1
|
Hemming-Schroeder E, Hubbard A, Ebhodaghe FI, Vorontsova T, Zhong D, Zhou G, Lo E, Atieli H, Githeko A, Kazura JW, Yan G. Assessing Microsatellite Variations in Plasmodium falciparum Following a Decade-Long Antimalaria Campaign in Kenya. Mol Ecol 2025; 34:e17713. [PMID: 40087832 PMCID: PMC11936721 DOI: 10.1111/mec.17713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/19/2025] [Indexed: 03/17/2025]
Abstract
Anti-malaria interventions typically reduce the intensity of Plasmodium transmission, but the effects of reduced transmission on P. falciparum population biology remain unclear. Highly polymorphic microsatellite markers in P. falciparum were used to investigate genetic diversity, polyclonality and genetic structure among populations in areas of varying malaria transmission intensity across Kenya. We also assessed relationships between metrics derived from genetic data, transmission intensity estimates and bioclimatic variables. Despite an overall reduction in transmission intensity across Kenya from 2005 to 2014, we found that parasite populations maintained high genetic diversity and that genetic diversity correlated more closely with past transmission intensity estimates in the year 2000 as compared to contemporary estimates in 2014. In contrast, we found genetic structuring to be significant, consistent with our observation of shifting parasite migration patterns in western Kenya. Both genetic diversity and polyclonality increased with higher precipitation in the dry season, revealing the potential impacts of changing climate patterns on parasite population dynamics. Whereas fragmentation of P. falciparum populations increases opportunities for spatially targeted interventions in Kenya, the high genetic diversity of isolates in our study signals enhanced adaptability of parasites.
Collapse
Affiliation(s)
- Elizabeth Hemming-Schroeder
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80253, USA
- Program in Public Health, University of California, Irvine, CA 92617, USA
| | - Alfred Hubbard
- Department of Bioinformatics and Genomics, University of North Carolina at Charlotte, NC 28223, USA
| | - Faith I. Ebhodaghe
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80253, USA
| | - Tatiana Vorontsova
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80253, USA
| | - Daibin Zhong
- Program in Public Health, University of California, Irvine, CA 92617, USA
| | - Guofa Zhou
- Program in Public Health, University of California, Irvine, CA 92617, USA
| | - Eugenia Lo
- Department of Microbiology and Immunology, College of Medicine, Drexel University, Philadelphia, PA 19104, USA
| | - Harrysone Atieli
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Andrew Githeko
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - James W. Kazura
- Center for Global Health and Diseases, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Guiyun Yan
- Program in Public Health, University of California, Irvine, CA 92617, USA
| |
Collapse
|
2
|
Mwesigwa A, Kiwuwa SM, Musinguzi B, Kawalya H, Katumba JD, Baguma A, Mutuku IM, Adebayo IA, Nsobya SL, Byakika-Kibwika P, Kalyango JN, Karamagi C, Nankabirwa JI. Temporal changes in Plasmodium falciparum genetic diversity and multiplicity of infection across three areas of varying malaria transmission intensities in Uganda. Trop Med Health 2024; 52:103. [PMID: 39734236 DOI: 10.1186/s41182-024-00672-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/18/2024] [Indexed: 12/31/2024] Open
Abstract
BACKGROUND Malaria is a significant public health challenge in Uganda, with Plasmodium falciparum (P. falciparum) responsible for most of malaria infections. The high genetic diversity and multiplicity of infection (MOI) associated with P. falciparum complicate treatment and prevention efforts. This study investigated temporal changes in P. falciparum genetic diversity and MOI across three sites with varying malaria transmission intensities. Understanding these changes is essential for informing effective malaria control strategies for the different malaria transmission settings. METHODS A total of 220 P. falciparum-positive dried blood spot (DBS) filter paper samples from participants in a study conducted during 2011-2012 and 2015-2016 were analyzed. Genotyping utilized seven polymorphic markers: Poly-α, TA1, TA109, PfPK2, 2490, C2M34-313, and C3M69-383. Genetic diversity metrics, including the number of alleles and expected heterozygosity, were calculated using GENALEX and ARLEQUIN software. MOI was assessed by counting distinct genotypes. Multi-locus linkage disequilibrium (LD) and genetic differentiation were evaluated using the standardized index of association (IAS) and Wright's fixation index (FST), respectively. Statistical comparisons were made using the Kruskal-Wallis test, and temporal trends were analyzed using the Jonckheere-Terpstra test, with statistical significance set at p < 0.05. RESULTS Of the 220 samples, 180 were successfully amplified. The majority of participants were males (50.6%) and children aged 5-11 years (46.7%). Genetic diversity remained high, with mean expected heterozygosity (He) showing a slight decrease over time (range: 0.73-0.82). Polyclonal infections exceeded 50% at all sites, and mean MOI ranged from 1.7 to 2.2, with a significant reduction in Tororo (from 2.2 to 2.0, p = 0.03). Linkage disequilibrium showed a slight increase, with Kanungu exhibiting the lowest IAS in 2011-2012 (0.0085) and Jinja the highest (0.0239) in 2015-2016. Overall genetic differentiation remained low, with slight increases in pairwise FST values over time, notably between Jinja and Tororo (from 0.0145 to 0.0353). CONCLUSIONS This study highlights the genetic diversity and MOI of P. falciparum in Uganda's malaria transmission settings, noting a slight decrease in both genetic diversity and MOI overtime. Continued surveillance and targeted control strategies are essential for monitoring the impact of malaria control efforts in Uganda.
Collapse
Affiliation(s)
- Alex Mwesigwa
- Clinical Epidemiology Unit, School of Medicine, Makerere University College of Health Sciences, P. O. Box 7072, Kampala, Uganda.
