1
|
Mandefro A, Kebede AM, Mekonen B, Katsvanga M, Cham F, Etoketim B, Oriero E, Amambua-Ngwa A, Golassa L. Novel Plasmodium falciparum histidine-rich protein 2/3 repeat type in Ethiopian malaria infection: does this affect performance of HRP2-based malaria RDT? Malar J 2024; 23:262. [PMID: 39210318 PMCID: PMC11360870 DOI: 10.1186/s12936-024-05093-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Rapid diagnostic tests (RDTs) provide quick, easy, and convenient early diagnosis of malaria ensuring better case management particularly in resource-constrained settings. Nevertheless, the efficiency of HRP2-based RDT can be compromised by Plasmodium falciparum histidine-rich protein 2/3 gene deletion and genetic diversity. This study explored the genetic diversity of PfHRP2/3 in uncomplicated malaria cases from Ethiopia. METHODS A cross-sectional study was conducted from June 2022 to March 2023 at Metehara, Zenzelema and Kolla Shele health centres, Ethiopia. Finger-prick blood samples were collected for RDT testing and microscopic examination. For molecular analysis, parasite genomic DNA was extracted from venous blood. Plasmodium falciparum was confirmed using VarATS real time PCR. Additionally, PfHRP2/3 was amplified, and DNA amplicons were sequenced using Oxford Nanopore technology. RESULTS PfHRP2/3 sequences revealed small variations in the frequency and number of amino acid repeat types per isolate across the three health centres. Twelve and eight types of amino acid repeats were identified for PfHRP2 and PfHRP3, respectively, which had been previously characterized. Repeat type 1, 4 and 7 were present in both PfHRP2 and PfHRP3 amino acid sequences. Type 2 and 7 repeats were commonly dispersed in PfHRP2, while repeat types 16 and 17 were found only in PfHRP3. A novel 17 V repeat type variant, which has never been reported in Ethiopia, was identified in six PfHRP3 amino acid sequences. The majority of the isolates, as determined by the Baker's logistic regression model, belonged to group C, of which 86% of them were sensitive to PfHRP2-based RDT. Likewise, PfHRP2-based RDT detected 100% of the isolates in group A (product of type 2 × type 7 repeats ≥ 100) and 85.7% in group B (product of types 2 × type 7 repeats 50-99) at a parasitaemia level > 250 parasite/μl. CONCLUSION This study highlights the significant diversity observed in PfHRP2 and PfHRP3 among clinical isolates of Plasmodium falciparum in Ethiopia. This emphasizes the necessity for monitoring of PfHRP2- based RDT efficacy and their repeat type distribution using a large sample size and isolates from various ecological settings.
Collapse
Affiliation(s)
- Aynalem Mandefro
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia.
- College of Natural and Computational Science, Hawassa University, Hawassa, Ethiopia.
| | | | - Bacha Mekonen
- Malaria and NTDs Research Team, Bacterial, Parasitic, and Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Mitchel Katsvanga
- Medical Research Council Unit the Gambia, London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Fatoumatta Cham
- Medical Research Council Unit the Gambia, London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Blessed Etoketim
- Medical Research Council Unit the Gambia, London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Eniyou Oriero
- Medical Research Council Unit the Gambia, London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Alfred Amambua-Ngwa
- Medical Research Council Unit the Gambia, London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| | - Lemu Golassa
- Aklilu Lemma Institute of Pathobiology, Addis Ababa University, Addis Ababa, Ethiopia.
| |
Collapse
|
2
|
Kojom Foko LP, Jakhan J, Narang G, Singh V. Global polymorphism of Plasmodium falciparum histidine rich proteins 2/3 and impact on malaria rapid diagnostic test detection: a systematic review and meta-analysis. Expert Rev Mol Diagn 2023; 23:925-943. [PMID: 37698448 DOI: 10.1080/14737159.2023.2255136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/18/2023] [Accepted: 08/10/2023] [Indexed: 09/13/2023]
Abstract
BACKGROUND This review presents an overview of field findings on sequence variation of Plasmodium falciparum histidine-rich proteins 2/3 (PfHRP2/3) for which reference types (1-24) have been identified, and its critical impact on PfHRP2-based rapid diagnostic test (RDT) detection. RESEARCH DESIGN AND METHODS This systematic review and meta-analysis was registered with PROSPERO, CRD42022316027, and conducted as per the PRISMA guidelines, and the methodological quality of studies was assessed. RESULTS Of the 2184 records identified, 34 studies were included mostly from Africa (47.1%) and Asia (35.3%). The reference PfHRP2 types 1, 2, 3, 6, and 7 are invariably found at proportions ≥ 80-100% in all areas with the exception of The Americas where their proportion is very low. The proteins exhibited high diversity of variants/unknown types, especially for types 1, 2, 4, and 7. Eleven major PfHRP2 epitopes were found at pooled proportion > 90%. The existing models to predict RDT detection are greatly limited by the impact of factors such as low (very low) parasitemia, RDT brand, and PfHRP3 cross-reactivity. PfHRP2 length and presence/number of a given reference repeat type/variant did not seem to impact RDT detection. CONCLUSIONS PfHRP2/3 are highly polymorphic and current findings are insufficient, conflicting and not convincing enough to conclude on the role of PfHRP2/3 sequence polymorphism in PfHRP2-based RDT detection.
Collapse
Affiliation(s)
- Loick P Kojom Foko
- Parasite and Host Biology Group, ICMR-National Institute of Malaria Research, Dwarka, India
| | - Jahnvi Jakhan
- Parasite and Host Biology Group, ICMR-National Institute of Malaria Research, Dwarka, India
| | - Geetika Narang
- Parasite and Host Biology Group, ICMR-National Institute of Malaria Research, Dwarka, India
| | - Vineeta Singh
- Parasite and Host Biology Group, ICMR-National Institute of Malaria Research, Dwarka, India
| |
Collapse
|
3
|
Cramer EY, Bartlett J, Chan ER, Gaedigk A, Ratsimbasoa AC, Mehlotra RK, Williams SM, Zimmerman PA. Pharmacogenomic variation in the Malagasy population: implications for the antimalarial drug primaquine metabolism. Pharmacogenomics 2023; 24:583-597. [PMID: 37551613 PMCID: PMC10621762 DOI: 10.2217/pgs-2023-0091] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/11/2023] [Indexed: 08/09/2023] Open
Abstract
Aim: Antimalarial primaquine (PQ) eliminates liver hypnozoites of Plasmodium vivax. CYP2D6 gene variation contributes to PQ therapeutic failure. Additional gene variation may contribute to PQ efficacy. Information on pharmacogenomic variation in Madagascar, with vivax malaria and a unique population admixture, is scanty. Methods: The authors performed genome-wide genotyping of 55 Malagasy samples and analyzed data with a focus on a set of 28 pharmacogenes most relevant to PQ. Results: Mainly, the study identified 110 coding or splicing variants, including those that, based on previous studies in other populations, may be implicated in PQ response and copy number variation, specifically in chromosomal regions that contain pharmacogenes. Conclusion: With this pilot information, larger genome-wide association analyses with PQ metabolism and response are substantially more feasible.
