1
|
Sabet NH, Wyatt TA. The alcohol exposome. Alcohol 2025; 122:81-89. [PMID: 39722409 PMCID: PMC11918757 DOI: 10.1016/j.alcohol.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/28/2024]
Abstract
Science is now in a new era of exposome research that strives to build a more all-inclusive, panoramic view in the quest for answers; this is especially true in the field of toxicology. Alcohol exposure researchers have been examining the multivariate co-exposures that may either exacerbate or initiate alcohol-related tissue/organ injuries. This manuscript presents selected key variables that represent the Alcohol Exposome. The primary variables that make up the Alcohol Exposome can include comorbidities such as cigarettes, poor diet, occupational hazards, environmental hazards, infectious agents, and aging. In addition to representing multiple factors, the Alcohol Exposome examines the various types of intercellular communications that are carried from one organ system to another and may greatly impact the types of injuries and metabolites caused by alcohol exposure. The intent of defining the Alcohol Exposome is to bring the newly expanded definition of Exposomics, meaning the study of the exposome, to the field of alcohol research and to emphasize the need for examining research results in a non-isolated environment representing a more relevant manner in which all human physiology exists.
Collapse
Affiliation(s)
- Nousha H Sabet
- Department of Internal Medicine, Division of Pulmonary, Critical Care & Sleep, University of Nebraska Medical Center, Omaha, NE, USA; Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE', USA
| | - Todd A Wyatt
- Department of Internal Medicine, Division of Pulmonary, Critical Care & Sleep, University of Nebraska Medical Center, Omaha, NE, USA; Department of Environmental, Agricultural and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE', USA; Department of Veterans Affairs, Nebraska-Western Iowa Health Care System, Omaha, NE, USA.
| |
Collapse
|
2
|
Termite F, Archilei S, D’Ambrosio F, Petrucci L, Viceconti N, Iaccarino R, Liguori A, Gasbarrini A, Miele L. Gut Microbiota at the Crossroad of Hepatic Oxidative Stress and MASLD. Antioxidants (Basel) 2025; 14:56. [PMID: 39857390 PMCID: PMC11759774 DOI: 10.3390/antiox14010056] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 12/30/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) is a prevalent chronic liver condition marked by excessive lipid accumulation in hepatic tissue. This disorder can lead to a range of pathological outcomes, including metabolic dysfunction-associated steatohepatitis (MASH) and cirrhosis. Despite extensive research, the molecular mechanisms driving MASLD initiation and progression remain incompletely understood. Oxidative stress and lipid peroxidation are pivotal in the "multiple parallel hit model", contributing to hepatic cell death and tissue damage. Gut microbiota plays a substantial role in modulating hepatic oxidative stress through multiple pathways: impairing the intestinal barrier, which results in bacterial translocation and chronic hepatic inflammation; modifying bile acid structure, which impacts signaling cascades involved in lipidic metabolism; influencing hepatocytes' ferroptosis, a form of programmed cell death; regulating trimethylamine N-oxide (TMAO) metabolism; and activating platelet function, both recently identified as pathogenetic factors in MASH progression. Moreover, various exogenous factors impact gut microbiota and its involvement in MASLD-related oxidative stress, such as air pollution, physical activity, cigarette smoke, alcohol, and dietary patterns. This manuscript aims to provide a state-of-the-art overview focused on the intricate interplay between gut microbiota, lipid peroxidation, and MASLD pathogenesis, offering insights into potential strategies to prevent disease progression and its associated complications.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Luca Miele
- CEMAD Digestive Diseases Center, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, Largo A. Gemelli 8, 00168 Rome, Italy (S.A.)
| |
Collapse
|
3
|
Yousif YF, Dhaif MB, Alaysreen AA, Mallah SI, AlHoda M, Alrahma HA, Alekri AA, Qaroof TH, Alsaegh A. Clinical Epidemiology, Etiology, and Outcomes of Upper Gastrointestinal Bleeding at a Tertiary Center in Bahrain: A Retrospective Study. Cureus 2025; 17:e77133. [PMID: 39791018 PMCID: PMC11717402 DOI: 10.7759/cureus.77133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2025] [Indexed: 01/12/2025] Open
Abstract
Background Upper gastrointestinal bleeding (UGIB) is one of the most common major medical emergencies. This study sought to determine the epidemiology, clinical characteristics, and outcomes of UGIB in the largest major tertiary care center in Bahrain, compared to regional and international cohorts. Methods We conducted a retrospective cohort study of all patients diagnosed with UGIB between April 2021 and April 2022 in Salmaniya Medical Complex, Bahrain's largest tertiary-level public hospital. The primary outcomes measured included 30-day mortality rates and one-year readmission rates. Other variables collected included demographic factors, baseline characteristics, comorbidities, symptomatology, endoscopic findings, and etiologies of the bleeding. Results A total of 212 patients with UGIB were included. The mean age of the patients was 56.7 ± 19.1 years. More than 50% of patients with UGIB presented with melena and symptoms of anemia. The most common cause of UGIB in Bahrain was duodenal ulcers, which were found in 75 patients (37.7%). One in two patients with UGIB required packed red blood cells, while fresh-frozen plasma and platelet transfusions were reserved for severe cases. The readmission rate within one year of discharge (14.2%) was associated with smoking, cardiac history, melena, gastric malignancy, and rescope during admission. The 30-day mortality (15.6%) was associated with comorbidities of chronic kidney disease, cerebrovascular disease, and hematochezia on presentation. Conclusion Overall, the mortality rate of UGIB in Bahrain is higher than in countries in the region, the UK, and the US, signaling potential gaps in management and a reflection of a more complex patient population.
Collapse
Affiliation(s)
- Yousif F Yousif
- Department of Surgery, The Royal Marsden NHS Foundation Trust, London, GBR
| | - Mahmood B Dhaif
- Department of Internal Medicine, Salmaniya Medical Complex, Manama, BHR
| | - Ali A Alaysreen
- Department of Family Medicine, Salmaniya Medical Complex, Manama, BHR
| | - Saad I Mallah
- Department of Surgery, Barking, Havering and Redbridge University Hospitals NHS Trust, London, GBR
| | - Moosa AlHoda
- Department of Medicine, RCSI (Royal College of Surgeons in Ireland) - Medical University of Bahrain, Al Sayh, BHR
- Department of Internal Medicine, Salmaniya Medical Complex, Manama, BHR
| | - Husain A Alrahma
- Department of Gastroenterology and Hepatology, Salmaniya Medical Complex, Manama, BHR
| | - Ahmed A Alekri
- Department of Internal Medicine, Salmaniya Medical Complex, Manama, BHR
- Department of General Practice, RCSI (Royal College of Surgeons in Ireland) - Medical University of Bahrain, Al Sayh, BHR
- Department of General Practice, Manama Medical Center, Manama, BHR
| | - Tahera H Qaroof
- Department of Psychiatry, Salmaniya Medical Complex, Manama, BHR
| | - Ahmed Alsaegh
- Department of Gastroenterology and Hepatology, Salmaniya Medical Complex, Manama, BHR
| |
Collapse
|
4
|
Bijla M, Saini SK, Pathak AK, Bharadwaj KP, Sukhavasi K, Patil A, Saini D, Yadav R, Singh S, Leeuwenburgh C, Kumar P. Microbiome interactions with different risk factors in development of myocardial infarction. Exp Gerontol 2024; 189:112409. [PMID: 38522483 DOI: 10.1016/j.exger.2024.112409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/10/2024] [Accepted: 03/20/2024] [Indexed: 03/26/2024]
Abstract
Among all non-communicable diseases, Cardiovascular Diseases (CVDs) stand as the leading global cause of mortality. Within this spectrum, Myocardial Infarction (MI) strikingly accounts for over 15 % of all deaths. The intricate web of risk factors for MI, comprising family history, tobacco use, oral health, hypertension, nutritional pattern, and microbial infections, is firmly influenced by the human gut and oral microbiota, their diversity, richness, and dysbiosis, along with their respective metabolites. Host genetic factors, especially allelic variations in signaling and inflammatory markers, greatly affect the progression or severity of the disease. Despite the established significance of the human microbiome-nutrient-metabolite interplay in associations with CVDs, the unexplored terrain of the gut-heart-oral axis has risen as a critical knowledge gap. Moreover, the pivotal role of the microbiome and the complex interplay with host genetics, compounded by age-related changes, emerges as an area of vital importance in the development of MI. In addition, a distinctive disease susceptibility and severity influenced by gender-based or ancestral differences, adds a crucial insights to the association with increased mortality. Here, we aimed to provide an overview on interactions of microbiome (oral and gut) with major risk factors (tobacco use, alcohol consumption, diet, hypertension host genetics, gender, and aging) in the development of MI and therapeutic regulation.
Collapse
Affiliation(s)
- Manisha Bijla
- Department of Biotechnology, Guru Nanak Dev University, Amritsar, India
| | - Sunil Kumar Saini
- Department of Zoology, Swami Shraddhanand College, Delhi University, India
| | - Ajai Kumar Pathak
- Estonian Biocentre, Institute of Genomics, University of Tartu, Tartu, Estonia; Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium
| | | | - Katyayani Sukhavasi
- Department of Cardiac Surgery and The Heart Clinic, Tartu University Hospital & Department of Cardiology, Institute of Clinical Medicine, Tartu University, Tartu, Estonia
| | - Ayurshi Patil
- ICMR-National Institute of Cancer Prevention and Research, Noida, India
| | - Diksha Saini
- ICMR-National Institute of Cancer Prevention and Research, Noida, India
| | - Rakesh Yadav
- Department of Cardiology, AIIMS, New Delhi, India
| | - Shalini Singh
- ICMR-National Institute of Cancer Prevention and Research, Noida, India
| | | | - Pramod Kumar
- ICMR-National Institute of Cancer Prevention and Research, Noida, India.
| |
Collapse
|
5
|
Aasarey R, Yadav K, Kashyap BK, Prabha S, Kumar P, Kumar A, Ruokolainen J, Kesari KK. Role of Immunological Cells in Hepatocellular Carcinoma Disease and Associated Pathways. ACS Pharmacol Transl Sci 2023; 6:1801-1816. [PMID: 38093838 PMCID: PMC10714437 DOI: 10.1021/acsptsci.3c00216] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 03/28/2024]
Abstract
Hepatocellular carcinoma (HCC) remains one of the predominant causes of cancer-related mortality across the globe. It is attributed to obesity, excessive alcohol consumption, smoking, and infection by the hepatitis virus. Early diagnosis of HCC is essential, and local treatments such as surgical excision and percutaneous ablation are effective. Palliative systemic therapy, primarily with the tyrosine kinase inhibitor Sorafenib, is used in advanced cases. However, the prognosis for advanced HCC remains poor. This Review additionally describes the pathophysiological mechanisms of HCC, which include aberrant molecular signaling, genomic instability, persistent inflammation, and the paradoxical position of the immune system in promoting and suppressing HCC. The paper concludes by discussing the growing body of research on the relationship between mitochondria and HCC, suggesting that mitochondrial dysfunction may contribute to the progression of HCC. This Review focuses on immunological interactions between different mechanisms of HCC progression, including obesity, viral infection, and alcohol consumption.
Collapse
Affiliation(s)
- Ram Aasarey
- Department
of Laboratory Medicine, All India Institute
of Medical Science, New Delhi-11029, India
| | - Kajal Yadav
- Department
of Biotechnology, All India Institute of
Medical Science, New Delhi-11029, India
| | - Brijendra Kumar Kashyap
- Department
of Biotechnology Engineering, Institute of Engineering and Technology, Bundelkhand University, Jhansi-284128, Uttar Pradesh, India
| | - Sarit Prabha
- Department
of Biological Science and Engineering, Maulana
Azad National Institute of Technology, Bhopal-462003, Madhya Pradesh,India
| | - Pramod Kumar
- Indian
Council of Medical Research, National Institute
of Cancer Prevention and Research (NICPR), l-7, Sector-39, Noida-201301, National Capital Region, India
| | - Anil Kumar
- Department
of Life Sciences, School of Natural Sciences, Central University of Jharkhand, Cheri-Manatu, Karmre, Kanke-835222, Ranchi, India
| | - Janne Ruokolainen
- Department
of Applied Physics, School of Science, Aalto
University, FI-00076 Espoo, Finland
| | - Kavindra Kumar Kesari
- Department
of Applied Physics, School of Science, Aalto
University, FI-00076 Espoo, Finland
- Research
and Development Cell, Lovely Professional
University, Phagwara-144411, Punjab, India
| |
Collapse
|
6
|
Almeqdadi M, Gordon FD. Farnesoid X Receptor Agonists: A Promising Therapeutic Strategy for Gastrointestinal Diseases. GASTRO HEP ADVANCES 2023; 3:344-352. [PMID: 39131134 PMCID: PMC11308038 DOI: 10.1016/j.gastha.2023.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/22/2023] [Indexed: 08/13/2024]
Abstract
Farnesoid X receptor (FXR) agonists have emerged as a promising therapeutic strategy for the management of various gastrointestinal (GI) diseases, including primary biliary cholangitis, nonalcoholic fatty liver disease, inflammatory bowel disease, alcohol-related liver disease, and primary sclerosing cholangitis. In this review, we discuss the mechanisms of action of FXR agonists, including their metabolic and immunomodulatory effects, and provide an overview of the clinical evidence supporting their use in the treatment of GI diseases. We also highlight the safety, adverse effects, and potential drug interactions associated with FXR agonists. While these agents have demonstrated efficacy in improving liver function, reducing hepatic steatosis, and improving histological endpoints in primary biliary cholangitis and nonalcoholic fatty liver disease, further research is needed to determine their long-term safety and effectiveness in other GI diseases, such as inflammatory bowel disease, alcohol-related liver disease, and primary sclerosing cholangitis. Additionally, the development of next-generation FXR agonists with improved potency and reduced side effects could further enhance their therapeutic potential.
