Berkeley, California, USA
| | - Maureen Martin
- Basic Science Program, Frederick National Laboratory for
Cancer Research in the Laboratory of Integrative Cancer Immunology, National
Cancer Institute, Bethesda, Maryland, USA
| | - George Nelson
- Advanced Biomedical Computational Science, Frederick
National Laboratory for Cancer Research, Frederick, Maryland,
USA
| | - Mathias Viard
- Basic Science Program, Frederick National Laboratory for
Cancer Research in the Laboratory of Integrative Cancer Immunology, National
Cancer Institute, Bethesda, Maryland, USA
| | - John Rek
- Infectious Diseases Research Collaboration,
Kampala, Uganda
| | - Emmanuel Arinaitwe
- Infectious Diseases Research Collaboration,
Kampala, Uganda
- London School of Hygiene and Tropical
Medicine, London, United
Kingdom
| | - Grant Dorsey
- Department of Medicine, University of California, San
Francisco, San Francisco, California, USA
| | - Moses Kamya
- Infectious Diseases Research Collaboration,
Kampala, Uganda
- Department of Medicine, Makerere University,
Kampala, Uganda
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for
Cancer Research in the Laboratory of Integrative Cancer Immunology, National
Cancer Institute, Bethesda, Maryland, USA
- Ragon Institute of MGH MIT and Harvard,
Cambridge, Massachusetts, USA
| | | | - Margaret E Feeney
- Department of Medicine, University of California, San
Francisco, San Francisco, California, USA
- Department of Pediatrics, University of California San
Francisco, San Francisco, California, USA
| |
Collapse
|
41
|
Atukunda A, Deogratius MA, Arinaitwe E, Orishaba P, Kamya MR, Nankabirwa JI. Do clinicians in areas of declining malaria transmission adhere to malaria diagnosis guidelines? A cross-sectional study from Kampala, Uganda. Malar J 2021; 20:187. [PMID: 33858434 PMCID: PMC8051068 DOI: 10.1186/s12936-021-03729-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/08/2021] [Indexed: 12/05/2022] Open
Abstract
BACKGROUND Uganda's clinical management guidelines recommend a malaria laboratory test in all patients presenting with fever (history of fever or an axillary temperature ≥ 37.5 °C), and only those with a positive test receive anti-malarial treatment. However, the current practice in areas with declining malaria transmission remains unknown. This study assessed the clinicians' diagnostic practices, the factors associated with recommending a test, and the risk of missing a malaria case when a test is not recommended in patients presenting with fever in Kampala, an area of declining malaria transmission in Uganda. METHODS Between January and March 2020, 383 participants aged ≥ 12 years and presenting to Kisenyi Health Centre IV in Kampala district with fever were enrolled in the study. A questionnaire was administered during exit interviews, routine diagnostic practices were recorded from participant clinical notes, and a research blood slide was obtained for later reading. RESULTS Of the enrolled participants, 356 (93%) had a malaria diagnostic test recommended by the clinician. Factors associated with increasing prevalence of having a test recommended included; history of overnight travel (adjusted prevalence ratio [aPR] 1.07, 95% confidence interval [CI] 1.02-1.13, p = 0.011), being married (aPR = 1.07, 95% CI 1.01-1.13, p = 0.022), and having tertiary education (aPR = 1.09 95% CI 1.01-1.17, p = 0.031). Among the 27 participants where a malaria diagnostic test was not recommended, 4 (14.8%) had a positive study smear. CONCLUSION Despite having significant declines in malaria transmission in Kampala in the last decade, clinicians at the study health facility highly adhered to the clinical management guidelines, recommending a malaria test in almost all patients presenting with fever. However, a significant proportion of malaria cases was missed when a test was not recommended. These results highlight the importance of laboratory testing for malaria in all patients who present with fevers and live in endemic settings even when the transmission has significantly declined.
