1
|
Bimoussa A, Oubella A, Alossaimi MA, Aziz M, Attaullah HM, Ejaz SA, Morjani H, Auhmani A, Robert A, Riahi A, Riadi Y, Ait Itto MY. Novel Bis-1,2,3-triazole-thiazolidinone hybrid as anticancer agents that induce apoptosis and molecular modeling study. Future Med Chem 2024:1-18. [PMID: 39387360 DOI: 10.1080/17568919.2024.2394019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 08/12/2024] [Indexed: 10/15/2024] Open
Abstract
Aim: A series of (R)-Carvone-based 1,2,3-triazole-thiazolidinone 17a-h hybrids were synthesized and characterized by spectroscopic techniques NMR and HRMS. The chemical reactivity and the stability parameters were observed via DFT.Method/results: The objective was to evaluate the anticancer activity of the synthesized compounds against cancer cell lines. The mechanism of action by which the 17b and 17g exert their effect suggested that they may induce apoptosis through activation of caspase-3/7. This effect was observed against the most important NIMA-related kinases via Docking investigation. The designed compounds were identified as the best inhibitors of the NEK family via the inactivation of the caspase-3. The Docking results were supported by Dynamics where the binding energies justified the medicinal importance of the synthesized derivatives.
Collapse
Affiliation(s)
- Abdoullah Bimoussa
- Laboratory of Organic Synthesis & Physico-Molecular Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, Université Cadi Ayyad, BP PO Box 2390, Marrakech, 40001, Morocco
| | - Ali Oubella
- Laboratory of Organic & Physical Chemistry, Applied Bioorganic Chemistry Team, Faculty of Sciences, Ibnou Zohr University, Agadir, Morocco
| | - Manal A Alossaimi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Mubashir Aziz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Hafiz Muhammad Attaullah
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Syeda Abida Ejaz
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, The Islamia University of Bahawalpur, 63100, Pakistan
| | - Hamid Morjani
- BioSpectroscopie Translationnelle, BioSpecT-EA7506, UFR de Pharmacie, Université de Reims Champagne-Ardenne, 51 Rue Cognacq Jay, 51096, Reims Cedex, France
| | - Aziz Auhmani
- Laboratory of Organic Synthesis & Physico-Molecular Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, Université Cadi Ayyad, BP PO Box 2390, Marrakech, 40001, Morocco
| | - Anthony Robert
- Equipe MSO, CNRS UMR 7312 Institut de Chimie Moléculaire Université de Reims Champagne-Ardenne, Bat. Europol'Agro - Moulin de La Housse UFR SciencesB.P.,1039, 51687, Reims Cedex 2, France
| | - Abdelkhalek Riahi
- Equipe MSO, CNRS UMR 7312 Institut de Chimie Moléculaire Université de Reims Champagne-Ardenne, Bat. Europol'Agro - Moulin de La Housse UFR SciencesB.P.,1039, 51687, Reims Cedex 2, France
| | - Yassine Riadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
| | - Moulay Youssef Ait Itto
- Laboratory of Organic Synthesis & Physico-Molecular Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, Université Cadi Ayyad, BP PO Box 2390, Marrakech, 40001, Morocco
| |
Collapse
|
2
|
Bimoussa A, Hachim ME, Khatabi KE, Laamari Y, Oubella A, AlAjmi MF, Auhmani A, Ajana MA, Morjani H, Ait Itto MY. Semicarbazone, thiosemicarbazone tailed isoxazoline-pyrazole: synthesis, DFT, biological and computational assessment. Future Med Chem 2024:1-14. [PMID: 39291612 DOI: 10.1080/17568919.2024.2394011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Aim: A series of semicarbazone and thiosemicarbazone-tailed hybrids comprising pyrazole and acetylisoxazoline were prepared from (R)-carvone and characterized by technique spectroscopies Nuclear Magnetic Resonance (NMR), IR and High-Resolution Mass Spectrometry. Density Functional Theory (DFT) determined the structural parameters. Their cytotoxic activity was evaluated in vitro against four human cancer cell lines.Methods & results: All the studied semi and thiosemicarbazone demonstrate a promising potential as anticancer agents. The mechanism of action of these compounds involves apoptosis in HT-1080 cells, supported by an increase in the level of caspase-3/7 activity, which also arrests the cell cycle in the G0/G1 phase. Molecular docking studies were performed to establish the potential of the most active compounds 4a and 5a. ADMET analysis showed appropriate pharmacokinetic properties, allowing structure prediction for anticancer activity.
Collapse
Affiliation(s)
- Abdoullah Bimoussa
- Laboratory of Molecular Chemistry, unit of Organic Synthesis & Molecular Physicochemistry, Department of Chemistry, Faculty of Sciences Semlalia, PO Box 2390, Marrakech, 40001, Morocco
| | - Mouhi Eddine Hachim
- Laboratory of Analytical & Molecular Chemistry, Polydisciplinary Faculty, Cadi Ayyad University, BP 4162, Safi, 46000, Morocco
| | - Khalil El Khatabi
- Molecular Chemistry & Natural Substances Laboratory, Faculty of Science, University Moulay Ismail, Meknes, Morocco
| | - Yassine Laamari
- Laboratory of Molecular Chemistry, unit of Organic Synthesis & Molecular Physicochemistry, Department of Chemistry, Faculty of Sciences Semlalia, PO Box 2390, Marrakech, 40001, Morocco
| | - Ali Oubella
- Laboratory of Organic & Physical Chemistry, Faculty of Sciences, Ibnou Zohr University, Agadir, Morocco
| | - Mohamed F AlAjmi
- Department of Pharmacognosy College of Pharmacy King Saud University, Riyadh, Saudi Arabia
| | - Aziz Auhmani
- Laboratory of Molecular Chemistry, unit of Organic Synthesis & Molecular Physicochemistry, Department of Chemistry, Faculty of Sciences Semlalia, PO Box 2390, Marrakech, 40001, Morocco
| | - Mohammed Aziz Ajana
- Molecular Chemistry & Natural Substances Laboratory, Faculty of Science, University Moulay Ismail, Meknes, Morocco
| | - Hamid Morjani
- BioSpectroscopie Translationnelle, BioSpecT-EA7506, UFR de Pharmacie, Université de Reims Champagne-Ardenne, 51 Rue Cognacq Jay, Reims Cedex, 51096, France
| | - My Youssef Ait Itto
- Laboratory of Molecular Chemistry, unit of Organic Synthesis & Molecular Physicochemistry, Department of Chemistry, Faculty of Sciences Semlalia, PO Box 2390, Marrakech, 40001, Morocco
| |
Collapse
|
3
|
Câmara JS, Perestrelo R, Ferreira R, Berenguer CV, Pereira JAM, Castilho PC. Plant-Derived Terpenoids: A Plethora of Bioactive Compounds with Several Health Functions and Industrial Applications-A Comprehensive Overview. Molecules 2024; 29:3861. [PMID: 39202940 PMCID: PMC11357518 DOI: 10.3390/molecules29163861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/06/2024] [Accepted: 08/08/2024] [Indexed: 09/03/2024] Open
Abstract
Terpenoids are a large class of natural secondary plant metabolites which are highly diverse in structure, formed from isoprene units (C-5), associated with a wide range of biological properties, including antioxidant, antimicrobial, anti-inflammatory, antiallergic, anticancer, antimetastatic, antiangiogenesis, and apoptosis induction, and are considered for potential application in the food, cosmetics, pharmaceutical, and medical industries. In plants, terpenoids exert a variety of basic functions in growth and development. This review gives an overview, highlighting the current knowledge of terpenoids and recent advances in our understanding of the organization, regulation, and diversification of core and specialized terpenoid metabolic pathways and addressing the most important functions of volatile and non-volatile specialized terpenoid metabolites in plants. A comprehensive description of different aspects of plant-derived terpenoids as a sustainable source of bioactive compounds, their biosynthetic pathway, the several biological properties attributed to these secondary metabolites associated with health-promoting effects, and their potential industrial applications in several fields will be provided, and emerging and green extraction methods will also be discussed. In addition, future research perspectives within this framework will be highlighted. Literature selection was carried out using the National Library of Medicine, PubMed, and international reference data for the period from 2010 to 2024 using the keyword "terpenoids". A total of 177,633 published papers were found, of which 196 original and review papers were included in this review according to the criteria of their scientific reliability, their completeness, and their relevance to the theme considered.
