1
|
Roxas PB, Cruz J, Horelka NR, Burgos C, Radwanski J, Baires F, Sierra-Hoffman M, Hesse H, Madril AC. Typhus group Rickettsia community-acquired bacterial central nervous system infections: We must think outside the box! J Neurol Sci 2024; 466:123281. [PMID: 39447222 DOI: 10.1016/j.jns.2024.123281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/24/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
Typhus group rickettsiosis (TGR), caused by Rickettsia typhi and Rickettsia prowazekii, are globally distributed vector-borne diseases with increasing cases. Diagnosis is usually clinical, confirmed by seroconversion of IgG antibodies. Human infection occurs in diverse geographic areas with some developing CNS infection characterized by fever, headache, meningismus, and/or focal signs - usually beyond the first week of initial symptomatology. Seizures and other CNS manifestations have been observed. When untreated, infection may result in neurologic sequelae and even death. This study presents a systematic review of all documented cases of Rickettsia typhi meningoencephalitis published since 2015 with the addition of five cases of TGR in South Coastal Texas, USA. This review followed the guidelines outlined in PRISMA. A schematic explanation of the pathophysiology is offered. CSF may present with high opening pressure, mild to moderate pleocytosis, mildly elevated protein levels, and low csf/serum glucose ratio, or normal findings. Meningeal enhancement, intracranial hypertension, and focal abnormalities have been described in imaging studies, but can be normal. Treatment with doxycycline leads to prompt resolution of symptoms. Failure to initiate early empiric treatment can lead to serious consequences. The study recommends routine testing for TGR in patients from endemic areas with classical symptoms when other diagnoses are inconclusive or in cases with atypical presentations. The authors advocate for incorporating empiric treatment for murine typhus into community-acquired bacterial meningitis guidelines in endemic areas; and stress the importance of enhancing laboratory diagnostic capabilities in public health entities world-wide. Further studies of community acquired mengingoencephalitis caused by TGR are highly encouraged.
Collapse
Affiliation(s)
- Pauline B Roxas
- Family Medicine Residency, Detar Healthcare System - Texas A&M University School of Medicine, Victoria, TX, USA
| | - Justice Cruz
- Victoria College, Department of Science, Victoria, TX, USA.
| | | | - Cesar Burgos
- Universidad Nacional Autónoma de Honduras, Instituto Nacional Cardiopulmonar El Tórax, Tegucigalpa, Honduras
| | | | - Fernando Baires
- Universidad Nacional Autónoma de Honduras, Tegucigalpa, Honduras
| | - Miguel Sierra-Hoffman
- El Campo Memorial Hospital, El Campo, Texas, USA; Clinical Professor of Texas A&M, Rural Health Medicine Residency Program, Victoria, Texas, USA
| | - Heike Hesse
- Instituto de Investigaciones One Health, Universidad Tecnológica Centroamericana, Tegucigalpa, Honduras.
| | - Amy C Madril
- Department of Hospital Medicine, El Campo Memorial Hospital, El Campo, TX, USA
| |
Collapse
|
2
|
Hammami F, Koubaa M, Chakroun A, Rekik K, Mezghani S, Hammami A, Marrakchi C, Smaoui F, Jemaa MB. A case series of Mediterranean spotted fever and murine typhus with neurological manifestations. J Vector Borne Dis 2024; 61:489-494. [PMID: 39374494 DOI: 10.4103/0972-9062.383643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 07/05/2023] [Indexed: 10/09/2024] Open
Abstract
BACKGROUND OBJECTIVES Severe cases with neurological manifestations of rickettsiosis have been reported. We aimed to identify the epidemiological, clinical and laboratory features of central nervous system rickettsial infections and to describe the treatment. METHODS We carried out a retrospective study that included all patients hospitalized with rickettsiosis in the infectious diseases department of Hedi Chaker University Hospital in Sfax, Tunisia between 1993 and 2018. RESULTS We identified 47 patients with central nervous system rickettsial infections among 440 patients with rickettsial infections (10.7%). Skin rash (31.9% vs 87.8%; p<0.001) and eschar (4.2% vs 27.7%; p<0.001) were less frequent among patients with central nervous system rickettsial infections. Complications (6.4% vs 0.5%; p=0.01) and death (4.2% vs 0.3%; p=0.03) were more frequent among patients with central nervous system rickettsial infections. INTERPRETATION CONCLUSION Cardinal clinical features and typical laboratory results including thrombocytopenia were less frequent, and prognosis was more severe in patients with central nervous system rickettsial infections.
Collapse
Affiliation(s)
- Fatma Hammami
- Infectious Diseases Department, Hedi Chaker University Hospital, University of Sfax, Tunisia
| | - Makram Koubaa
- Infectious Diseases Department, Hedi Chaker University Hospital, University of Sfax, Tunisia
| | - Amal Chakroun
- Infectious Diseases Department, Hedi Chaker University Hospital, University of Sfax, Tunisia
| | - Khaoula Rekik
- Infectious Diseases Department, Hedi Chaker University Hospital, University of Sfax, Tunisia
| | - Sonda Mezghani
- Laboratory of Microbiology, Habib Bourguiba University Hospital, University of Sfax, Tunisia
| | - Adnane Hammami
- Laboratory of Microbiology, Habib Bourguiba University Hospital, University of Sfax, Tunisia
| | - Chakib Marrakchi
- Infectious Diseases Department, Hedi Chaker University Hospital, University of Sfax, Tunisia
| | - Fatma Smaoui
- Infectious Diseases Department, Hedi Chaker University Hospital, University of Sfax, Tunisia
| | - Mounir Ben Jemaa
- Infectious Diseases Department, Hedi Chaker University Hospital, University of Sfax, Tunisia
| |
Collapse
|
3
|
Wu LY, Chai YL, Cheah IK, Chia RSL, Hilal S, Arumugam TV, Chen CP, Lai MKP. Blood-based biomarkers of cerebral small vessel disease. Ageing Res Rev 2024; 95:102247. [PMID: 38417710 DOI: 10.1016/j.arr.2024.102247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 02/12/2024] [Accepted: 02/22/2024] [Indexed: 03/01/2024]
Abstract
Age-associated cerebral small vessel disease (CSVD) represents a clinically heterogenous condition, arising from diverse microvascular mechanisms. These lead to chronic cerebrovascular dysfunction and carry a substantial risk of subsequent stroke and vascular cognitive impairment in aging populations. Owing to advances in neuroimaging, in vivo visualization of cerebral vasculature abnormities and detection of CSVD, including lacunes, microinfarcts, microbleeds and white matter lesions, is now possible, but remains a resource-, skills- and time-intensive approach. As a result, there has been a recent proliferation of blood-based biomarker studies for CSVD aimed at developing accessible screening tools for early detection and risk stratification. However, a good understanding of the pathophysiological processes underpinning CSVD is needed to identify and assess clinically useful biomarkers. Here, we provide an overview of processes associated with CSVD pathogenesis, including endothelial injury and dysfunction, neuroinflammation, oxidative stress, perivascular neuronal damage as well as cardiovascular dysfunction. Then, we review clinical studies of the key biomolecules involved in the aforementioned processes. Lastly, we outline future trends and directions for CSVD biomarker discovery and clinical validation.