Collapse
Affiliation(s)
- Estee Y Cramer
- Center for Global Health & Diseases, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Department of Biostatistics & Epidemiology, School of Public Health & Health Sciences, University of Massachusetts Amherst, Amherst, MA 01003, USA
| | - Jacquelaine Bartlett
- Population & Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Ernest R Chan
- Population & Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children's Mercy Research Institute (CMRI), Kansas City, MO 64108, USA
| | - Arsene C Ratsimbasoa
- University of Fianarantsoa, Fianarantsoa, Madagascar
- Centre National d'Application de Recherche Pharmaceutique (CNARP), Antananarivo, Madagascar
| | - Rajeev K Mehlotra
- Center for Global Health & Diseases, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Scott M Williams
- Population & Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Peter A Zimmerman
- Center for Global Health & Diseases, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
4
|
Mwangonela ZE, Ye Y, Rachel Q, Msuya HM, Mwamlima TG, Mswata SS, Chaki PP, Kimaro EG, Mweya CN, Mpina MG, Mwangoka GW. Field evaluation of the novel One Step Malaria Pf and Pf/Pv rapid diagnostic tests and the proportion of HRP-2 gene deletion identified on samples collected in the Pwani region, Tanzania. BULLETIN OF THE NATIONAL RESEARCH CENTRE 2023; 47:17. [PMID: 36776799 PMCID: PMC9904258 DOI: 10.1186/s42269-023-00992-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/29/2023] [Indexed: 06/18/2023]
Abstract
Background Malaria rapid diagnostic tests (mRDTs) have played an important role in the early detection of clinical malaria in an endemic area. While several mRDTs are currently on the market, the availability of mRDTs with high sensitivity and specificity will merit the fight against malaria. We evaluated the field performance of a novel One Step Malaria (P.f/P.v) Tri-line and One Step Malaria (P.f) rapid test kits in Pwani, Tanzania. Methods In a cross-sectional study conducted in Bagamoyo and Kibiti districts in Tanzania, symptomatic patients were tested using the SD BIOLINE, One Step Malaria (P.f/P.v) Tri-line and One Step Malaria (P.f) rapid test kits, microscope, and quantitative Polymerase Chain Reaction (qPCR). An additional qPCR assay was carried out to detect Histidine-Rich Protein 2 (HRP-2) gene deletion on mRDT negative but microscope and qPCR positive samples. Microscope results confirmed by qPCR were used for analysis, where qPCR was used as a reference method. Results The sensitivity and specificity of One Step P.f/P.v Tri-line mRDTs were 96.0% (CI 93.5-97.7%) and 98.3% (CI 96.8-99.2%), respectively. One Step P.f mRDT had sensitivity and specificity of 95.2% (CI 92.5-97.1%) and 97.9% (CI 96.3-99.0%) respectively. Positive predictive value (PPV) was 97.6% (CI 95.4-98.7%) and negative predictive value (NPV) was 96.2% (CI 95.5-98.3%) for the One Step P.f/P.v Tri-line mRDTs respectively, while One Step P.f mRDT had positive predictive value (PPV) and negative predictive value (NPV) of 97.0% (CI 94.8-98.3%) and 96.7 (CI 94.9-97.9%) respectively. 9.8% (CI 7.84-11.76) of all samples tested and reported to be malaria-negative by mRDT had HRP-2 gene deletion. Conclusion One Step Malaria P.f/P.v Tri-line and One Step Malaria P.f rapid test kits have similar sensitivity and specificity as the standard mRDT that is currently in the market, demonstrating the potential to contribute in the fight against malaria in endemic settings. However, the identified malaria parasites population with HRP-2 gene deletion pose a threat to the current mRDT usability in the field and warrants further investigations.
Collapse
Affiliation(s)
- Zena E. Mwangonela
- Ifakara Health Institute Bagamoyo Branch, P.O.Box 74, Bagamoyo, Tanzania
- The Nelson Mandela African Institution of Science and Technology, P.O.Box 447, Arusha, Tanzania
| | - Young Ye
- InTec Products, Inc., 332 Xinguang Road Xinyang Industrial Area, Haicang, Xiamen City, 361022 China
| | - Qin Rachel
- InTec Products, Inc., 332 Xinguang Road Xinyang Industrial Area, Haicang, Xiamen City, 361022 China
| | - Hajirani M. Msuya
- Ifakara Health Institute Bagamoyo Branch, P.O.Box 74, Bagamoyo, Tanzania
| | - Tunu G. Mwamlima
- Ifakara Health Institute Bagamoyo Branch, P.O.Box 74, Bagamoyo, Tanzania
- The Nelson Mandela African Institution of Science and Technology, P.O.Box 447, Arusha, Tanzania
| | - Sarah S. Mswata
- Ifakara Health Institute Bagamoyo Branch, P.O.Box 74, Bagamoyo, Tanzania
| | - Prosper P. Chaki
- Ifakara Health Institute Bagamoyo Branch, P.O.Box 74, Bagamoyo, Tanzania
| | - Ester G. Kimaro
- The Nelson Mandela African Institution of Science and Technology, P.O.Box 447, Arusha, Tanzania
| | - Clement N. Mweya
- Univesity of Dar Es Salaam, Mbeya College of Health and Allied Science, P.O.Box 608, Mbeya, Tanzania
| | | | - Grace W. Mwangoka
- Ifakara Health Institute Bagamoyo Branch, P.O.Box 74, Bagamoyo, Tanzania
| |
Collapse
|
5
|
Molina-de la Fuente I, Yimar M, García L, González V, Amor A, Anegagrie M, Benito A, Martínez J, Moreno M, Berzosa P. Deletion patterns, genetic variability and protein structure of pfhrp2 and pfhrp3: implications for malaria rapid diagnostic test in Amhara region, Ethiopia. Malar J 2022; 21:287. [PMID: 36209103 PMCID: PMC9548178 DOI: 10.1186/s12936-022-04306-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 09/29/2022] [Indexed: 11/10/2022] Open
Abstract
Background Although rapid diagnostic tests (RDTs) play a key role in malaria-control strategies, their efficacy has been threatened by deletion and genetic variability of the genes pfhrp2/3. This study aims to characterize the deletion, genetic patterns and diversity of these genes and their implication for malaria RDT effectiveness, as well as their genetic evolution in the Amhara region of Ethiopia. Methods The study included 354 isolates from symptomatic patients from the Amhara region of Ethiopia who tested positive by microscopy. Exon 1–2 and exon 2 of genes pfhrp2 and -3 were amplified, and exon 2 was sequenced to analyse the genetic diversity, phylogenetic relationship and epitope availability. Results The deletion frequency in exon 1–2 and exon 2 was 22 and 4.6% for pfhrp2, and 68 and 18% for pfhrp3, respectively. Double deletion frequency for pfhrp2 and pfhrp3 was 1.4%. High genetic diversity, lack of clustering by phylogenetic analysis and evidence of positive selection suggested a diversifying selection for both genes. The amino-acid sequences, classified into different haplotypes, varied widely in terms of frequency of repeats, with novel amino-acid changes. Aminoacidic repetition type 2 and type 7 were the most frequent in all the sequences. The most frequent epitopes among protein sequences were those recognized by MAbs 3A4 and C1-13. Conclusion Deletions and high amino acidic variation in pfhrp2 and pfhrp3 suggest their possible impact on RDT use in the Amhara region, and the high genetic diversity of these genes could be associated with a diversifying selection in Ethiopia. Surveillance of these genes is, therefore, essential to ensure the effectiveness of public health interventions in this region. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12936-022-04306-3.