Collapse
Affiliation(s)
- José S. Câmara
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (R.F.); (C.V.B.); (J.A.M.P.); (P.C.C.)
- Departamento de Química, Faculdade de Ciências Exatas e da Engenharia da Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| | - Rosa Perestrelo
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (R.F.); (C.V.B.); (J.A.M.P.); (P.C.C.)
| | - Rui Ferreira
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (R.F.); (C.V.B.); (J.A.M.P.); (P.C.C.)
| | - Cristina V. Berenguer
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (R.F.); (C.V.B.); (J.A.M.P.); (P.C.C.)
| | - Jorge A. M. Pereira
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (R.F.); (C.V.B.); (J.A.M.P.); (P.C.C.)
| | - Paula C. Castilho
- CQM—Centro de Química da Madeira, NPRG, Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal; (R.P.); (R.F.); (C.V.B.); (J.A.M.P.); (P.C.C.)
- Departamento de Química, Faculdade de Ciências Exatas e da Engenharia da Universidade da Madeira, Campus Universitário da Penteada, 9020-105 Funchal, Portugal
| |
Collapse
|
4
|
Thalappil MA, Singh P, Carcereri de Prati A, Sahoo SK, Mariotto S, Butturini E. Essential oils and their nanoformulations for breast cancer therapy. Phytother Res 2024; 38:556-591. [PMID: 37919622 DOI: 10.1002/ptr.8054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/22/2023] [Accepted: 10/08/2023] [Indexed: 11/04/2023]
Abstract
Breast Cancer (BC) is the most prevalent type of cancer in the world. Current treatments include surgery, radiation, and chemotherapy but often are associated with high toxicity to normal tissues, chemoresistance, and relapse. Thus, developing novel therapies which could combat these limitations is essential for effective treatment. In this context, phytochemicals are increasingly getting popular due to their safety profile, ability to efficiently target tumors, and circumvent limitations of existing treatments. Essential Oils (EOs) are mixtures of various phytochemicals which have shown potential anticancer activity in preclinical BC models. However, their clinical translation is limited by factors such as high volatility, low stability, and poor solubility. Nanotechnology has facilitated their encapsulation in a variety of nanostructures and proven to overcome these limitations. In this review, we have efficiently summarized the current knowledge on the anticancer effect of EOs and constituents in both in in vitro and in in vivo BC models. Further, we also provide a descriptive account on the potential of nanotechnology in enhancing the anti-BC activity of EOs and their constituents. The papers discussed in this review were selected using the keywords "antiproliferative Essential Oils in breast cancer," "anticancer activity of Essential Oil in breast cancer," and "cytotoxicity of Essential Oils in breast cancer" performed in PubMed and ScienceDirect databases.
Collapse
Affiliation(s)
- Muhammed Ashiq Thalappil
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| | - Priya Singh
- Nanomedicine Laboratory, Institute of Life Sciences, Bhubaneswar, India
| | - Alessandra Carcereri de Prati
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| | | | - Sofia Mariotto
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| | - Elena Butturini
- Department of Neuroscience, Biomedicine and Movement Sciences, Section of Biological Chemistry, University of Verona, Verona, Italy
| |
Collapse
|
5
|
Barras BJ, Ling T, Rivas F. Recent Advances in Chemistry and Antioxidant/Anticancer Biology of Monoterpene and Meroterpenoid Natural Product. Molecules 2024; 29:279. [PMID: 38202861 PMCID: PMC10780832 DOI: 10.3390/molecules29010279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Monoterpenes and meroterpenes are two large classes of isoprene-based molecules produced by terrestrial plants and unicellular organisms as diverse secondary metabolites. The global rising incidence of cancer has led to a renewed interest in natural products. These monoterpenes and meroterpenes represent a novel source of molecular scaffolds that can serve as medicinal chemistry platforms for the development of potential preclinical leads. Furthermore, some of these natural products are either abundant, or their synthetic strategies are scalable as it will be indicated here, facilitating their derivatization to expand their scope in drug discovery. This review is a collection of representative updates (from 2016-2023) in biologically active monoterpene and meroterpenoid natural products and focuses on the recent findings of the pharmacological potential of these bioactive compounds as well as the newly developed synthetic strategies employed to access them. Particular emphasis will be placed on the anticancer and antioxidant potential of these compounds in order to raise knowledge for further investigations into the development of potential anti-cancer therapeutics. The mounting experimental evidence from various research groups across the globe regarding the use of these natural products at pre-clinical levels, renders them a fast-track research area worth of attention.
Collapse
Affiliation(s)
| | - Taotao Ling
- Department of Chemistry, Louisiana State University, 133 Choppin Hall, Baton Rouge, LA 70803, USA;
| | - Fatima Rivas
- Department of Chemistry, Louisiana State University, 133 Choppin Hall, Baton Rouge, LA 70803, USA;
| |
Collapse
|
6
|
Shirokova AV, Dmitriev LB, Belopukhov SL, Dmitrieva VL, Danilova IL, Kharchenko VA, Pekhova OA, Myagkih EF, Tsitsilin AN, Gulevich AA, Zhuravleva EV, Kostanchuk YN, Baranova EN. The Accumulation of Volatile Compounds and the Change in the Morphology of the Leaf Wax Cover Accompanied the "Anti-Aging" Effect in Anethum graveolens L. Plants Sprayed with 6-Benzylaminopurine. Int J Mol Sci 2023; 24:15137. [PMID: 37894818 PMCID: PMC10606700 DOI: 10.3390/ijms242015137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
Essential oils (EOs) are of commercial importance for medicine, food, cosmetics, the perfume industry, and agriculture. In plants, EOs, like the wax cover, serve as protection against abiotic stresses, such as high temperatures and water deficiency. The use of spraying with exogenous hormones of aromatic plants affects the accumulation and composition of volatile compounds, as well as tolerance to abiotic stress. As a result of cytokinin treatment with 6-BAP (6-benzylaminopurine) (200 mg L-l) of Anetum graveolens L. "Uzory" and "Rusich" varieties, several responses to its action were revealed: a change in the division of leaf blades, inhibition of flowering, an increase in the content of EO and its main components α-phellandrene and p-cymene in leaves, and limonene in umbels and fruits. It was revealed that the increased accumulation of EO in dill leaves was longer with sufficient moisture. In contrast, under conditions of heat and water deficiency, the effect of 6-BAP treatment on accumulations of the EO in leaves was short-lived and did not appear on umbels and fruits. The study of the cytokinin effect on a fine structure of a wax cover on the adaxial side of leaves by scanning electron microscopy revealed a change in its elements (from amorphous layers with scales to thin tubules), which probably increased the sensitivity of leaves to water deficiency and, consequently, led to a decrease in the biosynthetic activity of leaf tissue. Thus, 6-BAP had an impact on the adaptive properties of dill plants, prolonging the "youth" of vegetative organs and the ability to EO biosynthesis under conditions of sufficient moisture.