Collapse
Affiliation(s)
- Mohammad Almeqdadi
- Division of Transplantation and Hepatobiliary Diseases, Lahey Hospital & Medical Center, Burlington, Massachusetts
| | - Fredric D. Gordon
- Abdominal Transplant Institute, Tufts Medical Center, Boston, Massachusetts
| |
Collapse
|
7
|
Xu YF, Hao YX, Ma L, Zhang MH, Niu XX, Li Y, Zhang YY, Liu TT, Han M, Yuan XX, Wan G, Xing HC. Difference and clinical value of metabolites in plasma and feces of patients with alcohol-related liver cirrhosis. World J Gastroenterol 2023; 29:3534-3547. [PMID: 37389241 PMCID: PMC10303510 DOI: 10.3748/wjg.v29.i22.3534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/15/2023] [Accepted: 05/04/2023] [Indexed: 06/06/2023] Open
Abstract
BACKGROUND Alterations in plasma and intestinal metabolites contribute to the pathogenesis and progression of alcohol-related liver cirrhosis (ALC). AIM To explore the common and different metabolites in the plasma and feces of patients with ALC and evaluate their clinical implications. METHODS According to the inclusion and exclusion criteria, 27 patients with ALC and 24 healthy controls (HCs) were selected, and plasma and feces samples were collected. Liver function, blood routine, and other indicators were detected with automatic biochemical and blood routine analyzers. Liquid chromatography-mass spectrometry was used to detect the plasma and feces metabolites of the two groups and the metabolomics of plasma and feces. Also, the correlation between metabolites and clinical features was analyzed. RESULTS More than 300 common metabolites were identified in the plasma and feces of patients with ALC. Pathway analysis showed that these metabolites are enriched in bile acid and amino acid metabolic pathways. Compared to HCs, patients with ALC had a higher level of glycocholic acid (GCA) and taurocholic acid (TCA) in plasma and a lower level of deoxycholic acid (DCA) in the feces, while L-threonine, L-phenylalanine, and L-tyrosine increased simultaneously in plasma and feces. GCA, TCA, L-methionine, L-phenylalanine, and L-tyrosine in plasma were positively correlated with total bilirubin (TBil), prothrombin time (PT), and maddrey discriminant function score (MDF) and negatively correlated with cholinesterase (CHE) and albumin (ALB). The DCA in feces was negatively correlated with TBil, MDF, and PT and positively correlated with CHE and ALB. Moreover, we established a P/S BA ratio of plasma primary bile acid (GCA and TCA) to fecal secondary bile acid (DCA), which was relevant to TBil, PT, and MDF score. CONCLUSION The enrichment of GCA, TCA, L-phenylalanine, L-tyrosine, and L-methionine in the plasma of patients with ALC and the reduction of DCA in feces were related to the severity of ALC. These metabolites may be used as indicators to evaluate the progression of alcohol-related liver cirrhosis.
Collapse
Affiliation(s)
- Yi-Fan Xu
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Yan-Xu Hao
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Lei Ma
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Meng-Han Zhang
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Xuan-Xuan Niu
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Yan Li
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Yuan-Yuan Zhang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
- Beijing Institute of Infectious Diseases, Beijing Institute of Infectious Diseases, Beijing 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Ting-Ting Liu
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
- Beijing Institute of Infectious Diseases, Beijing Institute of Infectious Diseases, Beijing 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Ming Han
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
- Beijing Institute of Infectious Diseases, Beijing Institute of Infectious Diseases, Beijing 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Xiao-Xue Yuan
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
- Beijing Institute of Infectious Diseases, Beijing Institute of Infectious Diseases, Beijing 100015, China
- National Center for Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Gang Wan
- Department of Statistic, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
| | - Hui-Chun Xing
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Capital Medical University, Beijing 100015, China
- Center of Liver Diseases Division 3, Beijing Ditan Hospital, Peking University Ditan Teaching Hospital, Beijing 100015, China
| |
Collapse
|
8
|
Maccioni L, Fu Y, Horsmans Y, Leclercq I, Stärkel P, Kunos G, Gao B. Alcohol-associated bowel disease: new insights into pathogenesis. EGASTROENTEROLOGY 2023; 1:e100013. [PMID: 37662449 PMCID: PMC10472976 DOI: 10.1136/egastro-2023-100013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/01/2023] [Indexed: 09/05/2023]
Abstract
Excessive alcohol drinking can cause pathological changes including carcinogenesis in the digestive tract from mouth to large intestine, but the underlying mechanisms are not fully understood. In this review, we discuss the effects of alcohol on small and large intestinal functions, such as leaky gut, dysbiosis and alterations of intestinal epithelium and gut immune dysfunctions, commonly referred to as alcohol-associated bowel disease (ABD). To date, detailed mechanistic insights into ABD are lacking. Accumulating evidence suggests a pathogenic role of ethanol metabolism in dysfunctions of the intestinal tract. Ethanol metabolism generates acetaldehyde and acetate, which could potentially promote functional disruptions of microbial and host components of the intestinal barrier along the gastrointestinal tract. The potential involvement of acetaldehyde and acetate in the pathogenesis of the underlying ABD, including cancer, is discussed. We also highlight some gaps in knowledge existing in the field of ABD. Finally, we discuss future directions in exploring the role of acetaldehyde and acetate generated during chronic alcohol intake in various pathologies affecting different sites of the intestinal tract.
Collapse
Affiliation(s)
- Luca Maccioni
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Yaojie Fu
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Yves Horsmans
- Department of Hepato-Gastroenterology, Cliniques universitaires Saint-Luc, Brussels, Belgium
| | - Isabelle Leclercq
- Laboratory of Hepato-Gastroenterology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | - Peter Stärkel
- Department of Hepato-Gastroenterology, Cliniques universitaires Saint-Luc, Brussels, Belgium
- Laboratory of Hepato-Gastroenterology, Institute of Experimental and Clinical Research, UCLouvain, Brussels, Belgium
| | - George Kunos
- Laboratory of Physiologic Studies, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | - Bin Gao
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
9
|
Capacity of a Microbial Synbiotic To Rescue the In Vitro Metabolic Activity of the Gut Microbiome following Perturbation with Alcohol or Antibiotics. Appl Environ Microbiol 2023; 89:e0188022. [PMID: 36840551 PMCID: PMC10056957 DOI: 10.1128/aem.01880-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
The human gut microbiome contributes crucial bioactive metabolites that support human health and is sensitive to perturbations from the ingestion of alcohol and antibiotics. We interrogated the response and recovery of human gut microbes after acute alcohol or broad-spectrum antibiotic administration in a gut model simulating the luminal and mucosal colonic environment with an inoculated human microbiome. Both alcohol and antibiotic treatments reduced the production of major short-chain fatty acids (SCFAs) (acetate, propionate, and butyrate), which are established modulators of human health. Treatment with a microbial synbiotic restored and enhanced gut function. Butyrate and acetate production increased by up to 29.7% and 18.6%, respectively, relative to untreated, dysbiotic samples. In parallel, treatment led to increases in the relative abundances of beneficial commensal organisms not found in the synbiotic (e.g., Faecalibacterium prausnitzii and the urolithin-producing organism Gordonibacter pamelaeae) as well as species present in the synbiotic (e.g., Bifidobacterium infantis), suggesting synergistic interactions between supplemented and native microorganisms. These results lead us to conclude that functional shifts in the microbiome, evaluated by both metabolite production and specific taxonomic compositional changes, are an appropriate metric to assess microbiome "recovery" following a dysbiosis-inducing disruption. Overall, these findings support the execution of randomized clinical studies to determine whether a microbial synbiotic can help restore microbiome function after a disruption. IMPORTANCE The human gut microbiome is sensitive to disruptions by common stressors such as alcohol consumption and antibiotic treatment. In this study, we used an in vitro system modeling the gut microbiome to investigate whether treatment with a microbial synbiotic can help restore microbiome function after stress. We find that a complex gut community treated with alcohol or antibiotics showed reduced levels of production of short-chain fatty acids, which are critical beneficial molecules produced by a healthy gut microbiota. Treatment of stressed communities with a microbial synbiotic resulted in the recovery of SCFA production as well as an increase in the abundance of beneficial commensal organisms. Our results suggest that treatment with a microbial synbiotic has the potential to restore healthy gut microbiome function after stress and merits further investigation in clinical studies.
Collapse
|
10
|
Zogona D, Zongo AWS, Elkhedir AE, Salah M, Tao M, Li R, Wu T, Xu X. Red raspberry supplementation mitigates alcohol-induced liver injury associated with gut microbiota alteration and intestinal barrier dysfunction in mice. Food Funct 2023; 14:1209-1226. [PMID: 36602148 DOI: 10.1039/d2fo03245g] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Alcoholic liver disease (ALD) is still a global health concern. Long-term alcohol intake alters the gut microbiota diversity and metabolic activity, and causes intestinal barrier dysfunction, leading to the development of ALD. This research explored the protective effects and underlying mechanisms of red raspberry (RR) on alcohol-related disorders in mice. Male C57BL/6J mice were fed a standard diet or a standard diet supplemented with 2%, 4%, and 8% weight/weight RR. Meanwhile, mice were administered 35% (v/v) ethanol (EtOH, 10 mL per kg body weight) intragastrically once daily for six weeks, except the control group mice. The results showed that RR supplementation decreased liver injury markers (alanine and aspartate transaminases) in the serum, reduced triglyceride level in the liver and downregulated hepatic cytochrome P450 2E1 mRNA expression in mice administered EtOH. In addition, EtOH-mediated oxidative stress in the liver was attenuated by RR supplementation through decreased hepatic malondialdehyde content and increased antioxidant (glutathione, glutathione peroxidase, and catalase) levels and activities in mice exposed to EtOH. Moreover, RR supplementation reversed EtOH-induced alteration in the cecal microbial composition at the phylum, order, genus, and species levels and improved the intestinal barrier function associated with the inhibition of the NF-κB/MLCK pathway, which was accompanied by upregulation of tight junctions (zonula occludens 1, occludin, claudin-1, and claudin-4) and E-cadherin mRNA and protein expressions. Accordingly, RR supplementation resulted in a decreased level of endotoxins in the serum and attenuation of the inflammatory response in the liver, illustrated by a significant decrease in tumor necrosis factor-alpha, interleukin (IL)-1β, and IL-6 levels. Overall, RR supplementation alleviated the adverse effects of chronic alcohol intake in C57BL/6J mice and could be a potential supplement for improving ALD.
Collapse
Affiliation(s)
- Daniel Zogona
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China. .,Center for Research in Biological Sciences, Food and Nutrition, Department of Biochemistry and Microbiology, University Joseph Ki-Zerbo, BP 7021 Ouagadougou 03, Burkina Faso
| | - Abel Wend-Soo Zongo
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China. .,Center for Research in Biological Sciences, Food and Nutrition, Department of Biochemistry and Microbiology, University Joseph Ki-Zerbo, BP 7021 Ouagadougou 03, Burkina Faso
| | - Abdeen E Elkhedir
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Mahmoud Salah
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China. .,Department of Environmental Agricultural Science, Faculty of Graduate Studies and Environmental Research, Ain Shams University, Cairo 11566, Egypt
| | - Mingfang Tao
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Rong Li
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Ting Wu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Xiaoyun Xu
- Key Laboratory of Environment Correlative Dietology (Ministry of Education), Hubei Key Laboratory of Fruit & Vegetable Processing & Quality Control (Huazhong Agricultural University), College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
11
|
Patel P, Ali H, Manickam S, Pamarthy R, Fatakhova K, Rajapakse R. Substance abuse and inpatient outcomes in inflammatory bowel disease hospitalizations in the United States: a propensity matched analysis. Ann Gastroenterol 2023; 36:32-38. [PMID: 36593809 PMCID: PMC9756027 DOI: 10.20524/aog.2022.0767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Background Inflammatory bowel disease (IBD) is a chronic intestinal inflammation resulting in a genetically susceptible population. The present study aimed to look at the effect of substance abuse on IBD hospitalizations in the United States. Methods We identified primary IBD hospitalizations with substance abuse using the National Inpatient Sample database (2016-2019). A matched comparison cohort of IBD hospitalizations without substance abuse was identified by 1:N propensity score matching using the nearest-neighbor method, based on demographics, hospital-level factors, and comorbidities. Results We matched 4437 IBD hospitalizations with a diagnosis of substance abuse to 4528 hospitalizations without abuse. The median age was higher in the substance abuse group than no abuse (44 vs. 38 years, P<0.001). There was a higher prevalence of discharge to care facilities (2.9% vs. 2.2%) and against medical advice (4.9% vs. 1.8%) in the substance abuse group compared to the no abuse (P<0.001). The median length of hospital stays (LOS) (P=0.74) and hospitalization charge did not differ significantly (P=0.57). There was no significant difference in 30-day inpatient mortality among cohorts (adjusted hazard ratio 0.74, 95% confidence interval 0.32-1.81; P=0.54). There was a higher prevalence of psychoses (2.5% vs. 1.3%) and depression (18.8% vs. 15.7%) in IBD hospitalizations with substance abuse compared to those without abuse (P<0.001). Conclusions This study reports no difference in median LOS, hospitalization charge, or mortality risk in IBD hospitalizations based on substance abuse. There is a higher prevalence of psychoses and depression in IBD patients, requiring screening for substance abuse to improve overall outcomes.