Collapse
Affiliation(s)
- Irene Molina-de la Fuente
- Department of Biomedicine and Biotechnology, School of Pharmacy, University of Alcalá, Alcalá de Henares, Madrid, Spain. .,Malaria and Neglected Diseases Laboratory, National Centre of Tropical Medicine, Institute of Health Carlos III, Madrid, Spain. .,Public Health and Epidemiology Research Group, School of Medicine, University of Alcalá, Alcalá de Henares, Madrid, Spain.
| | - Mulat Yimar
- College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | - Luz García
- Malaria and Neglected Diseases Laboratory, National Centre of Tropical Medicine, Institute of Health Carlos III, Madrid, Spain.,CIBERINFECT - CIBER Infectious Diseases (ISCIII), Madrid, Spain
| | - Vicenta González
- Malaria and Neglected Diseases Laboratory, National Centre of Tropical Medicine, Institute of Health Carlos III, Madrid, Spain.,CIBERINFECT - CIBER Infectious Diseases (ISCIII), Madrid, Spain
| | - Arancha Amor
- Mundo Sano Foundations, Institute of Health Carlos III, Madrid, Spain
| | - Melaku Anegagrie
- Mundo Sano Foundations, Institute of Health Carlos III, Madrid, Spain
| | - Agustín Benito
- Malaria and Neglected Diseases Laboratory, National Centre of Tropical Medicine, Institute of Health Carlos III, Madrid, Spain.,CIBERINFECT - CIBER Infectious Diseases (ISCIII), Madrid, Spain
| | - Javier Martínez
- Department of Biomedicine and Biotechnology, School of Pharmacy, University of Alcalá, Alcalá de Henares, Madrid, Spain
| | - Marta Moreno
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Pedro Berzosa
- Malaria and Neglected Diseases Laboratory, National Centre of Tropical Medicine, Institute of Health Carlos III, Madrid, Spain.,CIBERINFECT - CIBER Infectious Diseases (ISCIII), Madrid, Spain
| |
Collapse
|
6
|
Kaaya RD, Amour C, Matowo JJ, Mosha FW, Kavishe RA, Beshir KB. Genetic Sequence Variation in the Plasmodium falciparum Histidine-Rich Protein 2 Gene from Field Isolates in Tanzania: Impact on Malaria Rapid Diagnosis. Genes (Basel) 2022; 13:1642. [PMID: 36140809 PMCID: PMC9498557 DOI: 10.3390/genes13091642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/26/2022] [Accepted: 09/09/2022] [Indexed: 12/04/2022] Open
Abstract
Malaria rapid diagnosis test (RDT) is crucial for managing the disease, and the effectiveness of detection depends on parameters such as sensitivity and specificity of the RDT. Several factors can affect the performance of RDT. In this study, we focused on the pfhrp2 sequence variation and its impact on RDTs targeted by antigens encoded by Plasmodium falciparum histidine-rich protein 2 (pfhrp2). Field samples collected during cross-sectional surveys in Tanzania were sequenced to investigate the pfhrp2 sequence diversity and evaluate the impact on HRP2-based RDT performance. We observed significant mean differences in amino acid repeats between current and previous studies. Several new amino acid repeats were found to occur at different frequencies, including types AAY, AHHAHHAAN, and AHHAA. Based on the abundance of types 2 and 7 amino acid repeats, the binary predictive model was able to predict RDT insensitivity by about 69% in the study area. About 85% of the major epitopes targeted by monoclonal antibodies (MAbs) in RDT were identified. Our study suggested that the extensive sequence variation in pfhrp2 can contribute to reduced RDT sensitivity. The correlation between the different combinations of amino acid repeats and the performance of RDT in different malaria transmission settings should be investigated further.
Collapse
Affiliation(s)
- Robert D. Kaaya
- Faculty of Medicine, Kilimanjaro Christian Medical University College, Moshi P.O. Box 2240, Tanzania
- Pan-African Malaria Vector Research Consortium, Moshi P.O. Box 2240, Tanzania
| | - Caroline Amour
- Faculty of Medicine, Kilimanjaro Christian Medical University College, Moshi P.O. Box 2240, Tanzania
| | - Johnson J. Matowo
- Faculty of Medicine, Kilimanjaro Christian Medical University College, Moshi P.O. Box 2240, Tanzania
- Pan-African Malaria Vector Research Consortium, Moshi P.O. Box 2240, Tanzania
| | - Franklin W. Mosha
- Faculty of Medicine, Kilimanjaro Christian Medical University College, Moshi P.O. Box 2240, Tanzania
- Pan-African Malaria Vector Research Consortium, Moshi P.O. Box 2240, Tanzania
| | - Reginald A. Kavishe
- Faculty of Medicine, Kilimanjaro Christian Medical University College, Moshi P.O. Box 2240, Tanzania
| | - Khalid B. Beshir
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| |
Collapse
|
7
|
Werner ER, Arnold CD, Caswell BL, Iannotti LL, Lutter CK, Maleta KM, Stewart CP. The Effects of 1 Egg per Day on Iron and Anemia Status among Young Malawian Children: A Secondary Analysis of a Randomized Controlled Trial. Curr Dev Nutr 2022; 6:nzac094. [PMID: 35755939 PMCID: PMC9213210 DOI: 10.1093/cdn/nzac094] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/28/2022] [Accepted: 05/10/2022] [Indexed: 11/28/2022] Open
Abstract
Background Young children with diets lacking diversity with low consumption of animal source foods are at risk of iron deficiency anemia (IDA). Objectives Our objectives were to determine the impact of supplementing diets with 1 egg/d on 1) plasma ferritin, soluble transferrin receptor (sTfR), body iron index (BII), and hemoglobin concentrations and 2) the prevalence of iron deficiency (ID), anemia, and IDA. Methods Malawian 6-9-mo-old infants in the Mazira trial (clinicaltrials.gov; NCT03385252) were individually randomly assigned to receive 1 egg/d for 6 mo (n = 331) or continue their usual diet (n = 329). In this secondary analysis, hemoglobin, plasma ferritin, sTfR, C-reactive protein (CRP), and α-1-acid glycoprotein (AGP) were measured at enrollment and 6-mo follow-up. Iron biomarkers were corrected for inflammation. Ferritin, sTfR, BII, and hemoglobin were compared between groups using linear regression. Prevalence ratios (PRs) for anemia (hemoglobin <11 g/dL) and ID (ferritin <12 µg/L, sTfR >8.3 mg/L, or BII <0 mg/kg) between groups were compared using log binomial or modified Poisson regression. Results A total of 585 children were included in this analysis (Egg: n = 286; Control: n = 299). At enrollment, the total prevalence of anemia was 61% and did not differ between groups. At 6-mo follow-up, groups did not differ in geometric mean concentration of hemoglobin [mean (95% CI); Egg: 10.9 (10.7, 11.1) g/dL; Control: 11.1 (10.9, 11.2) g/dL] and inflammation-adjusted ferritin [Egg: 6.52 (5.98, 7.10) µg/L; Control: 6.82 (6.27, 7.42) µg/L], sTfR [Egg: 11.34 (10.92, 11.78) mg/L; Control: 11.46 (11.04, 11.89) mg/L] or BII [Egg: 0.07 (0.06, 0.09) mg/kg; Control: 0.07 (0.05, 0.08) mg/kg]. There were also no group differences in anemia [Egg: 46%; Control 40%; PR: 1.15 (95% CI: 0.96, 1.38)], ID [PR: 0.99 (0.94, 1.05)], or IDA [PR: 1.12 (0.92, 1.36)]. Conclusions Providing eggs daily for 6 mo did not affect iron status or anemia prevalence in this context. Other interventions are needed to address the high prevalence of ID and anemia among young Malawian children. This trial is registered at http://www.clinicaltrials.gov as NCT03385252.
