1
|
Li A, Liu A, Wang J, Song H, Luo P, Zhan M, Zhou X, Chen L, Zhang L. The prophylaxis functions of Lactobacillus fermentum GLF-217 and Lactobacillus plantarum FLP-215 on ulcerative colitis via modulating gut microbiota of mice. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:5816-5825. [PMID: 38406876 DOI: 10.1002/jsfa.13410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/09/2023] [Accepted: 02/18/2024] [Indexed: 02/27/2024]
Abstract
BACKGROUND The strong connection between gut microbes and human health has been confirmed by an increasing number of studies. Although probiotics have been found to relieve ulcerative colitis, the mechanism varies by the species involved. In this study, the physiological, immune and pathological factors of mice were measured and shotgun metagenomic sequencing was conducted to investigate the potential mechanisms in preventing ulcerative colitis. RESULTS The results demonstrated that ingestion of Lactobacillus fermentum GLF-217 and Lactobacillus plantarum FLP-215 significantly alleviated ulcerative colitis induced by dextran sulfate sodium (DSS), as evidenced by the increase in body weight, food intake, water intake and colon length as well as the decrease in disease activity index, histopathological score and inflammatory factor. Both strains not only improved intestinal mucosa by increasing mucin-2 and zonula occludens-1, but also improved the immune system response by elevating interleukin-10 levels and decreasing the levels of interleukin-1β, interleukin-6, tumor necrosis factor-α and interferon-γ. Moreover, L. fermentum GLF-217 and L. plantarum FLP-215 play a role in preventing DSS-induced colitis by regulating the structure of gut microbiota and promoting the formation of short-chain fatty acids. CONCLUSIONS This study may provide a reference for the prevention strategy of ulcerative colitis. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ao Li
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou, China
| | | | - Jun Wang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou, China
| | - Hainan Song
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou, China
| | | | | | | | | | - Lin Zhang
- Key Laboratory of Food Nutrition and Functional Food of Hainan Province, School of Food Science and Engineering, Hainan University, Haikou, China
| |
Collapse
|
2
|
Kondo T, Uebanso T, Arao N, Shimohata T, Mawatari K, Takahashi A. Effect of T1R3 Taste Receptor Gene Deletion on Dextran Sulfate Sodium-Induced Colitis in Mice. J Nutr Sci Vitaminol (Tokyo) 2022; 68:204-212. [PMID: 35768251 DOI: 10.3177/jnsv.68.204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Taste receptor type 1 member 3 (T1R3) recognize umami or sweet tastes and also contributes type 2 immunity and autophagy in small intestine and muscle cells, respectively. Since imbalance of type 1 and type 2 immunity and autophagy affect intestinal bowel disease (IBD), we hypothesized that T1R3 have a potential role in the incidence and progression of colitis. In the present study, we investigated whether genetic deletion of T1R3 impacted aggravation of DSS-induced colitis in mice. We found that T1R3-KO mice showed reduction in colon damage, including reduced inflammation and colon shrinking relative to those of WT mice following DSS treatment. mRNA expression of tight junction components, particularly claudin1 was significantly lower in T1R3-KO mice with trend to lower inflammation related gene mRNA expression in colon. Other parameters, such as response to microbial stimuli in splenic lymphocytes and peritoneal macrophages, gut microbiota composition, and expression of autophagy-related proteins, were similar between WT and KO mice. Together, these results indicated that deletion of T1R3 has a minor role in intestinal inflammation induced by DSS-induced acute colitis in mice.