Collapse
Affiliation(s)
- Angella Atukunda
- Department of Internal Medicine, School of Medicine, Makerere University College of Health Science, P.O Box 7072, Kampala, Uganda.
| | - Mwaka Amos Deogratius
- Department of Internal Medicine, School of Medicine, Makerere University College of Health Science, P.O Box 7072, Kampala, Uganda
| | - Emmanuel Arinaitwe
- Infectious Disease Research Collaboration, Plot 2C Nakasero Hill Road, P.O Box 7475, Kampala, Uganda
| | - Philip Orishaba
- Clinical Epidemiology Unit, School of Medicine, Makerere University College of Health Science, P.O. Box 7072, Kampala, Uganda
| | - Moses R Kamya
- Department of Internal Medicine, School of Medicine, Makerere University College of Health Science, P.O Box 7072, Kampala, Uganda.,Infectious Disease Research Collaboration, Plot 2C Nakasero Hill Road, P.O Box 7475, Kampala, Uganda
| | - Joaniter I Nankabirwa
- Department of Internal Medicine, School of Medicine, Makerere University College of Health Science, P.O Box 7072, Kampala, Uganda.,Infectious Disease Research Collaboration, Plot 2C Nakasero Hill Road, P.O Box 7475, Kampala, Uganda
| |
Collapse
|
42
|
Digitale JC, Callaway PC, Martin M, Nelson G, Viard M, Rek J, Arinaitwe E, Dorsey G, Kamya M, Carrington M, Rodriguez-Barraquer I, Feeney ME. HLA Alleles B *53:01 and C *06:02 Are Associated With Higher Risk of P. falciparum Parasitemia in a Cohort in Uganda. Front Immunol 2021; 12:650028. [PMID: 33815410 PMCID: PMC8017319 DOI: 10.3389/fimmu.2021.650028] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/22/2021] [Indexed: 12/11/2022] Open
Abstract
Variation within the HLA locus been shown to play an important role in the susceptibility to and outcomes of numerous infections, but its influence on immunity to P. falciparum malaria is unclear. Increasing evidence indicates that acquired immunity to P. falciparum is mediated in part by the cellular immune response, including NK cells, CD4 and CD8 T cells, and semi-invariant γδ T cells. HLA molecules expressed by these lymphocytes influence the epitopes recognized by P. falciparum-specific T cells, and class I HLA molecules also serve as ligands for inhibitory receptors including KIR. Here we assessed the relationship of HLA class I and II alleles to the risk of P. falciparum infection and symptomatic malaria in a cohort of 892 Ugandan children and adults followed prospectively via both active and passive surveillance. We identified two HLA class I alleles, HLA-B*53:01 and HLA-C*06:02, that were associated with a higher prevalence of P. falciparum infection. Notably, no class I or II HLA alleles were found to be associated with protection from P. falciparum parasitemia or symptomatic malaria. These findings suggest that class I HLA plays a role in the ability to restrict parasitemia, supporting an essential role for the cellular immune response in P. falciparum immunity. Our findings underscore the need for better tools to enable mechanistic studies of the T cell response to P. falciparum at the epitope level and suggest that further study of the role of HLA in regulating pre-erythrocytic stages of the P. falciparum life cycle is warranted.
Collapse
Affiliation(s)
- Jean C. Digitale
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA, United States
| | - Perri C. Callaway
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Infectious Disease and Immunity Graduate Group, University of California, Berkeley, Berkeley, CA, United States
| | - Maureen Martin
- Basic Science Program, Frederick National Laboratory for Cancer Research in the Laboratory of Integrative Cancer Immunology, National Cancer Institute, Bethesda, MD, United States
| | - George Nelson
- Advanced Biomedical Computational Science, Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Mathias Viard
- Basic Science Program, Frederick National Laboratory for Cancer Research in the Laboratory of Integrative Cancer Immunology, National Cancer Institute, Bethesda, MD, United States
| | - John Rek
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Emmanuel Arinaitwe
- Infectious Diseases Research Collaboration, Kampala, Uganda
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Grant Dorsey
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
| | - Moses Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Department of Medicine, Makerere University, Kampala, Uganda
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research in the Laboratory of Integrative Cancer Immunology, National Cancer Institute, Bethesda, MD, United States
- Ragon Institute of MGH MIT and Harvard, Cambridge, MA, United States
| | | | - Margaret E. Feeney
- Department of Medicine, University of California, San Francisco, San Francisco, CA, United States
- Department of Pediatrics, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
43
|
