1
|
Lamminpää I, Boem F, Amedei A. Health-promoting worms? Prospects and pitfalls of helminth therapy. Bioessays 2024; 46:e2400080. [PMID: 39263744 DOI: 10.1002/bies.202400080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024]
Abstract
In this manuscript, we explore the potential therapeutic use of helminths. After analyzing helminths' role in connection with human health from the perspective of their symbiotic and evolutionary relationship, we critically examine some studies on their therapeutic applications. In doing so, we focus on some prominent mechanisms of action and potential benefits, but also on the exaggerations and theoretical and methodological difficulties of such proposals. We conclude that further studies are needed to fully explore the potential benefits of this perspective, and we encourage the scientific community in doing so.
Collapse
Affiliation(s)
- Ingrid Lamminpää
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Federico Boem
- Institut für Philosophie I, Ruhr-Universität Bochum, Bochum, Germany
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
- Interdisciplinary Internal Medicine Unit, Careggi University Hospital, Florence, Italy
| |
Collapse
|
2
|
Engelenburg HJ, Lucassen PJ, Sarafian JT, Parker W, Laman JD. Multiple sclerosis and the microbiota. Evol Med Public Health 2022; 10:277-294. [PMID: 35747061 PMCID: PMC9211007 DOI: 10.1093/emph/eoac009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Multiple sclerosis (MS), a neurological autoimmune disorder, has recently been linked to neuro-inflammatory influences from the gut. In this review, we address the idea that evolutionary mismatches could affect the pathogenesis of MS via the gut microbiota. The evolution of symbiosis as well as the recent introduction of evolutionary mismatches is considered, and evidence regarding the impact of diet on the MS-associated microbiota is evaluated. Distinctive microbial community compositions associated with the gut microbiota of MS patients are difficult to identify, and substantial study-to-study variation and even larger variations between individual profiles of MS patients are observed. Furthermore, although some dietary changes impact the progression of MS, MS-associated features of microbiota were found to be not necessarily associated with diet per se. In addition, immune function in MS patients potentially drives changes in microbial composition directly, in at least some individuals. Finally, assessment of evolutionary histories of animals with their gut symbionts suggests that the impact of evolutionary mismatch on the microbiota is less concerning than mismatches affecting helminths and protists. These observations suggest that the benefits of an anti-inflammatory diet for patients with MS may not be mediated by the microbiota per se. Furthermore, any alteration of the microbiota found in association with MS may be an effect rather than a cause. This conclusion is consistent with other studies indicating that a loss of complex eukaryotic symbionts, including helminths and protists, is a pivotal evolutionary mismatch that potentiates the increased prevalence of autoimmunity within a population.
Collapse
Affiliation(s)
- Hendrik J Engelenburg
- Department of Pathology and Medical Biology, University Medical Center Groningen , Groningen, The Netherlands
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, University of Amsterdam , Amsterdam, The Netherlands
| | - Paul J Lucassen
- Brain Plasticity Group, Swammerdam Institute for Life Sciences, University of Amsterdam , Amsterdam, The Netherlands
- Center for Urban Mental Health, University of Amsterdam , Amsterdam, The Netherlands
| | | | | | - Jon D Laman
- Department of Pathology and Medical Biology, University Medical Center Groningen , Groningen, The Netherlands
| |
Collapse
|
3
|
Arai T, Lopes F. Potential of human helminth therapy for resolution of inflammatory bowel disease: The future ahead. Exp Parasitol 2021; 232:108189. [PMID: 34848244 DOI: 10.1016/j.exppara.2021.108189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 10/06/2021] [Accepted: 11/24/2021] [Indexed: 12/23/2022]
Abstract
Inflammatory bowel disease (IBD) is associated with a dysregulated mucosal immune response in the gastrointestinal tract. The number of patients with IBD has increased worldwide, especially in highly industrialized western societies. The population of patients with IBD in North America is forecasted to reach about four million by 2030; meanwhile, there is no definitive therapy for IBD. Current anti-inflammatory, immunosuppressive, or biological treatment may induce and maintain remission, but not all patients respond to these treatments. Recent studies explored parasitic helminths as a novel modality of therapy due to their potent immunoregulatory properties in humans. Research using IBD animal models infected with a helminth or administered helminth-derived products such as excretory-secretory products has been promising, and helminth-microbiota interactions exert their anti-inflammatory effects by modulating the host immunity. Recent studies also indicate that evidence that helminth-derived metabolites may play a role in anticolitic effects. Thus, the helminth shows a potential benefit for treatment against IBD. Here we review the current feasibility of "helminth therapy" from the laboratory for application in IBD management.