Collapse
Affiliation(s)
- Tsubasa Kondo
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Takashi Uebanso
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Natsuki Arao
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Takaaki Shimohata
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School.,Faculty of Marine Biosciences, Fukui Prefectural University
| | - Kazuaki Mawatari
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School
| | - Akira Takahashi
- Department of Preventive Environment and Nutrition, Institute of Biomedical Sciences, Tokushima University Graduate School
| |
Collapse
|
3
|
Kocot AM, Wróblewska B. Fermented products and bioactive food compounds as a tool to activate autophagy and promote the maintenance of the intestinal barrier function. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
4
|
Pierre N, Salée C, Vieujean S, Bequet E, Merli AM, Siegmund B, Meuwis MA, Louis E. Review article: distinctions between ileal and colonic Crohn's disease: from physiology to pathology. Aliment Pharmacol Ther 2021; 54:779-791. [PMID: 34297423 DOI: 10.1111/apt.16536] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 05/15/2021] [Accepted: 07/05/2021] [Indexed: 12/19/2022]
Abstract
BACKGROUND Ileal and colonic Crohn's disease seem to be two separate entities. AIMS To describe the main physiological distinctions between the small and the large intestine and to analyse the differences between ileal and colonic Crohn's disease. METHODS The relevant literature was critically examined and synthesised. RESULTS The small and large intestine have fundamental distinctions (anatomy, cellular populations, immune defence, microbiota). The differences between ileal and colonic Crohn's disease are highlighted by a heterogeneous body of evidence including clinical features (natural history of the disease, efficacy of treatments, and monitoring), epidemiological data (smoking status, age, gender) and biological data (genetics, microbiota, immunity, mesenteric fat). However, the contribution of these factors to disease location remains poorly understood. CONCLUSION The classification of ileal and colonic Crohn's disease as distinct subphenotypes is well supported by the literature. Understanding of these differences could be exploited to develop more individualised patient care.
Collapse
Affiliation(s)
- Nicolas Pierre
- Laboratory of Translational Gastroenterology, GIGA-Institute, University of Liège, Liège, Belgium
| | - Catherine Salée
- Laboratory of Translational Gastroenterology, GIGA-Institute, University of Liège, Liège, Belgium
| | - Sophie Vieujean
- Laboratory of Translational Gastroenterology, GIGA-Institute, University of Liège, Liège, Belgium.,Hepato-Gastroenterology and Digestive Oncology Department, Liège University Hospital, Liège, Belgium
| | - Emeline Bequet
- Laboratory of Translational Gastroenterology, GIGA-Institute, University of Liège, Liège, Belgium.,Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Liège University Hospital, Liège, Belgium
| | - Angela-Maria Merli
- Laboratory of Translational Gastroenterology, GIGA-Institute, University of Liège, Liège, Belgium
| | - Britta Siegmund
- Division of Gastroenterology, Infectiology and Rheumatology, Medical Department, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Marie-Alice Meuwis
- Laboratory of Translational Gastroenterology, GIGA-Institute, University of Liège, Liège, Belgium.,Hepato-Gastroenterology and Digestive Oncology Department, Liège University Hospital, Liège, Belgium
| | - Edouard Louis
- Laboratory of Translational Gastroenterology, GIGA-Institute, University of Liège, Liège, Belgium.,Hepato-Gastroenterology and Digestive Oncology Department, Liège University Hospital, Liège, Belgium
| |
Collapse
|
5
|
Wang D, Shao S, Zhang Y, Zhao D, Wang M. Insight Into Polysaccharides From Panax ginseng C. A. Meyer in Improving Intestinal Inflammation: Modulating Intestinal Microbiota and Autophagy. Front Immunol 2021; 12:683911. [PMID: 34354704 PMCID: PMC8329555 DOI: 10.3389/fimmu.2021.683911] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/02/2021] [Indexed: 12/17/2022] Open
Abstract
Polysaccharides from Panax ginseng C. A. Meyer (P. ginseng) are the main active component of P. ginseng and exhibit significant intestinal anti-inflammatory activity. However, the therapeutic mechanism of the ginseng polysaccharide is unclear, and this hinders the application for medicine or functional food. In this study, a polysaccharide was isolated from P. ginseng (GP). The primary structure and morphology of the GP were studied by HPLC, FT-IR spectroscopy, and scanning electron microscopy (SEM). Further, its intestinal anti-inflammatory activity and its mechanism of function were evaluated in experimental systems using DSS-induced rats, fecal microbiota transplantation (FMT), and LPS-stimulated HT-29 cells. Results showed that GP modulated the structure of gut microbiota and restored mTOR-dependent autophagic dysfunction. Consequently, active autophagy suppressed inflammation through the inhibition of NF-κB, oxidative stress, and the release of cytokines. Therefore, our research provides a rationale for future investigations into the relationship between microbiota and autophagy and revealed the therapeutic potential of GP for inflammatory bowel disease.