Mawejje HD, Kilama M, Kigozi SP, Musiime AK, Kamya M, Lines J, Lindsay SW, Smith D, Dorsey G, Donnelly MJ, Staedke SG. Impact of seasonality and malaria control interventions on Anopheles density and species composition from three areas of Uganda with differing malaria endemicity. Malar J 2021; 20:138. [PMID: 33678166 PMCID: PMC7938603 DOI: 10.1186/s12936-021-03675-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 02/25/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) are the malaria control interventions primarily responsible for reductions in transmission intensity across sub-Saharan Africa. These interventions, however, may have differential impact on Anopheles species composition and density. This study examined the changing pattern of Anopheles species in three areas of Uganda with markedly different transmission intensities and different levels of vector control. METHODS From October 2011 to June 2016 mosquitoes were collected monthly using CDC light traps from 100 randomly selected households in three areas: Walukuba (low transmission), Kihihi (moderate transmission) and Nagongera (high transmission). LLINs were distributed in November 2013 in Walukuba and Nagongera and in June 2014 in Kihihi. IRS was implemented only in Nagongera, with three rounds of bendiocarb delivered between December 2014 and June 2015. Mosquito species were identified morphologically and by PCR (Polymerase Chain Reaction). RESULTS In Walukuba, LLIN distribution was associated with a decline in Anopheles funestus vector density (0.07 vs 0.02 mosquitoes per house per night, density ratio [DR] 0.34, 95% CI: 0.18-0.65, p = 0.001), but not Anopheles gambiae sensu stricto (s.s.) nor Anopheles arabiensis. In Kihihi, over 98% of mosquitoes were An. gambiae s.s. and LLIN distribution was associated with a decline in An. gambiae s.s. vector density (4.00 vs 2.46, DR 0.68, 95% CI: 0.49-0.94, p = 0.02). In Nagongera, the combination of LLINs and multiple rounds of IRS was associated with almost complete elimination of An. gambiae s.s. (28.0 vs 0.17, DR 0.004, 95% CI: 0.002-0.009, p < 0.001), and An. funestus sensu lato (s.l.) (3.90 vs 0.006, DR 0.001, 95% CI: 0.0005-0.004, p < 0.001), with a less pronounced decline in An. arabiensis (9.18 vs 2.00, DR 0.15 95% CI: 0.07-0.33, p < 0.001). CONCLUSIONS LLIN distribution was associated with reductions in An. funestus s.l. in the lowest transmission site and An. gambiae s.s. in the moderate transmission site. In the highest transmission site, a combination of LLINs and multiple rounds of IRS was associated with the near collapse of An. gambiae s.s. and An. funestus s.l. Following IRS, An. arabiensis, a behaviourally resilient vector, became the predominant species, which may have implications for malaria vector control activities. Development of interventions targeted at outdoor biting remains a priority.
Collapse
Affiliation(s)
- Henry Ddumba Mawejje
- Infectious Diseases Research Collaboration, Kampala, Uganda. .,London School of Hygiene and Tropical Medicine, London, UK.
| | - Maxwell Kilama
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Simon P Kigozi
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Alex K Musiime
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Moses Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda.,Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Jo Lines
- London School of Hygiene and Tropical Medicine, London, UK
| | | | - David Smith
- Department of Health Metrics Sciences, University of Washington, Seattle, WA, USA
| | - Grant Dorsey
- Department of Medicine, University of California, San Francisco, USA
| | - Martin J Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place Liverpool, UK
| | | |
Collapse
|
44
|
Tukwasibwe S, Traherne JA, Chazara O, Jayaraman J, Trowsdale J, Moffett A, Jiang W, Nankabirwa JI, Rek J, Arinaitwe E, Nsobya SL, Atuheirwe M, Frank M, Godwin A, Jagannathan P, Cose S, Kamya MR, Dorsey G, Rosenthal PJ, Colucci F, Nakimuli A. Diversity of KIR genes and their HLA-C ligands in Ugandan populations with historically varied malaria transmission intensity. Malar J 2021; 20:111. [PMID: 33632228 PMCID: PMC7908804 DOI: 10.1186/s12936-021-03652-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 02/16/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Malaria is one of the most serious infectious diseases in the world. The malaria burden is greatly affected by human immunity, and immune responses vary between populations. Genetic diversity in KIR and HLA-C genes, which are important in immunity to infectious diseases, is likely to play a role in this heterogeneity. Several studies have shown that KIR and HLA-C genes influence the immune response to viral infections, but few studies have examined the role of KIR and HLA-C in malaria infection, and these have used low-resolution genotyping. The aim of this study was to determine whether genetic variation in KIR and their HLA-C ligands differ in Ugandan populations with historically varied malaria transmission intensity using more comprehensive genotyping approaches. METHODS High throughput multiplex quantitative real-time PCR method was used to genotype KIR genetic variants and copy number variation and a high-throughput real-time PCR method was developed to genotype HLA-C1 and C2 allotypes for 1344 participants, aged 6 months to 10 years, enrolled from Ugandan populations with historically high (Tororo District), medium (Jinja District) and low (Kanungu District) malaria transmission intensity. RESULTS The prevalence of KIR3DS1, KIR2DL5, KIR2DS5, and KIR2DS1 genes was significantly lower in populations from Kanungu compared to Tororo (7.6 vs 13.2%: p = 0.006, 57.2 vs 66.4%: p = 0.005, 33.2 vs 46.6%: p < 0.001, and 19.7 vs 26.7%: p = 0.014, respectively) or Jinja (7.6 vs 18.1%: p < 0.001, 57.2 vs 63.8%: p = 0.048, 33.2 vs 43.5%: p = 0.002, and 19.7 vs 30.4%: p < 0.001, respectively). The prevalence of homozygous HLA-C2 was significantly higher in populations from Kanungu (31.6%) compared to Jinja (21.4%), p = 0.043, with no significant difference between Kanungu and Tororo (26.7%), p = 0.296. CONCLUSIONS The KIR3DS1, KIR2DL5, KIR2DS5 and KIR2DS1 genes may partly explain differences in transmission intensity of malaria since these genes have been positively selected for in places with historically high malaria transmission intensity. The high-throughput, multiplex, real-time HLA-C genotyping PCR method developed will be useful in disease-association studies involving large cohorts.