Collapse
Affiliation(s)
- Toshio Arai
- Institution of Parasitology, McGill University, Quebec, Canada; Department of Gastroenterology, Hashimoto Municipal Hospital, Wakayama, Japan
| | - Fernando Lopes
- Institution of Parasitology, McGill University, Quebec, Canada.
| |
Collapse
|
4
|
Socio-medical studies of individuals self-treating with helminths provide insight into clinical trial design for assessing helminth therapy. Parasitol Int 2021; 87:102488. [PMID: 34737071 DOI: 10.1016/j.parint.2021.102488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/25/2021] [Accepted: 10/27/2021] [Indexed: 11/22/2022]
Abstract
The virtually complete loss of intestinal worms, known as helminths, from Western society has resulted in elimination of a range of helminth-induced morbidities. Unfortunately, that loss has also led to inflammation-associated deficiencies in immune function, ultimately contributing to widespread pandemics of allergies, autoimmunity, and neuropsychiatric disorders. Several socio-medical studies have examined the effects of intentional reworming, or self-treatment with helminths, on a variety of inflammation-related disorders. In this study, the latest results from ongoing socio-medical studies are described. The results point toward two important factors that appear to be overlooked in some if not most clinical trials. Specifically, (a) the method of preparation of the helminth can have a profound effect on its therapeutic efficacy, and (b) variation between individuals in the effective therapeutic dosage apparently covers a 10-fold range, regardless of the helminth used. These results highlight current limits in our understanding of the biology of both hosts and helminths, and suggest that information from self-treatment may be critical for clinical evaluation of the benefits and limits of helminth therapy.
Collapse
|
5
|
Sauer S, Beinart D, Finn SMB, Kumar SL, Cheng Q, Hwang SE, Parker W, Devi GR. Hymenolepis diminuta-based helminth therapy in C3(1)-TAg mice does not alter breast tumor onset or progression. Evol Med Public Health 2021; 9:131-138. [PMID: 33738103 PMCID: PMC7953836 DOI: 10.1093/emph/eoab007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 02/07/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND OBJECTIVES An individual's risk of breast cancer is profoundly affected by evolutionary mismatch. Mismatches in Western society known to increase the risk of breast cancer include a sedentary lifestyle and reproductive factors. Biota alteration, characterized by a loss of biodiversity from the ecosystem of the human body as a result of Western society, is a mismatch known to increase the risk of a variety of inflammation-related diseases, including colitis-associated colon cancer. However, the effect of biota alteration on breast cancer has not been evaluated. METHODOLOGY In this study, we utilized the C3(1)-TAg mouse model of breast cancer to evaluate the role of biota alteration in the development of breast cancer. This model has been used to recapitulate the role of exercise and pregnancy in reducing the risk of breast cancer. C3(1)-TAg mice were treated with Hymenolepis diminuta, a benign helminth that has been shown to reverse the effects of biota alteration in animal models. RESULTS No effect of the helminth H. diminuta was observed. Neither the latency nor tumor growth was affected by the therapy, and no significant effects on tumor transcriptome were observed based on RNAseq analysis. CONCLUSIONS AND IMPLICATIONS These findings suggest that biota alteration, although known to affect a variety of Western-associated diseases, might not be a significant factor in the high rate of breast cancer observed in Western societies. LAY SUMMARY An almost complete loss of intestinal worms in high-income countries has led to increases in allergic disorders, autoimmune conditions, and perhaps colon cancer. However, in this study, results using laboratory mice suggest that loss of intestinal worms might not be associated with breast cancer.
Collapse
Affiliation(s)
- Scott Sauer
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Dylan Beinart
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Sade M B Finn
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Sereena L Kumar
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Qing Cheng
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Shelley E Hwang
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - William Parker
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Gayathri R Devi
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
6
|
Parker W, Sarafian JT, Broverman SA, Laman JD. Between a hygiene rock and a hygienic hard place: Avoiding SARS-CoV-2 while needing environmental exposures for immunity. Evol Med Public Health 2021; 9:120-130. [PMID: 33732461 PMCID: PMC7928958 DOI: 10.1093/emph/eoab006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/01/2020] [Indexed: 12/13/2022] Open
Abstract
Suboptimal understanding of concepts related to hygiene by the general public, clinicians and researchers is a persistent problem in health and medicine. Although hygiene is necessary to slow or prevent deadly pandemics of infectious disease such as coronavirus disease 2019 (COVID-19), hygiene can have unwanted effects. In particular, some aspects of hygiene cause a loss of biodiversity from the human body, characterized by the almost complete removal of intestinal worms (helminths) and protists. Research spanning more than half a century documents that this loss of biodiversity results in an increased propensity for autoimmune disease, allergic disorders, probably neuropsychiatric problems and adverse reactions to infectious agents. The differences in immune function between communities with and communities without helminths have become so pronounced that the reduced lethality of severe acute respiratory syndrome coronavirus 2 in low-income countries compared to high-income countries was predicted early in the COVID-19 pandemic. This prediction, based on the maladaptive immune responses observed in many cases of COVID-19 in high-income countries, is now supported by emerging data from low-income countries. Herein, hygiene is subdivided into components involving personal choice versus components instituted by community wide systems such as sewage treatment facilities and water treatment plants. The different effects of personal hygiene and systems hygiene are described, and appropriate measures to alleviate the adverse effects of hygiene without losing the benefits of hygiene are discussed. Finally, text boxes are provided to function as stand-alone, public-domain handouts with the goal of informing the public about hygiene and suggesting solutions for biomedical researchers and policy makers. Lay Summary: Hygiene related to sewer systems and other technology can have adverse effects on immune function, and is distinct from personal hygiene practices such as hand washing and social distancing. Dealing with the drawbacks of hygiene must be undertaken without compromising the protection from infectious disease imposed by hygiene.