Collapse
Affiliation(s)
- Dandan Wang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China.,Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Shuai Shao
- College of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Yanqiu Zhang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China
| | - Daqing Zhao
- Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China.,Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| | - Mingxing Wang
- College of Chinese Medicine, Changchun University of Chinese Medicine, Changchun, China.,Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, China
| |
Collapse
|
6
|
Muntjewerff EM, Tang K, Lutter L, Christoffersson G, Nicolasen MJT, Gao H, Katkar GD, Das S, ter Beest M, Ying W, Ghosh P, El Aidy S, Oldenburg B, van den Bogaart G, Mahata SK. Chromogranin A regulates gut permeability via the antagonistic actions of its proteolytic peptides. Acta Physiol (Oxf) 2021; 232:e13655. [PMID: 33783968 DOI: 10.1111/apha.13655] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 12/12/2022]
Abstract
AIM A "leaky" gut barrier has been implicated in the initiation and progression of a multitude of diseases, for example, inflammatory bowel disease (IBD), irritable bowel syndrome and celiac disease. Here we show how pro-hormone Chromogranin A (CgA), produced by the enteroendocrine cells, and Catestatin (CST: hCgA352-372 ), the most abundant CgA-derived proteolytic peptide, affect the gut barrier. METHODS Colon tissues from region-specific CST-knockout (CST-KO) mice, CgA-knockout (CgA-KO) and WT mice were analysed by immunohistochemistry, western blot, ultrastructural and flowcytometry studies. FITC-dextran assays were used to measure intestinal barrier function. Mice were supplemented with CST or CgA fragment pancreastatin (PST: CgA250-301 ). The microbial composition of cecum was determined. CgA and CST levels were measured in blood of IBD patients. RESULTS Plasma levels of CST were elevated in IBD patients. CST-KO mice displayed (a) elongated tight, adherens junctions and desmosomes similar to IBD patients, (b) elevated expression of Claudin 2, and (c) gut inflammation. Plasma FITC-dextran measurements showed increased intestinal paracellular permeability in the CST-KO mice. This correlated with a higher ratio of Firmicutes to Bacteroidetes, a dysbiotic pattern commonly encountered in various diseases. Supplementation of CST-KO mice with recombinant CST restored paracellular permeability and reversed inflammation, whereas CgA-KO mice supplementation with CST and/or PST in CgA-KO mice showed that intestinal paracellular permeability is regulated by the antagonistic roles of these two peptides: CST reduces and PST increases permeability. CONCLUSION The pro-hormone CgA regulates the intestinal paracellular permeability. CST is both necessary and sufficient to reduce permeability and primarily acts by antagonizing PST.
Collapse
Affiliation(s)
- Elke M. Muntjewerff
- Department of Tumor Immunology Radboud Institute for Molecular Life SciencesRadboud University Medical Center Nijmegen the Netherlands
| | - Kechun Tang
- VA San Diego Healthcare System San Diego CA USA
| | - Lisanne Lutter
- Center for Translational Immunology Utrecht University Medical Center Utrecht the Netherlands
- Department of Gastroenterology and Hepatology Utrecht University Medical Center Utrecht the Netherlands
| | - Gustaf Christoffersson
- Science for Life Laboratory Uppsala University Uppsala Sweden
- Department of Medical Cell biology Uppsala University Uppsala Sweden
| | - Mara J. T. Nicolasen
- Department of Tumor Immunology Radboud Institute for Molecular Life SciencesRadboud University Medical Center Nijmegen the Netherlands
| | - Hong Gao
- Department of Medicine University of California San Diego La Jolla CA USA
| | - Gajanan D. Katkar
- Department of Cellular and Molecular Medicine University of California San Diego La Jolla CA USA
| | - Soumita Das
- Department of Pathology University of California San Diego La Jolla CA USA
| | - Martin ter Beest