- Department of Microbiology and Immunology, School of Medicine, Kabale University, P. O. Box 314, Kabale, Uganda.
| | - Steven M Kiwuwa
- Department of Biochemistry, School of Biomedical Sciences, College of Health Sciences, Makerere, University, P.O. Box 7072, Kampala, Uganda
| | - Benson Musinguzi
- Departent of Medical Laboratory Science, Faculty of Health Sciences, Muni University, P.O. Box 725, Arua, Uganda
| | - Hakiim Kawalya
- Department of Immunology and Molecular Biology, Makerere University College of Health Sciences, P. O. Box 7072, Kampala, Uganda
| | | | - Andrew Baguma
- Department of Microbiology and Immunology, School of Medicine, Kabale University, P. O. Box 314, Kabale, Uganda
| | - Irene M Mutuku
- Department of Microbiology and Immunology, School of Medicine, Kabale University, P. O. Box 314, Kabale, Uganda
| | - Ismail Abiola Adebayo
- Department of Microbiology and Immunology, School of Medicine, Kabale University, P. O. Box 314, Kabale, Uganda
| | - Samuel L Nsobya
- Infectious Diseases Research Collaboration (IDRC), P.O. Box 7475, Kampala, Uganda
| | | | - Joan N Kalyango
- Clinical Epidemiology Unit, School of Medicine, Makerere University College of Health Sciences, P. O. Box 7072, Kampala, Uganda
| | - Charles Karamagi
- Clinical Epidemiology Unit, School of Medicine, Makerere University College of Health Sciences, P. O. Box 7072, Kampala, Uganda
| | - Joaniter I Nankabirwa
- Clinical Epidemiology Unit, School of Medicine, Makerere University College of Health Sciences, P. O. Box 7072, Kampala, Uganda
- Infectious Diseases Research Collaboration (IDRC), P.O. Box 7475, Kampala, Uganda
| |
Collapse
|
3
|
Arambepola R, Bérubé S, Freedman B, Taylor SM, Prudhomme O’Meara W, Obala AA, Wesolowski A. Exploring how space, time, and sampling impact our ability to measure genetic structure across Plasmodium falciparum populations. FRONTIERS IN EPIDEMIOLOGY 2023; 3:1058871. [PMID: 38516334 PMCID: PMC10956351 DOI: 10.3389/fepid.2023.1058871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 01/18/2023] [Indexed: 03/23/2024]
Abstract
A primary use of malaria parasite genomics is identifying highly related infections to quantify epidemiological, spatial, or temporal factors associated with patterns of transmission. For example, spatial clustering of highly related parasites can indicate foci of transmission and temporal differences in relatedness can serve as evidence for changes in transmission over time. However, for infections in settings of moderate to high endemicity, understanding patterns of relatedness is compromised by complex infections, overall high forces of infection, and a highly diverse parasite population. It is not clear how much these factors limit the utility of using genomic data to better understand transmission in these settings. In particular, further investigation is required to determine which patterns of relatedness we expect to see with high quality, densely sampled genomic data in a high transmission setting and how these observations change under different study designs, missingness, and biases in sample collection. Here we investigate two identity-by-state measures of relatedness and apply them to amplicon deep sequencing data collected as part of a longitudinal cohort in Western Kenya that has previously been analysed to identify individual-factors associated with sharing parasites with infected mosquitoes. With these data we use permutation tests, to evaluate several hypotheses about spatiotemporal patterns of relatedness compared to a null distribution. We observe evidence of temporal structure, but not of fine-scale spatial structure in the cohort data. To explore factors associated with the lack of spatial structure in these data, we construct a series of simplified simulation scenarios using an agent based model calibrated to entomological, epidemiological and genomic data from this cohort study to investigate whether the lack of spatial structure observed in the cohort could be due to inherent power limitations of this analytical method. We further investigate how our hypothesis testing behaves under different sampling schemes, levels of completely random and systematic missingness, and different transmission intensities.
Collapse
Affiliation(s)
- Rohan Arambepola
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Batlimore, MD, United States
| | - Sophie Bérubé
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Batlimore, MD, United States
| | - Betsy Freedman
- Division of Infectious Diseases, Duke University Medical Center, Durham, NC, United States
| | - Steve M. Taylor
- Division of Infectious Diseases, Duke University Medical Center, Durham, NC, United States
- Duke Global Health Institute, Durham, NC, United States
| | - Wendy Prudhomme O’Meara
- Division of Infectious Diseases, Duke University Medical Center, Durham, NC, United States
- Duke Global Health Institute, Durham, NC, United States
| | | | - Amy Wesolowski
- Department of Epidemiology, Bloomberg School of Public Health, Johns Hopkins University, Batlimore, MD, United States
| |
Collapse
|
4
|
Ullah I, Khan A, Israr M, Shah M, Shams S, Khan W, Shah M, Siraj M, Akbar K, Naz T, Afridi SG. Genomic miscellany and allelic frequencies of Plasmodium falciparum msp-1, msp-2 and glurp in parasite isolates. PLoS One 2022; 17:e0264654. [PMID: 35259187 PMCID: PMC8903261 DOI: 10.1371/journal.pone.0264654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 02/14/2022] [Indexed: 11/18/2022] Open
Abstract
Introduction
The genomic miscellany of malaria parasites can help inform the intensity of malaria transmission and identify potential deficiencies in malaria control programs. This study was aimed at investigating the genomic miscellany, allele frequencies, and MOI of P. falciparum infection.
Methods
A total of 85 P. falciparum confirmed isolates out of 100 were included in this study that were collected from P. falciparum patients aged 4 months to 60 years in nine districts of Khyber Pakhtunkhwa Province. Parasite DNA was extracted from 200µL whole blood samples using the Qiagen DNA extraction kit following the manufacturer’s instructions. The polymorphic regions of msp-1, msp-2 and glurp loci were genotyped using nested PCR followed by gel electrophoresis for amplified fragments identification and subsequent data analysis.
Results
Out of 85 P. falciparum infections detected, 30 were msp-1 and 32 were msp-2 alleles specific. Successful amplification occurred in 88.23% (75/85) isolates for msp-1, 78.9% (67/85) for msp-2 and 70% (60/85) for glurp gene. In msp-1, the K1 allelic family was predominantly prevalent as 66.66% (50/75), followed by RO33 and MAD20. The frequency of samples with single infection having only K1, MAD20 and RO33 were 21.34% (16/75), 8% (6/75), and 10.67% (8/75), respectively. In msp-2, both the FC27 and 3D7 allelic families revealed almost the same frequencies as 70.14% (47/67) and 67.16% (45/67), respectively. Nine glurp RII region alleles were identified in 60 isolates. The overall mean multiplicity of infection for msp genes was 1.6 with 1.8 for msp-1 and 1.4 for msp-2, while for glurp the MOI was 1.03. There was no significant association between multiplicity of infection and age groups (Spearman’s rank coefficient = 0.050; P = 0.6) while MOI and parasite density correlated for only msp-2 allelic marker.