Collapse
Affiliation(s)
- Anna V. Shirokova
- Genetic and Cytology Laboratory, Federal State Budgetary Scientific Institution, Federal Scientific Vegetable Center (FSVC), Selektsionnaya 14, VNIISSOK Village, 143072 Moscow, Russia
| | - Lev B. Dmitriev
- Department of Chemistry, Russian State Agrarian University—Moscow Agricultural Academy Named after K.A.Timiryazev (RSAU-MTAA), Timiryazevskaya 49, 127434 Moscow, Russia; (L.B.D.); (S.L.B.); (V.L.D.)
| | - Sergey L. Belopukhov
- Department of Chemistry, Russian State Agrarian University—Moscow Agricultural Academy Named after K.A.Timiryazev (RSAU-MTAA), Timiryazevskaya 49, 127434 Moscow, Russia; (L.B.D.); (S.L.B.); (V.L.D.)
| | - Valeria L. Dmitrieva
- Department of Chemistry, Russian State Agrarian University—Moscow Agricultural Academy Named after K.A.Timiryazev (RSAU-MTAA), Timiryazevskaya 49, 127434 Moscow, Russia; (L.B.D.); (S.L.B.); (V.L.D.)
| | - Irina L. Danilova
- Federal State Budgetary Scientific Institution, Research Institute of Agricultural of Crimea’, Kievskaya 150, 295493 Simferopol, Russia; (I.L.D.); (O.A.P.); (E.F.M.)
| | - Viktor A. Kharchenko
- Selection and Seed Poduction of Green Spice-Flavoring and Flower Crops Laboratory Federal State Budgetary Scientific Institution, Federal Scientific Vegetable Center (FSVC), Selektsionnaya 14, 143072 Moscow, Russia;
| | - Olga A. Pekhova
- Federal State Budgetary Scientific Institution, Research Institute of Agricultural of Crimea’, Kievskaya 150, 295493 Simferopol, Russia; (I.L.D.); (O.A.P.); (E.F.M.)
| | - Elena F. Myagkih
- Federal State Budgetary Scientific Institution, Research Institute of Agricultural of Crimea’, Kievskaya 150, 295493 Simferopol, Russia; (I.L.D.); (O.A.P.); (E.F.M.)
| | - Andrey N. Tsitsilin
- Botanical Garden of All-Russian Research Institute of Medicinal and Aromatic Plants, Grina 7/1, 117216 Moscow, Russia;
| | - Alexander A. Gulevich
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (A.A.G.); (E.N.B.)
| | - Ekaterina V. Zhuravleva
- Federal State Budgetary Scientific Institution Belgorod Federal Agrarian Scientific Center of Russian Academy of Sciences, 308001 Belgorod, Russia;
| | - Yulia N. Kostanchuk
- Federal State Budgetary Scientific Institution, Research Institute of Agricultural of Crimea’, Kievskaya 150, 295493 Simferopol, Russia; (I.L.D.); (O.A.P.); (E.F.M.)
| | - Ekaterina N. Baranova
- All-Russia Research Institute of Agricultural Biotechnology, Timiryazevskaya 42, 127550 Moscow, Russia; (A.A.G.); (E.N.B.)
- N.V. Tsitsin Main Botanical Garden of Russian Academy of Sciences, Botanicheskaya 4, 127276 Moscow, Russia
| |
Collapse
|
7
|
Lima LTFD, Ganzella FADO, Cardoso GC, Pires VDS, Chequin A, Santos GL, Braun-Prado K, Galindo CM, Braz Junior O, Molento MB, Acco A, Adami ER, Costa ET, Cavichiolo Franco CR, Klassen G, Ramos EADS. l-carvone decreases breast cancer cells adhesion, migration, and invasion by suppressing FAK activation. Chem Biol Interact 2023; 378:110480. [PMID: 37059214 DOI: 10.1016/j.cbi.2023.110480] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/24/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Breast cancer is one of the most common types of cancer in the world and current therapeutic strategies present severe drawbacks. l-carvone (CRV), a monoterpene found in Mentha spicata (spearmint), has been reported to have potent anti-inflammatory activity. Here, we examined the role of CRV in breast cancer cell adhesion, migration and invasion in vitro and how this component could suppress the growth of Ehrlich carcinoma-bearing mice. In vivo, treatment with CRV significantly decreased tumor growth, increased tumor necrosis area, and reduced the expression of VEGF and HIF-1α in Ehrlich carcinoma-bearing mice. Furthermore, the anticancer efficacy of CRV was similar to currently used chemotherapy (Methotrexate), and the combination of CRV with MTX potentiated the chemotherapy effects. Further mechanistic investigation in vitro revealed that CRV modulates the interaction of breast cancer cells with the extracellular matrix (ECM) by disrupting focal adhesion, which was shown by scanning electron microscopy (SEM) and immunofluorescence. Moreover, CRV caused a decrease in β1-integrin expression and inhibited focal adhesion kinase (FAK) activation. FAK is one of the most important downstream activators of several metastatic processes, including MMP-2 mediated invasion and HIF-1α/VEGF angiogenesis stimulus, both of which were found to be reduced in MDA-MB-231 cells exposed to CRV. Our results provide new insight about targeting β1-integrin/FAK signaling pathway with CRV, which could be a new potential agent in the treatment of breast cancer.
Collapse
Affiliation(s)
- Lucas Trevisan França de Lima
- Pos-graduate Program of Microbiology, Parasitology and Pathology, Federal University of Parana, Curitiba, PR, Brazil
| | | | - Gabriela Casani Cardoso
- Pos-graduate Program of Microbiology, Parasitology and Pathology, Federal University of Parana, Curitiba, PR, Brazil
| | - Verônica Dos Santos Pires
- Pos-graduate Program of Microbiology, Parasitology and Pathology, Federal University of Parana, Curitiba, PR, Brazil
| | - Andressa Chequin
- Pos-graduate Program of Microbiology, Parasitology and Pathology, Federal University of Parana, Curitiba, PR, Brazil
| | - Giulia Luiza Santos
- Molecular Oncology Center, Research and Education Institute, Hospital Sirio-Libanes, São Paulo, SP, Brazil
| | - Karin Braun-Prado
- Department of Basic Pathology, Federal University of Parana, Curitiba, PR, Brazil
| | | | - Odair Braz Junior
- Pos-graduate Program of Cellular and Molecular Biology, Federal University of Parana, Curitiba, PR, Brazil
| | - Marcelo Beltrão Molento
- Pos-graduate Program of Microbiology, Parasitology and Pathology, Federal University of Parana, Curitiba, PR, Brazil; Department of Veterinary Medicine, Federal University of Parana, Curitiba, PR, Brazil
| | - Alexandra Acco
- Pos-graduate Program of Pharmacology, Federal University of Parana, Curitiba, PR, Brazil
| | - Eliana Rezende Adami
- Pos-graduate Program of Pharmacology, Federal University of Parana, Curitiba, PR, Brazil
| | - Erico Tosoni Costa
- Molecular Oncology Center, Research and Education Institute, Hospital Sirio-Libanes, São Paulo, SP, Brazil
| | | | - Giseli Klassen
- Pos-graduate Program of Microbiology, Parasitology and Pathology, Federal University of Parana, Curitiba, PR, Brazil; Department of Basic Pathology, Federal University of Parana, Curitiba, PR, Brazil
| | - Edneia Amancio de Souza Ramos
- Pos-graduate Program of Microbiology, Parasitology and Pathology, Federal University of Parana, Curitiba, PR, Brazil; Department of Basic Pathology, Federal University of Parana, Curitiba, PR, Brazil.