Collapse
Affiliation(s)
- Liu-Yun Wu
- Memory Aging and Cognition Centre, National University Health System, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Yuek Ling Chai
- Memory Aging and Cognition Centre, National University Health System, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Irwin K Cheah
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Neurobiology Programme, Centre for Life Sciences, National University of Singapore, Singapore
| | - Rachel S L Chia
- Memory Aging and Cognition Centre, National University Health System, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Saima Hilal
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Kent Ridge, Singapore
| | - Thiruma V Arumugam
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea; Centre for Cardiovascular Biology and Disease Research, Department of Microbiology, Anatomy, Physiology and Pharmacology, School of Agriculture, Biomedicine and Environment, La Trobe University, Bundoora, VIC, Australia
| | - Christopher P Chen
- Memory Aging and Cognition Centre, National University Health System, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Mitchell K P Lai
- Memory Aging and Cognition Centre, National University Health System, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
4
|
Blanton LS. Murine Typhus: A Review of a Reemerging Flea-Borne Rickettsiosis with Potential for Neurologic Manifestations and Sequalae. Infect Dis Rep 2023; 15:700-716. [PMID: 37987401 PMCID: PMC10660532 DOI: 10.3390/idr15060063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 11/22/2023] Open
Abstract
Murine typhus is an acute febrile illness caused by Rickettsia typhi, an obligately intracellular Gram-negative coccobacillus. Rats (Rattus species) and their fleas (Xenopsylla cheopis) serve as the reservoir and vector of R. typhi, respectively. Humans become infected when R. typhi-infected flea feces are rubbed into flea bite wounds or onto mucous membranes. The disease is endemic throughout much of the world, especially in tropical and subtropical seaboard regions where rats are common. Murine typhus is reemerging as an important cause of febrile illness in Texas and Southern California, where an alternate transmission cycle likely involves opossums (Didelphis virginiana) and cat fleas (Ctenocephalides felis). Although primarily an undifferentiated febrile illness, a range of neurologic manifestations may occur, especially when treatment is delayed. Serology is the mainstay of diagnostic testing, but confirmation usually requires demonstrating seroconversion or a fourfold increase in antibody titer from acute- and convalescent-phase sera (antibodies are seldom detectable in the first week of illness). Thus, early empiric treatment with doxycycline, the drug of choice, is imperative. The purpose of this review is to highlight murine typhus as an important emerging and reemerging infectious disease, review its neurologic manifestations, and discuss areas in need of further study.
Collapse
Affiliation(s)
- Lucas S Blanton
- Department Internal Medicine, Division of Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
5
|
Suri V, Singh H, Ary KA, Biswal M, Ahuja CK, Kharbanda P, Sharma N. A Case Series of Scrub Meningoencephalitis from a Tertiary Care Center in North India. Ann Indian Acad Neurol 2023; 26:549-552. [PMID: 37970282 PMCID: PMC10645237 DOI: 10.4103/aian.aian_135_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 11/17/2023] Open
Abstract
Scrub typhus infection is reemerging leading cause of acute febrile illnesses in post-rainy or monsoon season in Southeast Asia. It is caused by Orientia tsutsugamushi and spread by the bite of chiggers, larval forms of trombiculid mites. The clinical picture can range from simple acute febrile illness to multiorgan dysfunction. Neurological manifestations also vary from aseptic meningitis, meningoencephalitis, cerebral infarction, acute disseminated encephalomyelitis, transverse myelitis, and psychiatric manifestations. Here, we present a case series of eight cases of scrub meningoencephalitis diagnosed based on clinical, laboratory, and radiological criteria.
Collapse
Affiliation(s)
- Vikas Suri
- Department of Internal Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Harpreet Singh
- Department of Internal Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Kunwer A. Ary
- Department of Internal Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Manisha Biswal
- Department of Medical Microbiology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Chirag K. Ahuja
- Department of Radiodiagnosis, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Parampreet Kharbanda
- Department of Neurology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Navneet Sharma
- Department of Internal Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
6
|
Liang Y, Aditi, Onyoni F, Wang H, Gonzales C, Sunyakumthorn P, Wu P, Samir P, Soong L. Brain transcriptomics reveal the activation of neuroinflammation pathways during acute Orientia tsutsugamushi infection in mice. Front Immunol 2023; 14:1194881. [PMID: 37426673 PMCID: PMC10326051 DOI: 10.3389/fimmu.2023.1194881] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/02/2023] [Indexed: 09/03/2023] Open
Abstract
Scrub typhus, an acute febrile illness caused by Orientia tsutsugamushi (Ot), is prevalent in endemic areas with one million new cases annually. Clinical observations suggest central nervous system (CNS) involvement in severe scrub typhus cases. Acute encephalitis syndrome (AES) associated with Ot infection is a major public health problem; however, the underlying mechanisms of neurological disorder remain poorly understood. By using a well-established murine model of severe scrub typhus and brain RNA-seq, we studied the brain transcriptome dynamics and identified the activated neuroinflammation pathways. Our data indicated a strong enrichment of several immune signaling and inflammation-related pathways at the onset of disease and prior to host death. The strongest upregulation of expression included genes involved in interferon (IFN) responses, defense response to bacteria, immunoglobulin-mediated immunity, IL-6/JAK-STAT signaling, and TNF signaling via NF-κB. We also found a significant increase in the expression of core genes related to blood-brain barrier (BBB) disruption and dysregulation in severe Ot infection. Brain tissue immunostaining and in vitro infection of microglia revealed microglial activation and proinflammatory cytokine production, suggesting a crucial role of microglia in neuroinflammation during scrub typhus. This study provides new insights into neuroinflammation in scrub typhus, highlighting the impact of excessive IFN responses, microglial activation, and BBB dysregulation on disease pathogenesis.