Collapse
Affiliation(s)
- William Parker
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Joshua T Sarafian
- Department of Surgery, Duke University Medical Center, Durham, NC, USA
| | - Sherryl A Broverman
- Department of Biology and the Duke Global Health Institute, Duke University, Durham, NC, USA
| | - Jon D Laman
- Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
7
|
Zhang B, Gems D. Gross ways to live long: Parasitic worms as an anti-inflammaging therapy? eLife 2021; 10:65180. [PMID: 33526169 PMCID: PMC7853715 DOI: 10.7554/elife.65180] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 01/05/2021] [Indexed: 12/11/2022] Open
Abstract
Evolutionary medicine argues that disease can arise because modern conditions do not match those in which we evolved. For example, a decline in exposure to commensal microbes and gastrointestinal helminths in developed countries has been linked to increased prevalence of allergic and autoimmune inflammatory disorders (the hygiene hypothesis). Accordingly, probiotic therapies that restore ‘old friend’ microbes and helminths have been explored as Darwinian treatments for these disorders. A further possibility is that loss of old friend commensals also increases the sterile, aging-associated inflammation known as inflammaging, which contributes to a range of age-related diseases, including cardiovascular disease, dementia, and cancer. Interestingly, Crowe et al., 2020 recently reported that treatment with a secreted glycoprotein from a parasitic nematode can protect against murine aging by induction of anti-inflammatory mechanisms. Here, we explore the hypothesis that restorative helminth therapy would have anti-inflammaging effects. Could worm infections provide broad-spectrum protection against age-related disease?
Collapse
Affiliation(s)
- Bruce Zhang
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| | - David Gems
- Institute of Healthy Ageing, and Research Department of Genetics, Evolution and Environment, University College London, London, United Kingdom
| |
Collapse
|
8
|
Jirků M, Lhotská Z, Frgelecová L, Kadlecová O, Petrželková KJ, Morien E, Jirků-Pomajbíková K. Helminth Interactions with Bacteria in the Host Gut Are Essential for Its Immunomodulatory Effect. Microorganisms 2021; 9:microorganisms9020226. [PMID: 33499240 PMCID: PMC7910914 DOI: 10.3390/microorganisms9020226] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 12/14/2022] Open
Abstract
Colonization by the benign tapeworm, Hymenolepis diminuta, has been associated with a reduction in intestinal inflammation and changes in bacterial microbiota. However, the role of microbiota in the tapeworm anti-inflammatory effect is not yet clear, and the aim of this study was to determine whether disruption of the microflora during worm colonization can affect the course of intestinal inflammation. We added a phase for disrupting the intestinal microbiota using antibiotics to the experimental design for which we previously demonstrated the protective effect of H. diminuta. We monitored the immunological markers, clinical parameters, bacterial microbiota, and histological changes in the colon of rats. After a combination of colonization, antibiotics, and colitis induction, we had four differently affected experimental groups. We observed a different course of the immune response in each group, but no protective effect was found. Rats treated with colonization and antibiotics showed a strong induction of the Th2 response as well as a significant change in microbial diversity. The microbial results also revealed differences in the richness and abundance of some bacterial taxa, influenced by various factors. Our data suggest that interactions between the tapeworm and bacteria may have a major impact on its protective effect.
Collapse
Affiliation(s)
- Milan Jirků
- Biology Centre, Czech Academy of Sciences, Institute of Parasitology, Branišovská 31, 370 05 České Budějovice, Czech Republic; (Z.L.); (O.K.); (K.J.P.)
- Correspondence: (M.J.); (K.J.-P.); Tel.: +420-38-777-5470 (M.J.); +420-38-777-5470 (K.J.P.)
| | - Zuzana Lhotská
- Biology Centre, Czech Academy of Sciences, Institute of Parasitology, Branišovská 31, 370 05 České Budějovice, Czech Republic; (Z.L.); (O.K.); (K.J.P.)
- Department of Medical Biology, Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Lucia Frgelecová
- Department of Pathology and Parasitology, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1/3, 612 42 Brno, Czech Republic;
| | - Oldřiška Kadlecová
- Biology Centre, Czech Academy of Sciences, Institute of Parasitology, Branišovská 31, 370 05 České Budějovice, Czech Republic; (Z.L.); (O.K.); (K.J.P.)
| | - Klára Judita Petrželková
- Biology Centre, Czech Academy of Sciences, Institute of Parasitology, Branišovská 31, 370 05 České Budějovice, Czech Republic; (Z.L.); (O.K.); (K.J.P.)