| |
Collapse
|
8
|
Yalta K, Yetkin E, Yalta T. Serum Copeptin in Cardiooncology Practice: Review of Pathophysiological and Clinical Implications. Balkan Med J 2023; 40:82-92. [PMID: 36883738 PMCID: PMC9998837 DOI: 10.4274/balkanmedj.galenos.2023.2023-2-14] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
In cardiooncology practice, "early cardiotoxicity" refers to an emerging subclinical myocardial dysfunction/injury in response to certain chemotherapeutic regimens. This condition can progress to overt cardiotoxicity in time and hence warrants proper and timely diagnostic and preventive strategies. Current diagnostic strategies for "early cardiotoxicity" are largely based on conventional biomarkers and certain echocardiographic indices. However, a significant gap still exists in this setting, warranting further strategies to improve diagnosis and overall prognosis in cancer survivors. Copeptin (surrogate marker of the arginine vasopressine axis) might serve as a promising adjunctive guide for the timely detection, risk stratification, and management of early cardiotoxicity on top of conventional strategies largely due to its multifaceted pathophysiological implications in the clinical setting. This work aims to focus on serum copeptin as a marker of "early cardiotoxicity" and its general clinical implications in patients with cancer.
Collapse
Affiliation(s)
- Kenan Yalta
- Department of Cardiology, Trakya University Faculty of Medicine, Edirne, Turkey
| | - Ertan Yetkin
- Department of Cardiology, İstinye University Faculty of Medicine, İstanbul, Turkey
| | - Tülin Yalta
- Department of Pathology, Trakya University Faculty of Medicine, Edirne, Turkey
| |
Collapse
|
9
|
Gazioglu I, Zengin OS, Gunaydin Akyildiz A, Zengin Kurt B. Fungal biotransformation of carvone and camphor by Aspergillus flavus and investigation of cytotoxic activities of naturally obtained essential oils. Nat Prod Res 2023; 37:944-955. [PMID: 35899398 DOI: 10.1080/14786419.2022.2098957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
In this study, the biotransformation of carvone and camphor by Aspergillus flavus and the products were investigated. The biotransformation reaction of carvone by A. flavus resulted in the production of neodihydrocarveol, dihydrocarvone, 2-cyclohexene-1-one,2-methyl-5-(1-methylethenyl), limonene-1,2-diol, trans-p-mentha-1(7),8-dien-2-ol, p-menth-8(10)-ene-2,9-diol, and the biotransformation reaction of camphor resulted in the production of 2 -campholenic acid, 2-cyclohexene-1-one,2-hydroxy-4,4,6,6-tetramethyl, α-campholene aldehyde. The naturally produced essential oils by biotransformation of carvone and camphor were observed to be cytotoxic to breast cancer cells while no significant inhibition was seen in the healthy cell line. Additionally, biotransformation products had the highest inhibition (74%) against aflatoxin B1. The bioactivities of biotransformation products are promising, and they can be further investigated for their therapeutic potential as active agents.
Collapse
Affiliation(s)
- Isil Gazioglu
- Faculty of Pharmacy, Department of Analytical Chemistry, Bezmialem Vakif University, Istanbul, Turkey
| | - Ozge Sultan Zengin
- Faculty of Pharmacy, Department of Analytical Chemistry, Bezmialem Vakif University, Istanbul, Turkey
| | - Aysenur Gunaydin Akyildiz
- Faculty of Pharmacy, Department of Pharmaceutical Toxicology, Bezmialem Vakif University, Istanbul, Turkey
| | - Belma Zengin Kurt
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Bezmialem Vakif University, Istanbul, Turkey
| |
Collapse
|
10
|
Molecular Mechanisms Underlying the Anti-Inflammatory Properties of (R)-(-)-Carvone: Potential Roles of JNK1, Nrf2 and NF-κB. Pharmaceutics 2023; 15:pharmaceutics15010249. [PMID: 36678878 PMCID: PMC9865770 DOI: 10.3390/pharmaceutics15010249] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/30/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
To explore the molecular mechanisms underlying the anti-inflammatory activity of (R)-(-)-carvone, we evaluated its ability to inhibit the signaling pathways involving the mitogen-activated protein kinases (MAPKs) and the transcription factor, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). (R)-(-)-carvone significantly decreased c-Jun N-terminal kinase (JNK) 1phosphorylation, but not that of the other MAPKs, induced by bacterial lipopolysaccharides (LPS) in the RAW 264.7 macrophage cell line. Although (R)-(-)-carvone significantly inhibited resynthesis of the inhibitor of NF-κB (IκB)-α induced by LPS, it did not interfere with the canonical NF-κB activation pathway, suggesting that it may interfere with its transcriptional activity. (R)-(-)-carvone also showed a tendency to decrease the levels of acetylated NF-κB/p65 in the nucleus, without affecting the activity and protein levels of Sirtuin-1, the major NF-κB/p65 deacetylating enzyme. Interestingly, the nuclear protein levels of the transcription factor, nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and the expression of its target,, heme oxygenase-1 (HO-1), an antioxidant enzyme, also showed a tendency to increase in the presence of (R)-(-)-carvone. Taken together, these results suggest that the ability of (R)-(-)-carvone to inhibit JNK1 and to activate Nrf2 can underlie its capacity to inhibit the transcriptional activity of NF-κB and the expression of its target genes. This study highlights the diversity of molecular mechanisms that can be involved in the anti-inflammatory activity of monoterpenes.
Collapse
|
11
|
Elmorsi RM, Kabel AM, El Saadany AA, Abou El-Seoud SH. The protective effects of topiramate and spirulina against doxorubicin-induced cardiotoxicity in rats. Hum Exp Toxicol 2023; 42:9603271231198624. [PMID: 37644674 DOI: 10.1177/09603271231198624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Doxorubicin (DOX) is a widely used chemotherapy drug that can cause significant cardiotoxicity, limiting its clinical application. This study aimed to investigate the potential protective effects of topiramate (TPM) and spirulina (SP), either alone or in combination, in preventing DOX-induced cardiotoxicity. Adult Sprague Dawley rats were divided into five groups, including a normal control group and groups receiving DOX alone, DOX with TPM, DOX with SP, or DOX with a combination of TPM and SP. Cardiotoxicity was induced by administering DOX intraperitoneally at a cumulative dose of 16 mg/kg over 4 weeks. TPM and/or SP administration started 1 week before DOX treatment and continued for 35 days. Body weight, serum markers of cardiac damage, oxidative stress and inflammatory parameters were assessed. Histopathological and immunohistochemical examinations were performed on cardiac tissues. Results showed that TPM and SP monotherapy led to significant improvements in serum levels of cardiac markers, decreased oxidative stress, reduced fibrosis-related growth factor levels, increased antioxidant levels, and improved histopathological features. SP demonstrated more prominent effects in comparison to TPM, and the combination of TPM and SP exhibited even more pronounced effects. In conclusion, TPM and SP, either alone or in combination, hold promise as therapeutic interventions for mitigating DOX-induced cardiotoxicity.