Collapse
Affiliation(s)
- Yuejin Liang
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| | - Aditi
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Florence Onyoni
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Hui Wang
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Casey Gonzales
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| | - Piyanate Sunyakumthorn
- Department of Veterinary Medicine, United States Army Medical Directorate, Armed Forces Research Institute of Medical Sciences (United States MD-AFRIMS), Bangkok, Thailand
| | - Ping Wu
- Department of Neuroscience, Cell Biology and Anatomy, University of Texas Medical Branch, Galveston, TX, United States
| | - Parimal Samir
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX, United States
| | - Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
- Department of Pathology, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
7
|
Alam AM, Gillespie CS, Goodall J, Damodar T, Turtle L, Vasanthapuram R, Solomon T, Michael BD. Neurological manifestations of scrub typhus infection: A systematic review and meta-analysis of clinical features and case fatality. PLoS Negl Trop Dis 2022; 16:e0010952. [PMID: 36441812 PMCID: PMC9731453 DOI: 10.1371/journal.pntd.0010952] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/08/2022] [Accepted: 11/07/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Scrub typhus has become a leading cause of central nervous system (CNS) infection in endemic regions. As a treatable condition, prompt recognition is vital. However, few studies have focused on describing the symptomology and outcomes of neurological scrub typhus infection. We conducted a systematic review and meta-analysis to report the clinical features and case fatality ratio (CFR) in patients with CNS scrub typhus infection. METHODS A search and analysis plan was published in PROSPERO [ID 328732]. A systematic search of PubMed and Scopus was performed and studies describing patients with CNS manifestations of proven scrub typhus infection were included. The outcomes studied were weighted pooled prevalence (WPP) of clinical features during illness and weighted CFR. RESULTS Nineteen studies with 1,221 (656 adults and 565 paediatric) patients were included. The most common clinical features in CNS scrub typhus were those consistent with non-specific acute encephalitis syndromes (AES), such as fever (WPP 100.0% [99.5%-100.0%, I2 = 47.8%]), altered sensorium (67.4% [54.9-78.8%, I2 = 93.3%]), headache (65.0% [51.5-77.6%, I2 = 95.1%]) and neck stiffness 56.6% (29.4-80.4%, I2 = 96.3%). Classical features of scrub typhus were infrequently identified; an eschar was found in only 20.8% (9.8%-34.3%, I2 = 95.4%) and lymphadenopathy in 24.1% (95% CI 11.8% - 38.9%, I2 = 87.8%). The pooled CFR (95% CI) was 3.6% (1.5%- 6.4%, I2 = 67.3%). Paediatric cohorts had a CFR of 6.1% (1.9-12.1%, I2 = 77%) whilst adult cohorts reported 2.6% (0.7-5.3%, I2 = 43%). CONCLUSION Our meta-analyses illustrate that 3.6% of patients with CNS manifestations of scrub typhus die. Clinicians should have a high index of suspicion for scrub typhus in patients presenting with AES in endemic regions and consider starting empiric treatment whilst awaiting results of investigations, even in the absence of classical signs such as an eschar or lymphadenopathy.
Collapse
Affiliation(s)
- Ali M. Alam
- Department of Clinical Infection Microbiology and Immunology, Institute of Infection, Veterinary, and Ecological Science, University of Liverpool, Liverpool, United Kingdom
- Barts Health NHS Trust, London, United Kingdom
| | - Conor S. Gillespie
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, United Kingdom
| | - Jack Goodall
- Tropical & Infectious Disease Unit, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
| | - Tina Damodar
- Department of Neurovirology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Lance Turtle
- Tropical & Infectious Disease Unit, Liverpool University Hospitals NHS Foundation Trust, Liverpool, United Kingdom
- The Pandemic Institute, Liverpool, United Kingdom
- The NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, United Kingdom
| | - Ravi Vasanthapuram
- Department of Neurovirology, National Institute of Mental Health and Neurosciences, Bangalore, India
| | - Tom Solomon
- The Pandemic Institute, Liverpool, United Kingdom
- The NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, United Kingdom
| | - Benedict D. Michael
- Department of Clinical Infection Microbiology and Immunology, Institute of Infection, Veterinary, and Ecological Science, University of Liverpool, Liverpool, United Kingdom
- The NIHR Health Protection Research Unit in Emerging and Zoonotic Infections, Liverpool, United Kingdom
- Department of Neurology, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
| |
Collapse
|
8
|
Unni S, Eswaradass SKC, Krishnan Nair H, Anandan S, Mani I, Eswaradass PV. Scrub Typhus Meningoencephalitis: Review of Literature and Unique Diagnostic & Management Challenges in Resource-Limited Settings. Cureus 2022; 14:e26369. [PMID: 35911355 PMCID: PMC9329600 DOI: 10.7759/cureus.26369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/27/2022] [Indexed: 11/05/2022] Open
Abstract
Scrub typhus is a zoonotic febrile illness caused by Orientia tsutsugamushi and transmitted by Leptotrombidium larvae. Scrub typhus often presents with nonspecific clinical features, and ranges in severity from mild illness to multiorgan failure and fatality. The disease is primarily found in the Asia-Pacific rim, including India, Pakistan, Thailand, Malaysia, Korea, and China. Due to frequent limitations in healthcare resources in many of these countries, the diagnosis and management of scrub typhus meningoencephalitis pose unique challenges. This review focuses on the epidemiology, clinical features, diagnostic testing, and management modalities in such resource-limited settings. Exercising a high index of clinical suspicion and timely diagnostic tests and management strategies are vital to prevent life-threatening complications of this treatable illness.