- Department of Tumor Immunology Radboud Institute for Molecular Life SciencesRadboud University Medical Center Nijmegen the Netherlands
| | - Wei Ying
- Department of Medicine University of California San Diego La Jolla CA USA
| | - Pradipta Ghosh
- Department of Medicine University of California San Diego La Jolla CA USA
- Department of Cellular and Molecular Medicine University of California San Diego La Jolla CA USA
| | - Sahar El Aidy
- Department of Molecular Immunology and Microbiology Groningen Biomolecular Sciences and Biotechnology Institute University of Groningen Groningen the Netherlands
| | - Bas Oldenburg
- Department of Gastroenterology and Hepatology Utrecht University Medical Center Utrecht the Netherlands
| | - Geert van den Bogaart
- Department of Tumor Immunology Radboud Institute for Molecular Life SciencesRadboud University Medical Center Nijmegen the Netherlands
- Department of Molecular Immunology and Microbiology Groningen Biomolecular Sciences and Biotechnology Institute University of Groningen Groningen the Netherlands
| | - Sushil K. Mahata
- VA San Diego Healthcare System San Diego CA USA
- Department of Medicine University of California San Diego La Jolla CA USA
| |
Collapse
|
7
|
Papoutsopoulou S, Satsangi J, Campbell BJ, Probert CS. Review article: impact of cigarette smoking on intestinal inflammation-direct and indirect mechanisms. Aliment Pharmacol Ther 2020; 51:1268-1285. [PMID: 32372449 DOI: 10.1111/apt.15774] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/13/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND The inflammatory bowel diseases, Crohn's disease and ulcerative colitis are related multifactorial diseases. Their pathogenesis is influenced by each individual's immune system, the environmental factors within exposome and genetic predisposition. Smoking habit is the single best-established environmental factor that influences disease phenotype, behaviour and response to therapy. AIM To assess current epidemiological, experimental and clinical evidence that may explain how smoking impacts on the pathogenesis of inflammatory bowel disease. METHODS A Medline search for 'cigarette smoking', in combination with terms including 'passive', 'second-hand', 'intestinal inflammation', 'Crohn's disease', 'ulcerative colitis', 'colitis'; 'intestinal epithelium', 'immune system', 'intestinal microbiota', 'tight junctions', 'mucus', 'goblet cells', 'Paneth cells', 'autophagy'; 'epigenetics', 'genes', 'DNA methylation', 'histones', 'short noncoding/long noncoding RNAs'; 'carbon monoxide/CO' and 'nitric oxide/NO' was performed. RESULTS Studies found evidence of direct and indirect effects of smoking on various parameters, including oxidative damage, impairment of intestinal barrier and immune cell function, epigenetic and microbiota composition changes, that contribute to the pathogenesis of inflammatory bowel disease. CONCLUSIONS Cigarette smoking promotes intestinal inflammation by affecting the function and interactions among intestinal epithelium, immune system and microbiota/microbiome.
Collapse
Affiliation(s)
- Stamatia Papoutsopoulou
- Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Jack Satsangi
- Translational Gastroenterology Unit, Nuffield Department of Medicine, Experimental Medicine Division, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Barry J Campbell
- Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Chris S Probert
- Gastroenterology Research Unit, Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| |
Collapse
|
8
|
Larabi A, Barnich N, Nguyen HTT. New insights into the interplay between autophagy, gut microbiota and inflammatory responses in IBD. Autophagy 2020; 16:38-51. [PMID: 31286804 PMCID: PMC6984609 DOI: 10.1080/15548627.2019.1635384] [Citation(s) in RCA: 438] [Impact Index Per Article: 109.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 06/11/2019] [Accepted: 06/19/2019] [Indexed: 02/07/2023] Open
Abstract