Collapse
Affiliation(s)
- Radwa M Elmorsi
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Ahmed M Kabel
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Amira A El Saadany
- Department of Pharmacology, Faculty of Medicine, Tanta University, Tanta, Egypt
| | | |
Collapse
|
12
|
Saqib S, Ullah F, Naeem M, Younas M, Ayaz A, Ali S, Zaman W. Mentha: Nutritional and Health Attributes to Treat Various Ailments Including Cardiovascular Diseases. Molecules 2022; 27:molecules27196728. [PMID: 36235263 PMCID: PMC9572119 DOI: 10.3390/molecules27196728] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 11/16/2022] Open
Abstract
A poor diet, resulting in malnutrition, is a critical challenge that leads to a variety of metabolic disorders, including obesity, diabetes, and cardiovascular diseases. Mentha species are famous as therapeutic herbs and have long served as herbal medicine. Recently, the demand for its products, such as herbal drugs, medicines, and natural herbal formulations, has increased significantly. However, the available literature lacks a thorough overview of Mentha phytochemicals' effects for reducing malnutritional risks against cardiovascular diseases. In this context, we aimed to review the recent advances of Mentha phytochemicals and future challenges for reducing malnutritional risks in cardiovascular patients. Current studies indicated that Mentha species phytochemicals possess unique antimicrobial, antidiabetic, cytotoxic, and antioxidant potential, which can be used as herbal medicine directly or indirectly (such as food ingredients) and are effective in controlling and curing cardiovascular diseases. The presence of aromatic and flavor compounds of Mentha species greatly enhance the nutritional values of the food. Further interdisciplinary investigations are pivotal to explore main volatile compounds, synergistic actions of phytochemicals, organoleptic effects, and stability of Mentha sp. phytochemicals.
Collapse
Affiliation(s)
- Saddam Saqib
- Department of Biotechnology, Mohi-ud-Din Islamic University, Nerian Sharif 12080, AJ&K, Pakistan
| | - Fazal Ullah
- State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences, Lanzhou University, Lanzhou 730000, China
| | - Muhammad Naeem
- China Sinovita Bioengineering Group, Jinan 250000, China
| | - Muhammad Younas
- Department of Biotechnology, Mohi-ud-Din Islamic University, Nerian Sharif 12080, AJ&K, Pakistan
| | - Asma Ayaz
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Sajid Ali
- Department of Horticulture and Life Science, Yeungnam University, Gyeongsan 38541, Korea
- Correspondence: (S.A.); (W.Z.)
| | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Korea
- Correspondence: (S.A.); (W.Z.)
| |
Collapse
|
13
|
Mohamed ME, Younis NS. Ameliorative Effect of D-Carvone against Hepatic Ischemia-Reperfusion-Induced Injury in Rats. Life (Basel) 2022; 12:1502. [PMID: 36294936 PMCID: PMC9604805 DOI: 10.3390/life12101502] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 09/13/2024] Open
Abstract
BACKGROUND D-carvone is a monoterpene that exists in the essential oils of several plant species. Hepatic ischemia-reperfusion (Hep I/R) takes place clinically during different scenarios of liver pathologies. The aim of the current investigation is to disclose the hepato-protective actions of carvone against Hep I/R-induced damage and to reveal the underlying mechanism. MATERIAL AND METHODS Rats were assigned into five groups: sham and carvone plus sham groups, in which rats were administered either saline or carvone orally for three weeks prior to the induction of Hep I/R. In the Hep I/R group, rats were administered saline orally prior to the Hep I/R induction operation. The carvone 25 plus Hep I/R and Carvone 50 plus Hep I/R groups were administered carvone (25 and 50 mg/kg, respectively) for three weeks, followed by the induction of Hep I/R. RESULTS Liver ischemic animals demonstrated impaired liver function, several histopathological variations, and reduced levels of antioxidant enzyme activities. Furthermore, the Hep I/R groups showed the elevated gene expression of high-mobility group box 1 (HMGB1), toll-like receptors 4 (TLR4), nuclear factor kappa B (NFκB), and LR family pyrin domain containing 3 (NLP3), with subsequent escalated adhesion molecule 1 (ICAM-1), neutrophil infiltration, and several inflammatory mediators, including interleukin 1 beta (IL-1β), interleukin 6 (IL-6), and tumor necrosis factor α (TNF-α), as well as apoptotic markers. Pretreatment with D-carvone alleviated ischemia/reperfusion-induced impaired liver function, diminished the histopathological deviations, and augmented the antioxidant enzymes. In addition, D-carvone mitigated the gene expression of HMGB1, TLR4, NFκB, and NLP3, with a subsequent reduction in ICAM-1, neutrophils infiltration, inflammatory mediators, and apoptotic markers. CONCLUSION Rats pretreated with D-carvone exhibited hepato-protective actions against Hep I/R-induced damage via the downregulation of HMGB1, TLR4, NFκB, NLP3, associated inflammatory mediators, and apoptotic markers.
Collapse
Affiliation(s)
- Maged E. Mohamed
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | | |
Collapse
|
14
|
Bailly C, Hénichart JP. Advocacy for the Medicinal Plant Artabotrys hexapetalus (Yingzhao) and Antimalarial Yingzhaosu Endoperoxides. Molecules 2022; 27:molecules27196192. [PMID: 36234725 PMCID: PMC9573098 DOI: 10.3390/molecules27196192] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/14/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022] Open
Abstract
The medicinal plant Artabotrys hexapetalus (synonyms: A.uncinatus and A. odoratissimus) is known as yingzhao in Chinese. Extracts of the plant have long been used in Asian folk medicine to treat various symptoms and diseases, including fevers, microbial infections, ulcers, hepatic disorders and other health problems. In particular, extracts from the roots and fruits of the plant are used for treating malaria. Numerous bioactive natural products have been isolated from the plant, mainly aporphine (artabonatines, artacinatine) and benzylisoquinoline (hexapetalines) alkaloids, terpenoids (artaboterpenoids), flavonoids (artabotrysides), butanolides (uncinine, artapetalins) and a small series of endoperoxides known as yingzhaosu A-to-D. These natural products confer antioxidant, anti-inflammatory and antiproliferative properties to the plant extracts. The lead compound yingzhaosu A displays marked activities against the malaria parasites Plasmodium falciparum and P. berghei. Total syntheses have been developed to access yingzhaosu compounds and analogues, such as the potent compound C14-epi-yingzhaosu A and simpler molecules with a dioxane unit. The mechanism of action of yingzhaosu A points to an iron(II)-induced degradation leading to the formation of two alkylating species, an unsaturated ketone and a cyclohexyl radical, which can then react with vital parasitic proteins. A bioreductive activation of yingzhaosu A endoperoxide can also occur with the heme iron complex. The mechanism of action of yingzhaosu endoperoxides is discussed, to promote further chemical and pharmacological studies of these neglected, but highly interesting bioactive compounds. Yingzhaosu A/C represent useful templates for designing novel antimalarial drugs.