Collapse
Affiliation(s)
- Pratik Patel
- Department of Gastroenterology, Mather Hospital/Hofstra University Zucker School of Medicine, New York (Pratik Patel, Karina Fatakhova, Ramona Rajapakse)
| | - Hassam Ali
- Department of Internal Medicine, East Carolina University/Vidant Medical Center, Greenville, North Carolina (Hassam Ali, Swethaa Manickam, Rahul Pamarthy)
| | - Swethaa Manickam
- Department of Internal Medicine, East Carolina University/Vidant Medical Center, Greenville, North Carolina (Hassam Ali, Swethaa Manickam, Rahul Pamarthy)
| | - Rahul Pamarthy
- Department of Internal Medicine, East Carolina University/Vidant Medical Center, Greenville, North Carolina (Hassam Ali, Swethaa Manickam, Rahul Pamarthy)
| | - Karina Fatakhova
- Department of Gastroenterology, Mather Hospital/Hofstra University Zucker School of Medicine, New York (Pratik Patel, Karina Fatakhova, Ramona Rajapakse)
| | - Ramona Rajapakse
- Department of Gastroenterology, Mather Hospital/Hofstra University Zucker School of Medicine, New York (Pratik Patel, Karina Fatakhova, Ramona Rajapakse)
| |
Collapse
|
12
|
Miyajima Y, Karashima S, Ogai K, Taniguchi K, Ogura K, Kawakami M, Nambo H, Kometani M, Aono D, Demura M, Yoneda T, Tsujiguchi H, Hara A, Nakamura H, Okamoto S. Impact of gut microbiome on dyslipidemia in japanese adults: Assessment of the Shika-machi super preventive health examination results for causal inference. Front Cell Infect Microbiol 2022; 12:908997. [PMID: 36118024 PMCID: PMC9479221 DOI: 10.3389/fcimb.2022.908997] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 08/12/2022] [Indexed: 11/13/2022] Open
Abstract
Dyslipidemia (DL) is one of the most common lifestyle-related diseases. There are few reports showing the causal relationship between gut microbiota (GM) and DL. In the present study, we used a linear non-Gaussian acyclic model (LiNGAM) to evaluate the causal relationship between GM and DL. A total of 79 men and 82 women aged 40 years or older living in Shika-machi, Ishikawa Prefecture, Japan were included in the analysis, and their clinical information was investigated. DNA extracted from the GM was processed to sequence the 16S rRNA gene using next-generation sequencing. Participants were divided into four groups based on sex and lipid profile information. The results of one-way analysis of covariance, linear discriminant analysis effect size, and least absolute value reduction and selection operator logistic regression model indicated that several bacteria between men and women may be associated with DL. The LiNGAM showed a presumed causal relationship between different bacteria and lipid profiles in men and women. In men, Prevotella 9 and Bacteroides were shown to be potentially associated with changes in low- and high-density lipoprotein cholesterol levels. In women, the LiNGAM results showed two bacteria, Akkermansia and Escherichia/Shigella, had a presumptive causal relationship with lipid profiles. These results may provide a new sex-based strategy to reduce the risk of developing DL and to treat DL through the regulation of the intestinal environment using specific GM.
Collapse
Affiliation(s)
- Yuna Miyajima
- Department of Clinical Laboratory Science, Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Shigehiro Karashima
- Institute of Liberal Arts and Science, Kanazawa University, Kanazawa, Japan
- *Correspondence: Shigehiro Karashima, ; Shigefumi Okamoto,
| | - Kazuhiro Ogai
- AI Hospital/Macro Signal Dynamics Research and Development Center, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Kouki Taniguchi
- Department of Clinical Laboratory Science, Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Kohei Ogura
- Advanced Health Care Science Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Masaki Kawakami
- School of Electrical, Information and Communication Engineering, College of Science and Engineering, Kanazawa University, Kanazawa, Japan
| | - Hidetaka Nambo
- School of Electrical, Information and Communication Engineering, College of Science and Engineering, Kanazawa University, Kanazawa, Japan
| | - Mitsuhiro Kometani
- Department of Endocrinology and Metabolism, Kanazawa University Hospital, Kanazawa, Japan
| | - Daisuke Aono
- Department of Endocrinology and Metabolism, Kanazawa University Hospital, Kanazawa, Japan
| | - Masashi Demura
- Department of Hygiene, Graduate School of Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Takashi Yoneda
- Department of Endocrinology and Metabolism, Kanazawa University Hospital, Kanazawa, Japan
- Department of Health Promotion and Medicine of the Future, Kanazawa University, Kanazawa, Japan
- Faculty of Transdisciplinary Sciences, Institute of Transdisciplinary Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiromasa Tsujiguchi
- Department of Public Health, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Akinori Hara
- Department of Public Health, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroyuki Nakamura
- Department of Public Health, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Shigefumi Okamoto
- Department of Clinical Laboratory Science, Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
- Advanced Health Care Science Research Unit, Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
- *Correspondence: Shigehiro Karashima, ; Shigefumi Okamoto,
| |
Collapse
|
13
|
Kim J, Ahn SW, Kim JY, Whon TW, Lim SK, Ryu BH, Han NS, Choi HJ, Roh SW, Lee SH. Probiotic Lactobacilli ameliorate alcohol-induced hepatic damage via gut microbial alteration. Front Microbiol 2022; 13:869250. [PMID: 36081800 PMCID: PMC9446534 DOI: 10.3389/fmicb.2022.869250] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Alcoholic liver disease (ALD), which includes fatty liver, cirrhosis, steatosis, fibrosis, and hepatocellular carcinoma, is a global health problem. The probiotic effects of lactic acid bacteria (LAB) are well-known; however, their protective effect against ALD remains unclear. Therefore, in this study, our objective was to assess the protective effects of LAB on ALD. To this end, mice were fed either a normal diet or an alcohol diet for 10 days (to induce ALD) accompanied by vehicle treatment (the NC and AC groups) or kimchi-derived LAB (Lactiplantibacillus plantarum DSR J266 and Levilactobacillus brevis DSR J301, the AL group; or Lacticaseibacillus rhamnosus GG, the AG group). Our results showed that mice in the AC group showed significantly higher serum aspartate aminotransferase and alanine aminotransferase levels than those in the normal diet groups; however, their levels in the AL and AG groups were relatively lower. We also observed that the AL and AG groups showed relatively lower interleukin-6 levels than the AC group. Additionally, AC group showed the accumulation of several fat vesicles in the liver, while the AL and AG groups showed remarkably lower numbers of fat vesicles. The relative abundance of Enterococcus feacalis, which showed association with liver injury, significantly increased in the AC group compared with its levels in the normal diet groups. However, the AG group showed a decreased relative abundance in this regard, confirming that LAB exerted an improvement effect on gut microbial community. These findings suggested that via gut microbiota alteration, the ingestion of LAB can alleviate the ill effects of alcohol consumption, including inflammation, liver damage, gut dysbiosis, and abnormal intestinal nutrient metabolism.
Collapse
Affiliation(s)
- Juseok Kim
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju, South Korea
- Microbiome Research Team, LISCure Biosciences Inc., Seongnam, South Korea
| | - Seong Woo Ahn
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju, South Korea
- Microbiome Research Team, LISCure Biosciences Inc., Seongnam, South Korea
| | - Joon Yong Kim
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju, South Korea
- Microbiome Research Team, LISCure Biosciences Inc., Seongnam, South Korea
| | - Tae Woong Whon
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju, South Korea
| | - Seul Ki Lim
- Fermentation Regulation Technology Research Group, World Institute of Kimchi, Gwangju, South Korea
| | - Byung Hee Ryu
- Food Research Division, Food BU, Daesang Corporation Research Institute, Icheon, South Korea
| | - Nam Soo Han
- Department of Food Science and Biotechnology, Brain Korea 21 Center for Bio-Health Industry, Chungbuk National University, Cheongju, South Korea
| | - Hak-Jong Choi
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju, South Korea
| | - Seong Woon Roh
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju, South Korea
- Microbiome Research Team, LISCure Biosciences Inc., Seongnam, South Korea
| | - Se Hee Lee
- Kimchi Functionality Research Group, World Institute of Kimchi, Gwangju, South Korea
- *Correspondence: Se Hee Lee,
| |
Collapse
|
14
|
Das S, Song Z, Han H, Ge X, Desert R, Athavale D, Babu Komakula SS, Magdaleno F, Chen W, Lantvit D, Guzman G, Nieto N. Intestinal Osteopontin Protects From Alcohol-induced Liver Injury by Preserving the Gut Microbiome and the Intestinal Barrier Function. Cell Mol Gastroenterol Hepatol 2022; 14:813-839. [PMID: 35811073 PMCID: PMC9425038 DOI: 10.1016/j.jcmgh.2022.06.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/30/2022] [Accepted: 06/30/2022] [Indexed: 12/10/2022]
Abstract
BACKGROUND & AIMS The gut-liver axis plays a key role in the pathogenesis of alcohol-associated liver disease (ALD). We demonstrated that Opn-/- develop worse ALD than wild-type (WT) mice; however, the role of intestinal osteopontin (OPN) in ALD remains unknown. We hypothesized that overexpression of OPN in intestinal epithelial cells (IECs) could ameliorate ALD by preserving the gut microbiome and the intestinal barrier function. METHODS OpnKI IEC, OpnΔIEC, and WT mice were fed control or ethanol Lieber-DeCarli diet for 6 weeks. RESULTS OpnKI IEC but not OpnΔIEC mice showed improved intestinal barrier function and protection from ALD. There were less pathogenic and more beneficial bacteria in ethanol-fed OpnKI IEC than in WT mice. Fecal microbiome transplant (FMT) from OpnKI IEC to WT mice protected from ALD. FMT from ethanol-fed WT to OpnKI IEC mice failed to induce ALD. Antimicrobial peptides, Il33, pSTAT3, aryl hydrocarbon receptor (Ahr), and tight-junction protein expression were higher in IECs from jejunum of ethanol-fed OpnKI IEC than of WT mice. Ethanol-fed OpnKI IEC showed more tryptophan metabolites and short-chain fatty acids in portal serum than WT mice. FMT from OpnKI IEC to WT mice enhanced IECs Ahr and tight-junction protein expression. Oral administration of milk OPN replicated the protective effect of OpnKI IEC mice in ALD. CONCLUSION Overexpression of OPN in IECs or administration of milk OPN maintain the intestinal microbiome by intestinal antimicrobial peptides. The increase in tryptophan metabolites and short-chain fatty acids signaling through the Ahr in IECs, preserve the intestinal barrier function and protect from ALD.
Collapse
Affiliation(s)
- Sukanta Das
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois
| | - Zhuolun Song
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois
| | - Hui Han
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois
| | - Xiaodong Ge
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois
| | - Romain Desert
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois
| | - Dipti Athavale
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois
| | | | - Fernando Magdaleno
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois
| | - Wei Chen
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois
| | - Daniel Lantvit
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois
| | - Grace Guzman
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois
| | - Natalia Nieto
- Department of Pathology, University of Illinois at Chicago, Chicago, Illinois; Department of Medicine, Division of Gastroenterology and Hepatology, University of Illinois at Chicago, Chicago, Illinois; Research Biologist, Research & Development Service, Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois.
| |
Collapse
|
15
|
Simpson S, Mclellan R, Wellmeyer E, Matalon F, George O. Drugs and Bugs: The Gut-Brain Axis and Substance Use Disorders. J Neuroimmune Pharmacol 2022; 17:33-61. [PMID: 34694571 PMCID: PMC9074906 DOI: 10.1007/s11481-021-10022-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/06/2021] [Indexed: 02/07/2023]
Abstract
Substance use disorders (SUDs) represent a significant public health crisis. Worldwide, 5.4% of the global disease burden is attributed to SUDs and alcohol use, and many more use psychoactive substances recreationally. Often associated with comorbidities, SUDs result in changes to both brain function and physiological responses. Mounting evidence calls for a precision approach for the treatment and diagnosis of SUDs, and the gut microbiome is emerging as a contributor to such disorders. Over the last few centuries, modern lifestyles, diets, and medical care have altered the health of the microbes that live in and on our bodies; as we develop, our diets and lifestyle dictate which microbes flourish and which microbes vanish. An increase in antibiotic treatments, with many antibiotic interventions occurring early in life during the microbiome's normal development, transforms developing microbial communities. Links have been made between the microbiome and SUDs, and the microbiome and conditions that are often comorbid with SUDs such as anxiety, depression, pain, and stress. A better understanding of the mechanisms influencing behavioral changes and drug use is critical in developing novel treatments for SUDSs. Targeting the microbiome as a therapeutic and diagnostic tool is a promising avenue of exploration. This review will provide an overview of the role of the gut-brain axis in a wide range of SUDs, discuss host and microbe pathways that mediate changes in the brain's response to drugs, and the microbes and related metabolites that impact behavior and health within the gut-brain axis.