Collapse
Affiliation(s)
- Stephen Tukwasibwe
- Department of Obstetrics and Gynaecology, School of Medicine, Makerere University College of Health Sciences, P.O BOX 7072, Kampala, Uganda
- Infectious Diseases Research Collaboration, 2C Nakasero Hill Road, Kampala, Uganda
| | | | - Olympe Chazara
- Department of Pathology, University of Cambridge, Cambridge, UK
- University of Cambridge Centre for Trophoblast Research, Cambridge, UK
| | - Jyothi Jayaraman
- Department of Pathology, University of Cambridge, Cambridge, UK
- University of Cambridge Centre for Trophoblast Research, Cambridge, UK
| | - John Trowsdale
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Ashley Moffett
- Department of Pathology, University of Cambridge, Cambridge, UK
- University of Cambridge Centre for Trophoblast Research, Cambridge, UK
| | - Wei Jiang
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Joaniter I. Nankabirwa
- Department of Obstetrics and Gynaecology, School of Medicine, Makerere University College of Health Sciences, P.O BOX 7072, Kampala, Uganda
- Infectious Diseases Research Collaboration, 2C Nakasero Hill Road, Kampala, Uganda
| | - John Rek
- Infectious Diseases Research Collaboration, 2C Nakasero Hill Road, Kampala, Uganda
| | - Emmanuel Arinaitwe
- Infectious Diseases Research Collaboration, 2C Nakasero Hill Road, Kampala, Uganda
| | - Samuel L. Nsobya
- Department of Obstetrics and Gynaecology, School of Medicine, Makerere University College of Health Sciences, P.O BOX 7072, Kampala, Uganda
- Infectious Diseases Research Collaboration, 2C Nakasero Hill Road, Kampala, Uganda
| | - Maxine Atuheirwe
- Department of Obstetrics and Gynaecology, School of Medicine, Makerere University College of Health Sciences, P.O BOX 7072, Kampala, Uganda
| | - Mubiru Frank
- Department of Obstetrics and Gynaecology, School of Medicine, Makerere University College of Health Sciences, P.O BOX 7072, Kampala, Uganda
| | - Anguzu Godwin
- Department of Obstetrics and Gynaecology, School of Medicine, Makerere University College of Health Sciences, P.O BOX 7072, Kampala, Uganda
| | | | - Stephen Cose
- MRC/UVRI and LSHTM Uganda Research Unit, Kampala, Uganda
| | - Moses R. Kamya
- Department of Obstetrics and Gynaecology, School of Medicine, Makerere University College of Health Sciences, P.O BOX 7072, Kampala, Uganda
- Infectious Diseases Research Collaboration, 2C Nakasero Hill Road, Kampala, Uganda
| | | | | | - Francesco Colucci
- University of Cambridge Centre for Trophoblast Research, Cambridge, UK
- Department of Obstetrics & Gynaecology, University of Cambridge, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, CB2 0SW UK
| | - Annettee Nakimuli
- Department of Obstetrics and Gynaecology, School of Medicine, Makerere University College of Health Sciences, P.O BOX 7072, Kampala, Uganda
| |
Collapse
|
45
|
Briggs J, Kuchta A, Murphy M, Tessema S, Arinaitwe E, Rek J, Chen A, Nankabirwa JI, Drakeley C, Smith D, Bousema T, Kamya M, Rodriguez-Barraquer I, Staedke S, Dorsey G, Rosenthal PJ, Greenhouse B. Within-household clustering of genetically related Plasmodium falciparum infections in a moderate transmission area of Uganda. Malar J 2021; 20:68. [PMID: 33531029 PMCID: PMC8042884 DOI: 10.1186/s12936-021-03603-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/22/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND Evaluation of genetic relatedness of malaria parasites is a useful tool for understanding transmission patterns, but patterns are not easily detectable in areas with moderate to high malaria transmission. To evaluate the feasibility of detecting genetic relatedness in a moderate malaria transmission setting, relatedness of Plasmodium falciparum infections was measured in cohort participants from randomly selected households in the Kihihi sub-county of Uganda (annual entomological inoculation rate of 27 infectious bites per person). METHODS All infections detected via microscopy or Plasmodium-specific loop mediated isothermal amplification from passive and active case detection during August 2011-March 2012 were genotyped at 26 microsatellite loci, providing data for 349 samples from 230 participants living in 80 households. Pairwise genetic relatedness was calculated using identity by state (IBS). RESULTS As expected, genetic