Collapse
|
9
|
Distinguishing bacterial versus non-bacterial causes of febrile illness - A systematic review of host biomarkers. J Infect 2021; 82:1-10. [PMID: 33610683 DOI: 10.1016/j.jinf.2021.01.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 12/30/2020] [Accepted: 01/07/2021] [Indexed: 12/15/2022]
Abstract
BACKGROUND Acute febrile illnesses (AFIs) represent a major disease burden globally; however, the paucity of reliable, rapid point-of-care testing makes their diagnosis difficult. A simple tool for distinguishing bacterial versus non-bacterial infections would radically improve patient management and reduce indiscriminate antibiotic use. Diagnostic tests based on host biomarkers can play an important role here, and a target product profile (TPP) was developed to guide development. OBJECTIVES To qualitatively evaluate host biomarkers that can distinguish bacterial from non-bacterial causes of AFI. DATA SOURCES The PubMed database was systematically searched for relevant studies published between 2015 and 2019. STUDY ELIGIBILITY CRITERIA Studies comparing diagnostic performances of host biomarkers in patients with bacterial versus non-bacterial infections were included. PARTICIPANTS Studies involving human participants and/or human samples were included. METHODS We collected information following PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. A risk of bias assessment was performed, based on a modified QUADAS-2 (Quality Assessment of Diagnostic Accuracy Score 2). RESULTS We identified 1107 publications. Following screening, 55 publications were included, with 265 biomarker entries. Entries mostly comprised protein biomarkers (58.9%), followed by haematological, RNA, and metabolite biomarkers (15.5%, 8.7%, 12.5%). Sensitivity/specificity was reported for 45.7% of biomarker entries. We assessed a high overall risk of bias for most entries (75.8%). In studies with low/medium risk of bias, four biomarker entries tested in blood samples had sensitivity/specificity of more than 0.90/0.80. Only 12 additional biomarker entries were identified with sensitivity/specificity of more than 0.65/0.65. CONCLUSIONS Most recently assessed biomarkers represent well-known biomarkers, e.g. C-reactive protein and procalcitonin. Some protein biomarkers with the highest reported performances include a combined biomarker signature (CRP, IP-10, and TRAIL) and human neutrophil lipocalin (HNL). Few new biomarkers are in the pipeline; however, some RNA signatures show promise. Further high-quality studies are needed to confirm these findings.
Collapse
|
10
|
DeKosky ST, Kochanek PM, Valadka AB, Clark RS, Chou SHY, Au AK, Horvat C, Jha RM, Mannix R, Wisniewski SR, Wintermark M, Rowell SE, Welch RD, Lewis L, House S, Tanzi RE, Smith DR, Vittor AY, Denslow ND, Davis MD, Glushakova OY, Hayes RL. Blood Biomarkers for Detection of Brain Injury in COVID-19 Patients. J Neurotrauma 2021; 38:1-43. [PMID: 33115334 PMCID: PMC7757533 DOI: 10.1089/neu.2020.7332] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus attacks multiple organs of coronavirus disease 2019 (COVID-19) patients, including the brain. There are worldwide descriptions of neurological deficits in COVID-19 patients. Central nervous system (CNS) symptoms can be present early in the course of the disease. As many as 55% of hospitalized COVID-19 patients have been reported to have neurological disturbances three months after infection by SARS-CoV-2. The mutability of the SARS-COV-2 virus and its potential to directly affect the CNS highlight the urgency of developing technology to diagnose, manage, and treat brain injury in COVID-19 patients. The pathobiology of CNS infection by SARS-CoV-2 and the associated neurological sequelae of this infection remain poorly understood. In this review, we outline the rationale for the use of blood biomarkers (BBs) for diagnosis of brain injury in COVID-19 patients, the research needed to incorporate their use into clinical practice, and the improvements in patient management and outcomes that can result. BBs of brain injury could potentially provide tools for detection of brain injury in COVID-19 patients. Elevations of BBs have been reported in cerebrospinal fluid (CSF) and blood of COVID-19 patients. BB proteins have been analyzed in CSF to detect CNS involvement in patients with infectious diseases, including human immunodeficiency virus and tuberculous meningitis. BBs are approved by the U.S. Food and Drug Administration for diagnosis of mild versus moderate traumatic brain injury and have identified brain injury after stroke, cardiac arrest, hypoxia, and epilepsy. BBs, integrated with other diagnostic tools, could enhance understanding of viral mechanisms of brain injury, predict severity of neurological deficits, guide triage of patients and assignment to appropriate medical pathways, and assess efficacy of therapeutic interventions in COVID-19 patients.