Collapse
Affiliation(s)
- Sierra Simpson
- Department of Psychiatry, University of California San Diego, La Jolla, San Diego, CA, 92093, US.
| | - Rio Mclellan
- Department of Psychiatry, University of California San Diego, La Jolla, San Diego, CA, 92093, US
| | - Emma Wellmeyer
- Department of Psychiatry, University of California San Diego, La Jolla, San Diego, CA, 92093, US
| | - Frederic Matalon
- Department of Psychiatry, University of California San Diego, La Jolla, San Diego, CA, 92093, US
| | - Olivier George
- Department of Psychiatry, University of California San Diego, La Jolla, San Diego, CA, 92093, US
| |
Collapse
|
16
|
Guo P, Xue M, Teng X, Wang Y, Ren R, Han J, Zhang H, Tian Y, Liang H. Antarctic Krill Oil ameliorates liver injury in rats exposed to alcohol by regulating bile acids metabolism and gut microbiota. J Nutr Biochem 2022; 107:109061. [DOI: 10.1016/j.jnutbio.2022.109061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 04/07/2022] [Accepted: 04/20/2022] [Indexed: 10/25/2022]
|
17
|
Liu M, Liu M, Yang S, Shen C, Wang X, Liu W, Guo Y. Fermented milk of cheese-derived Lactobacillus bulgaricus displays potentials in alleviating alcohol-induced hepatic injury and gut dysbiosis in mice. Food Res Int 2022; 157:111283. [DOI: 10.1016/j.foodres.2022.111283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 04/17/2022] [Accepted: 04/19/2022] [Indexed: 12/18/2022]
|
18
|
Xiang JY, Chi YY, Han JX, Shi X, Cai Y, Xiang H, Xie Q. Intestinal Microbiota Contributes to the Improvement of Alcoholic Hepatitis in Mice Treated With Schisandra chinensis Extract. Front Nutr 2022; 9:822429. [PMID: 35252302 PMCID: PMC8894320 DOI: 10.3389/fnut.2022.822429] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/10/2022] [Indexed: 12/12/2022] Open
Abstract
Alcoholic hepatitis (AH) has a high short-term mortality rate. Schisandra chinensis has the potential to ameliorate liver damage and be a source of prebiotics. We aimed to investigate whether Schisandra chinensis extract (SCE) can improve AH and the role of the small intestinal and cecal microbiota and their metabolites. UHPLC-QE-MS was used to analyze the chemical components of SCE. The chronic-plus-binge ethanol feeding model was used to induce AH in mice. 1H NMR was used to analyze intestinal metabolites. 16S rRNA-based high throughput sequencing was used to evaluate the effects of SCE on intestinal microbiota (IM). Intestinal microbiota transplantation was used to explore the role of IM in SCE treatment of AH. SCE ameliorated AH non-dose-dependently. SCE effectively improved liver inflammation and oxidative/nitrosative stress, strengthened intestinal barrier function, and regulated the composition of IM and the content of short-chain fatty acids (SCFAs) in AH mice. Samples from in vivo and in vitro SCE-altered IM improved liver status and regulated the IM. The administration of Lactobacillus plantarum and Bifidobacterium breve ameliorated AH to some extent. The administration of Enterococcus faecalis and Klebsiella oxytoca had partial beneficial effects on AH. Collectively, IM and metabolites were closely associated with the improvement of SCE on AH. The possible microbe targets were the growth inhibition of Escherichia-Shigella and the expansion of SCFA producers, such as Lactobacillus and Bifidobacterium. Schisandra chinensis can be considered as a safe and effective dietary supplement for the prevention and improvement of AH.
Collapse
Affiliation(s)
- Jun-Yan Xiang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
- School of Life Sciences, Jilin University, Changchun, China
| | - Yan-Yu Chi
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
- School of Life Sciences, Jilin University, Changchun, China
| | - Jin-Xin Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
- School of Life Sciences, Jilin University, Changchun, China
| | - Xinyu Shi
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
- School of Life Sciences, Jilin University, Changchun, China
| | - Yong Cai
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
- School of Life Sciences, Jilin University, Changchun, China
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- Resources and Applied Microbiology Laboratory, Institute of Changbai Mountain Resource and Health, Jilin University, Fusong, China
- *Correspondence: Yong Cai
| | - Hongyu Xiang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
- School of Life Sciences, Jilin University, Changchun, China
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- Resources and Applied Microbiology Laboratory, Institute of Changbai Mountain Resource and Health, Jilin University, Fusong, China
- Hongyu Xiang
| | - Qiuhong Xie
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, China
- School of Life Sciences, Jilin University, Changchun, China
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
- Resources and Applied Microbiology Laboratory, Institute of Changbai Mountain Resource and Health, Jilin University, Fusong, China
- Qiuhong Xie
| |
Collapse
|
19
|
Das S, Ge X, Han H, Desert R, Song Z, Athavale D, Chen W, Gaskell H, Lantvit D, Guzman G, Nieto N. The Integrated "Multiomics" Landscape at Peak Injury and Resolution From Alcohol-Associated Liver Disease. Hepatol Commun 2022; 6:133-160. [PMID: 34558855 PMCID: PMC8710802 DOI: 10.1002/hep4.1793] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 01/09/2023] Open
Abstract
Alcohol-associated liver disease (ALD) is a significant clinical problem for which the most effective therapy is alcohol abstinence. The two aims of this study were, first, to identify the liver transcriptome, fecal microbiome, and portal serum metabolome at peak injury and during early and late resolution from ALD; and second, to integrate their interactions and understand better the pathogenesis of ALD. To provoke alcohol-induced liver injury, female and male wild-type mice were fed the control or ethanol Lieber-DeCarli diets for 6 weeks. To study early and late resolution, alcohol was withdrawn from the diet and mice were sacrificed after 3 and 14 days, respectively. At peak injury, there was increased signal transducer and activator of transcription (Stat3), Rho-GTPases, Tec kinase and glycoprotein VI (Gp6), and decreased peroxisome proliferator-activated receptor signaling. During resolution from ALD, there was up-regulation of vitamin D receptor/retinoid X receptor, toll-like receptor, p38 and Stat3, and down-regulation of liver X receptor signaling. Females showed significant changes in catabolic pathways, whereas males increased cellular stress, injury, and immune-response pathways that decreased during resolution. The bacterial genus Alistipes and the metabolite dipeptide glycyl-L-leucine increased at peak but decreased during resolution from ALD in both genders. Hepatic induction of mitogen-activated protein kinase (Map3k1) correlated with changes in the microbiome and metabolome at peak but was restored during ALD resolution. Inhibition of MAP3K1 protected from ALD in mice. Conclusion: Alcohol abstinence restores the liver transcriptome, fecal microbiome, and portal serum metabolome in a gender-specific manner. Integration of multiomics data identified Map3k1 as a key gene driving pathogenesis and resolution from ALD.
Collapse
Affiliation(s)
- Sukanta Das
- Department of PathologyUniversity of Illinois at ChicagoChicagoILUSA
| | - Xiaodong Ge
- Department of PathologyUniversity of Illinois at ChicagoChicagoILUSA
| | - Hui Han
- Department of PathologyUniversity of Illinois at ChicagoChicagoILUSA
| | - Romain Desert
- Department of PathologyUniversity of Illinois at ChicagoChicagoILUSA
| | - Zhuolun Song
- Department of PathologyUniversity of Illinois at ChicagoChicagoILUSA
| | - Dipti Athavale
- Department of PathologyUniversity of Illinois at ChicagoChicagoILUSA
| | - Wei Chen
- Department of PathologyUniversity of Illinois at ChicagoChicagoILUSA
| | - Harriet Gaskell
- Department of PathologyUniversity of Illinois at ChicagoChicagoILUSA
| | - Daniel Lantvit
- Department of PathologyUniversity of Illinois at ChicagoChicagoILUSA
| | - Grace Guzman
- Department of PathologyUniversity of Illinois at ChicagoChicagoILUSA
| | - Natalia Nieto
- Department of PathologyUniversity of Illinois at ChicagoChicagoILUSA
- Department of MedicineDivision of Gastroenterology and HepatologyUniversity of Illinois at ChicagoChicagoILUSA
| |
Collapse
|
20
|
Zhao M, Chen C, Yuan Z, Li W, Zhang M, Cui N, Duan Y, Zhang X, Zhang P. Dietary Bacillus subtilis supplementation alleviates alcohol-induced liver injury by maintaining intestinal integrity and gut microbiota homeostasis in mice. Exp Ther Med 2021; 22:1312. [PMID: 34630666 PMCID: PMC8461600 DOI: 10.3892/etm.2021.10747] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 03/24/2021] [Indexed: 12/14/2022] Open
Abstract
Alcoholic liver disease (ALD) is a worldwide health problem with limited therapeutic options, which is associated with gut-derived endotoxins, particularly lipopolysaccharide (LPS) and intestinal microbiota dysbiosis. Recently, probiotics, synbiotics and other food additive interventions have been shown to be effective in decreasing or preventing the progression of ALD. Bacillus subtilis (B. subtilis) and its metabolic products are widely used as food additives to maintain intestinal health, but the protective effects of B. subtilis against alcohol-induced liver injury are poorly understood. In the present study a chronic alcohol-induced liver injury model was constructed based on the Lieber-DeCarli diet and it aimed to determine whether dietary B. subtilis supplementation may alleviate alcohol-induced liver injury. Results revealed that prophylactic B. subtilis supplementation partially restored gut microbiota homeostasis and relieved alcohol-induced intestinal barrier injury, which significantly decreased the translocation of bacterial endotoxins to the blood. In addition, the decreased serum LPS alleviated hepatic inflammation via the toll-like receptor 4 pathway, resulting in improved hepatic structure and function. These results demonstrated that dietary B. subtilis supplementation imparts novel hepatoprotective functions by improving intestinal permeability and homeostasis.
Collapse
Affiliation(s)
- Meiqi Zhao
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Chuanai Chen
- School of Medicine, Nankai University, Tianjin 300071, P.R. China
| | - Zhoujie Yuan
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong 261031, P.R. China.,Department of Gastroenterology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Wenwen Li
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong 261031, P.R. China.,Department of Gastroenterology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Mohan Zhang
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Nailing Cui
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Yitao Duan
- School of Medicine, Nankai University, Tianjin 300071, P.R. China
| | - Xiaoqian Zhang
- School of Clinical Medicine, Weifang Medical University, Weifang, Shandong 261031, P.R. China.,Department of Gastroenterology, Affiliated Hospital of Weifang Medical University, Weifang, Shandong 261031, P.R. China
| | - Peng Zhang
- School of Medicine, Nankai University, Tianjin 300071, P.R. China
| |
Collapse
|
21
|
Pohl K, Moodley P, Dhanda AD. Alcohol's Impact on the Gut and Liver. Nutrients 2021; 13:nu13093170. [PMID: 34579046 PMCID: PMC8472839 DOI: 10.3390/nu13093170] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 12/13/2022] Open
Abstract
Alcohol is inextricably linked with the digestive system. It is absorbed through the gut and metabolised by hepatocytes within the liver. Excessive alcohol use results in alterations to the gut microbiome and gut epithelial integrity. It contributes to important micronutrient deficiencies including short-chain fatty acids and trace elements that can influence immune function and lead to liver damage. In some people, long-term alcohol misuse results in liver disease progressing from fatty liver to cirrhosis and hepatocellular carcinoma, and results in over half of all deaths from chronic liver disease, over half a million globally per year. In this review, we will describe the effect of alcohol on the gut, the gut microbiome and liver function and structure, with a specific focus on micronutrients and areas for future research.
Collapse
Affiliation(s)
- Keith Pohl
- South West Liver Unit, University Hospitals Plymouth NHS Trust, Plymouth PL6 8DH, UK; (K.P.); (P.M.)
- Hepatology Research Group, Faculty of Health, University of Plymouth, Plymouth PL4 8AA, UK
| | - Prebashan Moodley
- South West Liver Unit, University Hospitals Plymouth NHS Trust, Plymouth PL6 8DH, UK; (K.P.); (P.M.)
- Hepatology Research Group, Faculty of Health, University of Plymouth, Plymouth PL4 8AA, UK
| | - Ashwin D. Dhanda
- South West Liver Unit, University Hospitals Plymouth NHS Trust, Plymouth PL6 8DH, UK; (K.P.); (P.M.)