diversity was high (mean heterozygosity [He] = 0.73), and the majority (76.5 %) of samples were polyclonal. Despite the high genetic diversity, fine-scale population structure was detectable, with significant spatiotemporal clustering of highly related infections. Although the difference in malaria incidence between households at higher (mean 1127 metres) versus lower elevation (mean 1015 metres) was modest (1.4 malaria cases per person-year vs. 1.9 per person-year, respectively), there was a significant difference in multiplicity of infection (2.2 vs. 2.6, p = 0.008) and, more strikingly, a higher proportion of highly related infections within households (6.3 % vs. 0.9 %, p = 0.0005) at higher elevation compared to lower elevation. CONCLUSIONS Genetic data from a relatively small number of diverse, multiallelic loci reflected fine scale patterns of malaria transmission. Given the increasing interest in applying genetic data to augment malaria surveillance, this study provides evidence that genetic data can be used to inform transmission patterns at local spatial scales even in moderate transmission areas.
Collapse
Affiliation(s)
- Jessica Briggs
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA.
| | - Alison Kuchta
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Max Murphy
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Sofonias Tessema
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | | | - John Rek
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Anna Chen
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Joaniter I Nankabirwa
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Chris Drakeley
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - David Smith
- Institute for Health Metrics & Evaluation, University of Washington, Seattle, WA, USA
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Moses Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
- Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | | | - Sarah Staedke
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, UK
| | - Grant Dorsey
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Philip J Rosenthal
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Bryan Greenhouse
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
46
|
Ssewanyana I, Rek J, Rodriguez I, Wu L, Arinaitwe E, Nankabirwa JI, Beeson JG, Mayanja-Kizza H, Rosenthal PJ, Dorsey G, Kamya MR, Drakeley C, Greenhouse B, Tetteh KKA. Impact of a Rapid Decline in Malaria Transmission on Antimalarial IgG Subclasses and Avidity. Front Immunol 2021; 11:576663. [PMID: 33584643 PMCID: PMC7873448 DOI: 10.3389/fimmu.2020.576663] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 11/17/2020] [Indexed: 11/19/2022] Open
Abstract
Understanding how immunity to malaria is affected by declining transmission is important to aid vaccine design and understand disease resurgence. Both IgG subclasses and avidity of antigen-specific responses are important components of an effective immune response. Using a multiplex bead array assay, we measured the total IgG, IgG subclasses, and avidity profiles of responses to 18 P. falciparum blood stage antigens in samples from 160 Ugandans collected at two time points during high malaria transmission and two time points following a dramatic reduction in transmission. Results demonstrated that, for the antigens tested, (i) the rate of decay of total IgG following infection declined with age and was driven consistently by the decrease in IgG3 and occasionally the decrease in IgG1; (ii) the proportion of IgG3 relative to IgG1 in the absence of infection increased with age; (iii) the increase in avidity index (the strength of association between the antibody and antigen) following infection was largely due to a rapid loss of non-avid compared to avid total IgG; and (iv) both avid and non-avid total IgG in the absence of infection increased with age. Further studies are required to understand the functional differences between IgG1 and IgG3 in order to determine their contribution to the longevity of protective immunity to malaria. Measuring changes in antibody avidity may be a better approach of detecting affinity maturation compared to avidity index due to the differential expansion and contraction of high and low avidity total IgG.