- Institute of Vertebrate Biology, Czech Academy of Sciences, Květná, 8603 65 Brno, Czech Republic
| | - Evan Morien
- Department of Botany, University of British Columbia, 3156-6270 University Blvd., Vancouver, BC V6T 1Z4, Canada;
| | - Kateřina Jirků-Pomajbíková
- Biology Centre, Czech Academy of Sciences, Institute of Parasitology, Branišovská 31, 370 05 České Budějovice, Czech Republic; (Z.L.); (O.K.); (K.J.P.)
- Department of Medical Biology, Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
- Correspondence: (M.J.); (K.J.-P.); Tel.: +420-38-777-5470 (M.J.); +420-38-777-5470 (K.J.P.)
| |
Collapse
|
9
|
Abstract
Human health is intimately linked to the ecology and diversity of the human microbiome. Together, the human organism and the human microbiome work as a complex super-organism throughout the human life cycle. Microbiome science provides direct evidence and substantiation of the fundamental principles of homeopathy, including holism, psychosomatics, direction of cure, the Law of Similars, individuality and susceptibility, minimum dose, and homeostasis. Whilst many conventional (allopathic) medical treatments irreversibly damage the ecology of the microbiome and trigger chronic immune dysfunction and inflammation, the future sustainability of the entire field of medicine depends on the ability to recognize these inconvenient biological truths and to embrace a safer approach based on this evidence. Fortunately, one of the oldest forms of clinically verifiable, evidence-based, and ecologically sustainable medicine, that does not harm the microbiome, already exists in the form of homeopathy.
Collapse
Affiliation(s)
- Ronald D Whitmont
- Department of Family and Community Medicine, New York Medical College, Rhinebeck, New York, United States
| |
Collapse
|
10
|
Abdoli A, Mirzaian Ardakani H. Potential application of helminth therapy for resolution of neuroinflammation in neuropsychiatric disorders. Metab Brain Dis 2020; 35:95-110. [PMID: 31352539 DOI: 10.1007/s11011-019-00466-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 07/14/2019] [Indexed: 12/19/2022]
Abstract
Neuropsychiatric disorders (NPDs) are among the major debilitating disorders worldwide with multiple etiological factors. However, in recent years, psychoneuroimmunology uncovered the role of inflammatory condition and autoimmune disorders in the etiopathogenesis of different NPDs. Hence, resolution of inflammation is a new therapeutic target of NPDs. On the other hand, Helminth infections are among the most prevalent infectious diseases in underdeveloped countries, which usually caused chronic infections with minor clinical symptoms. Remarkably, helminths are among the master regulator of inflammatory reactions and epidemiological studies have shown an inverse association between prevalence of autoimmune disorders with these infections. As such, changes of intestinal microbiota are known to be associated with inflammatory conditions in various NPDs. Conversely, helminth colonization alters the intestinal microbiota composition that leads to suppression of intestinal inflammation. In animal models and human studies, helminths or their antigens have shown to be protected against severe autoimmune and allergic disorders, decline the intensity of inflammatory reactions and improved clinical symptoms of the patients. Therefore, "helminthic therapy" have been used for modulation of immune disturbances in different autoimmunity illnesses, such as Multiple Sclerosis (MS) and Inflammatory Bowel Disease (IBD). Here, it is proposed that "helminthic therapy" is able to ameliorate neuroinflammation of NPDs through immunomodulation of inflammatory reactions and alteration of microbiota composition. This review discusses the potential application of "helminthic therapy" for resolution of neuroinflammation in NPDs.
Collapse
Affiliation(s)
- Amir Abdoli
- Department of Parasitology and Mycology, School of Medicine, Jahrom University of Medical Sciences, POBox 74148-46199, Ostad Motahari Ave, Jahrom, Iran.
- Zoonoses Research Center, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran.
- Research Center for Noncommunicable Diseases, School of Medicine, Jahrom University of Medical Sciences, Jahrom, Iran.