Collapse
Affiliation(s)
- Steven T. DeKosky
- McKnight Brain Institute, University of Florida College of Medicine, Gainesville, Florida, USA
| | - Patrick M. Kochanek
- Department of Critical Care Medicine, Department of Anesthesiology, Pediatrics, Bioengineering, and Clinical and Translational Science, Safar Center for Resuscitation Research, University of Pittsburgh School of Medicine, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alex B. Valadka
- Department of Neurosurgery, Virginia Commonwealth University, Richmond, Virginia, USA
| | - Robert S.B. Clark
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Sherry H.-Y. Chou
- Department of Critical Care Medicine, Neurology, and Neurosurgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Alicia K. Au
- University of Pittsburgh, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Christopher Horvat
- Department of Critical Care Medicine, University of Pittsburgh School of Medicine, Division of Pediatric Critical Care, UPMC Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Ruchira M. Jha
- Departments of Critical Care Medicine, Neurology, Neurological Surgery, Clinical and Translational Science Institute, Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rebekah Mannix
- Department of Pediatrics and Emergency Medicine, Harvard Medical School, Department of Medicine, Division of Emergency Medicine, Boston Children's Hospital, Boston, Massachusetts, USA
| | | | - Max Wintermark
- Department of Neuroradiology, Stanford University, Stanford, California, USA
| | - Susan E. Rowell
- Duke University School of Medicine, Durham, North Carolina, USA
| | - Robert D. Welch
- Department of Emergency Medicine, Wayne State University School of Medicine, Detroit Receiving Hospital/University Health Center, Detroit, Michigan, USA
| | - Lawrence Lewis
- Department of Emergency Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Stacey House
- Department of Emergency Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Rudolph E. Tanzi
- Genetics and Aging Research Unit, Massachusetts General Hospital, McCance Center for Brain Health, Massachusetts General Hospital, MassGeneral Institute for Neurodegenerative Diseases, Massachusetts General Hospital, Department of Neurology (Research), Massachusetts General Hospital, Department of Neurology, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Darci R. Smith
- Immunodiagnostics Department, Naval Medical Research Center, Biological Defense Research Directorate, Fort Detrick, Maryland, USA
| | - Amy Y. Vittor
- Division of Infectious Disease and Global Medicine, University of Florida, Emerging Pathogens Institute, Gainesville, Florida, USA
| | - Nancy D. Denslow
- Departments of Physiological Sciences and Biochemistry and Molecular Biology, University of Florida, Center for Environmental and Human Toxicology, Gainesville, Florida
| | - Michael D. Davis
- Department of Pediatrics, Wells Center for Pediatric Research/Pulmonology, Allergy, and Sleep Medicine, Riley Hospital for Children at Indiana University, Indianapolis, Indiana, USA
| | | | | |
Collapse
|
11
|
Fisher J, Card G, Soong L. Neuroinflammation associated with scrub typhus and spotted fever group rickettsioses. PLoS Negl Trop Dis 2020; 14:e0008675. [PMID: 33091013 PMCID: PMC7580963 DOI: 10.1371/journal.pntd.0008675] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Scrub typhus and spotted fever rickettsioses (SFR) are understudied, vector-borne diseases of global significance. Over 1 billion individuals are at risk for scrub typhus alone in an endemic region, spanning across eastern and southern Asia to Northern Australia. While highly treatable, diagnostic challenges make timely antibiotic intervention difficult for these diseases. Delayed therapy may lead to severe outcomes affecting multiple organs, including the central nervous system (CNS), where infection and associated neuroinflammation may be lethal or lead to lasting sequelae. Meningitis and encephalitis are prevalent in both scrub typhus and SFR. Additionally, case reports detailing focal neurological deficits have come to light, with attention to both acute and chronic sequelae of infection. Despite the increasing number of clinical reports outlining neurologic consequences of these diseases, relatively little research has examined underlying mechanisms of neuroinflammation. Animal models of scrub typhus have identified cerebral T-cell infiltration and vascular damage associated with endothelial infection and neuropathogenesis. Differential gene expression analysis of brain tissues during murine scrub typhus have revealed selective increases in CXCR3 ligands, proinflammatory and type-1 cytokines and chemokines, and cytotoxicity molecules, as well as alterations in the complement pathway. In SFR, microglial expansion and macrophage infiltration contribute to neurological disease progression. This narrative Review highlights clinical neurologic features of scrub typhus and SFR and evaluates our current understanding of basic research into neuroinflammation for both diseases in animal models. Further investigation into key mediators of neuropathogenesis may yield prognostic markers and treatment regimens for severe patients.
Collapse
Affiliation(s)
- James Fisher
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Galen Card
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Lynn Soong
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
12
|
Dubot-Pérès A, Mayxay M, Phetsouvanh R, Lee SJ, Rattanavong S, Vongsouvath M, Davong V, Chansamouth V, Phommasone K, Moore C, Dittrich S, Lattana O, Sirisouk J, Phoumin P, Panyanivong P, Sengduangphachanh A, Sibounheuang B, Chanthongthip A, Simmalavong M, Sengdatka D, Seubsanith A, Keoluangkot V, Phimmasone P, Sisout K, Detleuxay K, Luangxay K, Phouangsouvanh I, Craig SB, Tulsiani SM, Burns MA, Dance DAB, Blacksell SD, de Lamballerie X, Newton PN. Management of Central Nervous System Infections, Vientiane, Laos, 2003-2011. Emerg Infect Dis 2019; 25:898-910. [PMID: 31002063 PMCID: PMC6478220 DOI: 10.3201/eid2505.180914] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
During 2003–2011, we recruited 1,065 patients of all ages admitted to Mahosot Hospital (Vientiane, Laos) with suspected central nervous system (CNS) infection. Etiologies were laboratory confirmed for 42.3% of patients, who mostly had infections with emerging pathogens: viruses in 16.2% (mainly Japanese encephalitis virus [8.8%]); bacteria in 16.4% (including Orientia tsutsugamushi [2.9%], Leptospira spp. [2.3%], and Rickettsia spp. [2.3%]); and Cryptococcus spp. fungi in 6.6%. We observed no significant differences in distribution of clinical encephalitis and meningitis by bacterial or viral etiology. However, patients with bacterial CNS infection were more likely to have a history of diabetes than others. Death (26.3%) was associated with low Glasgow Coma Scale score, and the mortality rate was higher for patients with bacterial than viral infections. No clinical or laboratory variables could guide antibiotic selection. We conclude that high-dependency units and first-line treatment with ceftriaxone and doxycycline for suspected CNS infections could improve patient survival in Laos.