Collapse
Affiliation(s)
- Isaac Ssewanyana
- Infectious Diseases Research Collaboration, Kampala, Uganda.,Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - John Rek
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Isabel Rodriguez
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Lindsey Wu
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Emmanuel Arinaitwe
- Infectious Diseases Research Collaboration, Kampala, Uganda.,Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Joaniter I Nankabirwa
- Infectious Diseases Research Collaboration, Kampala, Uganda.,School of Medicine, Makerere University, Kampala, Uganda
| | - James G Beeson
- Burnet Institute, Melbourne, VIC, Australia.,Central Clinical School, Monash University, Melbourne, VIC, Australia.,Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | | | - Philip J Rosenthal
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Grant Dorsey
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States
| | - Moses R Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda.,School of Medicine, Makerere University, Kampala, Uganda
| | - Chris Drakeley
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Bryan Greenhouse
- Department of Medicine, University of California San Francisco, San Francisco, CA, United States.,Chan Zuckerberg Biohub, San Francisco, CA, United States
| | - Kevin K A Tetteh
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| |
Collapse
|
47
|
Epstein A, Namuganga JF, Kamya EV, Nankabirwa JI, Bhatt S, Rodriguez-Barraquer I, Staedke SG, Kamya MR, Dorsey G, Greenhouse B. Estimating malaria incidence from routine health facility-based surveillance data in Uganda. Malar J 2020; 19:445. [PMID: 33267886 PMCID: PMC7709253 DOI: 10.1186/s12936-020-03514-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/19/2020] [Indexed: 12/03/2022] Open
Abstract
Background Accurate measures of malaria incidence are essential to track progress and target high-risk populations. While health management information system (HMIS) data provide counts of malaria cases, quantifying the denominator for incidence using these data is challenging because catchment areas and care-seeking behaviours are not well defined. This study’s aim was to estimate malaria incidence using HMIS data by adjusting the population denominator accounting for travel time to the health facility. Methods Outpatient data from two public health facilities in Uganda (Kihihi and Nagongera) over a 3-year period (2011–2014) were used to model the relationship between travel time from patient village of residence (available for each individual) to the facility and the relative probability of attendance using Poisson generalized additive models. Outputs from the model were used to generate a weighted population denominator for each health facility and estimate malaria incidence. Among children aged 6 months to 11 years, monthly HMIS-derived incidence estimates, with and without population denominators weighted by probability of attendance, were compared with gold standard measures of malaria incidence measured in prospective cohorts. Results A total of 48,898 outpatient visits were recorded across the two sites over the study period. HMIS incidence correlated with cohort incidence over time at both study sites (correlation in Kihihi = 0.64, p < 0.001; correlation in Nagongera = 0.34, p = 0.045). HMIS incidence measures with denominators unweighted by probability of attendance underestimated cohort incidence aggregated over the 3 years in Kihihi (0.5 cases per person-year (PPY) vs 1.7 cases PPY) and Nagongera (0.3 cases PPY vs 3.0 cases PPY). HMIS incidence measures with denominators weighted by probability of attendance were closer to cohort incidence, but remained underestimates (1.1 cases PPY in Kihihi and 1.4 cases PPY in Nagongera). Conclusions Although malaria incidence measured using HMIS underestimated incidence measured in cohorts, even when adjusting for probability of attendance, HMIS surveillance data are a promising and scalable source for tracking relative changes in malaria incidence over time, particularly when the population denominator can be estimated by incorporating information on village of residence.
Collapse
Affiliation(s)
- Adrienne Epstein
- Department of Medicine, University of California, San Francisco, 550 16th Street, San Francisco, CA, 94158, USA.