- Hepatology Research Group, Faculty of Health, University of Plymouth, Plymouth PL4 8AA, UK
- Correspondence: ; Tel.: +44-1752-432723
| |
Collapse
|
22
|
Research Development on Anti-Microbial and Antioxidant Properties of Camel Milk and Its Role as an Anti-Cancer and Anti-Hepatitis Agent. Antioxidants (Basel) 2021; 10:antiox10050788. [PMID: 34067516 PMCID: PMC8156492 DOI: 10.3390/antiox10050788] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/09/2021] [Accepted: 05/13/2021] [Indexed: 01/01/2023] Open
Abstract
Camel milk is a rich source of vitamin C, lactic acid bacteria (LAB), beta-caseins and milk whey proteins, including lactoferrin, lysozyme, lactoperoxidase, alpha-lactalbumin and immunoglobulin. The lactoferrin plays a key role in several physiological functions, such as conferring antioxidant, anti-microbial and anti-inflammatory functions in cells. Similarly, the camel milk alpha-lactalbumin has shown greater antioxidative activity because of its higher antioxidant amino acid residues. The antioxidant properties of camel milk have also been ascribed to the structural conformation of its beta-caseins. Upon hydrolysis, the beta-caseins lead to some bioactive peptides having antioxidant activities. Consequently, the vitamin C in camel milk has a significant antioxidant effect and can be used as a source of vitamin C when the climate is harsh. Furthermore, the lysozyme and immunoglobulins in camel milk have anti-microbial and immune regulatory properties. The LAB isolated from camel milk have a protective role against both Gram-positive and -negative bacteria. Moreover, the LAB can be used as a probiotic and may restore the oxidative status caused by various pathogenic bacterial infections. Various diseases such as cancer and hepatitis have been associated with oxidative stress. Camel milk could increase antiproliferative effects and regulate antioxidant genes during cancer and hepatitis, hence ameliorating oxidative stress. In the current review, we have illustrated the anti-microbial and antioxidant properties of camel milk in detail. In addition, the anti-cancer and anti-hepatitis properties of camel milk have also been discussed.
Collapse
|
23
|
Regulating Intestinal Microbiota in the Prevention and Treatment of Alcohol-Related Liver Disease. Can J Gastroenterol Hepatol 2020; 2020:6629196. [PMID: 33381475 PMCID: PMC7759392 DOI: 10.1155/2020/6629196] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/29/2020] [Accepted: 12/08/2020] [Indexed: 02/06/2023] Open
Abstract
When alcohol-related liver disease occurs, the number and composition ratio of intestinal microorganisms will accordingly change. The alcohol-induced changes in the intestinal microbiota play a pivotal role in the process of developing the alcohol-related liver disease through the translocation of microbial products due to increased intestinal permeability. In recent years, therapeutic interventions with a concentration on regulating intestinal microbiota have been conducted for patients with alcohol-related liver disease. We aimed to provide a critical review and updates on the prevention and treatment of alcohol-related liver disease through regulating intestinal microbiota. A literature search was performed on the PubMed database for studies published in English about the therapeutic intervention with microbiota using animal models and patients with alcohol-related liver disease (1/2010-4/2020). The accumulating pieces of evidence suggest that the therapeutic use of probiotics, prebiotics, antibiotics, phages, or fecal microbial transplantation may have several influences on alcohol-related liver disease patients. Emergent data unveiled that these interventions can further regulate the composition of intestinal microbiota, minimize the negative impact of microbiota on the liver, and prevent disease progression from mild to severe alcoholic hepatitis, fibrosis, cirrhosis, or even liver cancer. The current review provides updates on the advances of therapeutic interventions with the effects of regulating intestinal microbiota on patients who have alcohol-related liver disease. In addition, the data gaps and research directions on further exploration of the role of intestinal microbiota for the management of the alcohol-related liver disease are also discussed.
Collapse
|
24
|
Ming L, Qiao X, Yi L, Siren D, He J, Hai L, Guo F, Xiao Y, Ji R. Camel milk modulates ethanol-induced changes in the gut microbiome and transcriptome in a mouse model of acute alcoholic liver disease. J Dairy Sci 2020; 103:3937-3949. [PMID: 32171514 DOI: 10.3168/jds.2019-17247] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/13/2020] [Indexed: 12/15/2022]
Abstract
Morbidity and mortality as a result of liver disease are major problems around the world, especially from alcoholic liver disease (ALD), which is characterized by hepatic inflammation and intestinal microbial imbalance. In this study, we investigated the hepatoprotective effects of camel milk (CM) in a mouse model of acute ALD and the underlying mechanism at the gut microbiota and transcriptome level. Male Institute of Cancer Research mice (n = 24; Beijing Weitong Lihua Experimental Animal Technology Co. Ltd., China) were divided into 3 groups: normal diet (NC); normal diet, then ethanol (ET); and normal diet and camel milk (CM), then ethanol (ET+CM). Analysis of serum biochemical indexes and histology revealed a reduction in hepatic inflammation in the ET+CM group. Sequencing of 16S rRNA showed that CM modulated the microbial communities, with an increased proportion of Lactobacillus and reduced Bacteroides, Alistipes, and Rikenellaceae RC9 gut group. Comparative hepatic transcriptome analysis revealed 315 differentially expressed genes (DEG) in the ET+CM and ET groups (150 upregulated and 165 downregulated). Enrichment analysis revealed that CM downregulated the expression of inflammation-related (ILB and CXCL1) genes in the IL-17 and tumor necrosis factor (TNF-α) pathways. We conclude that CM modulates liver inflammation and alleviates the intestinal microbial disorder caused by acute alcohol injury, indicating the potential of dietary CM in protection against alcohol-induced liver injury.
Collapse
Affiliation(s)
- Liang Ming
- Key Laboratory of Dairy Biotechnology and Bioengineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - XiangYu Qiao
- Key Laboratory of Dairy Biotechnology and Bioengineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Li Yi
- Key Laboratory of Dairy Biotechnology and Bioengineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Dalai Siren
- Key Laboratory of Dairy Biotechnology and Bioengineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Camel Research Institute of Inner Mongolia, Alashan 737300, China
| | - Jing He
- Key Laboratory of Dairy Biotechnology and Bioengineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Le Hai
- Key Laboratory of Dairy Biotechnology and Bioengineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Fucheng Guo
- Key Laboratory of Dairy Biotechnology and Bioengineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Yuchen Xiao
- Key Laboratory of Dairy Biotechnology and Bioengineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China
| | - Rimutu Ji
- Key Laboratory of Dairy Biotechnology and Bioengineering, Ministry of Education, College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot 010018, China; Camel Research Institute of Inner Mongolia, Alashan 737300, China.
| |
Collapse
|
25
|
Seesaha PK, Chen X, Wu X, Xu H, Li C, Jheengut Y, Zhao F, Liu L, Zhang D. The interplay between dietary factors, gut microbiome and colorectal cancer: a new era of colorectal cancer prevention. Future Oncol 2020; 16:293-306. [PMID: 32067473 DOI: 10.2217/fon-2019-0552] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Colorectal cancer is the third most common cancer in the world and its incidence is on the rise. Dietary intervention has emerged as an attractive strategy to curtail its occurrence and progression. Diet is known to influence the gut microbiome, as dietary factors and gut bacteria can act in concert to cause or protect from colorectal cancer. Several studies have presented evidence for such interactions and have pointed out the different ways by which the diet and gut microbiome can be altered to produce beneficial effects. This review article aims to summarize the interrelationship between diet, gut flora and colorectal cancer so that a better preventive approach can be applied.
Collapse
Affiliation(s)
- Poshita Kumari Seesaha
- Oncology Department, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, PR China
| | - Xiaofeng Chen
- Oncology Department, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, PR China
| | - Xiaofeng Wu
- Hepatobiliary Center, The First Affiliated Hospital, Nanjing Medical University, Jiangsu, PR China
| | - Hongxia Xu
- Department of Nutrition, Third Military Medical University Daping Hospital & Research Institute of Surgery, Chongqing 400042, Sichuan, PR China
| | - Changxian Li
- Hepatobiliary Center, The First Affiliated Hospital, Nanjing Medical University, Jiangsu, PR China
| | - Yogesh Jheengut
- Oncology Department, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, PR China
| | - Fengjiao Zhao
- Oncology Department, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, PR China
| | - Li Liu
- School of Public Health, Guizhou Medical University, Guiyang, PR China
| | - Diancai Zhang
- Department of General Surgery, The First Affiliated Hospital, Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, Jiangsu, PR China
| |
Collapse
|
26
|
Mote RS, Hill NS, Skarlupka JH, Tran VT, Walker DI, Turner ZB, Sanders ZP, Jones DP, Suen G, Filipov NM. Toxic tall fescue grazing increases susceptibility of the Angus steer fecal microbiota and plasma/urine metabolome to environmental effects. Sci Rep 2020; 10:2497. [PMID: 32051515 PMCID: PMC7016188 DOI: 10.1038/s41598-020-59104-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/24/2020] [Indexed: 12/11/2022] Open
Abstract
Impaired thermoregulation and lowered average daily gains (ADG) result when livestock graze toxic endophyte (Epichloë coenophialum)-infected tall fescue (E+) and are hallmark signs of fescue toxicosis (FT), a disease exacerbated by increased temperature and humidity (+temperature-humidity index; +THI). We previously reported FT is associated with metabolic and microbiota perturbations under thermoneutral conditions; here, we assessed the influence of E+ grazing and +THI on the microbiota:metabolome interactions. Using high-resolution metabolomics and 16S rRNA gene sequencing, plasma/urine metabolomes and the fecal microbiota of Angus steers grazing non-toxic or E+ tall fescue were evaluated in the context of +THI. E+ grazing affected the fecal microbiota profile; +THI conditions modulated the microbiota only in E+ steers. E+ also perturbed many metabolic pathways, namely amino acid and inflammation-related metabolism; +THI affected these pathways only in E+ steers. Integrative analyses revealed the E+ microbiota correlated and co-varied with the metabolomes in a THI-dependent manner. Operational taxonomic units in the families Peptococcaceae, Clostridiaceae, and Ruminococcaceae correlated with production parameters (e.g., ADG) and with multiple plasma/urine metabolic features, providing putative FT biomarkers and/or targets for the development of FT therapeutics. Overall, this study suggests that E+ grazing increases Angus steer susceptibility to +THI, and offers possible targets for FT interventions.
Collapse
Affiliation(s)
- Ryan S Mote
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, USA
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Nicholas S Hill
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, USA
| | - Joseph H Skarlupka
- Department of Bacteriology, University of Wisconsin - Madison, Madison, WI, USA
| | - ViLinh T Tran
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Emory University, Atlanta, GA, USA
| | - Douglas I Walker
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Emory University, Atlanta, GA, USA
| | - Zachary B Turner
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA
| | - Zachary P Sanders
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, USA
| | - Dean P Jones
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Emory University, Atlanta, GA, USA
| | - Garret Suen
- Department of Bacteriology, University of Wisconsin - Madison, Madison, WI, USA
| | - Nikolay M Filipov
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, USA.
- Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
27
|
Xiao J, Zhang R, Wu Y, Wu C, Jia X, Dong L, Liu L, Chen Y, Bai Y, Zhang M. Rice Bran Phenolic Extract Protects against Alcoholic Liver Injury in Mice by Alleviating Intestinal Microbiota Dysbiosis, Barrier Dysfunction, and Liver Inflammation Mediated by the Endotoxin-TLR4-NF-κB Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1237-1247. [PMID: 31722525 DOI: 10.1021/acs.jafc.9b04961] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Alcoholic liver injury, known as the most general result of chronic alcohol intake, is induced by inflammatory responses, which is activated by intestine-derived endotoxins formed from intestinal dysbiosis. The hepatoprotective activity of rice bran phenolic extract (RBPE) on ethanol-fed mice was investigated for the first time in this study, and the underlying mechanism was explored from gut microbiota, barrier function, and hepatic inflammation. Mice were fed an alcohol-containing liquid diet alone or in mixture with RBPE for 8 weeks. RBPE treatment mitigated ethanol-induced liver damage, evidenced by the declined lipid profile levels and hepatic function markers. Moreover, ethanol intake induced intestinal microbiota dysbiosis, which was attenuated by RBPE supplementation. RBPE treatment improved the alcohol-induced decrease in the expression of ZO-1, Claudin-1, Claudin-4, and Reg3g, revealing the ameliorative effect of RBPE on intestinal barrier dysfunction. Furthermore, RBPE treatment repressed the alcohol-induced trigger of the hepatic endotoxin-TLR4-NF-κB pathway, followed by the mitigated liver inflammation. The findings indicate that RBPE supplementation ameliorates intestinal microbiota dysbiosis and barrier dysfunction, inactivates the endotoxin-TLR4-NF-κB pathway, and represses inflammatory responses in liver, and therefore, intake of RBPE or brown rice may be an effective way to mitigate alcoholic liver injury.