Collapse
Affiliation(s)
- Christian Bailly
- OncoWitan, Scientific Consulting Office, 59290 Lille (Wasquehal), France
- Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculty of Pharmacy, University of Lille, 3 Rue du Professeur Laguesse, 59000 Lille, France
- Correspondence:
| | - Jean-Pierre Hénichart
- Institut de Chimie Pharmaceutique Albert Lespagnol (ICPAL), Faculty of Pharmacy, University of Lille, 3 Rue du Professeur Laguesse, 59000 Lille, France
| |
Collapse
|
15
|
Santos-Miranda A. Where are We Going with Natural Products? Exploring the True Potential of New Plant-Based Drugs in the Cardiovascular Field. Arq Bras Cardiol 2022; 119:305-306. [PMID: 35946692 PMCID: PMC9363053 DOI: 10.36660/abc.20220430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Affiliation(s)
- Artur Santos-Miranda
- Universidade Federal de Minas GeraisBelo HorizonteMGBrasilUniversidade Federal de Minas Gerais, Belo Horizonte, MG – Brasil
| |
Collapse
|
16
|
Silva GBAD, Souza DS, Menezes-Filho JER, Silva-Neto JAD, Cruz JDS, Roman-Campos DR, Quintans-Júnior LJ, Vasconcelos CMLD. (-)-Carvone Modulates Intracellular Calcium Signaling with Antiarrhythmic Action in Rat Hearts. Arq Bras Cardiol 2022; 119:294-304. [PMID: 35946691 PMCID: PMC9363060 DOI: 10.36660/abc.20210499] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 12/08/2021] [Indexed: 11/23/2022] Open
Abstract
Fundamento: A (-)-carvona é um monoterpeno encontrado em óleos essenciais com atividade antioxidante e anti-inflamátoria. Objetivos: O objetivo deste estudo foi analisar a propriedade antiarrítmica da (-)-carvona no coração de rato e seus efeitos sobre a sinalização de Ca+2 intracelular. Métodos: Os efeitos da (-)-carvona foram avaliados sobre a contratilidade atrial (0,01 – 4 mM) e ventricular (0,5 mM), e no eletrocardiograma (0,5mM). A fração de encurtamento, a corrente de cálcio do tipo L (ICa,L) e a sinalização de Ca+2 foram medidas no cardiomiócito isolado (0,5 mM). O efeito antiarrítmico foi avaliado no modelo de arritmia induzida por sobrecarga de cálcio (0,5 mM) (n = 5). Um p < 0,05 foi adotado como nível de significância estatística. Resultados: No átrio, a (-)-carvona causou inotropismo negativo de maneira concentração-dependente (EC50 0,44 ± 0,11 mM) e diminuiu o inotropismo positivo induzido pelo CaCl2 (0,1 – 8,0 mM) e BAY K8644 (5 - 500 nM), um agonista de canal de cálcio do tipo L. Em coração isolado, a (-)-carvona (0,5mM) reduziu a contratilidade ventricular em 73% e a frequência cardíaca (em 46%), aumentou o Pri (30,7%, tempo desde o início da onda P até a onda R) e o QTc (9,2%, uma medida de despolarização e repolarização dos ventrículos), sem mudar a duração do complexo QRS. A (-)-carvona diminuiu a fração de encurtamento (61%), a (ICa,L) (79%) e o transiente intracelular de Ca+2 (38%). Além disso, a (-)-carvona apresentou ação antiarrítmica, identificada pela redução do escore de arritmia (85%) e ocorrência de fibrilação ventricular. Conclusão: A (-)-carvona reduz a entrada de Ca+2 através de canais de Ca+2 do tipo L e, assim, diminui a contratilidade cardíaca e o Ca+2 intracelular e apresenta promissora atividade antiarrítmica no coração de ratos.
Collapse
Affiliation(s)
| | | | | | | | - Jader Dos Santos Cruz
- Universidade Federal de Minas Gerais - Instituto de Ciências Biológicas, Belo Horizonte, MG - Brasil
| | | | | | | |
Collapse
|
17
|
In Vitro Growth Inhibition, Caspase-Dependent Apoptosis, and S and G2/M Phase Arrest in Breast Cancer Cells Induced by Fluorine-Incorporated Gold I Compound, Ph3PAu[SC(OMe)=NC6H4F-3]. Int J Breast Cancer 2022; 2022:7168210. [PMID: 35910309 PMCID: PMC9334116 DOI: 10.1155/2022/7168210] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/11/2022] [Indexed: 11/18/2022] Open
Abstract
Gold-based anticancer compounds have been attracting increasing research interest due to their ability to kill cancer cells resistant to platinum-based compounds. Gold I- and gold III-based complexes have shown satisfactory anticancer activities. In this study, two new fluorine-incorporated gold (I) compounds such as Ph3PAu[SC(OMe)=NC6H4F-3] and DPPFeAu2[(SC(OMe)=NC6H4F-3)]2 were evaluated for their in vitro activities against human breast cancer cell lines, primary breast cancer cells, and breast cancer stem cells (parental breast cancer stem cells, BCSC-P, and breast cancer stem cells, BCSC). Assays for growth inhibition and cytotoxicity, including real-time cell analysis, were carried out to screen effective antibreast cancer compounds. In addition, further in vitro assays such as apoptosis, caspase 3/7 activity, and cell cycle analysis were performed to observe the action and mechanism of killing breast cancer cells by the selected gold I compound, Ph3PAu[SC(OMe)=NC6H4F-3]. The gold (I) compound, Ph3PAu[SC(OMe)=NC6H4F-3], showed low toxicity to H9c2 normal cells and significant growth inhibition in MDA-MB-231 and MCF-7 cells, primary breast cancer cells, and breast cancer stem cells (BCSC-P and BCSC). The IC50 doses of the gold (I) compound Ph3PAu[SC(OMe)=NC6H4F-3] against the breast cancer cell lines MDA-MB-231 and MCF-7 were approximately 6-fold lower than that of cisplatin (cis-diamineplatinum (II) dichloride, CDDP). Moreover, the compound Ph3PAu[SC(OMe)=NC6H4F-3] induced caspase 3/7-dependent apoptosis and cell cycle arrest at S and G2/M phases. Ph3PAu[SC(OMe)=NC6H4F-3], a gold (I) compound incorporated with fluorine, is a potential candidate for the treatment of breast cancer.
Collapse
|
18
|
A Narrative Review of the Antitumor Activity of Monoterpenes from Essential Oils: An Update. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6317201. [PMID: 35655488 PMCID: PMC9155973 DOI: 10.1155/2022/6317201] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 04/17/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022]
Abstract
Monoterpenes are a group of natural products that have been widely studied due to their therapeutic potential against various pathologies. These compounds are abundant in the chemical composition of essential oils. Cancer is a term that covers more than 100 different types of malignant diseases and is among the leading causes of death in the world. Therefore, the search for new pharmacotherapeutic options applicable to cancer is urgent. In this review, studies on the antitumor activity of monoterpenes found in essential oils were selected, and botanical, chemical, and pharmacological aspects were discussed. The most investigated monoterpenes were carvacrol and linalool with highly significant in vitro and in vivo tumor inhibition in several types of cancers. The action mechanisms of these natural products are also presented and are wildly varied being apoptosis the most prevalent followed by cell cycle impairment, ROS production, autophagy, necroptosis, and others. The studies reported here confirm the antitumor properties of monoterpenes and their anticancer potential against various types of tumors, as demonstrated in in vitro and in vivo studies using various types of cancer cells and tumors in animal models. The data described serve as a reference for the advancement in the mechanistic studies of these compounds and in the preparation of synthetic derivatives or analogues with a better antitumor profile.