| | | | | | - Joaniter I Nankabirwa
- Infectious Diseases Research Collaboration, Kampala, Uganda.,Department of Internal Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Samir Bhatt
- Department of Infectious Disease Epidemiology, St Marys Hospital, Imperial College, London, UK
| | - Isabel Rodriguez-Barraquer
- Department of Medicine, University of California, San Francisco, 550 16th Street, San Francisco, CA, 94158, USA
| | | | - Moses R Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda.,Department of Internal Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Grant Dorsey
- Department of Medicine, University of California, San Francisco, 550 16th Street, San Francisco, CA, 94158, USA
| | - Bryan Greenhouse
- Department of Medicine, University of California, San Francisco, 550 16th Street, San Francisco, CA, 94158, USA.,Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
48
|
Zhou G, Lo E, Githeko AK, Afrane YA, Yan G. Long-lasting microbial larvicides for controlling insecticide resistant and outdoor transmitting vectors: a cost-effective supplement for malaria interventions. Infect Dis Poverty 2020; 9:162. [PMID: 33243294 PMCID: PMC7691065 DOI: 10.1186/s40249-020-00767-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 10/19/2020] [Indexed: 01/19/2023] Open
Abstract
The issues of pyrethroid resistance and outdoor malaria parasite transmission have prompted the WHO to call for the development and adoption of viable alternative vector control methods. Larval source management is one of the core malaria vector interventions recommended by the Ministry of Health in many African countries, but it is rarely implemented due to concerns on its cost-effectiveness. New long-lasting microbial larvicide can be a promising cost-effective supplement to current vector control and elimination methods because microbial larvicide uses killing mechanisms different from pyrethroids and other chemical insecticides. It has been shown to be effective in reducing the overall vector abundance and thus both indoor and outdoor transmission. In our opinion, the long-lasting formulation can potentially reduce the cost of larvicide field application, and should be evaluated for its cost-effectiveness, resistance development, and impact on non-target organisms when integrating with other malaria vector control measures. In this opinion, we highlight that long-lasting microbial larvicide can be a potential cost-effective product that complements current front-line long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) programs for malaria control and elimination. Microbial larviciding targets immature mosquitoes, reduces both indoor and outdoor transmission and is not affected by vector resistance to synthetic insecticides. This control method is a shift from the conventional LLINs and IRS programs that mainly target indoor-biting and resting adult mosquitoes.
Collapse
Affiliation(s)
- Guofa Zhou
- Program in Public Health, University of California, Irvine, CA 92697 USA
| | - Eugenia Lo
- Program in Public Health, University of California, Irvine, CA 92697 USA
- Department of Biological Sciences, University of North Carolina, Charlotte, NC 28223 USA
| | - Andrew K. Githeko
- Central for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Yaw A. Afrane
- Department of Medical Microbiology, University of Ghana, Accra, Ghana
| | - Guiyun Yan
- Program in Public Health, University of California, Irvine, CA 92697 USA
| |
Collapse
|
49
|
Nankabirwa JI, Arinaitwe E, Rek J, Kilama M, Kizza T, Staedke SG, Rosenthal PJ, Rodriguez-Barraquer I, Briggs J, Greenhouse B, Bousema T, Drakeley C, Roos DS, Tomko SS, Smith DL, Kamya MR, Dorsey G. Malaria Transmission, Infection, and Disease following Sustained Indoor Residual Spraying of Insecticide in Tororo, Uganda. Am J Trop Med Hyg 2020; 103:1525-1533. [PMID: 32700666 DOI: 10.4269/ajtmh.20-0250] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Tororo, a district in Uganda with historically high malaria transmission intensity, has recently scaled up control interventions, including universal long-lasting insecticidal net distribution in 2013 and 2017, and sustained indoor residual spraying (IRS) of insecticide since December 2014. We describe the burden of malaria in Tororo 5 years following the initiation of IRS. We followed a cohort of 531 participants from 80 randomly selected households in Nagongera subcounty, Tororo district, from October 2017 to October 2019. Mosquitoes were collected every 2 weeks using CDC light traps in all rooms where participants slept, symptomatic malaria was identified by passive surveillance, and microscopic and submicroscopic parasitemia were measured every 4 weeks using active surveillance. Over the 2 years of follow-up, 15,780 female anopheline mosquitos were collected, the majority (98.0%) of which were Anopheles arabiensis. The daily human biting rate was 2.07, and the annual entomological inoculation rate was 0.43 infective bites/person/year. Only 38 episodes of malaria were diagnosed (incidence 0.04 episodes/person/year), and there were no cases of severe malaria or malarial deaths. The prevalence of microscopic parasitemia was 1.9%, and the combined prevalence of microscopic and submicroscopic parasitemia was 10.4%, each highest in children aged 5-15 years (3.3% and 14.0%, respectively). After 5 years of intensive vector control measures in Tororo, the burden of malaria was reduced to very low transmission levels. However, a significant proportion of the population remained parasitemic, primarily school-aged children with submicroscopic parasitemia, providing a potential reservoir for malaria transmission.