Conclusions
The study showed high genetic diversity and allelic frequency with multiple clones of msp-1, msp-2 and glurp in P. falciparum isolates in Khyber Pakhtunkhwa, Pakistan. In the present study the genotype data may provide valuable information essential for monitoring the impact of malaria eradication efforts in this region.
Collapse
Affiliation(s)
- Ibrar Ullah
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Asifullah Khan
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Muhammad Israr
- Department of Forensic Sciences, University of Swat, Swat, Pakistan
| | - Mohibullah Shah
- Department of Biochemistry, Bahauddin Zakariya University Multan, Multan, Pakistan
| | - Sulaiman Shams
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Waliullah Khan
- Department of Chemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Muzafar Shah
- Centre for Animal Sciences & Fisheries, University of Swat, Swat, Pakistan
| | - Muhammad Siraj
- Department of Zoology, Abbottabad University of Science and Technology, Abbottabad, Pakistan
| | - Kehkashan Akbar
- Department of Biochemistry, Abbottabad International Medical College, Abbottabad, Pakistan
| | - Tahira Naz
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Sahib Gul Afridi
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
- * E-mail:
| |
Collapse
|
5
|
Kattenberg JH, Razook Z, Keo R, Koepfli C, Jennison C, Lautu-Gumal D, Fola AA, Ome-Kaius M, Barnadas C, Siba P, Felger I, Kazura J, Mueller I, Robinson LJ, Barry AE. Monitoring Plasmodium falciparum and Plasmodium vivax using microsatellite markers indicates limited changes in population structure after substantial transmission decline in Papua New Guinea. Mol Ecol 2020; 29:4525-4541. [PMID: 32985031 PMCID: PMC10008436 DOI: 10.1111/mec.15654] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 07/27/2020] [Indexed: 02/01/2023]
Abstract
Monitoring the genetic structure of pathogen populations may be an economical and sensitive approach to quantify the impact of control on transmission dynamics, highlighting the need for a better understanding of changes in population genetic parameters as transmission declines. Here we describe the first population genetic analysis of two major human malaria parasites, Plasmodium falciparum (Pf) and Plasmodium vivax (Pv), following nationwide distribution of long-lasting insecticide-treated nets (LLINs) in Papua New Guinea (PNG). Parasite isolates from pre- (2005-2006) and post-LLIN (2010-2014) were genotyped using microsatellite markers. Despite parasite prevalence declining substantially (East Sepik Province: Pf = 54.9%-8.5%, Pv = 35.7%-5.6%, Madang Province: Pf = 38.0%-9.0%, Pv: 31.8%-19.7%), genetically diverse and intermixing parasite populations remained. Pf diversity declined modestly post-LLIN relative to pre-LLIN (East Sepik: Rs = 7.1-6.4, HE = 0.77-0.71; Madang: Rs = 8.2-6.1, HE = 0.79-0.71). Unexpectedly, population structure present in pre-LLIN populations was lost post-LLIN, suggesting that more frequent human movement between provinces may have contributed to higher gene flow. Pv prevalence initially declined but increased again in one province, yet diversity remained high throughout the study period (East Sepik: Rs = 11.4-9.3, HE = 0.83-0.80; Madang: Rs = 12.2-14.5, HE = 0.85-0.88). Although genetic differentiation values increased between provinces over time, no significant population structure was observed at any time point. For both species, a decline in multiple infections and increasing clonal transmission and significant multilocus linkage disequilibrium post-LLIN were positive indicators of impact on the parasite population using microsatellite markers. These parameters may be useful adjuncts to traditional epidemiological tools in the early stages of transmission reduction.
Collapse
Affiliation(s)
- Johanna Helena Kattenberg
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Yagaum, Papua New Guinea
| | - Zahra Razook
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Raksmei Keo
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia
| | - Cristian Koepfli
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Charlie Jennison
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Dulcie Lautu-Gumal
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Yagaum, Papua New Guinea.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Abebe A Fola
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Maria Ome-Kaius
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Yagaum, Papua New Guinea.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Céline Barnadas
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Yagaum, Papua New Guinea.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - Peter Siba
- Papua New Guinea Institute of Medical Research, Goroka, Papua New Guinea
| | - Ingrid Felger
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - James Kazura
- Centre for Global Health and Diseases, Case Western Reserve University, Cleveland, OH, USA
| | - Ivo Mueller
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.,Department of Parasites and Insect Vectors, Institut Pasteur, Paris, France
| | - Leanne J Robinson
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Vector Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Yagaum, Papua New Guinea.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia.,Disease Elimination, Burnet Institute, Melbourne, VIC, Australia
| | - Alyssa E Barry
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia.,Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
6
|
Bretscher MT, Dahal P, Griffin J, Stepniewska K, Bassat Q, Baudin E, D'Alessandro U, Djimde AA, Dorsey G, Espié E, Fofana B, González R, Juma E, Karema C, Lasry E, Lell B, Lima N, Menéndez C, Mombo-Ngoma G, Moreira C, Nikiema F, Ouédraogo JB, Staedke SG, Tinto H, Valea I, Yeka A, Ghani AC, Guerin PJ, Okell LC. The duration of chemoprophylaxis against malaria after treatment with artesunate-amodiaquine and artemether-lumefantrine and the effects of pfmdr1 86Y and pfcrt 76T: a meta-analysis of individual patient data. BMC Med 2020; 18:47. [PMID: 32098634 PMCID: PMC7043031 DOI: 10.1186/s12916-020-1494-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 01/09/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The majority of Plasmodium falciparum malaria cases in Africa are treated with the artemisinin combination therapies artemether-lumefantrine (AL) and artesunate-amodiaquine (AS-AQ), with amodiaquine being also widely used as part of seasonal malaria chemoprevention programs combined with sulfadoxine-pyrimethamine. While artemisinin derivatives have a short half-life, lumefantrine and amodiaquine may give rise to differing durations of post-treatment prophylaxis, an important additional benefit to patients in higher transmission areas. METHODS We analyzed individual patient data from 8 clinical trials of AL versus AS-AQ in 12 sites in Africa (n = 4214 individuals). The time to PCR-confirmed reinfection after treatment was used to estimate the duration of post-treatment protection, accounting for variation in transmission intensity between settings using hidden semi-Markov models. Accelerated failure-time models were used to identify potential effects of covariates on the time to reinfection. The estimated duration of chemoprophylaxis was then used in a mathematical model of malaria transmission to determine the potential public health impact of each drug when used for first-line treatment. RESULTS We estimated a mean duration of post-treatment protection of 13.0 days (95% CI 10.7-15.7) for AL and 15.2 days (95% CI 12.8-18.4) for AS-AQ overall. However, the duration varied significantly between trial sites, from 8.7-18.6 days for AL and 10.2-18.7 days for AS-AQ. Significant predictors of time to reinfection in multivariable models were transmission intensity, age, drug, and parasite genotype. Where wild type pfmdr1 and pfcrt parasite genotypes predominated (<=20% 86Y and 76T mutants, respectively), AS-AQ provided ~ 2-fold longer protection than AL. Conversely, at a higher prevalence of 86Y and 76T mutant parasites (> 80%), AL provided up to 1.5-fold longer protection than AS-AQ. Our simulations found that these differences in the duration of protection could alter population-level clinical incidence of malaria by up to 14% in under-5-year-old children when the drugs were used as first-line treatments in areas with high, seasonal transmission. CONCLUSION Choosing a first-line treatment which provides optimal post-treatment prophylaxis given the local prevalence of resistance-associated markers could make a significant contribution to reducing malaria morbidity.