Collapse
|
19
|
Pina LTS, Serafini MR, Oliveira MA, Sampaio LA, Guimarães JO, Guimarães AG. Carvone and its pharmacological activities: A systematic review. PHYTOCHEMISTRY 2022; 196:113080. [PMID: 34999510 DOI: 10.1016/j.phytochem.2021.113080] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/07/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Natural products from plants have gained prominence in the search for therapeutic alternatives. Monoterpenes, such as carvone, are suggested as candidates for the treatment of several diseases. Therefore, the objective of this study is to review the pharmacological activities of carvone in experimental models in vitro and in vivo. For this, the searches were carried out in May 2020 (upgraded in July 2021) in the databases of PubMed, Web of Science and Scopus and gathered studies on the pharmacological activities of carvone. Two independent reviewers performed the selection of articles using the Rayyan application, extracted the relevant data and assessed the methodological quality of the selected studies using Syrcle's risk of bias tool. Ninety-one articles were selected that described 10 pharmacological activities of carvone, such as antimicrobial, antispasmodic, anti-inflammatory, antioxidant, antinociceptive, anticonvulsant, among others. The evaluation of the methodological quality presented an uncertain risk of bias for most studies. In light of that, carvone stands out as a viable and promising alternative in the treatment of several pathological conditions. However, carrying out studies to evaluate possible mechanisms of action and the safety of this monoterpene is recommended.
Collapse
Affiliation(s)
- Lícia T S Pina
- Graduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil.
| | - Mairim R Serafini
- Graduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil; Graduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Marlange A Oliveira
- Graduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Laeza A Sampaio
- Graduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Juliana O Guimarães
- Graduate Program in Health Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| | - Adriana G Guimarães
- Graduate Program in Pharmaceutical Sciences, Federal University of Sergipe, São Cristóvão, Sergipe, Brazil
| |
Collapse
|
20
|
Masyita A, Mustika Sari R, Dwi Astuti A, Yasir B, Rahma Rumata N, Emran TB, Nainu F, Simal-Gandara J. Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives. Food Chem X 2022; 13:100217. [PMID: 35498985 PMCID: PMC9039924 DOI: 10.1016/j.fochx.2022.100217] [Citation(s) in RCA: 154] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/08/2022] [Accepted: 01/14/2022] [Indexed: 02/06/2023] Open
Abstract
Terpenes and terpenoids are the main bioactive compounds of essential oils (EOs). EOs and their major constituents confer several biological activities. EOs are potential as natural food preservatives.
Essential oils (EOs) are volatile and concentrated liquids extracted from different parts of plants. Bioactive compounds found in EOs, especially terpenes and terpenoids possess a wide range of biological activities including anticancer, antimicrobial, anti-inflammatory, antioxidant, and antiallergic. Available literature confirms that EOs exhibit antimicrobial and food preservative properties that are considered as a real potential application in food industry. Hence, the purpose of this review is to present an overview of current knowledge of EOs for application in pharmaceutical and medical industries as well as their potential as food preservatives in food industry.
Collapse
Affiliation(s)
- Ayu Masyita
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia
| | - Reka Mustika Sari
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan 20222, Sumatera Utara, Indonesia.,Cellulosic and Functional Materials Research Centre, Universitas Sumatera Utara, Jl. Bioteknologi No.1, Medan 20155, Indonesia
| | - Ayun Dwi Astuti
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia
| | - Budiman Yasir
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia.,Sekolah Tinggi Ilmu Farmasi Makassar, Makassar 90242, Sulawesi Selatan, Indonesia
| | - Nur Rahma Rumata
- Sekolah Tinggi Ilmu Farmasi Makassar, Makassar 90242, Sulawesi Selatan, Indonesia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Firzan Nainu
- Faculty of Pharmacy, Hasanuddin University, Makassar 90245, Sulawesi Selatan, Indonesia
| | - Jesus Simal-Gandara
- Universidade de Vigo, Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, E32004 Ourense, Spain
| |
Collapse
|
21
|
Bajagai YS, Petranyi F, Horyanto D, Batacan R, Lobo E, Ren X, Whitton MM, Yu SJ, Kayal A, Stanley D. Ileum transcriptional response to prolonged supplementation with phytogenic product containing menthol, carvacrol and carvone. Heliyon 2022; 8:e09131. [PMID: 35345405 PMCID: PMC8956889 DOI: 10.1016/j.heliyon.2022.e09131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/28/2022] [Accepted: 03/15/2022] [Indexed: 12/29/2022] Open
|
22
|
Ashrafizadeh M, Saebfar H, Gholami MH, Hushmandi K, Zabolian A, Bikarannejad P, Hashemi M, Daneshi S, Mirzaei S, Sharifi E, Kumar AP, Khan H, Heydari Sheikh Hossein H, Vosough M, Rabiee N, Thakur Kumar V, Makvandi P, Mishra YK, Tay FR, Wang Y, Zarrabi A, Orive G, Mostafavi E. Doxorubicin-loaded graphene oxide nanocomposites in cancer medicine: Stimuli-responsive carriers, co-delivery and suppressing resistance. Expert Opin Drug Deliv 2022; 19:355-382. [PMID: 35152815 DOI: 10.1080/17425247.2022.2041598] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION The application of doxorubicin (DOX) in cancer therapy has been limited due to its drug resistance and poor internalization. Graphene oxide (GO) nanostructures have the capacity for DOX delivery while promoting its cytotoxicity in cancer. AREAS COVERED The favorable characteristics of GO nanocomposites, preparation method, and application in cancer therapy are described. Then, DOX resistance in cancer is discussed. The GO-mediated photothermal therapy and DOX delivery for cancer suppression are described. Preparation of stimuli-responsive GO nanocomposites, surface functionalization, hybrid nanoparticles, and theranostic applications are emphasized in DOX chemotherapy. EXPERT OPINION Graphene oxide nanoparticle-based photothermal therapy maximizes the anti-cancer activity of DOX against cancer cells. Apart from DOX delivery, GO nanomaterials are capable of loading anti-cancer agents and genetic tools to minimize drug resistance and enhance the cytolytic impact of DOX in cancer eradication. To enhance DOX accumulation in cancer cells, stimuli-responsive (redox-, light-, enzyme- and pH-sensitive) GO nanoparticles have been developed for DOX delivery. Further development of targeted delivery of DOX-loaded GO nanomaterials against cancer cells may be achieved by surface modification of polymers such as polyethylene glycol, hyaluronic acid, and chitosan. Doxorubicin-loaded GO nanoparticles have demonstrated theranostic potential for simultaneous diagnosis and therapy. Hybridization of GO with other nanocarriers such as silica and gold nanoparticles further broadens their potential anti-cancer therapy applications.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey
| | - Hamidreza Saebfar
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Hossein Gholami
- DVM. Graduated, Faculty of Veterinary Medicine, Kazerun Branch, Islamic Azad University, Kazerun, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amirhossein Zabolian
- Department of Orthopedics, School of Medicine, 5th Azar Hospital, Golestan University of Medical Sciences, Golestan, Iran
| | - Pooria Bikarannejad
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, 6517838736 Hamadan, Iran
| | - Alan Prem Kumar
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.,Cancer Science Institute of Singapore and Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan
| | | | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Navid Rabiee
- Department of Chemistry, Sharif University of Technology, Tehran, Iran.,School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Vijay Thakur Kumar
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh EH9 3JG, U.K.,School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interface, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - Yogendra Kumar Mishra
- Mads Clausen Institute, NanoSYD, University of Southern Denmark, 6400 Sønderborg, Denmark
| | - Franklin R Tay
- The Graduate School, Augusta University, Augusta, GA, USA
| | - Yuzhuo Wang
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Sariyer 34396, Istanbul, Turkey
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.,Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN). Vitoria-Gasteiz, Spain.,University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHUFundación Eduardo Anitua). Vitoria-Gasteiz, Spain.,Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.,Singapore Eye Research Institute, The Academia, 20 College Road, Discovery Tower, Singapore
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.,Department of Medicine, Stanford University School of Medicine, Stanford, CA, 94305, USA
| |
Collapse
|
23
|
Moller AC, Parra C, Said B, Werner E, Flores S, Villena J, Russo A, Caro N, Montenegro I, Madrid A. Antioxidant and Anti-Proliferative Activity of Essential Oil and Main Components from Leaves of Aloysia polystachya Harvested in Central Chile. Molecules 2020; 26:molecules26010131. [PMID: 33396666 PMCID: PMC7795351 DOI: 10.3390/molecules26010131] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/11/2020] [Accepted: 12/25/2020] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to determine, first, the chemical composition of Aloysia polystachya (Griseb) Moldenke essential oil, from leaves harvested in central Chile; and second, its antioxidant and cytotoxic activity. Eight compounds were identified via gas chromatography–mass spectrometry (GC–MS) analyses, with the most representative being R-carvone (91.03%), R-limonene (4.10%), and dihydrocarvone (1.07%). For Aloysia polystachya essential oil, antioxidant assays (2,2-diphenyl-1-picrylhydrazyl (DPPH), H2O2, ferric reducing antioxidant power (FRAP), and total reactive antioxidant potential (TRAP)) showed good antioxidant activity compared to commercial antioxidant controls; and anti-proliferative assays against three human cancer cell lines (colon, HT-29; prostate, PC-3; and breast, MCF-7) determined an IC50 of 5.85, 6.74, and 9.53 µg/mL, and selectivity indices of 4.75, 4.12, and 2.92 for HT-29, PC-3, and MCF-7, respectively. We also report on assays with CCD 841 CoN (colon epithelial). Overall, results from this study may represent, in the near future, developments for natural-based cancer treatments.