Collapse
Affiliation(s)
- Juan Xiao
- College of Food Science and Technology , Hainan University , Haikou 570228 , China
| | - Ruifen Zhang
- Sericultural & Agri-Food Research Institute , Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processings , Guangzhou 510610 , China
| | - Yujiao Wu
- College of Food Science and Technology , Hainan University , Haikou 570228 , China
| | - Chengjunhong Wu
- College of Food Science and Technology , Hainan University , Haikou 570228 , China
| | - Xuchao Jia
- Sericultural & Agri-Food Research Institute , Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processings , Guangzhou 510610 , China
| | - Lihong Dong
- Sericultural & Agri-Food Research Institute , Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processings , Guangzhou 510610 , China
| | - Lei Liu
- Sericultural & Agri-Food Research Institute , Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processings , Guangzhou 510610 , China
| | - Yanxia Chen
- Sericultural & Agri-Food Research Institute , Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processings , Guangzhou 510610 , China
| | - Yajuan Bai
- Sericultural & Agri-Food Research Institute , Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processings , Guangzhou 510610 , China
| | - Mingwei Zhang
- Sericultural & Agri-Food Research Institute , Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processings , Guangzhou 510610 , China
| |
Collapse
|
28
|
Deda O, Virgiliou C, Orfanidis A, Gika HG. Study of Fecal and Urinary Metabolite Perturbations Induced by Chronic Ethanol Treatment in Mice by UHPLC-MS/MS Targeted Profiling. Metabolites 2019; 9:E232. [PMID: 31623107 PMCID: PMC6836053 DOI: 10.3390/metabo9100232] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/12/2019] [Accepted: 10/13/2019] [Indexed: 02/06/2023] Open
Abstract
Alcoholic liver disease (ALD) as a consequence of ethanol chronic consumption could lead to hepatic cirrhosis that is linked to high morbidity and mortality. Disease diagnosis is still very challenging and usually clear findings are obtained in the later stage of ALD. The profound effect of ethanol on metabolism can be depicted using metabolomics; thus, the discovery of novel biomarkers could shed light on the initiation and the progression of the ALD, serving diagnostic purposes. In the present study, Hydrophilic Interaction Liquid Chromatography tandem Mass Spectrometry HILIC-MS/MS based metabolomics analyisis of urine and fecal samples of C57BL/6 mice of both sexes at two sampling time points was performed, monitoring the effect of eight-week ethanol consumption. The altered hepatic metabolism caused by ethanol consumption induces extensive biochemical perturbations and changes in gut microbiota population on a great scale. Fecal samples were proven to be a suitable specimen for studying ALD since it was more vulnerable to the metabolic changes in comparison to urine samples. The metabolome of male mice was affected on a greater scale than the female metabolome due to ethanol exposure. Precursor small molecules of essential pathways of energy production responded to ethanol exposure. A meaningful correlation between the two studied specimens demonstrated the impact of ethanol in endogenous and symbiome metabolism.
Collapse
Affiliation(s)
- Olga Deda
- Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
- Center for Interdisciplinary Research of the Aristotle University of Thessaloniki (KEDEK), 57001 Thessaloniki, Greece.
| | - Christina Virgiliou
- Center for Interdisciplinary Research of the Aristotle University of Thessaloniki (KEDEK), 57001 Thessaloniki, Greece.
- Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Amvrosios Orfanidis
- Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
- Center for Interdisciplinary Research of the Aristotle University of Thessaloniki (KEDEK), 57001 Thessaloniki, Greece.
| | - Helen G Gika
- Department of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
- Center for Interdisciplinary Research of the Aristotle University of Thessaloniki (KEDEK), 57001 Thessaloniki, Greece.
| |
Collapse
|
29
|
Naidoo CC, Nyawo GR, Wu BG, Walzl G, Warren RM, Segal LN, Theron G. The microbiome and tuberculosis: state of the art, potential applications, and defining the clinical research agenda. THE LANCET. RESPIRATORY MEDICINE 2019; 7:892-906. [PMID: 30910543 DOI: 10.1016/s2213-2600(18)30501-0] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/15/2018] [Accepted: 11/15/2018] [Indexed: 01/26/2023]
Abstract
The diverse microbial communities within our bodies produce metabolites that modulate host immune responses. Even the microbiome at distal sites has an important function in respiratory health. However, the clinical importance of the microbiome in tuberculosis, the biggest infectious cause of death worldwide, is only starting to be understood. Here, we critically review research on the microbiome's association with pulmonary tuberculosis. The research indicates five main points: (1) susceptibility to infection and progression to active tuberculosis is altered by gut Helicobacter co-infection, (2) aerosol Mycobacterium tuberculosis infection changes the gut microbiota, (3) oral anaerobes in the lung make metabolites that decrease pulmonary immunity and predict progression, (4) the increased susceptibility to reinfection of patients who have previously been treated for tuberculosis is likely due to the depletion of T-cell epitopes on commensal gut non-tuberculosis mycobacteria, and (5) the prolonged antibiotic treatment required for cure of tuberculosis has long-term detrimental effects on the microbiome. We highlight knowledge gaps, considerations for addressing these knowledge gaps, and describe potential targets for modifying the microbiome to control tuberculosis.
Collapse
Affiliation(s)
- Charissa C Naidoo
- Department of Science and Technology-National Research Foundation (DST-NRF) Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; South African Medical Research Council Centre for Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; African Microbiome Institute, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Georgina R Nyawo
- Department of Science and Technology-National Research Foundation (DST-NRF) Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; South African Medical Research Council Centre for Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; African Microbiome Institute, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Benjamin G Wu
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Gerhard Walzl
- Department of Science and Technology-National Research Foundation (DST-NRF) Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; South African Medical Research Council Centre for Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Robin M Warren
- Department of Science and Technology-National Research Foundation (DST-NRF) Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; South African Medical Research Council Centre for Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Leopoldo N Segal
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Grant Theron
- Department of Science and Technology-National Research Foundation (DST-NRF) Centre of Excellence for Biomedical Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; South African Medical Research Council Centre for Tuberculosis Research, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa; African Microbiome Institute, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
| |
Collapse
|
30
|
Abstract
Alcoholic liver disease, which ranges from mild disease to alcoholic hepatitis and cirrhosis, is a leading cause of morbidity and mortality worldwide. Alcohol intake can lead to changes in gut microbiota composition, even before liver disease development. These alterations worsen with advancing disease and could be complicit in disease progression. Microbial function, especially related to bile acid metabolism, can modulate alcohol-associated injury even in the presence of cirrhosis and alcoholic hepatitis. Microbiota changes might also alter brain function, and the gut-brain axis might be a potential target to reduce alcoholic relapse risk. Gut microbiota manipulation including probiotics, faecal microbial transplant and antibiotics has been studied in alcoholic liver disease with varying success. Further investigation of the modulation of the gut-liver axis is relevant, as most of these patients are not candidates for liver transplantation. This Review focuses on clinical studies involving the gut microbiota in patients with alcoholic liver disease across the spectrum from alcoholic fatty liver to cirrhosis and alcoholic hepatitis. Specific alterations in the gut-liver-brain axis that are complicit in the interactions between the gut microbiota and alcohol addiction are also reviewed.
Collapse
|
31
|
Cassard AM, Ciocan D. Microbiota, a key player in alcoholic liver disease. Clin Mol Hepatol 2018; 24:100-107. [PMID: 29268595 PMCID: PMC6038939 DOI: 10.3350/cmh.2017.0067] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 11/22/2017] [Indexed: 02/07/2023] Open
Abstract
Alcoholic liver disease (ALD) is a major cause of morbidity and mortality worldwide. Only 20% of heavy alcohol consumers develop alcoholic liver cirrhosis. The intestinal microbiota (IM) has been recently identified as a key player in the severity of liver injury in ALD. Common features of ALD include a decrease of gut epithelial tight junction protein expression, mucin production, and antimicrobial peptide levels. This disruption of the gut barrier, which is a prerequisite for ALD, leads to the passage of bacterial products into the blood stream (endotoxemia). Moreover, metabolites produced by bacteria, such as short chain fatty acids, volatile organic compounds (VOS), and bile acids (BA), are involved in ALD pathology. Probiotic treatment, IM transplantation, or the consumption of dietary fiber, such as pectin, which all alter the ratio of bacterial species, have been shown to improve liver injury in animal models of ALD and to be associated with an improvement in gut barrier function. Although the connections between the microbiota and the host in ALD are well established, the underlying mechanisms are still an active area of research. Targeting the microbiome through the use of prebiotic, probiotic, and postbiotic modalities could be an attractive new approach to manage ALD.
Collapse
Affiliation(s)
- Anne-Marie Cassard
- INSERM UMR996, Inflammation, Chemokines, and Immunopathology, Clamart, France
- Univ Paris-Sud, Univ Paris-Saclay, DHU Hepatinov, Labex Lermit, CHU Bicêtre, Kremlin-Bicêtre, France
| | - Dragos Ciocan
- INSERM UMR996, Inflammation, Chemokines, and Immunopathology, Clamart, France
- Univ Paris-Sud, Univ Paris-Saclay, DHU Hepatinov, Labex Lermit, CHU Bicêtre, Kremlin-Bicêtre, France
| |
Collapse
|
32
|
Ely PH. Is psoriasis a bowel disease? Successful treatment with bile acids and bioflavonoids suggests it is. Clin Dermatol 2018; 36:376-389. [PMID: 29908580 DOI: 10.1016/j.clindermatol.2018.03.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The gut is the largest lymphoid organ in the body. The human microbiome is composed of trillions of bacteria. The DNA of these bacteria dwarfs the human genome. Diet and ethanol can cause rapid shifts in the number and types of bacteria in the gut. The psoriatic microbiome is similar to that seen in alcoholics; there is a decrease in bacterial diversity and overgrowth of bacteria in the small bowel. Psoriatics often have liver disease and deficiencies in bile acids. Psoriasis is a disease characterized by a leaky gut. All of the comorbidities of this disease are due to systemic endotoxemia. Bacterial peptidoglycans absorbed from the gut have direct toxic effects on the liver and skin. Their absorption, as well as endotoxin absorption, must be eliminated to treat psoriasis successfully. Endotoxin absorption is markedly increased by ethanol and peppers. Bioflavonoids, such as quercetin and citrus bioflavonoids, prevent this absorption. Bile acids, given orally, break up endotoxin in the intestinal lumen. Pathogens, including Helicobacter pylori and Streptococcus pyogenes, must be eliminated with antimicrobial therapy for any treatment to work. A complete protocol for curing psoriasis is provided.
Collapse
Affiliation(s)
- P Haines Ely
- VA North California Health Care System, Mather, CA; University of California Davis School of Medicine, Sacramento, CA; Department of Dermatology, Sacramento VA Medical Center, Mather, CA.
| |
Collapse
|
33
|
Cassard AM, Gérard P, Perlemuter G. Microbiota, Liver Diseases, and Alcohol. BUGS AS DRUGS 2018:187-212. [DOI: 10.1128/9781555819705.ch8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Affiliation(s)
- Anne-Marie Cassard
- INSERM U996 Inflammation, Chemokines and Immunopathology, DHU Hepatinov, Univ Paris-Sud; Université Paris-Saclay; 92140 Clamart France
| | - Philippe Gérard
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay; 78350 Jouyen-Josas France
| | - Gabriel Perlemuter
- INSERM U996 Inflammation, Chemokines and Immunopathology, DHU Hepatinov, Univ Paris-Sud; Université Paris-Saclay; 92140 Clamart France
- AP-HP, Hepatogastroenterology and Nutrition, Hôpital Antoine-Béclère; Clamart France
| |
Collapse
|
34
|
Molina PE, Nelson S. Binge Drinking's Effects on the Body. Alcohol Res 2018; 39:99-109. [PMID: 30557153 PMCID: PMC6104963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Studies have focused on the effects of chronic alcohol consumption and the mechanisms of tissue injury underlying alcoholic hepatitis and cirrhosis, with less focus on the pathophysiological consequences of binge alcohol consumption. Alcohol binge drinking prevalence continues to rise, particularly among individuals ages 18 to 24. However, it is also frequent in individuals ages 65 and older. High blood alcohol levels achieved with this pattern of alcohol consumption are of particular concern, as alcohol can permeate to virtually all tissues in the body, resulting in significant alterations in organ function, which leads to multisystemic pathophysiological consequences. In addition to the pattern, amount, and frequency of alcohol consumption, additional factors, including the type of alcoholic beverage, may contribute differentially to the risk for alcohol-induced tissue injury. Preclinical and translational research strategies are needed to enhance our understanding of the effects of binge alcohol drinking, particularly for individuals with a history of chronic alcohol consumption. Identification of underlying pathophysiological processes responsible for tissue and organ injury can lead to development of preventive or therapeutic interventions to reduce the health care burden associated with binge alcohol drinking.