| | - Hoda Mirzaian Ardakani
- Department of Parasitology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
11
|
Zhang W, Li L, Zheng Y, Xue F, Yu M, Ma Y, Dong L, Shan Z, Feng D, Wang T, Wang X. Schistosoma japonicum peptide SJMHE1 suppresses airway inflammation of allergic asthma in mice. J Cell Mol Med 2019; 23:7819-7829. [PMID: 31496071 PMCID: PMC6815837 DOI: 10.1111/jcmm.14661] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/18/2019] [Accepted: 07/31/2019] [Indexed: 12/18/2022] Open
Abstract
Helminths and their products can shape immune responses by modulating immune cells, which are dysfunctional in inflammatory diseases such as asthma. We previously identified SJMHE1, a small molecule peptide from the HSP60 protein of Schistosoma japonicum. SJMHE1 can inhibit delayed-type hypersensitivity and collagen-induced arthritis in mice. In the present study, we evaluated this peptide's potential intervention effect and mechanism on ovalbumin-induced asthma in mice. SJMHE1 treatment suppressed airway inflammation in allergic mice, decreased the infiltrating inflammatory cells in the lungs and bronchoalveolar lavage fluid, modulated the production of pro-inflammatory and anti-inflammatory cytokines in the splenocytes and lungs of allergic mice, reduced the percentage of Th2 cells and increased the proportion of Th1 and regulatory T cells (Tregs). At the same time, Foxp3 and T-bet expression increased, and GATA3 and RORγt decreased in the lungs of allergic mice. We proved that SJMHE1 can interrupt the development of asthma by diminishing airway inflammation in mice. The down-regulation of Th2 response and the up-regulation of Th1 and Tregs response may contribute to the protection induced by SJMHE1 in allergic mice. SJMHE1 can serve as a novel therapy for asthma and other allergic or inflammatory diseases.
Collapse
Affiliation(s)
- Wenzhe Zhang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Li Li
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yu Zheng
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Fei Xue
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Mengzhu Yu
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yongbin Ma
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Neurology Laboratory, Jintan Hospital, Jiangsu University, Zhenjiang, China
| | - Liyang Dong
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zirui Shan
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Pediatrics, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Dingqi Feng
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Ting Wang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xuefeng Wang
- Department of Central Laboratory, The Affiliated Hospital of Jiangsu University, Zhenjiang, China.,Department of Neurology Laboratory, Jintan Hospital, Jiangsu University, Zhenjiang, China.,Department of Nuclear Medicine and Institute of Oncology, The Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
12
|
Sobotková K, Parker W, Levá J, Růžková J, Lukeš J, Jirků Pomajbíková K. Helminth Therapy - From the Parasite Perspective. Trends Parasitol 2019; 35:501-515. [PMID: 31153721 DOI: 10.1016/j.pt.2019.04.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/22/2019] [Accepted: 04/24/2019] [Indexed: 12/23/2022]
Abstract
Studies in animal models and humans suggest that intentional exposure to helminths or helminth-derived products may hold promise for treating chronic inflammatory-associated diseases (CIADs). Although the mechanisms underlying 'helminth therapy' are being evaluated, little attention has been paid to the actual organisms in use. Here we examine the notion that, because of the complexity of biological symbiosis, intact helminths rather than helminth-derived products are likely to prove more useful for clinical purposes. Further, weighing potential cost/benefit ratios of various helminths along with other factors, such as feasibility of production, we argue that the four helminths currently in use for CIAD treatments in humans were selected more by happenstance than by design, and that other candidates not yet tested may prove superior.
Collapse
Affiliation(s)
- Kateřina Sobotková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
| | - William Parker
- Department of Surgery, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jana Levá
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Jiřina Růžková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Kateřina Jirků Pomajbíková
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic.
| |
Collapse
|
13
|
Řežábková L, Brabec J, Jirků M, Dellerba M, Kuchta R, Modrý D, Parker W, Jirků Pomajbíková K. Genetic diversity of the potentially therapeutic tapeworm Hymenolepis diminuta (Cestoda: Cyclophyllidea). Parasitol Int 2019; 71:121-125. [PMID: 30980897 DOI: 10.1016/j.parint.2019.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 12/31/2022]
Abstract
The cestode Hymenolepis diminuta is highly prevalent in wild rat populations and has also been observed rarely in humans, generally causing no apparent harm. The organism has been studied for decades in the laboratory, and its colonization of laboratory rats has recently been shown as protective against some inflammation-associated disorders. Recently, H. diminuta has become a leading candidate for helminth therapy, an emerging method of "biota enrichment" used to treat or prevent inflammatory diseases of humans in Western society. While most of the experimental isolates of H. diminuta are identified based on typical morphological features, hymenolepidid tapeworms may represent complexes of cryptic species as detected by molecular sequence data. In the present study, we explored the diversity of laboratory-kept strains using partial sequences of two genes (lsrDNA and cox1) and determined that H. diminuta isolates currently considered for therapeutic purposes in the US and Europe belong to a single, genetically nearly uniform lineage, showing only little genetic deviation from wild-caught isolates.