Collapse
Affiliation(s)
- Michael T Bretscher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK.
| | - Prabin Dahal
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK.,Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jamie Griffin
- School of Mathematical Sciences, Queen Mary University of London, London, UK
| | - Kasia Stepniewska
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK.,Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Quique Bassat
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain.,ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain.,Pediatric Infectious Diseases Unit, Pediatrics Department, Hospital Sant Joan de Déu (University of Barcelona), Barcelona, Spain.,Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | | | - Umberto D'Alessandro
- MRC Unit The Gambia at the London School of Hygiene and Tropical Medicine, Fajara, The Gambia
| | - Abdoulaye A Djimde
- Malaria Research and Training Center, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Grant Dorsey
- Department of Medicine, University of California San Francisco, San Francisco, USA
| | - Emmanuelle Espié
- Epicentre, Paris, France.,Clinical and Epidemiology Department, GSK Vaccines, R&D Center, Wavre, Belgium
| | - Bakary Fofana
- Malaria Research and Training Center, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Raquel González
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Elizabeth Juma
- Centre for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Corine Karema
- Swiss Tropical and Public Health Institute, Basel, Switzerland.,University of Basel, Basel, Switzerland
| | | | - Bertrand Lell
- Department of Medicine I, Division of Infectious Diseases and Tropical Medicine, Medical University of Vienna, Vienna, Austria.,Centre de Recherches Medicales de Lambarene, Lambarene, Gabon
| | - Nines Lima
- Department of Paediatrics, University of Calabar, Calabar, Nigeria
| | - Clara Menéndez
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique.,ISGlobal, Hospital Clínic - Universitat de Barcelona, Barcelona, Spain
| | - Ghyslain Mombo-Ngoma
- Centre de Recherches Medicales de Lambarene, Lambarene, Gabon.,Institute for Tropical Medicine, University of Tubingen, Tubingen, Germany.,Department of Tropical Medicine, Bernhard Nocht Institute for Tropical Medicine and I. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Clarissa Moreira
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK.,Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Frederic Nikiema
- Institut de Recherche en Science de la Sante, Bobo-Dioulasso, Burkina Faso
| | - Jean B Ouédraogo
- Institut de Recherche en Science de la Sante, Bobo-Dioulasso, Burkina Faso
| | - Sarah G Staedke
- Department of Clinical Research, Faculty of Infectious & Tropical Diseases, London School of Hygiene & Tropical Medicine, London, UK
| | - Halidou Tinto
- Institut de Recherche en Science de la Sante, Nanoro, Burkina Faso
| | - Innocent Valea
- Institut de Recherche en Science de la Sante, Nanoro, Burkina Faso
| | - Adoke Yeka
- Uganda Malaria Surveillance Project, Kampala, Uganda
| | - Azra C Ghani
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Philippe J Guerin
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK.,Centre for Tropical Medicine & Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Lucy C Okell
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK.
| |
Collapse
|
7
|
Mohammed H, Kassa M, Mekete K, Assefa A, Taye G, Commons RJ. Genetic diversity of the msp-1, msp-2, and glurp genes of Plasmodium falciparum isolates in Northwest Ethiopia. Malar J 2018; 17:386. [PMID: 30359280 PMCID: PMC6203214 DOI: 10.1186/s12936-018-2540-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 10/20/2018] [Indexed: 11/30/2022] Open
Abstract
Background Determination of the genetic diversity of malaria parasites can inform the intensity of transmission and identify potential deficiencies in malaria control programmes. This study was conducted to characterize the genetic diversity and allele frequencies of Plasmodium falciparum in Northwest Ethiopia along the Eritrea and Sudan border. Methods A total of 90 isolates from patients presenting to the local health centre with uncomplicated P. falciparum were collected from October 2014 to January 2015. DNA was extracted and the polymorphic regions of the msp-1, msp-2 and glurp loci were genotyped by nested polymerase chain reactions followed by gel electrophoresis for fragment analysis. Results Allelic variation in msp-1, msp-2 and glurp were identified in 90 blood samples. A total of 34 msp alleles (12 for msp-1 and 22 for msp-2) were detected. For msp-1 97.8% (88/90), msp-2 82.2% (74/90) and glurp 46.7% (42/90) were detected. In msp-1, MAD20 was the predominant allelic family detected in 47.7% (42/88) of the isolates followed by RO33 and K1. For msp-2, the frequency of FC27 and IC/3D7 were 77% (57/74) and 76% (56/74), respectively. Nine glurp RII region genotypes were identified. Seventy percent of isolates had multiple genotypes and the overall mean multiplicity of infection was 2.6 (95% CI 2.25–2.97). The heterozygosity index was 0.82, 0.62 and 0.20 for msp-1, msp-2 and glurp, respectively. There was no significant association between multiplicity of infection and age or parasite density. Conclusions There was a high degree of genetic diversity with multiple clones in P. falciparum isolates from Northwest Ethiopia suggesting that there is a need for improved malaria control efforts in this region. Electronic supplementary material The online version of this article (10.1186/s12936-018-2540-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hussein Mohammed
- Malaria, Neglected Tropical Diseases Research Team Bacterial, Parasitic, Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia.