Collapse
|
13
|
Donovan J, Figaji A, Imran D, Phu NH, Rohlwink U, Thwaites GE. The neurocritical care of tuberculous meningitis. Lancet Neurol 2019; 18:771-783. [PMID: 31109897 DOI: 10.1016/s1474-4422(19)30154-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 02/28/2019] [Accepted: 03/05/2019] [Indexed: 12/16/2022]
Abstract
Tuberculous meningitis is the most severe form of tuberculosis and often causes critical illness with high mortality. Two primary management objectives are reducing intracranial pressure, and optimising cerebral perfusion, while killing the bacteria and controlling intracerebral inflammation. However, the evidence base guiding the care of critically ill patients with tuberculous meningitis is poor and many patients do not have access to neurocritical care units. Invasive intracranial pressure monitoring is often unavailable and although new non-invasive monitoring techniques show promise, further evidence for their use is required. Optimal management regimens of neurological complications (eg, hydrocephalus and paradoxical reactions) and of hyponatraemia, which frequently accompanies tuberculous meningitis, remain to be elucidated. Advances in the field of tuberculous meningitis predominantly focus on diagnosis, inflammatory processes, and antituberculosis chemotherapy. However, clinical trials are required to provide robust evidence guiding the most effective supportive, therapeutic, and neurosurgical interventions for tuberculous meningitis that will improve morbidity and mortality.
Collapse
Affiliation(s)
- Joseph Donovan
- Oxford University Clinical Research Unit, Centre for Tropical Medicine, Ho Chi Minh City, Vietnam; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| | - Anthony Figaji
- Division of Neurosurgery and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Darma Imran
- Cipto Mangunkusumo Hospital, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia
| | - Nguyen Hoan Phu
- Oxford University Clinical Research Unit, Centre for Tropical Medicine, Ho Chi Minh City, Vietnam; Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Ursula Rohlwink
- Division of Neurosurgery and Neuroscience Institute, University of Cape Town, Cape Town, South Africa
| | - Guy E Thwaites
- Oxford University Clinical Research Unit, Centre for Tropical Medicine, Ho Chi Minh City, Vietnam; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
14
|
Qing-Feng S, Ying-Peng X, Tian-Tong X. Matrix metalloproteinase-9 and p53 involved in chronic fluorosis induced blood-brain barrier damage and neurocyte changes. Arch Med Sci 2019; 15:457-466. [PMID: 30899299 PMCID: PMC6425220 DOI: 10.5114/aoms.2019.83294] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 02/18/2017] [Indexed: 11/20/2022] Open
Abstract
INTRODUCTION A large number of basic and clinical studies have confirmed that fluoride produces toxic effects on multiple organ systems in the body including the nervous system. MATERIAL AND METHODS One hundred twenty Wistar rats were randomly divided into 4 groups with 30 in each group: a high fluoride group (drinking 200 mg/l fluoridated water, 24 weeks); a high fluoride control group (drinking distilled water, 24 weeks); a fluoride removal group (drinking fluoridated water, 12 W; then distilled water, 12 W) and a defluorination control group (drinking distilled water, 24 weeks). RESULTS The high fluoride and fluoride removal groups had spinal cord astrocyte edema. The apoptosis rate of spinal nerve cells in the high fluoride group and fluoride removal group were significantly higher (p < 0.01) than in the fluoride control and defluorination control group. The Evans blue (EB) content, matrix metalloproteinase-9 (MMP-9) and p53 expression in the high fluoride group and fluoride removal group were higher (p < 0.01) than in the fluoride control and defluorination control group. CONCLUSIONS The apoptosis of spinal cord nerve cells is obviously higher in rats with chronic fluoride exposure. Chronic fluoride exposure leads to high expression of MMP-9, and results in increased damage of the blood-spinal cord barrier. Increased p53 may be one of the factors causing damage. Short-term removal of fluoride has no obvious recovery in apoptosis of spinal cord nerve cells; highly expressed MMP-9 and p53 may be one of the reasons for unrecovered function.
Collapse
Affiliation(s)
- Shen Qing-Feng
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Xia Ying-Peng
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin, China
| | - Xu Tian-Tong
- Department of Spine Surgery, Tianjin Union Medical Center, Tianjin, China
| |
Collapse
|
15
|
Dong Y, Wang J, Du KX, Jia TM, Zhu CL, Zhang Y, Xu FL. MicroRNA-135a participates in the development of astrocytes derived from bacterial meningitis by downregulating HIF-1α. Am J Physiol Cell Physiol 2019; 316:C711-C721. [PMID: 30726113 DOI: 10.1152/ajpcell.00440.2018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Accumulating evidence has highlighted the potential of microRNAs (miRs) as biomarkers in various human diseases. However, the roles of miRs in bacterial meningitis (BM), a severe infectious condition, still remain unclear. Thus, the present study aimed to investigate the effects of miR-135a on proliferation and apoptosis of astrocytes in BM. Neonatal rats were injected with Streptococcus pneumoniae to establish the BM model. The expression of miR-135a and hypoxia-inducible factor 1α (HIF-1α) in the BM rat models were characterized, followed by determination of their interaction. Using gain- and loss-of-function approaches, the effects of miR-135a on proliferation, apoptosis, and expression of glial fibrillary acidic protein (GFAP), in addition to apoptosis-related factors in astrocytes were examined accordingly. The regulatory effect of HIF-1α was also determined along with the overexpression or knockdown of HIF-1α. The results obtained indicated that miR-135a was poorly expressed, whereas HIF-1α was highly expressed in the BM rat models. In addition, restored expression levels of miR-135a were determined to promote proliferation while inhibiting the apoptosis of astrocytes, along with downregulated Bax and Bad, as well as upregulated Bcl-2, Bcl-XL, and GFAP. As a target gene of miR-135a, HIF-1α expression was determined to be diminished by miR-135a. The upregulation of HIF-1α reversed the miR-135a-induced proliferation of astrocytes. Taken together, the key findings of the current study present evidence suggesting that miR-135a can downregulate HIF-1α and play a contributory role in the development of astrocytes derived from BM, providing a novel theoretical perspective for BM treatment approaches.