One of the most significant challenges of inflammatory bowel disease (IBD) research is to understand how alterations in the symbiotic relationship between the genetic composition of the host and the intestinal microbiota, under impact of specific environmental factors, lead to chronic intestinal inflammation. Genome-wide association studies, followed by functional studies, have identified a role for numerous autophagy genes in IBD, especially in Crohn disease. Studies using in vitro and in vivo models, in addition to human clinical studies have revealed that autophagy is pivotal for intestinal homeostasis maintenance, gut ecology regulation, appropriate intestinal immune responses and anti-microbial protection. This review describes the latest researches on the mechanisms by which dysfunctional autophagy leads to disrupted intestinal epithelial function, gut dysbiosis, defect in anti-microbial peptide secretion by Paneth cells, endoplasmic reticulum stress response and aberrant immune responses to pathogenic bacteria. A better understanding of the role of autophagy in IBD pathogenesis may provide better sub-classification of IBD phenotypes and novel approaches for disease management.Abbreviations: AIEC: adherent-invasive Escherichia coli; AMPK: AMP-activated protein kinase; ATF6: activating transcription factor 6; ATG: autophagy related; Atg16l1[ΔIEC] mice: mice with Atg16l1 depletion specifically in intestinal epithelial cells; Atg16l1[HM] mice: mice hypomorphic for Atg16l1 expression; BCL2: B cell leukemia/lymphoma 2; BECN1: beclin 1, autophagy related; CALCOCO2: calcium binding and coiled-coil domain 2; CASP: caspase; CD: Crohn disease; CGAS: cyclic GMP-AMP synthase; CHUK/IKKA: conserved helix-loop-helix ubiquitous kinase; CLDN2: claudin 2; DAPK1: death associated protein kinase 1; DCs: dendritic cells; DSS: dextran sulfate sodium; EIF2A: eukaryotic translation initiation factor 2A; EIF2AK: eukaryotic translation initiation factor 2 alpha kinase; ER: endoplasmic reticulum; ERBIN: Erbb2 interacting protein; ERN1/IRE1A: ER to nucleus signaling 1; FNBP1L: formin binding protein 1-like; FOXP3: forkhead box P3; GPR65: G-protein coupled receptor 65; GSK3B: glycogen synthase kinase 3 beta; IBD: inflammatory bowel disease; IECs: intestinal epithelial cells; IFN: interferon; IL: interleukin; IL10R: interleukin 10 receptor; IRGM: immunity related GTPase M; ISC: intestinal stem cell; LAMP1: lysosomal-associated membrane protein 1; LAP: LC3-associated phagocytosis; MAP1LC3B: microtubule-associated protein 1 light chain 3 beta; LPS: lipopolysaccharide; LRRK2: leucine-rich repeat kinase 2; MAPK: mitogen-activated protein kinase; MHC: major histocompatibility complex; MIF: macrophage migration inhibitory factor; MIR/miRNA: microRNA; MTMR3: myotubularin related protein 3; MTOR: mechanistic target of rapamycin kinase; MYD88: myeloid differentiation primary response gene 88; NLRP3: NLR family, pyrin domain containing 3; NOD2: nucleotide-binding oligomerization domain containing 2; NPC: Niemann-Pick disease type C; NPC1: NPC intracellular cholesterol transporter 1; OMVs: outer membrane vesicles; OPTN: optineurin; PI3K: phosphoinositide 3-kinase; PRR: pattern-recognition receptor; PTPN2: protein tyrosine phosphatase, non-receptor type 2; PTPN22: protein tyrosine phosphatase, non-receptor type 22 (lymphoid); PYCARD/ASC: PYD and CARD domain containing; RAB2A: RAB2A, member RAS oncogene family; RELA: v-rel reticuloendotheliosis viral oncogene homolog A (avian); RIPK2: receptor (TNFRSF)-interacting serine-threonine kinase 2; ROS: reactive oxygen species; SNPs: single nucleotide polymorphisms; SQSTM1: sequestosome 1; TAX1BP1: Tax1 binding protein 1; Th: T helper 1; TIRAP/TRIF: toll-interleukin 1 receptor (TIR) domain-containing adaptor protein; TLR: toll-like receptor; TMEM173/STING: transmembrane protein 173; TMEM59: transmembrane protein 59; TNF/TNFA: tumor necrosis factor; Treg: regulatory T; TREM1: triggering receptor expressed on myeloid cells 1; UC: ulcerative colitis; ULK1: unc-51 like autophagy activating kinase 1; WT: wild-type; XBP1: X-box binding protein 1; XIAP: X-linked inhibitor of apoptosis.