| | - Moges Kassa
- Malaria, Neglected Tropical Diseases Research Team Bacterial, Parasitic, Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Kalkidan Mekete
- Malaria, Neglected Tropical Diseases Research Team Bacterial, Parasitic, Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Ashenafi Assefa
- Malaria, Neglected Tropical Diseases Research Team Bacterial, Parasitic, Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Girum Taye
- Malaria, Neglected Tropical Diseases Research Team Bacterial, Parasitic, Zoonotic Diseases Research Directorate, Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Robert J Commons
- Menzies School of Health Research and Charles Darwin University, Darwin, Australia
| |
Collapse
|
8
|
Okell LC, Reiter LM, Ebbe LS, Baraka V, Bisanzio D, Watson OJ, Bennett A, Verity R, Gething P, Roper C, Alifrangis M. Emerging implications of policies on malaria treatment: genetic changes in the Pfmdr-1 gene affecting susceptibility to artemether-lumefantrine and artesunate-amodiaquine in Africa. BMJ Glob Health 2018; 3:e000999. [PMID: 30397515 PMCID: PMC6202998 DOI: 10.1136/bmjgh-2018-000999] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 08/21/2018] [Accepted: 08/31/2018] [Indexed: 11/04/2022] Open
Abstract
Artemether–lumefantrine (AL) and artesunate–amodiaquine (AS-AQ) are the most commonly used artemisinin-based combination therapies (ACT) for treatment of Plasmodium falciparum in Africa. Both treatments remain efficacious, but single nucleotide polymorphisms (SNPs) in the Plasmodium falciparum multidrug resistance 1 (Pfmdr1) gene may compromise sensitivity. AL and AS-AQ exert opposing selective pressures: parasites with genotype 86Y, Y184 and 1246Y are partially resistant to AS-AQ treatment, while N86, 184 F and D1246 are favoured by AL treatment. Through a systematic review, we identified 397 surveys measuring the prevalence of Pfmdr1 polymorphisms at positions 86 184 or 1246 in 30 countries in Africa. Temporal trends in SNP frequencies after introduction of AL or AS-AQ as first-line treatment were analysed in 32 locations, and selection coefficients estimated. We examined associations between antimalarial policies, consumption, transmission intensity and rate of SNP selection. 1246Y frequency decreased on average more rapidly in locations where national policy recommended AL (median selection coefficient(s) of −0.083), compared with policies of AS-AQ or both AL and AS-AQ (median s=−0.035 and 0.021, p<0.001 respectively). 86Y frequency declined markedly after ACT policy introduction, with a borderline significant trend for a more rapid decline in countries with AL policies (p=0.055). However, these trends could also be explained by a difference in initial SNP frequencies at the time of ACT introduction. There were non-significant trends for faster selection of N86 and D1246 in areas with higher AL consumption and no trend with transmission intensity. Recorded consumption of AS-AQ was low in the locations and times Pfmdr1 data were collected. SNP trends in countries with AL policies suggest a broad increase in sensitivity of parasites to AS-AQ, by 7–10 years after AL introduction. Observed rates of selection have implications for planning strategies to cycle drugs or use multiple first-line therapies to maintain drug efficacy.
Collapse
Affiliation(s)
- Lucy C Okell
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Lisa Malene Reiter
- Global Health Section, Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Lene Sandø Ebbe
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Disease, Copenhagen University Hospital, Copenhagen, Denmark
| | - Vito Baraka
- Department of Biomedical Sciences, National Institute for Medical Research, Tanga, United Republic of Tanzania
| | - Donal Bisanzio
- RTI International, Washington, District of Columbia, USA
| | - Oliver J Watson
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Adam Bennett
- Malaria Elimination Initiative, Global Health Group, University of San FranciscO, San Francisco, California, USA
| | - Robert Verity
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Peter Gething
- Malaria Atlas Project, Oxford Big Data Institute, Li Ka Shing Centre for Health Information and Discovery, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Cally Roper
- Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Michael Alifrangis
- Centre for Medical Parasitology, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Nguetse CN, Ojo JA, Nchotebah C, Ikegbunam MN, Meyer CG, Thomas BN, Velavan TP, Ojurongbe O. Genetic Diversity of the Plasmodium falciparum Glutamate-Rich Protein R2 Region Before and Twelve Years after Introduction of Artemisinin Combination Therapies among Febrile Children in Nigeria. Am J Trop Med Hyg 2018; 98:667-676. [PMID: 29363449 PMCID: PMC5930894 DOI: 10.4269/ajtmh.17-0621] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/14/2017] [Indexed: 11/07/2022] Open
Abstract
The genetic diversity of glutamate-rich protein (GLURP) R2 region in Plasmodium falciparum isolates collected before and 12 years after the introduction of artemisinin combination treatment of malaria in Osogbo, Osun State, Nigeria, was compared in this study. Blood samples were collected on filter paper in 2004 and 2015 from febrile children from ages 1-12 years. The R2 region of the GLURP gene was genotyped using nested polymerase chain reaction and by nucleotide sequencing. In all, 12 GLURP alleles were observed in a total of 199 samples collected in the two study years. The multiplicity of infection (MOI) marginally increased over the two study years; however, the differences were statistically insignificant (2004 samples MOI = 1.23 versus 2015 samples MOI = 1.47). Some alleles were stable in their prevalence, whereas two GLURP alleles, VIII and XI, showed considerable variability between both years. This variability was replicated when GLURP sequences from other regions were compared with ours. The expected heterozygosity (He) values (He = 0.87) were identical for the two groups. High variability in the rearrangement of the amino acid repeat units in the R2 region were observed, with the amino acid repeat sequence DKNEKGQHEIVEVEEILPE more prevalent in both years, compared with the two other repeat sequences observed in the study. The parasite population characterized in this study displayed extensive genetic diversity. The detailed genetic profile of the GLURP R2 region has the potential to help guide further epidemiological studies aimed toward the rational design of novel chemotherapies that are antagonistic toward malaria.