Collapse
Affiliation(s)
- E Rochelle Werner
- Institute for Global Nutrition, University of California, Davis, CA, USA
| | - Charles D Arnold
- Institute for Global Nutrition, University of California, Davis, CA, USA
| | - Bess L Caswell
- Institute for Global Nutrition, University of California, Davis, CA, USA
- Western Human Nutrition Research Center, US Department of Agriculture, Davis, CA, USA
| | - Lora L Iannotti
- E3 Nutrition Lab, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Kenneth M Maleta
- School of Global and Public Health, Kamuzu University of Health Sciences, Blantyre, Malawi
| | | |
Collapse
|
8
|
Chan ER, Mehlotra RK, Pirani KA, Ratsimbasoa AC, Williams SM, Gaedigk A, Zimmerman PA. CYP2D6 gene resequencing in the Malagasy, a population at the crossroads between Asia and Africa: a pilot study. Pharmacogenomics 2022; 23:315-325. [PMID: 35230160 PMCID: PMC8965795 DOI: 10.2217/pgs-2021-0146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background: Plasmodium vivax malaria is endemic in Madagascar, where populations have genetic inheritance from Southeast Asia and East Africa. Primaquine, a drug of choice for vivax malaria, is metabolized principally via CYP2D6. CYP2D6 variation was characterized by locus-specific gene sequencing and was compared with TaqMan™ genotype data. Materials & methods: Long-range PCR amplicons were generated from 96 Malagasy samples and subjected to next-generation sequencing. Results: The authors observed high concordance between TaqMan™-based CYP2D6 genotype calls and the base calls from sequencing. In addition, there are new variants and haplotypes present in the Malagasy. Conclusion: Sequencing unique admixed populations provides more detailed and accurate insights regarding CYP2D6 variability, which may help optimize primaquine treatment across human genetic diversity.
Collapse
Affiliation(s)
- E Ricky Chan
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH 44106, USA.,Population & Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Rajeev K Mehlotra
- Center for Global Health & Diseases, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Karim A Pirani
- Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, MO 64108, USA
| | - Arsene C Ratsimbasoa
- University of Fianarantsoa, Fianarantsoa, Madagascar.,CNARP (Centre National d'Application de Recherche Pharmaceutique), Antananarivo, Madagascar
| | - Scott M Williams
- Cleveland Institute for Computational Biology, Case Western Reserve University, Cleveland, OH 44106, USA.,Population & Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children's Mercy Kansas City, Kansas City, MO 64108, USA
| | - Peter A Zimmerman
- Center for Global Health & Diseases, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| |
Collapse
|
9
|
Rogier E, McCaffery JN, Nace D, Svigel SS, Assefa A, Hwang J, Kariuki S, Samuels AM, Westercamp N, Ratsimbasoa A, Randrianarivelojosia M, Uwimana A, Udhayakumar V, Halsey ES. Plasmodium falciparum pfhrp2 and pfhrp3 Gene Deletions from Persons with Symptomatic Malaria Infection in Ethiopia, Kenya, Madagascar, and Rwanda. Emerg Infect Dis 2022; 28:608-616. [PMID: 35201739 PMCID: PMC8888236 DOI: 10.3201/eid2803.211499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Histidine-rich protein 2 (HRP2)–based rapid diagnostic tests detect Plasmodium falciparum malaria and are used throughout sub-Saharan Africa. However, deletions in the pfhrp2 and related pfhrp3 (pfhrp2/3) genes threaten use of these tests. Therapeutic efficacy studies (TESs) enroll persons with symptomatic P. falciparum infection. We screened TES samples collected during 2016–2018 in Ethiopia, Kenya, Rwanda, and Madagascar for HRP2/3, pan-Plasmodium lactate dehydrogenase, and pan-Plasmodium aldolase antigen levels and selected samples with low levels of HRP2/3 for pfhrp2/3 genotyping. We observed deletion of pfhrp3 in samples from all countries except Kenya. Single-gene deletions in pfhrp2 were observed in 1.4% (95% CI 0.2%–4.8%) of Ethiopia samples and in 0.6% (95% CI 0.2%–1.6%) of Madagascar samples, and dual pfhrp2/3 deletions were noted in 2.0% (95% CI 0.4%–5.9%) of Ethiopia samples. Although this study was not powered for precise prevalence estimates, evaluating TES samples revealed a low prevalence of pfhrp2/3 deletions in most sites.
Collapse
|
10
|
Costa GL, Mascarenhas MEP, Martin TOG, Fortini LG, Louzada J, Pereira DB, Aguiar ACC, Carvalho LH, de Brito CFA, Fontes CJF, de Sousa TN. A Comprehensive Analysis of the Genetic Diversity of Plasmodium falciparum Histidine-Rich Protein 2 (PfHRP2) in the Brazilian Amazon. Front Cell Infect Microbiol 2021; 11:742681. [PMID: 34621693 PMCID: PMC8491578 DOI: 10.3389/fcimb.2021.742681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/19/2021] [Indexed: 11/16/2022] Open
Abstract
Early diagnosis and treatment are fundamental to the control and elimination of malaria. In many endemic areas, routine diagnosis is primarily performed microscopically, although rapid diagnostic tests (RDTs) provide a useful point-of-care tool. Most of the commercially available RDTs detect histidine-rich protein 2 (HRP2) of Plasmodium falciparum in the blood of infected individuals. Nonetheless, parasite isolates lacking the pfhrp2 gene are relatively frequent in some endemic regions, thereby hampering the diagnosis of malaria using HRP2-based RDTs. To track the efficacy of RDTs in areas of the Brazilian Amazon, we assessed pfhrp2 deletions in 132 P. falciparum samples collected from four malaria-endemic states in Brazil. Our findings show low to moderate levels of pfhrp2 deletion in different regions of the Brazilian Amazon. Overall, during the period covered by this study (2002-2020), we found that 10% of the P. falciparum isolates were characterized by a pfhrp2 deletion. Notably, however, the presence of pfhrp2-negative isolates has not been translated into a reduction in RDT efficacy, which in part may be explained by the presence of polyclonal infections. A further important finding was the discrepancy in the proportion of pfhrp2 deletions detected using two assessed protocols (conventional PCR versus nested PCR), which reinforces the need to perform a carefully planned laboratory workflow to assess gene deletion. This is the first study to perform a comprehensive analysis of PfHRP2 sequence diversity in Brazilian isolates of P. falciparum. We identified 10 PfHRP2 sequence patterns, which were found to be exclusive of each of the assessed regions. Despite the small number of PfHRP2 sequences available from South America, we found that the PfHRP2 sequences identified in Brazil and neighboring French Guiana show similar sequence patterns. Our findings highlight the importance of continuously monitoring the occurrence and spread of parasites with pfrhp2 deletions, while also taking into account the limitations of PCR-based testing methods associated with accuracy and the complexity of infections.