Collapse
Affiliation(s)
- Yan Dong
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University , Zhengzhou , China.,Henan Provincial Key Laboratory of Child Brain Injury , Zhengzhou , China
| | - Jun Wang
- Department of Children Rehabilitation, Third Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Kai-Xian Du
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Tian-Ming Jia
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Chang-Lian Zhu
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University , Zhengzhou , China.,Henan Provincial Key Laboratory of Child Brain Injury , Zhengzhou , China.,Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg , Gothenburg , Sweden
| | - Yan Zhang
- Clinical Laboratory, Henan Red Cross Blood Center , Zhengzhou , China
| | - Fa-Lin Xu
- Department of Pediatrics, Third Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| |
Collapse
|
16
|
Zheng R, Li Z, He F, Liu H, Chen J, Chen J, Xie X, Zhou J, Chen H, Wu X, Wu J, Chen B, Liu Y, Cui H, Fan L, Sha W, Liu Y, Wang J, Huang X, Zhang L, Xu F, Wang J, Feng Y, Qin L, Yang H, Liu Z, Cui Z, Liu F, Chen X, Gao S, Sun S, Shi Y, Ge B. Genome-wide association study identifies two risk loci for tuberculosis in Han Chinese. Nat Commun 2018; 9:4072. [PMID: 30287856 PMCID: PMC6172286 DOI: 10.1038/s41467-018-06539-w] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 09/05/2018] [Indexed: 12/04/2022] Open
Abstract
Tuberculosis (TB) is an infectious disease caused by Mycobacterium tuberculosis (Mtb), and remains a leading public health problem. Previous studies have identified host genetic factors that contribute to Mtb infection outcomes. However, much of the heritability in TB remains unaccounted for and additional susceptibility loci most likely exist. We perform a multistage genome-wide association study on 2949 pulmonary TB patients and 5090 healthy controls (833 cases and 1220 controls were genome-wide genotyped) from Han Chinese population. We discover two risk loci: 14q24.3 (rs12437118, Pcombined = 1.72 × 10−11, OR = 1.277, ESRRB) and 20p13 (rs6114027, Pcombined = 2.37 × 10−11, OR = 1.339, TGM6). Moreover, we determine that the rs6114027 risk allele is related to decreased TGM6 transcripts in PBMCs from pulmonary TB patients and severer pulmonary TB disease. Furthermore, we find that tgm6-deficient mice are more susceptible to Mtb infection. Our results provide new insights into the genetic etiology of TB. Genetic risk loci for tuberculosis (TB) have so far been identified in African and Russian populations. Here, the authors perform a three-stage GWAS for TB in Han Chinese populations and find two risk loci near ESRRB and TGM6 and further demonstrate that tgm6 protects mice from Mtb infection.
Collapse
Affiliation(s)
- Ruijuan Zheng
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200043, China
| | - Zhiqiang Li
- The Affiliated Hospital of Qingdao University &The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, 266003, China.,Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Fusheng He
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Haipeng Liu
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200043, China.
| | - Jianhua Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jiayu Chen
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Xuefeng Xie
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China
| | - Juan Zhou
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Hao Chen
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Xiangyang Wu
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Juehui Wu
- Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, 200092, China
| | - Boyu Chen
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Yahui Liu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Haiyan Cui
- Tuberculosis Center for Diagnosis and Treatment, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200043, China
| | - Lin Fan
- Tuberculosis Center for Diagnosis and Treatment, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200043, China
| | - Wei Sha
- Tuberculosis Center for Diagnosis and Treatment, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200043, China
| | - Yin Liu
- Department of Clinical Laboratory, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200043, China
| | - Jiqiang Wang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xiaochen Huang
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200043, China
| | - Linfeng Zhang
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Feifan Xu
- Clinical Laboratory, The Sixth People's Hospital of Nantong, Jiangsu, 226011, China
| | - Jie Wang
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200043, China
| | - Yonghong Feng
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200043, China
| | - Lianhua Qin
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200043, China
| | - Hua Yang
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200043, China
| | - Zhonghua Liu
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200043, China
| | - Zhenglin Cui
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200043, China
| | - Feng Liu
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200043, China
| | - Xinchun Chen
- Shenzhen University School of Medicine, Shenzhen, 518060, China
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Science and Technology, Tongji University, Shanghai, 200092, China
| | - Silong Sun
- BGI Genomics, BGI-Shenzhen, Shenzhen, 518083, China.
| | - Yongyong Shi
- The Affiliated Hospital of Qingdao University &The Biomedical Sciences Institute of Qingdao University (Qingdao Branch of SJTU Bio-X Institutes), Qingdao University, Qingdao, 266003, China. .,Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders (Ministry of Education) and the Collaborative Innovation Center for Brain Science, Shanghai Jiao Tong University, Shanghai, 200030, China. .,Department of Psychiatry, First Teaching Hospital of Xinjiang Medical University, Urumqi, 830054, China.
| | - Baoxue Ge
- Shanghai Key Lab of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200043, China. .,Department of Microbiology and Immunology, Tongji University School of Medicine, Shanghai, 200092, China.
| |
Collapse
|
17
|
Shores DR, Everett AD. Children as Biomarker Orphans: Progress in the Field of Pediatric Biomarkers. J Pediatr 2018; 193:14-20.e31. [PMID: 29031860 PMCID: PMC5794519 DOI: 10.1016/j.jpeds.2017.08.077] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/04/2017] [Accepted: 08/30/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Darla R Shores
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD.