Collapse
Affiliation(s)
- Christian N. Nguetse
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Department of Pediatrics, Stanford University School of Medicine, Stanford, California
| | - Johnson Adeyemi Ojo
- Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Osogbo, Nigeria
| | - Charles Nchotebah
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
| | - Moses Nkechukwu Ikegbunam
- Department of Pharmaceutical Microbiology and Biotechnology, Nnamdi Azikwe University, Akwa, Nigeria
| | - Christian G. Meyer
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Duy Tan University, Da Nang, Vietnam
| | - Bolaji N. Thomas
- Department of Biomedical Sciences, Rochester Institute of Technology, Rochester, New York
| | - Thirumalaisamy P. Velavan
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Duy Tan University, Da Nang, Vietnam
- Fondation Congolaise pour la Recherche Médicale, Brazzaville, Republic of Congo
| | - Olusola Ojurongbe
- Institute of Tropical Medicine, University of Tübingen, Tübingen, Germany
- Department of Medical Microbiology and Parasitology, Ladoke Akintola University of Technology, Osogbo, Nigeria
| |
Collapse
|
10
|
Hemming-Schroeder E, Umukoro E, Lo E, Fung B, Tomás-Domingo P, Zhou G, Zhong D, Dixit A, Atieli H, Githeko A, Vardo-Zalik A, Yan G. Impacts of Antimalarial Drugs on Plasmodium falciparum Drug Resistance Markers, Western Kenya, 2003-2015. Am J Trop Med Hyg 2018; 98:692-699. [PMID: 29363453 PMCID: PMC5930917 DOI: 10.4269/ajtmh.17-0763] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Antimalarial drug resistance has threatened global malaria control since chloroquine (CQ)-resistant Plasmodium falciparum emerged in Asia in the 1950s. Understanding the impacts of changing antimalarial drug policy on resistance is critical for resistance management. Plasmodium falciparum isolates were collected from 2003 to 2015 in western Kenya and analyzed for genetic markers associated with resistance to CQ (Pfcrt), sulfadoxine-pyrimethamine (SP) (Pfdhfr/Pfdhps), and artemether-lumefantrine (AL) (PfKelch13/Pfmdr1) antimalarials. In addition, household antimalarial drug use surveys were administered. Pfcrt 76T prevalence decreased from 76% to 6% from 2003 to 2015. Pfdhfr/Pfdhps quintuple mutants decreased from 70% in 2003 to 14% in 2008, but increased to near fixation by 2015. SP "super resistant" alleles Pfdhps 581G and 613S/T were not detected in the 2015 samples that were assessed. The Pfmdr1 N86-184F-D1246 haplotype associated with decreased lumefantrine susceptibility increased significantly from 4% in 2005 to 51% in 2015. No PfKelch13 mutations that have been previously associated with artemisinin resistance were detected in the study populations. The increase in Pfdhfr/Pfdhps quintuple mutants that associates with SP resistance may have resulted from the increased usage of SP for intermittent preventative therapy in pregnancy (IPTp) and for malaria treatment in the community. Prevalent Pfdhfr/Pfdhps mutations call for careful monitoring of SP resistance and effectiveness of the current IPTp program in Kenya. In addition, the commonly occurring Pfmdr1 N86-184F-D1246 haplotype associated with increased lumefantrine tolerance calls for surveillance of AL efficacy in Kenya, as well as consideration for a rotating artemisinin-combination therapy regimen.
Collapse
Affiliation(s)
| | | | - Eugenia Lo
- Department of Biological Sciences, University of North Carolina, Charlotte, North Carolina
| | - Becky Fung
- Program in Public Health, University of California, Irvine, California
| | | | - Guofa Zhou
- Program in Public Health, University of California, Irvine, California
| | - Daibin Zhong
- Program in Public Health, University of California, Irvine, California
| | - Amruta Dixit
- Program in Public Health, University of California, Irvine, California
| | - Harrysone Atieli
- Centre for Vector Biology and Control Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Andrew Githeko
- Centre for Vector Biology and Control Research, Kenya Medical Research Institute, Kisumu, Kenya
| | | | - Guiyun Yan
- Program in Public Health, University of California, Irvine, California
| |
Collapse
|
11
|
Genetically Determined Response to Artemisinin Treatment in Western Kenyan Plasmodium falciparum Parasites. PLoS One 2016; 11:e0162524. [PMID: 27611315 PMCID: PMC5017781 DOI: 10.1371/journal.pone.0162524] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/24/2016] [Indexed: 12/16/2022] Open
Abstract
Genetically determined artemisinin resistance in Plasmodium falciparum has been described in Southeast Asia. The relevance of recently described Kelch 13-propeller mutations for artemisinin resistance in Sub-Saharan Africa parasites is still unknown. Southeast Asia parasites have low genetic diversity compared to Sub-Saharan Africa, where parasites are highly genetically diverse. This study attempted to elucidate whether genetics provides a basis for discovering molecular markers in response to artemisinin drug treatment in P. falciparum in Kenya. The genetic diversity of parasites collected pre- and post- introduction of artemisinin combination therapy (ACT) in western Kenya was determined. A panel of 12 microsatellites and 91 single nucleotide polymorphisms (SNPs) distributed across the P. falciparum genome were genotyped. Parasite clearance rates were obtained for the post-ACT parasites. The 12 microsatellites were highly polymorphic with post-ACT parasites being significantly more diverse compared to pre-ACT (p < 0.0001). The median clearance half-life was 2.55 hours for the post-ACT parasites. Based on SNP analysis, 15 of 90 post-ACT parasites were single-clone infections. Analysis revealed 3 SNPs that might have some causal association with parasite clearance rates. Further, genetic analysis using Bayesian tree revealed parasites with similar clearance phenotypes were more closely genetically related. With further studies, SNPs described here and genetically determined response to artemisinin treatment might be useful in tracking artemisinin resistance in Kenya.