Collapse
Affiliation(s)
- Anaïs Larabi
- M2iSH, UMR 1071 Inserm, INRA USC 2018, CRNH, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Nicolas Barnich
- M2iSH, UMR 1071 Inserm, INRA USC 2018, CRNH, University of Clermont Auvergne, Clermont-Ferrand, France
| | - Hang Thi Thu Nguyen
- M2iSH, UMR 1071 Inserm, INRA USC 2018, CRNH, University of Clermont Auvergne, Clermont-Ferrand, France
| |
Collapse
|
9
|
Inflammatory Bowel Disease Serological Immune Markers Anti-Saccharomyces cerevisiae Mannan Antibodies and Outer Membrane Porin C are Potential Biomarkers for Hirschsprung-associated Enterocolitis. J Pediatr Gastroenterol Nutr 2019; 69:176-181. [PMID: 30964819 DOI: 10.1097/mpg.0000000000002358] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Hirschsprung-associated enterocolitis (HAEC) is the most frequent complication in Hirschsprung disease (HSCR) patients. Currently HAEC is diagnosed clinically, leaving uncertainty in the diagnosis thereby potentially leading to over- or undertreatment of patients. The aim of this study was to identify immune biomarkers to aid in the diagnosis of HAEC. METHODS From 2012 to 2017, 43 children with HSCR enrolled in a multicenter study, underwent retrospective evaluation of their medical records, and questionnaire-directed parent interviews. HAEC status was determined using HAEC score with cutoff ≥4. Plasma was collected and analyzed by ELISA for the inflammatory bowel disease-associated antibodies: anti-Saccharomyces cerevisiae mannan antibodies (ASCA), outer membrane porin C (OmpC), CBir1, antineutrophil cytoplasmic antibodies. Data were analyzed using t test, univariate, multivariable, and binomial regression models. RESULTS Eighteen patients had at least 1 episode of HAEC, 25 had no history of HAEC. The HAEC and NO HAEC groups had similar median ages (3 years) and family histories of HSCR. The HAEC group showed markedly elevated ASCA IgA and OmpC antibody levels compared with the NO HAEC group, whereas CBir1 and antineutrophil cytoplasmic antibodies were similar between the groups. Both univariate and multivariable analysis revealed higher OmpC antibody levels associated with HAEC (odds ratio 1.39, confidence interval 1-1.92, P = 0.048), whereas univariate analysis identified a trend toward elevated IgA and immunoglobulin G ASCA levels with HAEC. CONCLUSIONS We identified elevated OmpC and ASCA serum antibody levels in HAEC patients, and that increased OmpC antibody levels correlated with HAEC occurrence, suggesting HAEC and Crohn disease share gut microbial-host immune responses. These antibodies may serve as potential biomarkers for HAEC, although prospective study with larger sample size is needed.
Collapse
|
10
|
Vogelzang A, Guerrini MM, Minato N, Fagarasan S. Microbiota - an amplifier of autoimmunity. Curr Opin Immunol 2018; 55:15-21. [PMID: 30248521 DOI: 10.1016/j.coi.2018.09.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/07/2018] [Indexed: 02/08/2023]
Abstract
Many studies describe dysbiosis as a change in the microbiota that accompanies autoimmune illnesses, but little is known about whether these changes are a cause or consequence of an altered immune state. The immune system actively shapes the composition of the microbiota, with divergent outcomes in healthy or autoimmune-prone individuals. The gut microbiota in turn acts as an acquired endocrine organ, influencing the physiology of the host via release of nutrients and chemical messengers. Dysbiosis arising from abnormal immune function can initiate or amplify autoimmunity through multiple mechanisms. We examine how the bidirectional relationship between resident microbes and the immune system contributes to autoimmune diseases.
Collapse
Affiliation(s)
- Alexis Vogelzang
- Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Tsurumi Ward, Suehirocho, 1 Chome-7-22, Yokohama, Kanagawa Prefecture, 230-0045, Japan
| | - Matteo M Guerrini
- Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Tsurumi Ward, Suehirocho, 1 Chome-7-22, Yokohama, Kanagawa Prefecture, 230-0045, Japan
| | - Nagahiro Minato
- Medical Innovation Center, Kyoto University Graduate School of Medicine, Sakyo Ward, Yoshida-Konoe, Kyoto, Kyoto Prefecture, 606-8501, Japan
| | - Sidonia Fagarasan
- Laboratory for Mucosal Immunity, Center for Integrative Medical Sciences, RIKEN Yokohama Institute, Tsurumi Ward, Suehirocho, 1 Chome-7-22, Yokohama, Kanagawa Prefecture, 230-0045, Japan.
| |
Collapse
|