Collapse
Affiliation(s)
- Joaniter I Nankabirwa
- Infectious Diseases Research Collaboration, Kampala, Uganda.,Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Emmanuel Arinaitwe
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom.,Infectious Diseases Research Collaboration, Kampala, Uganda
| | - John Rek
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Maxwell Kilama
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Timothy Kizza
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Sarah G Staedke
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Phillip J Rosenthal
- Department of Medicine, University of California San Francisco, San Francisco, California
| | | | - Jessica Briggs
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Bryan Greenhouse
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Teun Bousema
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom.,Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Chris Drakeley
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - David S Roos
- On Behalf of ClinEpiDB, Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sheena S Tomko
- On Behalf of ClinEpiDB, Department of Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David L Smith
- Institute for Health Metrics & Evaluation, University of Washington, Seattle, Washington
| | - Moses R Kamya
- Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda.,Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Grant Dorsey
- Department of Medicine, University of California San Francisco, San Francisco, California
| |
Collapse
|
50
|
Mpimbaza A, Sserwanga A, Rutazaana D, Kapisi J, Walemwa R, Suiyanka L, Kyalo D, Kamya M, Opigo J, Snow RW. Changing malaria fever test positivity among paediatric admissions to Tororo district hospital, Uganda 2012-2019. Malar J 2020; 19:416. [PMID: 33213469 PMCID: PMC7678291 DOI: 10.1186/s12936-020-03490-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 11/09/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The World Health Organization (WHO) promotes long-lasting insecticidal nets (LLIN) and indoor residual house-spraying (IRS) for malaria control in endemic countries. However, long-term impact data of vector control interventions is rarely measured empirically. METHODS Surveillance data was collected from paediatric admissions at Tororo district hospital for the period January 2012 to December 2019, during which LLIN and IRS campaigns were implemented in the district. Malaria test positivity rate (TPR) among febrile admissions aged 1 month to 14 years was aggregated at baseline and three intervention periods (first LLIN campaign; Bendiocarb IRS; and Actellic IRS + second LLIN campaign) and compared using before-and-after analysis. Interrupted time-series analysis (ITSA) was used to determine the effect of IRS (Bendiocarb + Actellic) with the second LLIN campaign on monthly TPR compared to the combined baseline and first LLIN campaign periods controlling for age, rainfall, type of malaria test performed. The mean and median ages were examined between intervention intervals and as trend since January 2012. RESULTS Among 28,049 febrile admissions between January 2012 and December 2019, TPR decreased from 60% at baseline (January 2012-October 2013) to 31% during the final period of Actellic IRS and LLIN (June 2016-December 2019). Comparing intervention intervals to the baseline TPR (60.3%), TPR was higher during the first LLIN period (67.3%, difference 7.0%; 95% CI 5.2%, 8.8%, p < 0.001), and lower during the Bendiocarb IRS (43.5%, difference - 16.8%; 95% CI - 18.7%, - 14.9%) and Actellic IRS (31.3%, difference - 29.0%; 95% CI - 30.3%, - 27.6%, p < 0.001) periods. ITSA confirmed a significant decrease in the level and trend of TPR during the IRS (Bendicarb + Actellic) with the second LLIN period compared to the pre-IRS (baseline + first LLIN) period. The age of children with positive test results significantly increased with time from a mean of 24 months at baseline to 39 months during the final IRS and LLIN period. CONCLUSION IRS can have a dramatic impact on hospital paediatric admissions harbouring malaria infection. The sustained expansion of effective vector control leads to an increase in the age of malaria positive febrile paediatric admissions. However, despite large reductions, malaria test-positive admissions continued to be concentrated in children aged under five years. Despite high coverage of IRS and LLIN, these vector control measures failed to interrupt transmission in Tororo district. Using simple, cost-effective hospital surveillance, it is possible to monitor the public health impacts of IRS in combination with LLIN.
Collapse
Affiliation(s)
- Arthur Mpimbaza
- Child Health and Development Centre, Makerere University, College of Health Sciences, Kampala, Uganda.
- Infectious Diseases Research Collaboration, Kampala, Uganda.
| | | | - Damian Rutazaana
- National Malaria Control Division, Ministry of Health, Kampala, Uganda
| | - James Kapisi
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Richard Walemwa
- Department of Prevention, Care and Treatment, Infectious Diseases Institute, Kampala, Uganda
| | - Laurissa Suiyanka
- Population Health Unit, Kenya Medical Research Institute/Wellcome Trust Research Programme, Nairobi, Kenya
| | - David Kyalo
- Population Health Unit, Kenya Medical Research Institute/Wellcome Trust Research Programme, Nairobi, Kenya
| | - Moses Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Jimmy Opigo
- National Malaria Control Division, Ministry of Health, Kampala, Uganda
| | - Robert W Snow
- Population Health Unit, Kenya Medical Research Institute/Wellcome Trust Research Programme, Nairobi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|