Collapse
|
12
|
Mohd Abd Razak MR, Sastu UR, Norahmad NA, Abdul-Karim A, Muhammad A, Muniandy PK, Jelip J, Rundi C, Imwong M, Mudin RN, Abdullah NR. Genetic Diversity of Plasmodium falciparum Populations in Malaria Declining Areas of Sabah, East Malaysia. PLoS One 2016; 11:e0152415. [PMID: 27023787 PMCID: PMC4811561 DOI: 10.1371/journal.pone.0152415] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 03/14/2016] [Indexed: 11/19/2022] Open
Abstract
Malaysia has a national goal to eliminate malaria by 2020. Understanding the genetic diversity of malaria parasites in residual transmission foci can provide invaluable information which may inform the intervention strategies used to reach elimination targets. This study was conducted to determine the genetic diversity level of P. falciparum isolates in malaria residual foci areas of Sabah. Malaria active case detection was conducted in Kalabakan and Kota Marudu. All individuals in the study sites were screened for malaria infection by rapid diagnostic test. Blood from P. falciparum-infected individuals were collected on filter paper prior to DNA extraction. Genotyping was performed using merozoite surface protein-1 (MSP-1), merozoite surface protein-2 (MSP-2), glutamate rich protein (GLURP) and 10 neutral microsatellite loci markers. The size of alleles, multiplicity of infection (MOI), mean number of alleles (Na), expected heterozygosity (He), linkage disequilibrium (LD) and genetic differentiation (FST) were determined. In Kalabakan, the MSP-1 and MSP-2 alleles were predominantly K1 and FC27 family types, respectively. The GLURP genotype VI (751-800 bp) was predominant. The MOI for MSP-1 and MSP-2 were 1.65 and 1.20, respectively. The Na per microsatellite locus was 1.70. The He values for MSP-1, MSP-2, GLURP and neutral microsatellites were 0.17, 0.37, 0.70 and 0.33, respectively. In Kota Marudu, the MSP-1 and MSP-2 alleles were predominantly MAD20 and 3D7 family types, respectively. The GLURP genotype IV (651-700 bp) was predominant. The MOI for both MSP-1 and MSP-2 was 1.05. The Na per microsatellite locus was 3.60. The He values for MSP-1, MSP-2, GLURP and neutral microsatellites were 0.24, 0.25, 0.69 and 0.30, respectively. A significant LD was observed in Kalabakan (0.495, p<0.01) and Kota Marudu P. falciparum populations (0.601, p<0.01). High genetic differentiation between Kalabakan and Kota Marudu P. falciparum populations was observed (FST = 0.532). The genetic data from the present study highlighted the limited diversity and contrasting genetic pattern of P. falciparum populations in the malaria declining areas of Sabah.
Collapse
Affiliation(s)
| | - Umi Rubiah Sastu
- Herbal Medicine Research Center, Institute for Medical Research, Kuala Lumpur, Malaysia
| | - Nor Azrina Norahmad
- Herbal Medicine Research Center, Institute for Medical Research, Kuala Lumpur, Malaysia
| | - Abass Abdul-Karim
- Zonal Public Health Laboratory, Tamale Teaching Hospital, Tamale, Northern Region, Ghana, West Africa
| | - Amirrudin Muhammad
- Herbal Medicine Research Center, Institute for Medical Research, Kuala Lumpur, Malaysia
| | - Prem Kumar Muniandy
- Herbal Medicine Research Center, Institute for Medical Research, Kuala Lumpur, Malaysia
| | - Jenarun Jelip
- Sabah State Health Department, Rumah Persekutuan, Kota Kinabalu, Sabah, Malaysia
| | - Christina Rundi
- Sabah State Health Department, Rumah Persekutuan, Kota Kinabalu, Sabah, Malaysia
| | - Mallika Imwong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Rose Nani Mudin
- Vector Borne Disease Sector, Disease Control Division, Ministry of Health, Federal Government Administrative Centre, Putrajaya, Malaysia
| | - Noor Rain Abdullah
- Herbal Medicine Research Center, Institute for Medical Research, Kuala Lumpur, Malaysia
| |
Collapse
|
13
|
Ingasia LA, Cheruiyot J, Okoth SA, Andagalu B, Kamau E. Genetic variability and population structure of Plasmodium falciparum parasite populations from different malaria ecological regions of Kenya. INFECTION GENETICS AND EVOLUTION 2015; 39:372-380. [PMID: 26472129 DOI: 10.1016/j.meegid.2015.10.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 10/09/2015] [Accepted: 10/10/2015] [Indexed: 10/22/2022]
Abstract
Transmission intensity, movement of human and vector hosts, biogeographical features, and malaria control measures are some of the important factors that determine Plasmodium falciparum parasite genetic variability and population structure. Kenya has different malaria ecologies which might require different disease intervention methods. Refined parasite population genetic studies are critical for informing malaria control and elimination strategies. This study describes the genetic diversity and population structure of P. falciparum parasites from the different malaria ecological zones in Kenya. Twelve multi-locus microsatellite (MS) loci previously described were genotyped in 225 P. falciparum isolates collected between 2012 and 2013 from five sites; three in lowland endemic regions (Kisumu, Kombewa, and Malindi) and two in highland, epidemic regions (Kisii and Kericho). Parasites from the lowland endemic and highland epidemic regions of western Kenya had high genetic diversity compared to coastal lowland endemic region of Kenya [Malindi]. The Kenyan parasites had a mean genetic differentiation index (FST) of 0.072 (p=0.011). The multi-locus genetic analysis of the 12 MS revealed all the parasites had unique haplotypes. Significant linkage disequilibrium (LD) was observed in all the five parasite populations. Kisumu had the most significant index of association values (0.16; p<0.0001) whereas Kisii had the least significant index of association values (0.03; p<0.0001). Our data suggest high genetic diversity in Kenyan parasite population with the exception of parasite from Malindi where malaria has been on the decline. The presence of significant LD suggests that there is occurrence of inbreeding in the parasite population. Parasite populations from Kisii showed the strongest evidence for epidemic population structure whereas the rest of the regions showed panmixia. Defining the genetic diversity of the parasites in different ecological regions of Kenya after introduction of the artemether-lumefantrine is important in refining the spread of drug resistant strains and malaria transmission for more effective control and eventual elimination of malaria in Kenya.