Collapse
Affiliation(s)
- Gabriel Luíz Costa
- Molecular Biology and Malaria Immunology Research Group, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Brazil
| | - Maria Eduarda Pereira Mascarenhas
- Molecular Biology and Malaria Immunology Research Group, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Brazil
| | | | - Laura Guimarães Fortini
- Molecular Biology and Malaria Immunology Research Group, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Brazil
| | | | | | | | - Luzia Helena Carvalho
- Molecular Biology and Malaria Immunology Research Group, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Brazil
| | - Cristiana Ferreira Alves de Brito
- Molecular Biology and Malaria Immunology Research Group, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Brazil
| | | | - Tais Nóbrega de Sousa
- Molecular Biology and Malaria Immunology Research Group, Instituto René Rachou, Fundação Oswaldo Cruz (FIOCRUZ), Belo Horizonte, Brazil
| |
Collapse
|
11
|
Pujo JM, Houcke S, Lemmonier S, Portecop P, Frémery A, Blanchet D, Djossou F, Kallel H, Demar M. Accuracy of SD Malaria Ag P.f/Pan® as a rapid diagnostic test in French Amazonia. Malar J 2021; 20:369. [PMID: 34535137 PMCID: PMC8447521 DOI: 10.1186/s12936-021-03902-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 09/02/2021] [Indexed: 12/04/2022] Open
Abstract
Background French Guiana (FG) is a French overseas territory where malaria is endemic. The current incidence rate is 0.74‰ inhabitants, and Plasmodium vivax is widely predominating even though Plasmodium falciparum is still present due to imported cases mainly from Africa. In FG, rapid diagnostic test (SD Malaria Ag P.f/Pan®) is based on the detection of pan-pLDH, PfHRP2, and PfHRP3 antigens, while in South America, the share of deletion of PfHRP2 gene is significantly increasing. Accordingly, the study questions the reliability of RDTs in the Amazonian context. Methods The study is retrospective. It is conducted over 4 years and analysed 12,880 rapid diagnostic tests (RDTs) compared to concomitant Blood Film Tests (BFTs) sampled for malaria diagnosis. Results The global assessment of the accuracy of SD Malaria Ag P.f/Pan® in the diagnostic of malaria shows both Positive and Negative Predictive Values (PPV and NPV) higher than 95%, except for PPV in the diagnosis of malaria to P. falciparum (88%). Overall, the concordance rate between RDT and BFT (positive/positive; negative/negative) was 99.5%. The PPV of the RDT in the follow-up of patients diagnosed with P. falciparum was the lowest during the first 28 days. The PPV of the RDT in the follow-up of patients diagnosed with P. vivax was the lowest during the first 21 days. The global sensitivity of SD Malaria Ag P.f/Pan® test was, on average, 96% (88.2–100) for P. falciparum and 93% (90.6–94.2) for P. vivax. The global specificity was 99.8% (99.5–100) for all included species. Conclusion SD Malaria Ag P.f/Pan® is a reliable rapid test used for the first-line diagnosis in remote healthcare centres. The test results should be interpreted in the light of patient’s recent medical history and the date of arrival to FG.
Collapse
Affiliation(s)
- Jean Marc Pujo
- Emergency Department, Cayenne General Hospital, Cayenne, French Guiana.
| | - Stéphanie Houcke
- Intensive Care Unit, Cayenne General Hospital, Cayenne, French Guiana
| | - Sarah Lemmonier
- Emergency Department, Cayenne General Hospital, Cayenne, French Guiana
| | - Patrick Portecop
- Emergency Department, Guadeloupe University Hospital, Les Abymes, Guadeloupe
| | - Alexis Frémery
- Emergency Department, Cayenne General Hospital, Cayenne, French Guiana
| | - Denis Blanchet
- Academic Laboratory of Parasitology-Mycology, Cayenne General Hospital, Cayenne, French Guiana.,Tropical Biome and Immunophysiopathology (TBIP), Université de Guyane, Cayenne, 97300, French Guiana.,Université de Lille, CNRS, Inserm, Institut Pasteur de Lille, U1019-UMR9017-CIIL Centre d'Infection Et d'Immunité de Lille, 59000, Lille, France
| | - Felix Djossou
- Infectious and Tropical Diseases Unit, Cayenne General Hospital, Cayenne, French Guiana
| | - Hatem Kallel
- Intensive Care Unit, Cayenne General Hospital, Cayenne, French Guiana.,Tropical Biome and Immunophysiopathology (TBIP), Université de Guyane, Cayenne, 97300, French Guiana.,Université de Lille, CNRS, Inserm, Institut Pasteur de Lille, U1019-UMR9017-CIIL Centre d'Infection Et d'Immunité de Lille, 59000, Lille, France
| | - Magalie Demar
- Academic Laboratory of Parasitology-Mycology, Cayenne General Hospital, Cayenne, French Guiana.,Tropical Biome and Immunophysiopathology (TBIP), Université de Guyane, Cayenne, 97300, French Guiana.,Université de Lille, CNRS, Inserm, Institut Pasteur de Lille, U1019-UMR9017-CIIL Centre d'Infection Et d'Immunité de Lille, 59000, Lille, France
| |
Collapse
|
12
|
Molina-de la Fuente I, Pastor A, Herrador Z, Benito A, Berzosa P. Impact of Plasmodium falciparum pfhrp2 and pfhrp3 gene deletions on malaria control worldwide: a systematic review and meta-analysis. Malar J 2021; 20:276. [PMID: 34158065 PMCID: PMC8220794 DOI: 10.1186/s12936-021-03812-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/11/2021] [Indexed: 12/15/2022] Open
Abstract
Background Deletion of pfhrp2 and/or pfhrp3 genes cause false negatives in malaria rapid diagnostic test (RDT) and threating malaria control strategies. This systematic review aims to assess the main methodological aspects in the study of pfhrp2 and pfhrp3 gene deletions and its global epidemiological status, with special focus on their distribution in Africa; and its possible impact in RDT. Methods The systematic review was conducted by examining the principal issues of study design and methodological workflow of studies addressing pfhrp2 deletion. Meta-analysis was applied to represent reported prevalences of pfhrp2 and pfhrp3 single and double deletion in the World Health Organization (WHO) region. Pooled-prevalence of deletions was calculated using DerSimonnian-Laird random effect model. Then, in-deep analysis focused on Africa was performed to assess possible variables related with these deletions. Finally, the impact of these deletions in RDT results was analysed combining reported information about RDT sensitivity and deletion prevalences. Results 49 articles were included for the systematic review and 37 for the meta-analysis, 13 of them placed in Africa. Study design differs significantly, especially in terms of population sample and information reported, resulting in high heterogeneity between studies that difficulties comparisons and merged conclusions. Reported prevalences vary widely in all the WHO regions, significantly higher deletion were reported in South-Central America, following by Africa and Asia. Pfhrp3 deletion is more prevalent (43% in South-Central America; 3% in Africa; and 1% in Asia) than pfhrp2 deletion (18% in South-Central America; 4% in Africa; and 3% in Asia) worldwide. In Africa, there were not found differences in deletion prevalence by geographical or population origin of samples. The prevalence of deletion among false negatives ranged from 0 to 100% in Africa, but in Asia and South-Central America was only up to 90% and 48%, respectively, showing substantial relation between deletions and false negatives. Conclusion The concerning prevalence of pfhrp2, pfhrp3 and pfhrp2/3 gene deletions, as its possible implications in malaria control, highlights the importance of regular and systematic surveillance of these deletions. This review has also outlined that a standardized methodology could play a key role to ensure comparability between studies to get global conclusions. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-03812-0.