Collapse
|
35
|
Zhou Z, Zhong W. Targeting the gut barrier for the treatment of alcoholic liver disease. LIVER RESEARCH 2017; 1:197-207. [PMID: 30034913 PMCID: PMC6051712 DOI: 10.1016/j.livres.2017.12.004] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Alcohol consumption remains one of the predominant causes of liver disease and liver-related death worldwide. Intriguingly, dysregulation of the gut barrier is a key factor promoting the pathogenesis of alcoholic liver disease (ALD). A functional gut barrier, which consists of a mucus layer, an intact epithelial monolayer and mucosal immune cells, supports nutrient absorption and prevents bacterial penetration. Compromised gut barrier function is associated with the progression of ALD. Indeed, alcohol consumption disrupts the gut barrier, increases gut permeability, and induces bacterial translocation both in ALD patients and in experimental models with ALD. Moreover, alcohol consumption also causes enteric dysbiosis with both numerical and proportional perturbations. Here, we review and discuss mechanisms of alcohol-induced gut barrier dysfunction to better understand the contribution of the gut-liver axis to the pathogenesis of ALD. Unfortunately, there is no effectual Food and Drug Administration-approved treatment for any stage of ALD. Therefore, we conclude with a discussion of potential strategies aimed at restoring the gut barrier in ALD. The principle behind antibiotics, prebiotics, probiotics and fecal microbiota transplants is to restore microbial symbiosis and subsequently gut barrier function. Nutrient-based treatments, such as dietary supplementation with zinc, niacin or fatty acids, have been shown to regulate tight junction expression, reduce intestinal inflammation, and prevent endotoxemia as well as liver injury caused by alcohol in experimental settings. Interestingly, saturated fatty acids may also directly control the gut microbiome. In summary, clinical and experimental studies highlight the significance and efficacy of the gut barrier in treating ALD.
Collapse
Affiliation(s)
- Zhanxiang Zhou
- Center for Translational Biomedical Research, School of Health and Human Sciences, University of North Carolina at Greensboro, Kannapolis, NC, USA
- Department of Nutrition, School of Health and Human Sciences, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Wei Zhong
- Center for Translational Biomedical Research, School of Health and Human Sciences, University of North Carolina at Greensboro, Kannapolis, NC, USA
| |
Collapse
|
36
|
Xiao J, Zhang R, Zhou Q, Liu L, Huang F, Deng Y, Ma Y, Wei Z, Tang X, Zhang M. Lychee (Litchi chinensis Sonn.) Pulp Phenolic Extract Provides Protection against Alcoholic Liver Injury in Mice by Alleviating Intestinal Microbiota Dysbiosis, Intestinal Barrier Dysfunction, and Liver Inflammation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:9675-9684. [PMID: 29041775 DOI: 10.1021/acs.jafc.7b03791] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Liver injury is the most common consequence of alcohol abuse, which is promoted by the inflammatory response triggered by gut-derived endotoxins produced as a consequence of intestinal microbiota dysbiosis and barrier dysfunction. The aim of this study was to investigate whether modulation of intestinal microbiota and barrier function, and liver inflammation contributes to the hepatoprotective effect of lychee pulp phenolic extract (LPPE) in alcohol-fed mice. Mice were treated with an ethanol-containing liquid diet alone or in combination with LPPE for 8 weeks. LPPE supplementation alleviated ethanol-induced liver injury and downregulated key markers of inflammation. Moreover, LPPE supplementation reversed the ethanol-induced alteration of intestinal microbiota composition and increased the expression of intestinal tight junction proteins, mucus protecting proteins, and antimicrobial proteins. Furthermore, in addition to decreasing serum endotoxin level, LPPE supplementation suppressed CD14 and toll-like receptor 4 expression, and repressed the activation of nuclear factor-κB p65 in the liver. These data suggest that intestinal microbiota dysbiosis, intestinal barrier dysfunction, and liver inflammation are improved by LPPE, and therefore, the intake of LPPE or Litchi pulp may be an effective strategy to alleviate the susceptibility to alcohol-induced hepatic diseases.
Collapse
Affiliation(s)
- Juan Xiao
- Sericultural & Agri-Food Research Institute , Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Ruifen Zhang
- Sericultural & Agri-Food Research Institute , Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Qiuyun Zhou
- Institute for Brain Research and Rehabilitation, South China Normal University , Guangzhou 510631, China
| | - Lei Liu
- Sericultural & Agri-Food Research Institute , Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Fei Huang
- Sericultural & Agri-Food Research Institute , Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Yuanyuan Deng
- Sericultural & Agri-Food Research Institute , Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Yongxuan Ma
- Sericultural & Agri-Food Research Institute , Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Zhencheng Wei
- Sericultural & Agri-Food Research Institute , Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Xiaojun Tang
- Sericultural & Agri-Food Research Institute , Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| | - Mingwei Zhang
- Sericultural & Agri-Food Research Institute , Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods, Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing, Guangzhou 510610, China
| |
Collapse
|
37
|
Cassard AM, Gérard P, Perlemuter G. Microbiota, Liver Diseases, and Alcohol. Microbiol Spectr 2017; 5:10.1128/microbiolspec.bad-0007-2016. [PMID: 28840806 PMCID: PMC11687517 DOI: 10.1128/microbiolspec.bad-0007-2016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Indexed: 02/08/2023] Open
Abstract
Being overweight and obesity are the leading causes of liver disease in Western countries. Liver damage induced by being overweight can range from steatosis, harmless in its simple form, to steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma. Alcohol consumption is an additional major cause of liver disease. Not all individuals who are overweight or excessively consume alcohol develop nonalcoholic fatty liver diseases (NAFLD) or alcoholic liver disease (ALD) and advanced liver disease. The role of the intestinal microbiota (IM) in the susceptibility to liver disease in this context has been the subject of recent studies. ALD and NAFLD appear to be influenced by the composition of the IM, and dysbiosis is associated with ALD and NAFLD in rodent models and human patient cohorts. Several microbial metabolites, such as short-chain fatty acids and bile acids, are specifically associated with dysbiosis. Recent studies have highlighted the causal role of the IM in the development of liver diseases, and the use of probiotics or prebiotics improves some parameters associated with liver disease. Several studies have made progress in deciphering the mechanisms associated with the modulation of the IM. These data have demonstrated the intimate relationship between the IM and metabolic liver disease, suggesting that targeting the gut microbiota could be a new preventive or therapeutic strategy for these diseases.
Collapse
Affiliation(s)
- Anne-Marie Cassard
- INSERM U996 Inflammation, Chemokines and Immunopathology, DHU Hepatinov, Univ Paris-Sud, Université Paris-Saclay, 92140 Clamart, France
| | - Philippe Gérard
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Gabriel Perlemuter
- INSERM U996 Inflammation, Chemokines and Immunopathology, DHU Hepatinov, Univ Paris-Sud, Université Paris-Saclay, 92140 Clamart, France
- AP-HP, Hepatogastroenterology and Nutrition, Hôpital Antoine-Béclère, Clamart, France
| |
Collapse
|
38
|
Wubing C, Yuqiong D, Lianyin G, Niancong C, Qiuyun Z, Xiuwen F, Jiajia L, Rongbing W. Lipopolysaccharide/Toll-like receptor 4 signaling pathway involved Qingdu decoction treating severe liver injury merging with endotoxemia. J TRADIT CHIN MED 2017. [DOI: 10.1016/s0254-6272(17)30073-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Xiao J, Zhang R, Huang F, Liu L, Deng Y, Wei Z, Zhang Y, Liu D, Zhang M. The biphasic dose effect of lychee (Litchi chinensis Sonn.) pulp phenolic extract on alcoholic liver disease in mice. Food Funct 2017; 8:189-200. [DOI: 10.1039/c6fo01166g] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Lychee pulp phenolic extract (LPPE) has a biphasic dose response in ethanol-induced liver injury in mice.
Collapse
Affiliation(s)
- Juan Xiao
- Sericultural & Agri-Food Research Institute
- Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods
- Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing
- Guangzhou 510610
- China
| | - Ruifen Zhang
- Sericultural & Agri-Food Research Institute
- Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods
- Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing
- Guangzhou 510610
- China
| | - Fei Huang
- Sericultural & Agri-Food Research Institute
- Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods
- Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing
- Guangzhou 510610
- China
| | - Lei Liu
- Sericultural & Agri-Food Research Institute
- Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods
- Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing
- Guangzhou 510610
- China
| | - Yuanyuan Deng
- Sericultural & Agri-Food Research Institute
- Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods
- Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing
- Guangzhou 510610
- China
| | - Zhencheng Wei
- Sericultural & Agri-Food Research Institute
- Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods
- Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing
- Guangzhou 510610
- China
| | - Yan Zhang
- Sericultural & Agri-Food Research Institute
- Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods
- Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing
- Guangzhou 510610
- China
| | - Dong Liu
- Shenzhen Key Laboratory of Fermentation
- Purification and Analysis
- Shenzhen Polytechnic
- Shenzhen 518055
- China
| | - Mingwei Zhang
- Sericultural & Agri-Food Research Institute
- Guangdong Academy of Agricultural Sciences/Key Laboratory of Functional Foods
- Ministry of Agriculture/Guangdong Key Laboratory of Agricultural Products Processing
- Guangzhou 510610
- China
| |
Collapse
|
40
|
Bishehsari F, Magno E, Swanson G, Desai V, Voigt RM, Forsyth CB, Keshavarzian A. Alcohol and Gut-Derived Inflammation. Alcohol Res 2017; 38:163-171. [PMID: 28988571 PMCID: PMC5513683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In large amounts, alcohol and its metabolites can overwhelm the gastrointestinal tract (GI) and liver and lead to damage both within the GI and in other organs. Specifically, alcohol and its metabolites promote intestinal inflammation through multiple pathways. That inflammatory response, in turn, exacerbates alcohol-induced organ damage, creating a vicious cycle and leading to additional deleterious effects of alcohol both locally and systemically. This review summarizes the mechanisms by which chronic alcohol intake leads to intestinal inflammation, including altering intestinal microbiota composition and function, increasing the permeability of the intestinal lining, and affecting the intestinal immune homeostasis. Understanding the mechanisms of alcohol-induced intestinal inflammation can aid in the discovery of therapeutic approaches to mitigate alcohol-induced organ dysfunctions.
Collapse
|
41
|
Kugadas A, Gadjeva M. Impact of Microbiome on Ocular Health. Ocul Surf 2016; 14:342-9. [PMID: 27189865 DOI: 10.1016/j.jtos.2016.04.004] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/19/2016] [Accepted: 04/01/2016] [Indexed: 12/25/2022]
Abstract
The ocular surface is continuously exposed to the environment and, therefore, it is surprising that it harbors only few commensals with low degree of diversity. This unique aspect of the ocular surface physiology prompts the question whether there are core ocular commensal communities and how they affect ocular immunity. The purpose of this review is to provide an overview of what is known about the ocular surface commensals in health and disease and what we would like to learn in the near future. In addition, we discuss how microbiota at sites other than the eye may influence ocular immune responses. The information discussed in the review has been gathered using PubMed searches for literature published from January 1982 to December 2015.
Collapse
Affiliation(s)
- Abirami Kugadas
- Department of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Mihaela Gadjeva
- Department of Medicine, Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
42
|
Cai X, Bao L, Wang N, Xu M, Mao R, Li Y. Dietary Nucleotides Supplementation and Liver Injury in Alcohol-Treated Rats: A Metabolomics Investigation. Molecules 2016; 21:435. [PMID: 27043516 PMCID: PMC6273469 DOI: 10.3390/molecules21040435] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 03/24/2016] [Accepted: 03/28/2016] [Indexed: 12/20/2022] Open
Abstract
Background: Previous studies suggested that nucleotides were beneficial for liver function, lipid metabolism and so on. The present study aimed to investigate the metabolic response of dietary nucleotides supplementation in alcohol-induced liver injury rats. Methods: Five groups of male Wistar rats were used: normal control group (basal diet, equivalent distilled water), alcohol control group (basal diet, 50% alcohol (v/v)), dextrose control group (basal diet, isocaloric amount of dextrose), and 0.04% and 0.16% nucleotides groups (basal diet supplemented with 0.4 g and 1.6 g nucleotides kg−1 respectively, 50% alcohol (v/v)). The liver injury was measured through traditional liver enzymes, expression of oxidative stress markers and histopathological examination. Ultra-performance liquid chromatography quadrupole-time-flight mass spectrometry (UPLC-Q-TOF-MS) was applied to identify liver metabolite profiles. Results: Nucleotides supplementation prevented the progression of hepatocyte steatosis. The levels of total proteins, globulin, alanine aminotransferase, aspartate aminotransferase, total cholesterol triglyceride, as well as the oxidative stress markers altered by alcohol, were improved by nucleotides supplementation. Elevated levels of liver bile acids (glycocholic acid, chenodeoxyglycocholic acid, and taurodeoxycholic acid), as well as lipids (stearic acid, palmitic acid, oleic acid, phosphatidylcholine, and lysophosphatidylethanolamine) in alcohol-treated rats were reversed by nucleotides supplementation. In addition, supplementation with nucleotides could increase the levels of amino acids, including valyl-Leucine, l-leucine, alanyl-leucine and l-phenylalanine. Conclusion: These data indicate potential biomarkers and confirm the benefit of dietary nucleotides on alcoholic liver injury.