Collapse
Affiliation(s)
- Lucie Řežábková
- Biology Centre, Czech Academy of Sciences, Institute of Parasitology, Branišovská 31, České Budějovice 370 05, Czech Republic; Department of Medical Biology, Faculty of Science, University of South-Bohemia, Branišovská 31, České Budějovice 370 05, Czech Republic
| | - Jan Brabec
- Biology Centre, Czech Academy of Sciences, Institute of Parasitology, Branišovská 31, České Budějovice 370 05, Czech Republic; Natural History Museum of Geneva, P.O. Box 6134, CH-1211 Geneva, Switzerland
| | - Milan Jirků
- Biology Centre, Czech Academy of Sciences, Institute of Parasitology, Branišovská 31, České Budějovice 370 05, Czech Republic
| | - Marc Dellerba
- Biome Restoration Ltd., White Cross Business Park, Lancaster, United Kingdom
| | - Roman Kuchta
- Biology Centre, Czech Academy of Sciences, Institute of Parasitology, Branišovská 31, České Budějovice 370 05, Czech Republic
| | - David Modrý
- Biology Centre, Czech Academy of Sciences, Institute of Parasitology, Branišovská 31, České Budějovice 370 05, Czech Republic; Department of Pathology and Parasitology, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1/3, Brno 621 42, Czech Republic
| | - William Parker
- Department of Surgery, Duke University School of Medicine, NC, USA
| | - Kateřina Jirků Pomajbíková
- Biology Centre, Czech Academy of Sciences, Institute of Parasitology, Branišovská 31, České Budějovice 370 05, Czech Republic; Department of Medical Biology, Faculty of Science, University of South-Bohemia, Branišovská 31, České Budějovice 370 05, Czech Republic.
| |
Collapse
|
14
|
Lorimer J. Hookworms Make Us Human: The Microbiome, Eco-immunology, and a Probiotic Turn in Western Health Care. Med Anthropol Q 2018; 33:60-79. [PMID: 30003599 DOI: 10.1111/maq.12466] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 05/17/2018] [Accepted: 06/05/2018] [Indexed: 12/27/2022]
Abstract
Historians of science have identified an ecological turn underway in immunology, driven by the mapping of the human microbiome and wider environmentalist anxieties. A figure is emerging of the human as a holobiont, composed of microbes and threatened by both microbial excess and microbial absence. Antimicrobial approaches to germ warfare are being supplemented by probiotic approaches to restoring microbial life. This article examines the political ecology of this probiotic turn in Western health care. It focuses on Necator americanus-a species of human hookworm-and its relations with immunologists. The analysis moves from a history of human disentanglement from hookworm, to contemporary anxieties about their absence. It examines the reintroduction of worms for helminthic therapy and explores emerging trajectories for probiotic health care involving the synthesis, modification, and/or restoration of worms and their salutary ecologies. The conclusion differentiates these trajectories and identifies an emerging model of "post-paleo" microbiopolitics.
Collapse
Affiliation(s)
- Jamie Lorimer
- School of Geography and the Environment, University of Oxford
| |
Collapse
|
15
|
The Untapped Pharmacopeic Potential of Helminths. Trends Parasitol 2018; 34:828-842. [PMID: 29954660 DOI: 10.1016/j.pt.2018.05.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/29/2018] [Accepted: 05/31/2018] [Indexed: 02/06/2023]
Abstract
The dramatic rise in immunological disorders that occurs with socioeconomic development is associated with alterations in microbial colonization and reduced exposure to helminths. Excretory-secretory (E/S) helminth products contain a mixture of proteins and low-molecular-weight molecules representing the primary interface between parasite and host. Research has shown great pharmacopeic potential for helminth-derived products in animal disease models and even in clinical trials. Although in its infancy, the translation of worm-derived products into therapeutics is highly promising. Here, we focus on important key aspects in the development of immunomodulatory drugs, also highlighting novel approaches that hold great promise for future development of innovative research strategies.
Collapse
|
16
|
The benign helminth Hymenolepis diminuta ameliorates chemically induced colitis in a rat model system. Parasitology 2018; 145:1324-1335. [DOI: 10.1017/s0031182018000896] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
AbstractThe tapeworm Hymenolepis diminuta is a model for the impact of helminth colonization on the mammalian immune system and a candidate therapeutic agent for immune mediated inflammatory diseases (IMIDs). In mice, H. diminuta protects against models of inflammatory colitis by inducing a strong type 2 immune response that is activated to expel the immature worm. Rats are the definitive host of H. diminuta, and are colonized stably and over long time periods without harming the host. Rats mount a mild type 2 immune response to H. diminuta colonization, but this response does not generally ameliorate colitis. Here we investigate the ability of different life cycle stages of H. diminuta to protect rats against a model of colitis induced through application of the haptenizing agent dinitrobenzene sulphonic acid (DNBS) directly to the colon, and monitor rat clinical health, systemic inflammation measured by TNFα and IL-1β, and the gut microbiota. We show that immature H. diminuta induces a type 2 response as measured by increased IL-4, IL-13 and IL-10 expression, but does not protect against colitis. In contrast, rats colonized with mature H. diminuta and challenged with severe colitis (two applications of DNBS) have lower inflammation and less severe clinical symptoms. This effect is not related the initial type 2 immune response. The gut microbiota is disrupted during colitis and does not appear to play an overt role in H. diminuta-mediated protection.