Collapse
Affiliation(s)
- Alejandra Catalina Moller
- Escuela de Tecnología Médica, Facultad de Medicina, Universidad de Valparaíso, Angamos 655, Reñaca, Viña del Mar 2520000, Chile;
| | - Carol Parra
- Laboratorio de Investigación en Nutrición y Alimentos (LINA), Departamento Disciplinario de Nutrición, Facultad de Ciencias de la Salud, Universidad de Playa Ancha, Valparaíso CP 2340000, Chile;
| | - Bastian Said
- Departamento de Química, Universidad Técnica Federico Santa María, Av. Santa María 6400, Vitacura, Santiago 7630000, Chile;
| | - Enrique Werner
- Departamento de Ciencias Básicas, Campus Fernando May, Universidad del Bío-Bío. Avda. Andrés Bello 720, casilla 447, Chillán 3780000, Chile;
| | - Susana Flores
- Laboratorio de Productos Naturales y Síntesis Orgánica (LPNSO), Departamento de Química, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Avda. Leopoldo Carvallo 270, Playa Ancha, Valparaíso 2340000, Chile;
| | - Joan Villena
- Centro de Investigaciones Biomedicas (CIB), Facultad de Medicina, Campus de la Salud, Universidad de Valparaíso, Angamos 655, Reñaca, Viña del Mar 2520000, Chile;
| | - Alessandra Russo
- Department of Drug Sciences, University of Catania, Via S. Sofia 64, 95125 Catania, Italy;
| | - Nelson Caro
- Centro de Investigación Australbiotech, Universidad Santo Tomás, Avda. Ejército 146, Santiago 8320000, Chile;
| | - Iván Montenegro
- Escuela de Obstetricia y Puericultura, Facultad de medicina, Universidad de Valparaíso, Angamos 655, Reñaca, Viña del Mar 2520000, Chile
- Correspondence: (I.M.); (A.M.); Tel.: +56-032-250-0526 (A.M.)
| | - Alejandro Madrid
- Laboratorio de Productos Naturales y Síntesis Orgánica (LPNSO), Departamento de Química, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Avda. Leopoldo Carvallo 270, Playa Ancha, Valparaíso 2340000, Chile;
- Correspondence: (I.M.); (A.M.); Tel.: +56-032-250-0526 (A.M.)
| |
Collapse
|
24
|
Asle-Rousta M, Amini R, Aghazadeh S. Carvone suppresses oxidative stress and inflammation in the liver of immobilised rats. Arch Physiol Biochem 2020; 129:597-602. [PMID: 33270467 DOI: 10.1080/13813455.2020.1851726] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE The investigation of the effect of carvone (a natural monoterpene) on liver damage caused by chronic immobilisation. METHODS Male Wistar rats were divided into four groups: control, carvone, stress, and stress-carvone. To induce stress, rats were placed in a restrainer (6 h/21 day) and carvone was treated by gavage at a dose of 20 mg/kg. RESULTS Alkaline phosphatase, aspartate aminotransferase, and alanine aminotransferase activities were significantly increased in sera of immobilised rats. Chronic immobilisation also increased malondialdehyde levels and decreased reduced glutathione content, as well as increased TNF-α, IL-1β, IL-6, and NF-κB mRNA expression and also led to the infiltration of inflammatory cells in the liver parenchyma. Carvone's 21-day treatment prevented all of these changes in immobilised rats. CONCLUSION It is concluded that carvone has effectively prevented chronic immobilisation-induced liver injury, most probably through its antioxidant and anti-inflammatory capabilities.
Collapse
Affiliation(s)
- Masoumeh Asle-Rousta
- Department of Physiology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
- Department of Physiology, Biology Research Center, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Rahim Amini
- Department of Biology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Safieh Aghazadeh
- Department of Biochemistry, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| |
Collapse
|
25
|
Liu C, Ma X, Zhuang J, Liu L, Sun C. Cardiotoxicity of doxorubicin-based cancer treatment: What is the protective cognition that phytochemicals provide us? Pharmacol Res 2020; 160:105062. [DOI: 10.1016/j.phrs.2020.105062] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/29/2020] [Accepted: 06/30/2020] [Indexed: 12/11/2022]
|
26
|
Akram M, Riaz M, Wadood AWC, Hazrat A, Mukhtiar M, Ahmad Zakki S, Daniyal M, Shariati MA, Said Khan F, Zainab R. Medicinal plants with anti-mutagenic potential. BIOTECHNOL BIOTEC EQ 2020. [DOI: 10.1080/13102818.2020.1749527] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Muhammad Akram
- Department of Eastern Medicine, Government College University, Faisalabad, Pakistan
| | - Muhammad Riaz
- Department of Allied Health Sciences, Sargodha Medical College, University of Sargodha, Sargodha, Pakistan
| | - Abdul Wadood Chishti Wadood
- University College of Conventional Medicine, Department of Eastern Medicine, Faculty of Pharmacy and Alternative Medicine, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Ali Hazrat
- Department of Botany, University of Malakand, Chakdara, Pakistan
| | - Muhammad Mukhtiar
- Department of Pharmacy, University of Poonch, Rawalakot, Azad Kashmir, Pakistan
| | | | - Muhammad Daniyal
- Faculty of Eastern Medicine, Hamdard University, Karachi, Pakistan
| | - Mohammad Ali Shariati
- K.G. Razumovsky, Moscow State University of Technologies and Management (the First Cossack University), Moscow, Russian Federation
- Kazakh Research Institute of Processing and Food Industry (Semey Branch), Semey, Kazakhstan
| | - Fahad Said Khan
- Department of Eastern Medicine, Government College University, Faisalabad, Pakistan
| | - Rida Zainab
- Department of Eastern Medicine, Government College University, Faisalabad, Pakistan
| |
Collapse
|