Collapse
Affiliation(s)
- Xiaxia Cai
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China.
| | - Lei Bao
- Department of Clinical Nutrition, Peking University International Hospital, Beijing 102206, China.
| | - Nan Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China.
| | - Meihong Xu
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China.
| | - Ruixue Mao
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China.
| | - Yong Li
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, China.
| |
Collapse
|
43
|
Arnal ME, Lallès JP. Gut epithelial inducible heat-shock proteins and their modulation by diet and the microbiota. Nutr Rev 2016; 74:181-97. [PMID: 26883882 DOI: 10.1093/nutrit/nuv104] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The epidemic of metabolic diseases has raised questions about the interplay between the human diet and the gut and its microbiota. The gut has two vital roles: nutrient absorption and intestinal barrier function. Gut barrier defects are involved in many diseases. Excess energy intake disturbs the gut microbiota and favors body entry of microbial compounds that stimulate chronic metabolic inflammation. In this context, the natural defense mechanisms of gut epithelial cells and the potential to boost them nutritionally warrant further study. One such important defense system is the activation of inducible heat-shock proteins (iHSPs) which protect the gut epithelium against oxidative stress and inflammation. Importantly, various microbial components can induce the expression of iHSPs. This review examines gut epithelial iHSPs as the main targets of microbial signals and nutrients and presents data on diseases involving disturbances of gut epithelial iHSPs. In addition, a broad literature analysis of dietary modulation of gut epithelial iHSPs is provided. Future research aims should include the identification of gut microbes that can optimize gut-protective iHSPs and the evaluation of iHSP-mediated health benefits of nutrients and food components.
Collapse
Affiliation(s)
- Marie-Edith Arnal
- M.E. Arnal and J.P. Lallès are with the Institut National de la Recherche Agronomique (INRA), Human Nutrition Division, Clermont-Ferrand, France. J.P. Lallès is with the Centre de Recherche en Nutrition Humaine Ouest, Nantes, France
| | - Jean-Paul Lallès
- M.E. Arnal and J.P. Lallès are with the Institut National de la Recherche Agronomique (INRA), Human Nutrition Division, Clermont-Ferrand, France. J.P. Lallès is with the Centre de Recherche en Nutrition Humaine Ouest, Nantes, France.
| |
Collapse
|
44
|
Hepatic circadian clock oscillators and nuclear receptors integrate microbiome-derived signals. Sci Rep 2016; 6:20127. [PMID: 26879573 PMCID: PMC4754633 DOI: 10.1038/srep20127] [Citation(s) in RCA: 90] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 12/21/2015] [Indexed: 12/12/2022] Open
Abstract
The liver is a key organ of metabolic homeostasis with functions that oscillate in response to food intake. Although liver and gut microbiome crosstalk has been reported, microbiome-mediated effects on peripheral circadian clocks and their output genes are less well known. Here, we report that germ-free (GF) mice display altered daily oscillation of clock gene expression with a concomitant change in the expression of clock output regulators. Mice exposed to microbes typically exhibit characterized activities of nuclear receptors, some of which (PPARα, LXRβ) regulate specific liver gene expression networks, but these activities are profoundly changed in GF mice. These alterations in microbiome-sensitive gene expression patterns are associated with daily alterations in lipid, glucose, and xenobiotic metabolism, protein turnover, and redox balance, as revealed by hepatic metabolome analyses. Moreover, at the systemic level, daily changes in the abundance of biomarkers such as HDL cholesterol, free fatty acids, FGF21, bilirubin, and lactate depend on the microbiome. Altogether, our results indicate that the microbiome is required for integration of liver clock oscillations that tune output activators and their effectors, thereby regulating metabolic gene expression for optimal liver function.
Collapse
|
45
|
Abstract
Despite extensive research, alcohol remains one of the most common causes of liver disease in the United States. Alcoholic liver disease (ALD) encompasses a broad spectrum of disorders, including steatosis, steatohepatitis, and cirrhosis. Although many agents and approaches have been tested in patients with ALD and in animals with experimental ALD in the past, there is still no FDA (Food and Drug Administration) approved therapy for any stage of ALD. With the increasing recognition of the importance of gut microbiota in the onset and development of a variety of diseases, the potential use of probiotics in ALD is receiving increasing investigative and clinical attention. In this review, we summarize recent studies on probiotic intervention in the prevention and treatment of ALD in experimental animal models and patients. Potential mechanisms underlying the probiotic function are also discussed.
Collapse
|
46
|
Li F, Duan K, Wang C, McClain C, Feng W. Probiotics and Alcoholic Liver Disease: Treatment and Potential Mechanisms. Gastroenterol Res Pract 2015; 2016:5491465. [PMID: 26839540 PMCID: PMC4709639 DOI: 10.1155/2016/5491465] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 11/06/2015] [Accepted: 11/08/2015] [Indexed: 02/07/2023] Open
Abstract
Despite extensive research, alcohol remains one of the most common causes of liver disease in the United States. Alcoholic liver disease (ALD) encompasses a broad spectrum of disorders, including steatosis, steatohepatitis, and cirrhosis. Although many agents and approaches have been tested in patients with ALD and in animals with experimental ALD in the past, there is still no FDA (Food and Drug Administration) approved therapy for any stage of ALD. With the increasing recognition of the importance of gut microbiota in the onset and development of a variety of diseases, the potential use of probiotics in ALD is receiving increasing investigative and clinical attention. In this review, we summarize recent studies on probiotic intervention in the prevention and treatment of ALD in experimental animal models and patients. Potential mechanisms underlying the probiotic function are also discussed.
Collapse
Affiliation(s)
- Fengyuan Li
- College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Departments of Medicine, Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| | - Kangmin Duan
- College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
| | - Cuiling Wang
- College of Life Sciences, Northwest University, Xi'an, Shaanxi 710069, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Craig McClain
- Departments of Medicine, Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
- Robley Rex Veterans Affairs Medical Center, Louisville, KY 40202, USA
| | - Wenke Feng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
- Departments of Medicine, Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY 40202, USA
| |
Collapse
|
47
|
Fecal Microbiota in Patients with Irritable Bowel Syndrome Compared with Healthy Controls Using Real-Time Polymerase Chain Reaction: An Evidence of Dysbiosis. Dig Dis Sci 2015; 60:2953-62. [PMID: 25784074 DOI: 10.1007/s10620-015-3607-y] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/21/2015] [Indexed: 02/06/2023]
Abstract
BACKGROUND Dysbiosis may play a role in irritable bowel syndrome (IBS), hitherto an enigmatic disorder. We evaluated selected fecal microbes in IBS patients and healthy controls (HC). METHODS Fecal 16S rRNA copy number of selected bacteria was studied using qPCR in 47 patients with IBS (Rome III) and 30 HC. RESULTS Of 47 patients, 20 had constipation (IBS-C), 20 diarrhea (IBS-D), and seven unclassified IBS (IBS-U). Relative difference in 16S rRNA copy number of Bifidobacterium (P = 0.042) was lower, while those of Ruminococcus productus-Clostridium coccoides (P = 0.016), Veillonella (P = 0.008), Bacteroides thetaiotamicron (P < 0.001), Pseudomonas aeruginosa (P < 0.001), and Gram-negative bacteria (GNB, P = 0.001) were higher among IBS patients than HC. Number of Lactobacillus (P = 0.002) was lower, while that of Bacteroides thetaiotamicron (P < 0.001) and segmented filamentous bacteria (SFB, P < 0.001) was higher among IBS-D than IBS-C. Numbers of Bacteroides thetaiotamicron (P < 0.001), P. aeruginosa (P < 0.001), and GNB (P < 0.01) were higher among IBS-C and IBS-D than HC. Quantity of SFB was higher among IBS-D (P = 0.011) and lower among IBS-C (P = 0.002) than HC. Number of Veillonella species was higher among IBS-C than HC (P = 0.002). P. aeruginosa was frequently detected among IBS than HC (46/47 [97.9 %] vs. 10/30 [33.3 %], P < 0.001). Abdominal distension (n = 34/47) was associated with higher number of Bacteroides thetaiotamicron, Clostridium coccoides, P. aeruginosa, SFB, and GNB; bloating (n = 22/47) was associated with Clostridium coccoides and GNB. Microbial flora was different among IBS than HC on principal component analysis. CONCLUSION Fecal microbiota was different among IBS than HC, and different sub-types were associated with different microbiota. P. aeruginosa was more frequent and higher in number among IBS patients.
Collapse
|
48
|
Bagyánszki M, Bódi N. Gut region-dependent alterations of nitrergic myenteric neurons after chronic alcohol consumption. World J Gastrointest Pathophysiol 2015; 6:51-57. [PMID: 26301118 PMCID: PMC4540706 DOI: 10.4291/wjgp.v6.i3.51] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/27/2015] [Accepted: 06/02/2015] [Indexed: 02/06/2023] Open
Abstract
Chronic alcohol abuse damages nearly every organ in the body. The harmful effects of ethanol on the brain, the liver and the pancreas are well documented. Although chronic alcohol consumption causes serious impairments also in the gastrointestinal tract like altered motility, mucosal damage, impaired absorption of nutrients and inflammation, the effects of chronically consumed ethanol on the enteric nervous system are less detailed. While the nitrergic myenteric neurons play an essential role in the regulation of gastrointestinal peristalsis, it was hypothesised, that these neurons are the first targets of consumed ethanol or its metabolites generated in the different gastrointestinal segments. To reinforce this hypothesis the effects of ethanol on the gastrointestinal tract was investigated in different rodent models with quantitative immunohistochemistry, in vivo and in vitro motility measurements, western blot analysis, evaluation of nitric oxide synthase enzyme activity and bio-imaging of nitric oxide synthesis. These results suggest that chronic alcohol consumption did not result significant neural loss, but primarily impaired the nitrergic pathways in gut region-dependent way leading to disturbed gastrointestinal motility. The gut segment-specific differences in the effects of chronic alcohol consumption highlight the significance the ethanol-induced neuronal microenvironment involving oxidative stress and intestinal microbiota.
Collapse
|
49
|
Manley S, Ding W. Role of farnesoid X receptor and bile acids in alcoholic liver disease. Acta Pharm Sin B 2015; 5:158-67. [PMID: 26579442 PMCID: PMC4629219 DOI: 10.1016/j.apsb.2014.12.011] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 12/20/2014] [Accepted: 12/29/2014] [Indexed: 02/07/2023] Open
Abstract
Alcoholic liver disease (ALD) is one of the major causes of liver morbidity and mortality worldwide. Chronic alcohol consumption leads to development of liver pathogenesis encompassing steatosis, inflammation, fibrosis, cirrhosis, and in extreme cases, hepatocellular carcinoma. Moreover, ALD may also associate with cholestasis. Emerging evidence now suggests that farnesoid X receptor (FXR) and bile acids also play important roles in ALD. In this review, we discuss the effects of alcohol consumption on FXR, bile acids and gut microbiome as well as their impacts on ALD. Moreover, we summarize the findings on FXR, FoxO3a (forkhead box-containing protein class O3a) and PPARα (peroxisome proliferator-activated receptor alpha) in regulation of autophagy-related gene transcription program and liver injury in response to alcohol exposure.
Collapse
Key Words
- 6ECDCA, 6α-ethyl-chenodeoxycholic acid
- ADH, alcohol dehydrogenase
- AF, activation function
- AKT, protein kinase B
- ALD, alcoholic liver disease
- ALT, alanine aminotransferase
- ASBT, apical sodium dependent bile acid transporter
- Alcoholic liver disease
- Atg, autophagy-related
- Autophagy
- BAAT, bile acid CoA:amino acid N-acyltransferase
- BACS, bile acid CoA synthetase
- BSEP, bile salt export pump
- Bile acids
- CA, cholic acid
- CB1R, cannabinoid receptor type 1
- CDCA, chenodeoxycholic acid
- CREB, cAMP response element-binding protein
- CREBH, cAMP response element-binding protein, hepatocyte specific
- CRTC2, CREB regulated transcription coactivator 2
- CYP, cytochrome P450
- DCA, deoxycholic acid
- DR1, direct repeat 1
- FGF15/19, fibroblast growth factor 15/19
- FGFR4, fibroblast growth factor receptor 4
- FXR, farnesoid X receptor
- Farnesoid X receptor
- FoxO3
- FoxO3a, forkhead box-containing protein class O3a
- GGT, gamma-glutamyltranspeptidase
- HCC, hepatocellular carcinoma
- IR-1, inverted repeat-1
- KO, knockout
- LC3, light chain 3
- LRH-1, liver receptor homolog 1
- LXR, liver X receptor
- MRP4, multidrug resistance protein 4
- NAD+, nicotinamide adenine dinucleotide
- NTCP, sodium taurocholate cotransporting polypeptide
- OSTα/β, organic solute transporter α/β
- PE, phosphatidylethanolamine
- PPARα, peroxisome proliferator-activated receptor alpha
- ROS, reactive oxygen species
- RXRα, retinoid X receptor-alpha
- SHP, small heterodimer partner
- SQSTM, sequestome-1
- SREBP1, sterol regulatory element-binding protein 1
- Sirt1, sirtuin 1
- TCA, taurocholic acid
- TFEB, transcription factor EB
- TLR4, toll-like receptor 4
- TUDCA, tauro-ursodeoxycholic acid
- UDCA, ursodeoxycholic acid
- WAY, WAY-362450
- WT, wild type
Collapse
Affiliation(s)
| | - Wenxing Ding
- Corresponding author. Tel.: +1 913 5889813; fax: +1 913 5887501.
| |
Collapse
|