Collapse
Affiliation(s)
- Irene Molina-de la Fuente
- Department of Biomedicine and Biotechnology, School of Pharmacy, University of Alcalá, Alcalá de Henares, Madrid, Spain. .,Malaria and Neglected Diseases Laboratory, National Centre of Tropical Medicine, Institute of Health Carlos III, 28029, Madrid, Spain. .,Public Health and Epidemiology Research Group, School of Medicine, University of Alcalá, 28871, Alcalá de Henares, Madrid, Spain.
| | - Andrea Pastor
- Public Health and Epidemiology Research Group, School of Medicine, University of Alcalá, 28871, Alcalá de Henares, Madrid, Spain
| | - Zaida Herrador
- National Centre of Epidemiology, Institute of Health Carlos III, 28029, Madrid, Spain.,Network Biomedical Research on Tropical Diseases (RICET in Spanish), Madrid, Spain
| | - Agustín Benito
- Malaria and Neglected Diseases Laboratory, National Centre of Tropical Medicine, Institute of Health Carlos III, 28029, Madrid, Spain.,Network Biomedical Research on Tropical Diseases (RICET in Spanish), Madrid, Spain
| | - Pedro Berzosa
- Malaria and Neglected Diseases Laboratory, National Centre of Tropical Medicine, Institute of Health Carlos III, 28029, Madrid, Spain.,Network Biomedical Research on Tropical Diseases (RICET in Spanish), Madrid, Spain
| |
Collapse
|
13
|
Malaria Rapid Diagnostic Tests: Literary Review and Recommendation for a Quality Assurance, Quality Control Algorithm. Diagnostics (Basel) 2021; 11:diagnostics11050768. [PMID: 33922917 PMCID: PMC8145891 DOI: 10.3390/diagnostics11050768] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/20/2021] [Accepted: 04/21/2021] [Indexed: 01/24/2023] Open
Abstract
Malaria rapid diagnostic tests (RDTs) have had an enormous global impact which contributed to the World Health Organization paradigm shift from empiric treatment to obtaining a parasitological diagnosis prior to treatment. Microscopy, the classic standard, requires significant expertise, equipment, electricity, and reagents. Alternatively, RDT’s lower complexity allows utilization in austere environments while achieving similar sensitivities and specificities. Worldwide, there are over 200 different RDT brands that utilize three antigens: Plasmodium histidine-rich protein 2 (PfHRP-2), Plasmodium lactate dehydrogenase (pLDH), and Plasmodium aldolase (pALDO). pfHRP-2 is produced exclusively by Plasmodium falciparum and is very Pf sensitive, but an alternative antigen or antigen combination is required for regions like Asia with significant Plasmodium vivax prevalence. RDT sensitivity also decreases with low parasitemia (<100 parasites/uL), genetic variability, and prozone effect. Thus, proper RDT selection and understanding of test limitations are essential. The Center for Disease Control recommends confirming RDT results by microscopy, but this is challenging, due to the utilization of clinical laboratory standards, like the College of American Pathologists (CAP) and the Clinical Lab Improvement Act (CLIA), and limited recourses. Our focus is to provide quality assurance and quality control strategies for resource-constrained environments and provide education on RDT limitations.
Collapse
|
14
|
Mehlotra RK, Gaedigk A, Howes RE, Rakotomanga TA, Ratsimbasoa AC, Zimmerman PA. CYP2D6 Genetic Variation and Its Implication for Vivax Malaria Treatment in Madagascar. Front Pharmacol 2021; 12:654054. [PMID: 33959023 PMCID: PMC8093859 DOI: 10.3389/fphar.2021.654054] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/01/2021] [Indexed: 12/19/2022] Open
Abstract
Plasmodium vivax is one of the five human malaria parasite species, which has a wide geographical distribution and can cause severe disease and fatal outcomes. It has the ability to relapse from dormant liver stages (hypnozoites), weeks to months after clearance of the acute blood-stage infection. An 8-aminoquinoline drug primaquine (PQ) can clear the hypnozoites, and thus can be used as an anti-relapse therapeutic agent. Recently, a number of studies have found that its efficacy is compromised by polymorphisms in the cytochrome P450 2D6 (CYP2D6) gene; decreased or absence of CYP2D6 activity contributes to PQ therapeutic failure. The present study sought to characterize CYP2D6 genetic variation in Madagascar, where populations originated from admixture between Asian and African populations, vivax malaria is endemic, and PQ can be deployed soon to achieve national malaria elimination. In a total of 211 samples collected from two health districts, CYP2D6 decreased function alleles CYP2D6*10, *17, *29, *36+*10, and *41 were observed at frequencies of 3.55-17.06%. In addition, nonfunctional alleles were observed, the most common of which were CYP2D6*4 (2.13%), *5 (1.66%), and the *4x2 gene duplication (1.42%). Given these frequencies, 34.6% of the individuals were predicted to be intermediate metabolizers (IM) with an enzyme activity score (AS) ≤ 1.0; both the IM phenotype and AS ≤ 1.0 have been found to be associated with PQ therapeutic failure. Furthermore, the allele and genotype frequency distributions add to the archaeological and genomic evidence of Malagasy populations constituting a unique, Asian-African admixed origin. The results from this exploratory study provide fresh insights about genomic characteristics that could affect the metabolism of PQ into its active state, and may enable optimization of PQ treatment across human genetic diversity, which is critical for achieving P. vivax elimination.
Collapse
Affiliation(s)
- Rajeev K Mehlotra
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| | - Andrea Gaedigk
- Division of Clinical Pharmacology, Toxicology & Therapeutic Innovation, Children's Mercy Kansas City, Kanas City, MO, United States
| | - Rosalind E Howes
- Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, United Kingdom.,Foundation for Innovative New Diagnostics, Geneva, Switzerland
| | - Tovonahary A Rakotomanga
- The National Malaria Control Program, Ministry of Health, Antananarivo, Madagascar.,University of Fianarantsoa, Fianarantsoa, Madagascar
| | - Arsene C Ratsimbasoa
- The National Malaria Control Program, Ministry of Health, Antananarivo, Madagascar.,University of Fianarantsoa, Fianarantsoa, Madagascar
| | - Peter A Zimmerman
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
15
|
Arisco NJ, Rice BL, Tantely LM, Girod R, Emile GN, Randriamady HJ, Castro MC, Golden CD. Variation in Anopheles distribution and predictors of malaria infection risk across regions of Madagascar. Malar J 2020; 19:348. [PMID: 32993669 PMCID: PMC7526177 DOI: 10.1186/s12936-020-03423-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 09/20/2020] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Deforestation and land use change is widespread in Madagascar, altering local ecosystems and creating opportunities for disease vectors, such as the Anopheles mosquito, to proliferate and more easily reach vulnerable, rural populations. Knowledge of risk factors associated with malaria infections is growing globally, but these associations remain understudied across Madagascar's diverse ecosystems experiencing rapid environmental change. This study aims to uncover socioeconomic, demographic, and ecological risk factors for malaria infection across regions through analysis of a large, cross-sectional dataset. METHODS The objectives were to assess (1) the ecological correlates of malaria vector breeding through larval surveys, and (2) the socioeconomic, demographic, and ecological risk factors for malaria infection in four ecologically distinct regions of rural Madagascar. Risk factors were determined using multilevel models for the four regions included in the study. RESULTS The presence of aquatic agriculture (both within and surrounding communities) is the strongest predictive factor of habitats containing Anopheles larvae across all regions. Ecological and socioeconomic risk factors for malaria infection vary dramatically across study regions and range in their complexity. CONCLUSIONS Risk factors for malaria transmission differ dramatically across regions of Madagascar. These results may help stratifying current malaria control efforts in Madagascar beyond the scope of existing interventions.