| | - Allen D Everett
- Division of Cardiology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
18
|
Wallin A, Kapaki E, Boban M, Engelborghs S, Hermann DM, Huisa B, Jonsson M, Kramberger MG, Lossi L, Malojcic B, Mehrabian S, Merighi A, Mukaetova-Ladinska EB, Paraskevas GP, Popescu BO, Ravid R, Traykov L, Tsivgoulis G, Weinstein G, Korczyn A, Bjerke M, Rosenberg G. Biochemical markers in vascular cognitive impairment associated with subcortical small vessel disease - A consensus report. BMC Neurol 2017; 17:102. [PMID: 28535786 PMCID: PMC5442599 DOI: 10.1186/s12883-017-0877-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 05/09/2017] [Indexed: 12/17/2022] Open
Abstract
Background Vascular cognitive impairment (VCI) is a heterogeneous entity with multiple aetiologies, all linked to underlying vascular disease. Among these, VCI related to subcortical small vessel disease (SSVD) is emerging as a major homogeneous subtype. Its progressive course raises the need for biomarker identification and/or development for adequate therapeutic interventions to be tested. In order to shed light in the current status on biochemical markers for VCI-SSVD, experts in field reviewed the recent evidence and literature data. Method The group conducted a comprehensive search on Medline, PubMed and Embase databases for studies published until 15.01.2017. The proposal on current status of biochemical markers in VCI-SSVD was reviewed by all co-authors and the draft was repeatedly circulated and discussed before it was finalized. Results This review identifies a large number of biochemical markers derived from CSF and blood. There is a considerable overlap of VCI-SSVD clinical symptoms with those of Alzheimer’s disease (AD). Although most of the published studies are small and their findings remain to be replicated in larger cohorts, several biomarkers have shown promise in separating VCI-SSVD from AD. These promising biomarkers are closely linked to underlying SSVD pathophysiology, namely disruption of blood-CSF and blood–brain barriers (BCB-BBB) and breakdown of white matter myelinated fibres and extracellular matrix, as well as blood and brain inflammation. The leading biomarker candidates are: elevated CSF/blood albumin ratio, which reflects BCB/BBB disruption; altered CSF matrix metalloproteinases, reflecting extracellular matrix breakdown; CSF neurofilment as a marker of axonal damage, and possibly blood inflammatory cytokines and adhesion molecules. The suggested SSVD biomarker deviations contrasts the characteristic CSF profile in AD, i.e. depletion of amyloid beta peptide and increased phosphorylated and total tau. Conclusions Combining SSVD and AD biomarkers may provide a powerful tool to identify with greater precision appropriate patients for clinical trials of more homogeneous dementia populations. Thereby, biomarkers might promote therapeutic progress not only in VCI-SSVD, but also in AD.
Collapse
Affiliation(s)
- A Wallin
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden. .,Memory Clinic at Department of Neuropsychiatry, Sahlgrenska University Hospital, Institute of Neuroscience and Physiology at Sahlgrenska Academy, University of Gothenburg, Wallinsgatan 6, SE-431 41, Mölndal, Sweden.
| | - E Kapaki
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - M Boban
- Department of Neurology, University Hospital Centre Zagreb, Medical School, University of Zagreb, Zagreb, Croatia
| | - S Engelborghs
- Memory Clinic and Department of Neurology, Hospital Network Antwerp (ZNA) Middelheim and HogeBeuken, Antwerp, Belgium.,Reference Center for Biological Markers of Dementia, Department of Biomedical Sciences, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - D M Hermann
- Department of Neurology, University Hospital Essen, Essen, Germany
| | - B Huisa
- Department of Neurology, University of California, Irvine, California, USA
| | - M Jonsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - M G Kramberger
- Department of Neurology, University Medical Center Ljubljana, Ljubljana, Slovenia
| | - L Lossi
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - B Malojcic
- Department of Neurology, University Hospital Centre Zagreb, Medical School, University of Zagreb, Zagreb, Croatia
| | - S Mehrabian
- Department of Neurology, University Hospital "Alexandrovska", Medical University, Sofia, Bulgaria
| | - A Merighi
- Department of Veterinary Sciences, University of Turin, Turin, Italy
| | - E B Mukaetova-Ladinska
- Institute of Neuroscience, Campus for Ageing and Vitality, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - G P Paraskevas
- 1st Department of Neurology, Eginition Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - B O Popescu
- Department of Neurology, Colentina Clinical Hospital, School of Medicine, 'Carol Davila' University of Medicine and Pharmacy, Bucharest, Romania
| | - R Ravid
- Brain Bank Consultants, Amsterdam, The Netherlands
| | - L Traykov
- Department of Neurology, University Hospital "Alexandrovska", Medical University, Sofia, Bulgaria
| | - G Tsivgoulis
- 2nd Department of Neurology, Attikon Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - G Weinstein
- School of Public Health, University of Haifa, Haifa, Israel
| | - A Korczyn
- Department of Neurology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - M Bjerke
- Reference Center for Biological Markers of Dementia, Department of Biomedical Sciences, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - G Rosenberg
- University of New Mexico Health Sciences Center, Albuquerque, NM, 87131, USA
| |
Collapse
|
19
|
De Jesús Andino F, Jones L, Maggirwar SB, Robert J. Frog Virus 3 dissemination in the brain of tadpoles, but not in adult Xenopus, involves blood brain barrier dysfunction. Sci Rep 2016; 6:22508. [PMID: 26931458 PMCID: PMC4773881 DOI: 10.1038/srep22508] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 02/16/2016] [Indexed: 12/28/2022] Open
Abstract
While increasing evidence points to a key role of monocytes in amphibian host defenses, monocytes are also thought to be important in the dissemination and persistent infection caused by ranavirus. However, little is known about the fate of infected macrophages or if ranavirus exploits immune privileged organs, such as the brain, in order to establish a reservoir. The amphibian Xenopus laevis and Frog Virus 3 (FV3) were established as an experimental platform for investigating in vivo whether ranavirus could disseminate to the brain. Our data show that the FV3 infection alters the BBB integrity, possibly mediated by an inflammatory response, which leads to viral dissemination into the central nervous system in X. laevis tadpole but not adult. Furthermore, our data suggest that the macrophages play a major role in viral dissemination by carrying the virus into the neural tissues.
Collapse
Affiliation(s)
- Francisco De Jesús Andino
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Letitia Jones
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Sanjay B Maggirwar
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Jacques Robert
- Department of Microbiology and Immunology, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|