Collapse
Affiliation(s)
- Luicer A Ingasia
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Kenya (USAMRD-K), Kenya Medical Research Institute (KEMRI)/Walter Reed Project (WRP), Kisumu, Kenya
| | - Jelagat Cheruiyot
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Kenya (USAMRD-K), Kenya Medical Research Institute (KEMRI)/Walter Reed Project (WRP), Kisumu, Kenya
| | - Sheila Akinyi Okoth
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, United States; Atlanta Research and Education Foundation/VA Medical Center, Decatur, GA, United States
| | - Ben Andagalu
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Kenya (USAMRD-K), Kenya Medical Research Institute (KEMRI)/Walter Reed Project (WRP), Kisumu, Kenya
| | - Edwin Kamau
- Department of Emerging and Infectious Diseases (DEID), United States Army Medical Research Directorate-Kenya (USAMRD-K), Kenya Medical Research Institute (KEMRI)/Walter Reed Project (WRP), Kisumu, Kenya.
| |
Collapse
|
14
|
The effect of local variation in malaria transmission on the prevalence of sulfadoxine-pyrimethamine resistant haplotypes and selective sweep characteristics in Malawi. Malar J 2015; 14:387. [PMID: 26437774 PMCID: PMC4595317 DOI: 10.1186/s12936-015-0860-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 08/22/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Persistence of sulfadoxine-pyrimethamine (SP) resistance has been described in an urban setting in Malawi where malaria transmission is relatively low. Higher malaria transmission is associated with greater genetic diversity and more frequent genetic recombination, which could lead to a more rapid re-emergence of SP-sensitive parasites, as well as more rapid degradation of selective sweeps. In this study, the impact of local variation in malaria transmission on the prevalence of SP-resistant haplotypes and selective sweep characteristics was investigated at an urban site with low parasite prevalence and two rural sites with moderate and high parasite prevalence. METHODS Samples from three sites with different parasite prevalence were genotyped for resistance markers within pfdhfr-ts and pfdhps and at microsatellites flanking these genes. Expected heterozygosity (He) was estimated to evaluate genetic diversity. RESULTS No difference in the prevalence of highly resistant DHFR 51I/59R/108N and DHPS 437G/540E was found between sites. Small differences in He flanking pfdhfr-ts and pfdhps were seen between rural-moderate and the other sites, as well as some shared haplotypes between the rural-high and urban-low sites. CONCLUSIONS The results do not show an effect of local variation in malaria transmission, as inferred from parasite prevalence, on SP-resistant haplotype prevalence.
Collapse
|
15
|
Djimde AA, Makanga M, Kuhen K, Hamed K. The emerging threat of artemisinin resistance in malaria: focus on artemether-lumefantrine. Expert Rev Anti Infect Ther 2015; 13:1031-45. [PMID: 26081265 DOI: 10.1586/14787210.2015.1052793] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The development of artemisinin resistance in the Greater Mekong Subregion poses a significant threat to malaria elimination. Artemisinin-based combination therapies including artemether-lumefantrine (AL) are recommended by WHO as first-line treatment for uncomplicated Plasmodium falciparum malaria. This article provides a comprehensive review of the existing and latest data as a basis for interpretation of observed variability in parasite sensitivity to AL over the last 5 years. Clinical efficacy and preclinical data from a range of endemic countries are summarized, including potential molecular markers of resistance. Overall, AL remains effective in the treatment of uncomplicated P. falciparum malaria in most regions. Establishing validated molecular markers for resistance and strict efficacy monitoring will reinforce timely updates of treatment policies.
Collapse
Affiliation(s)
- Abdoulaye A Djimde
- Malaria Research and Training Center, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | | | | | | |
Collapse
|
16
|
Khaireh BA, Assefa A, Guessod HH, Basco LK, Khaireh MA, Pascual A, Briolant S, Bouh SM, Farah IH, Ali HM, Abdi AIA, Aden MO, Abdillahi Z, Ayeh SN, Darar HY, Koeck JL, Rogier C, Pradines B, Bogreau H. Population genetics analysis during the elimination process of Plasmodium falciparum in Djibouti. Malar J 2013; 12:201. [PMID: 23758989 PMCID: PMC3685531 DOI: 10.1186/1475-2875-12-201] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 05/28/2013] [Indexed: 11/26/2022] Open
Abstract
Background Case management of imported malaria within the context of malaria pre-elimination is increasingly considered to be relevant because of the risk of resurgence. The assessment of malaria importation would provide key data i) to select countries with propitious conditions for pre-elimination phase and ii) to predict its feasibility. Recently, a sero-prevalence study in Djibouti indicated low malaria prevalence, which is propitious for the implementation of pre-elimination, but data on the extent of malaria importation remain unknown. Methods Djiboutian plasmodial populations were analysed over an eleven-year period (1998, 1999, 2002 and 2009). The risk of malaria importation was indirectly assessed by using plasmodial population parameters. Based on 5 microsatellite markers, expected heterozygosity (H.e.), multiplicity of infection, pairwise Fst index, multiple correspondence analysis and individual genetic relationship were determined. The prevalence of single nucleotide polymorphisms associated with pyrimethamine resistance was also determined. Results Data indicated a significant decline in genetic diversity (0.51, 0.59, 0.51 and 0 in 1998, 1999, 2002 and 2009, respectively) over the study period, which is inconsistent with the level of malaria importation described in a previous study. This suggested that Djiboutian malaria situation may have benefited from the decline of malaria prevalence that occurred in neighbouring countries, in particular in Ethiopia. The high Fst indices derived from plasmodial populations from one study period to another (0.12 between 1999 and 2002, and 0.43 between 2002 and 2009) suggested a random sampling of parasites, probably imported from neighbouring countries, leading to oligo-clonal expansion of few different strains during each transmission season. Nevertheless, similar genotypes observed during the study period suggested recurrent migrations and imported malaria. Conclusion In the present study, the extent of genetic diversity was used to assess the risk of malaria importation in the low malaria transmission setting of Djibouti. The molecular approach highlights i) the evolution of Djiboutian plasmodial population profiles that are consistent and compatible with Djiboutian pre-elimination goals and ii) the necessity to implement the monitoring of plasmodial populations and interventions at the regional scale in the Horn of Africa to ensure higher efficiency of malaria control and elimination.
Collapse
Affiliation(s)
- Bouh Abdi Khaireh
- Unité de Parasitologie, Département d'Infectiologie de Terrain, Institut de Recherche Biomédicale des Armées, Allée du Médecin Colonel E, Jamot, Parc du Pharo, BP 60109, 13262 Marseille Cedex 07, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|