Collapse
Affiliation(s)
- Nicholas J Arisco
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Building 2, Room 329, Boston, MA, 02115, USA.
| | - Benjamin L Rice
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, USA
| | - Luciano M Tantely
- Medical Entomology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Romain Girod
- Medical Entomology Unit, Institut Pasteur de Madagascar, Antananarivo, Madagascar
| | - Gauthier N Emile
- Madagascar Health and Environmental Research (MAHERY), Antananarivo, Madagascar
| | | | - Marcia C Castro
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Building 2, Room 329, Boston, MA, 02115, USA
| | - Christopher D Golden
- Department of Global Health and Population, Harvard T.H. Chan School of Public Health, 655 Huntington Avenue, Building 2, Room 329, Boston, MA, 02115, USA
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, USA
| |
Collapse
|
16
|
Man Y, Kucukal E, An R, Watson QD, Bosch J, Zimmerman PA, Little JA, Gurkan UA. Microfluidic assessment of red blood cell mediated microvascular occlusion. LAB ON A CHIP 2020; 20:2086-2099. [PMID: 32427268 PMCID: PMC7473457 DOI: 10.1039/d0lc00112k] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Abnormal red blood cell (RBC) deformability contributes to hemolysis, thrombophilia, inflammation, and microvascular occlusion in various circulatory diseases. A quantitative and objective assessment of microvascular occlusion mediated by RBCs with abnormal deformability would provide valuable insights into disease pathogenesis and therapeutic strategies. To that end, we present a new functional microfluidic assay, OcclusionChip, which mimics two key architectural features of the capillary bed in the circulatory system. First, the embedded micropillar arrays within the microchannel form gradient microcapillaries, from 20 μm down to 4 μm, which mimic microcapillary networks. These precisely engineered microcapillaries retain RBCs with impaired deformability, such that stiffer RBCs occlude the wider upstream microcapillaries, while less stiff RBCs occlude the finer downstream microcapillaries. Second, the micropillar arrays are coupled with two side passageways, which mimic the arteriovenous anastomoses that act as shunts in the capillary bed. These side microfluidic anastomoses prevent microchannel blockage, and enable versatility and testing of clinical blood samples at near-physiologic hematocrit levels. Further, we define a new generalizable parameter, Occlusion Index (OI), which is an indicative index of RBC deformability and the associated microcapillary occlusion. We demonstrate the promise of OcclusionChip in diverse pathophysiological scenarios that result in impaired RBC deformability, including mercury toxin, storage lesion, end-stage renal disease, malaria, and sickle cell disease (SCD). Hydroxyurea therapy improves RBC deformability and increases fetal hemoglobin (HbF%) in some, but not all, treated patients with SCD. HbF% greater than 8.6% has been shown to improve clinical outcomes in SCD. We show that OI associates with HbF% in 16 subjects with SCD. Subjects with higher HbF levels (HbF > 8.6%) displayed significantly lower OI (0.88% ± 0.10%, N = 6) compared with those with lower HbF levels (HbF ≤ 8.6%) who displayed greater OI (3.18% ± 0.34%, N = 10, p < 0.001). Moreover, hypoxic OcclusionChip assay revealed a significant correlation between hypoxic OI and subject-specific sickle hemoglobin (HbS) level in SCD. OcclusionChip enables versatile in vitro assessment of microvascular occlusion mediated by RBCs in a wide range of clinical conditions. OI may serve as a new parameter to evaluate the efficacy of treatments improving RBC deformability, including hemoglobin modifying drugs, anti-sickling agents, and genetic therapies.
Collapse
Affiliation(s)
- Yuncheng Man
- Department of Mechanical and Aerospace Engineering, Case Western Reserve University, 10900 Euclid Ave., Cleveland, OH 44106, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Thomson R, Parr JB, Cheng Q, Chenet S, Perkins M, Cunningham J. Prevalence of Plasmodium falciparum lacking histidine-rich proteins 2 and 3: a systematic review. Bull World Health Organ 2020; 98:558-568F. [PMID: 32773901 PMCID: PMC7411324 DOI: 10.2471/blt.20.250621] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 05/14/2020] [Accepted: 05/27/2020] [Indexed: 02/06/2023] Open
Abstract
Objective To calculate prevalence estimates and evaluate the quality of studies reporting Plasmodium falciparum lacking histidine-rich proteins 2 and 3, to inform an international response plan. Methods We searched five online databases, without language restriction, for articles reporting original data on Plasmodium falciparum-infected patients with deletions of the pfhrp2 and/or pfhrp3 genes (pfhrp2/3). We calculated prevalence estimates of pfhrp2/3 deletions and mapped the data by country. The denominator was all P. falciparum-positive samples testing positive by microscopy and confirmed positive by species-specific polymerase chain reaction testing (PCR). If microscopy was not performed, we used the number of samples based on a different diagnostic method or PCR alone. We scored studies for risk of bias and the quality of laboratory methods using a standardized scoring system. Findings A total of 38 articles reporting 55 studies from 32 countries and one territory worldwide were included in the review. We found considerable heterogeneity in the populations studied, methods used and estimated prevalence of P. falciparum parasites with pfhrp2/3 deletions. The derived prevalence of pfhrp2 deletions ranged from 0% to 100%, including focal areas in South America and Africa. Only three studies (5%) fulfilled all seven criteria for study quality. Conclusion The lack of representative surveys or consistency in study design impairs evaluations of the risk of false-negative results in malaria diagnosis due to pfhrp2/3 deletions. Accurate mapping and strengthened monitoring of the prevalence of pfhrp2/3 deletions is needed, along with harmonized methods that facilitate comparisons across studies.