Collapse
|
17
|
Intestinal worms eating neuropsychiatric disorders? Apparently so. Brain Res 2018; 1693:218-221. [PMID: 29402395 DOI: 10.1016/j.brainres.2018.01.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 01/15/2018] [Accepted: 01/19/2018] [Indexed: 01/05/2023]
Abstract
A number of factors in Western society, including inflammatory diets, sedentary lifestyles, vitamin D deficiency and chronic psychological stress, are known to induce inflammation and to be associated with neuropsychiatric disorders. One factor that is emerging as a potential inflammation inducing factor is biota depletion, or loss of biodiversity from the ecosystem of the human body as a result of industrialization. Originally known as the "hygiene hypothesis", biota alteration theory describes the effects of biota alteration on the human immune system. Work on this topic has pinpointed depletion of helminths as a key loss to the body's ecosystem in Western society, and suggests that some exposure to helminths, ubiquitous prior to the modern era, may be necessary for normal immune system development. Socio-medical studies of humans "self-treating" with helminths as well as limited studies in animal models strongly suggest that helminth therapy may be a productive approach toward treating a range of neuropsychiatric disorders, including chronic fatigue, migraine headaches, depression and anxiety disorders. However, helminth therapy faces some daunting hurdles, including the lack of a financial incentive for development, despite a tremendous potential market for the organisms. It is argued that benevolent donation for early trials as well as changes in regulatory policy to accommodate helminth therapy may be important for the field to develop. It is hoped that future success with some high-profile trials can propel the field, now dominated more by self-treatment than by clinical trials, forward into the main stream of medicine.
Collapse
|
18
|
Parker W. Not infection with parasitic worms, but rather colonization with therapeutic helminths. Immunol Lett 2017; 192:104-105. [DOI: 10.1016/j.imlet.2017.07.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 07/11/2017] [Indexed: 01/15/2023]
|
19
|
Smyth K, Morton C, Mathew A, Karuturi S, Haley C, Zhang M, Holzknecht ZE, Swanson C, Lin SS, Parker W. Production and Use of Hymenolepis diminuta Cysticercoids as Anti-Inflammatory Therapeutics. J Clin Med 2017; 6:jcm6100098. [PMID: 29064448 PMCID: PMC5664013 DOI: 10.3390/jcm6100098] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 10/04/2017] [Accepted: 10/17/2017] [Indexed: 12/22/2022] Open
Abstract
Helminthic therapy has shown considerable promise as a means of alleviating some inflammatory diseases that have proven resistant to pharmaceutical intervention. However, research in the field has been limited by a lack of availability to clinician scientists of a helminth that is relatively benign, non-communicable, affordable, and effectively treats disease. Previous socio-medical studies have found that some individuals self-treating with helminths to alleviate various diseases are using the rat tapeworm (cysticercoid developmental stage of Hymenolepis diminuta; HDC). In this study, we describe the production and use of HDCs in a manner that is based on reports from individuals self-treating with helminths, individuals producing helminths for self-treatment, and physicians monitoring patients that are self-treating. The helminth may fit the criteria needed by clinical scientists for clinical trials, and the methodology is apparently feasible for any medical center to reproduce. It is hoped that future clinical trials using this organism may shed light on the potential for helminthic therapy to alleviate inflammatory diseases. Further, it is hoped that studies with HDCs may provide a stepping stone toward population-wide restoration of the biota of the human body, potentially reversing the inflammatory consequences of biota depletion that currently affect Western society.
Collapse
Affiliation(s)
- Kendra Smyth
- University Program in Ecology, Duke University, Durham, NC 27708, USA.
| | - Claire Morton
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA.
| | - Amanda Mathew
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA.
| | - Sahil Karuturi
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA.
| | - Cliff Haley
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA.
| | - Min Zhang
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA.
| | - Zoie E Holzknecht
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA.
| | - Chelsea Swanson
- The Duke Brain Imaging & Analysis Center, Duke University Medical Center, Durham, NC 27710, USA.
- Mental Illness Research Education and Clinical Center for Post Deployment Mental Health, Durham VA Medical Center, Durham, NC 27710, USA.
| | - Shu S Lin
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA.
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA.
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA.
| | - William Parker
- Department of Surgery, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
20
|
Bono-Lunn D, Villeneuve C, Abdulhay NJ, Harker M, Parker W. Policy and regulations in light of the human body as a ‘superorganism’ containing multiple, intertwined symbiotic relationships. ACTA ACUST UNITED AC 2016. [DOI: 10.1080/10601333.2016.1210159] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Deans E. Microbiome and mental health in the modern environment. J Physiol Anthropol 2016; 36:1. [PMID: 27405349 PMCID: PMC4940716 DOI: 10.1186/s40101-016-0101-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 06/23/2016] [Indexed: 12/19/2022] Open
Abstract
A revolution in the understanding of the pathophysiology of mental illness combined with new knowledge about host/microbiome interactions and psychoneuroimmunology has opened an entirely new field of study, the “psychobiotics”. The modern microbiome is quite changed compared to our ancestral one due to diet, antibiotic exposure, and other environmental factors, and these differences may well impact our brain health. The sheer complexity and scope of how diet, probiotics, prebiotics, and intertwined environmental variables could influence mental health are profound obstacles to an organized and useful study of the microbiome and psychiatric disease. However, the potential for positive anti-inflammatory effects and symptom amelioration with perhaps few side effects makes the goal of clarifying the role of the microbiota in mental health a vital one.
Collapse
Affiliation(s)
- Emily Deans
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. .,Wellcare Physicians Group, 100 Morse St. Ste 105, Norwood, MA, 02062, USA.
| |
Collapse
|
22
|
Practices and outcomes of self-treatment with helminths based on physicians' observations. J Helminthol 2016; 91:267-277. [DOI: 10.1017/s0022149x16000316] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
AbstractThe successful use of helminths as therapeutic agents to resolve inflammatory disease was first recorded 40 years ago. Subsequent work in animal models and in humans has demonstrated that the organisms might effectively treat a wide range of inflammatory diseases, including allergies, autoimmune disorders and inflammation-associated neuropsychiatric disorders. However, available information regarding the therapeutic uses and effects of helminths in humans is limited. This study probes the practices and experiences of individuals ‘self-treating’ with helminths through the eyes of their physicians. Five physicians monitoring more than 700 self-treating patients were interviewed. The results strongly support previous indications that helminth therapy can effectively treat a wide range of allergies, autoimmune conditions and neuropsychiatric disorders, such as major depression and anxiety disorders. Approximately 57% of the self-treating patients observed by physicians in the study had autism. Physicians reported that the majority of patients with autism and inflammation-associated co-morbidities responded favourably to therapy with either of the two most popular organisms currently used by self-treaters, Hymenolepis diminuta and Trichuris suis. However, approximately 1% of paediatric patients experienced severe gastrointestinal pains with the use of H. diminuta, although the symptoms were resolved with an anti-helminthic drug. Further, exposure to helminths apparently did not affect the impaired comprehension of social situations that is the hallmark of autism. These observations point toward potential starting points for clinical trials, and provide further support for the importance of such trials and for concerted efforts aimed at probing the potential of helminths, and perhaps other biologicals, for therapeutic use.
Collapse
|
23
|
Williamson LL, McKenney EA, Holzknecht ZE, Belliveau C, Rawls JF, Poulton S, Parker W, Bilbo SD. Got worms? Perinatal exposure to helminths prevents persistent immune sensitization and cognitive dysfunction induced by early-life infection. Brain Behav Immun 2016; 51:14-28. [PMID: 26162711 DOI: 10.1016/j.bbi.2015.07.006] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 07/06/2015] [Accepted: 07/06/2015] [Indexed: 02/08/2023] Open
Abstract
The incidence of autoimmune and inflammatory diseases has risen dramatically in post-industrial societies. "Biome depletion" - loss of commensal microbial and multicellular organisms such as helminths (intestinal worms) that profoundly modulate the immune system - may contribute to these increases. Hyperimmune-associated disorders also affect the brain, especially neurodevelopment, and increasing evidence links early-life infection to cognitive and neurodevelopmental disorders. We have demonstrated previously that rats infected with bacteria as newborns display life-long vulnerabilities to cognitive dysfunction, a vulnerability that is specifically linked to long-term hypersensitivity of microglial cell function, the resident immune cells of the brain. Here, we demonstrate that helminth colonization of pregnant dams attenuated the exaggerated brain cytokine response of their offspring to bacterial infection, and that combined with post-weaning colonization of offspring with helminths (consistent with their mothers treatment) completely prevented enduring microglial sensitization and cognitive dysfunction in adulthood. Importantly, helminths had no overt impact on adaptive immune cell subsets, whereas exaggerated innate inflammatory responses in splenic macrophages were prevented. Finally, helminths altered the effect of neonatal infection on the gut microbiome; neonatal infection with Escherichia coli caused a shift from genera within the Actinobacteria and Tenericutes phyla to genera in the Bacteroidetes phylum in rats not colonized with helminths, but helminths attenuated this effect. In sum, these data point toward an inter-relatedness of various components of the biome, and suggest potential mechanisms by which this helminth might exert therapeutic benefits in the treatment of neuroinflammatory and cognitive disorders.
Collapse
Affiliation(s)
- Lauren L Williamson
- Department of Psychology & Neuroscience, Duke Institute for Brain Sciences, Duke University, United States
| | | | - Zoie E Holzknecht
- Department of Surgery, Duke University Medical Center, United States
| | - Christine Belliveau
- Department of Psychology & Neuroscience, Duke Institute for Brain Sciences, Duke University, United States
| | - John F Rawls
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, United States
| | - Susan Poulton
- Department of Surgery, Duke University Medical Center, United States
| | - William Parker
- Department of Surgery, Duke University Medical Center, United States
| | - Staci D Bilbo
- Department of Psychology & Neuroscience, Duke Institute for Brain Sciences, Duke University, United States.
| |
Collapse
|