Collapse
Affiliation(s)
| | - Jonathan B Parr
- Division of Infectious Diseases, University of North Carolina, Chapel Hill, United States of America
| | - Qin Cheng
- Australian Defence Force Malaria and Infectious Disease Institute, Queensland, Australia
| | - Stella Chenet
- Instituto de Enfermedades Tropicales, Universidad Nacional Toribio Rodríguez de Mendoza de Amazonas, Chachapoyas, Peru
| | - Mark Perkins
- Department of Emergency Preparedness, World Health Organization, Geneva, Switzerland
| | - Jane Cunningham
- Global Malaria Programme, World Health Organization, avenue Appia 20, 1211 Geneva 27, Switzerland
| |
Collapse
|
18
|
Kojom LP, Singh V. Prevalence of Plasmodium falciparum field isolates with deletions in histidine-rich protein 2 and 3 genes in context with sub-Saharan Africa and India: a systematic review and meta-analysis. Malar J 2020; 19:46. [PMID: 31992330 PMCID: PMC6986054 DOI: 10.1186/s12936-019-3090-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 12/25/2019] [Indexed: 11/02/2022] Open
Abstract
BACKGROUND In 2017, nearly 80% of malaria morbidity and mortality occurred in sub-Saharan African (SSA) countries and India. Rapid diagnostic tests (RDTs), especially those targeting histidine-rich protein 2 (PfHRP2) of Plasmodium falciparum, have become an important diagnostic tool in these malaria-endemic areas. However, the chances of RDT-oriented successful treatment are increasingly jeopardized by the appearance of mutants with deletions in pfhrp2 and pfhrp3 genes. This systematic review and meta-analysis determines the prevalence of field P. falciparum isolates with deletion in pfhrp2 and/or pfhrp3 genes and their proportion among false-negative results in the PfHRP2-based RDTs in SSA and India. METHODS Eight electronic databases were used for searching potentially relevant publications for the systematic review analysis, wherein the main methodological aspects of included studies were analysed and some missing links in the included studies were identified. RESULTS A total of 19 studies were included, 16 from SSA and 3 from India. The pooled prevalence of pfhrp2 deletions was 8 and 5% while 16 and 4% for pfhrp3 gene deletions in Africa and India, respectively. The pooled proportion of pfhrp2 gene deletions found among false negative PfHRP2-based RDTs results was about 27.0 and 69.0% in Africa and India, respectively. CONCLUSIONS This review study indicates a relatively high proportion of both pfhrp2/3 genes deletions in P. falciparum isolates and among false-negative malaria cases using PfHRP2-based RDT results in SSA and India. Recently the deletions in pfhrp2/3 genes have also been reported from two African countries (Nigeria and Sudan). This review emphasizes the importance of more extensive studies and standardization of studies addressing the pfhrp2/3 gene deletions in malarious areas.
Collapse
Affiliation(s)
- Loick P Kojom
- Cell Biology Laboratory and Malaria Parasite Bank, ICMR-National Institute of Malaria Research, Sector 8, Dwarka, New Delhi, 110077, India
| | - Vineeta Singh
- Cell Biology Laboratory and Malaria Parasite Bank, ICMR-National Institute of Malaria Research, Sector 8, Dwarka, New Delhi, 110077, India.
| |
Collapse
|
19
|
Mehlotra RK, Howes RE, Cramer EY, Tedrow RE, Rakotomanga TA, Ramboarina S, Ratsimbasoa AC, Zimmerman PA. Plasmodium falciparum Parasitemia and Band Sensitivity of the SD Bioline Malaria Ag P.f/Pan Rapid Diagnostic Test in Madagascar. Am J Trop Med Hyg 2020; 100:1196-1201. [PMID: 30834883 DOI: 10.4269/ajtmh.18-1013] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Current malaria rapid diagnostic tests (RDTs) contain antibodies against Plasmodium falciparum-specific histidine-rich protein 2 (PfHRP2), Plasmodium lactate dehydrogenase (pLDH), and aldolase in various combinations. Low or high parasite densities/target antigen concentrations may influence the accuracy and sensitivity of PfHRP2-detecting RDTs. We analyzed the SD Bioline Malaria Ag P.f/Pan RDT performance in relation to P. falciparum parasitemia in Madagascar, where clinical Plasmodium vivax malaria exists alongside P. falciparum. Nine hundred sixty-three samples from patients seeking care for suspected malaria infection were analyzed by RDT, microscopy, and Plasmodium species-specific, ligase detection reaction-fluorescent microsphere assay (LDR-FMA). Plasmodium infection positivity by these diagnostics was 47.9%, 46.9%, and 58%, respectively. Plasmodium falciparum-only infections were predominant (microscopy, 45.7%; LDR-FMA, 52.3%). In all, 16.3% of P. falciparum, 70% of P. vivax, and all of Plasmodium malariae, Plasmodium ovale, and mixed-species infections were submicroscopic. In 423 P. falciparum mono-infections, confirmed by microscopy and LDR-FMA, the parasitemia in those who were positive for both the PfHRP2 and pan-pLDH test bands was significantly higher than that in those who were positive only for the PfHRP2 band (P < 0.0001). Plasmodium falciparum parasitemia in those that were detected as P. falciparum-only infections by microscopy but P. falciparum mixed infections by LDR-FMA also showed similar outcome by the RDT band positivity. In addition, we used varying parasitemia (3-0.0001%) of the laboratory-maintained 3D7 strain to validate this observation. A positive pLDH band in high P. falciparum-parasitemic individuals may complicate diagnosis and treatment, particularly when the microscopy is inconclusive for P. vivax, and the two infections require different treatments.
Collapse
Affiliation(s)
- Rajeev K Mehlotra
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Rosalind E Howes
- Nuffield Department of Medicine, Oxford Big Data Institute, University of Oxford, Oxford, United Kingdom.,Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Estee Y Cramer
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Riley E Tedrow
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Tovonahary A Rakotomanga
- Faculty of Sciences, University of Antananarivo, Antananarivo, Madagascar.,National Malaria Control Program, Ministry of Health, Antananarivo, Madagascar
| | - Stéphanie Ramboarina
- Faculty of Sciences, University of Antananarivo, Antananarivo, Madagascar.,Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Arsène C Ratsimbasoa
- Faculty of Sciences, University of Antananarivo, Antananarivo, Madagascar.,National Malaria Control Program, Ministry of Health, Antananarivo, Madagascar
| | - Peter A Zimmerman
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|
20
|
Willie N, Zimmerman PA, Mehlotra RK. Plasmodium falciparum Histidine-Rich Protein 2 Gene Variation in a Malaria-Endemic Area of Papua New Guinea. Am J Trop Med Hyg 2018; 99:697-703. [PMID: 29968556 DOI: 10.4269/ajtmh.18-0137] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Histidine-rich protein 2 of Plasmodium falciparum (PfHRP2) forms the basis of many current malaria rapid diagnostic tests (RDTs). It is concerning that there are parasites that lack part or all of the pfhrp2 gene, and thus do not express the PfHRP2 protein; such parasites are not identifiable by PfHRP2-detecting RDTs. Very limited information is available regarding pfhrp2 genetic variation in Papua New Guinea (PNG). In the present study, this gene variation was evaluated using 169 samples previously collected from the Wosera area in East Sepik Province of PNG. Molecular diagnosis of these samples showed that 81% were infected, and P. falciparum was present in 91% of those infected samples. One hundred and twenty samples were amplified for pfhrp2 exon-2, from which 12 randomly selected amplicons were sequenced, yielding 18 sequences, all of which were unique. Baker repeat type 2 × type 7 numbers ranged from 0 to 108. Epitope mapping analysis revealed that three major epitopes, DAHHAHHA, AHHAADAHHA, and AHHAADAHH, were present in high prevalence and frequencies. These major epitopes have been shown to be recognized by the monoclonal antibodies 3A4 and PTL-3 (DAHHAHHA), C1-13 (AHHAADAHHA), and S2-5 and C2-3 (AHHAADAHH). This study provides further information on the high genetic variation of pfhrp2 and its unclear relationship with prediction of RDT detection sensitivity, and identifies major epitopes in this gene from PNG. These results could be relevant and useful to understand the genetic diversity of this gene and the performance of current and future RDTs in this malarious region of the world.
Collapse
Affiliation(s)
- Nigani Willie
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Peter A Zimmerman
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Rajeev K Mehlotra
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio
| |
Collapse
|