1
|
Hepatitis A and E Viruses in Mussels from Cherrat Estuary in Morocco: Detection by Real-Time Reverse Transcription PCR Analysis. Adv Virol 2022; 2022:8066356. [DOI: 10.1155/2022/8066356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 11/29/2022] Open
Abstract
The aim of the present study was to evaluate hepatitis A virus (HAV) and hepatitis E virus (HEV) contamination in mussels (Mytilus galloprovincialis) from Cherrat estuary (Moroccan Atlantic Coast), Morocco. In total, 52 samples (n = 12 mussels/each) were collected at four sites in the estuary, monthly, between March 2019 and March 2020. HAV and HEV were detected by real-time reverse transcription polymerase chain reaction (RT-PCR) according to the ISO/TS 15216 method. HAV was detected in 46.15% of analyzed samples. Conversely, HEV was not detected in any sample. Moreover, the HAV detection rate was significantly associated with seasonal rainfall variations. This qualitative study on HAV and HEV contamination highlights the interest of studying mussel samples from wild areas. As HAV presence in mussels represents a potential health risk, viral contamination surveillance of mussels is necessary to protect consumers. HAV shellfish contamination must be monitored at Cherrat estuary because of the role played by shellfish as HAV reservoirs and/or vehicles in fecal-oral HAV transmission.
Collapse
|
2
|
Leduc A, Leclerc M, Challant J, Loutreul J, Robin M, Maul A, Majou D, Boudaud N, Gantzer C. F-Specific RNA Bacteriophages Model the Behavior of Human Noroviruses during Purification of Oysters: the Main Mechanism Is Probably Inactivation Rather than Release. Appl Environ Microbiol 2020; 86:e00526-20. [PMID: 32303551 PMCID: PMC7267196 DOI: 10.1128/aem.00526-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/08/2020] [Indexed: 01/06/2023] Open
Abstract
Noroviruses (NoV) are responsible for many shellfish outbreaks. Purification processes may be applied to oysters before marketing to decrease potential fecal pollution. This step is rapidly highly effective in reducing Escherichia coli; nevertheless, the elimination of virus genomes has been described to be much slower. It is therefore important to identify (i) the purification conditions that optimize virus removal and (ii) the mechanism involved. To this end, the effects of oyster stress, nutrients, and the presence of a potential competitor to NoV adhesion during purification were investigated using naturally contaminated oysters. Concentrations of NoV (genomes) and of the viral indicator F-specific RNA bacteriophage (FRNAPH; genomes and infectious particles) were regularly monitored. No significant differences were observed under the test conditions. The decrease kinetics of both virus genomes were similar, again showing the potential of FRNAPH as an indicator of NoV behavior during purification. The T90 (time to reduce 90% of the initial titer) values were 47.8 days for the genogroup I NoV genome, 26.7 days for the genogroup II NoV genome, and 43.9 days for the FRNAPH-II genome. Conversely, monitoring of the viral genomes could not be used to determine the behavior of infectious viruses because the T90 values were more than two times lower for infectious FRNAPH (20.6 days) compared to their genomes (43.9 days). Finally, this study highlighted that viruses are primarily inactivated in oysters rather than released in the water during purification processes.IMPORTANCE This study provides new data about the behavior of viruses in oysters under purification processes and about their elimination mechanism. First, a high correlation has been observed between F-specific RNA bacteriophages of subgroup II (FRNAPH-II) and norovirus (NoV) in oysters impacted by fecal contamination when both are detected using molecular approaches. Second, when using reverse transcription-quantitative PCR and culture to detect FRNAPH-II genomes and infectious FRNAPH in oysters, respectively, it appears that genome detection provides limited information about the presence of infectious particles. The comparison of both genomes and infectious particles highlights that the main mechanism of virus elimination in oysters is inactivation. Finally, this study shows that none of the conditions tested modify virus removal.
Collapse
Affiliation(s)
- Alice Leduc
- Université de Lorraine, CNRS, LCPME, Nancy, France
- ACTALIA, Food Safety Department, Saint-Lô, France
| | | | | | | | - Maëlle Robin
- ACTALIA, Food Safety Department, Saint-Lô, France
| | - Armand Maul
- Université de Lorraine, CNRS, LIEC, Metz, France
| | | | | | | |
Collapse
|
3
|
Vennerström P, Maunula L, Välimäki E, Virtala AM. Presence of viral haemorrhagic septicaemia virus (VHSV) in the environment of virus-contaminated fish farms and processing plants. DISEASES OF AQUATIC ORGANISMS 2020; 138:145-154. [PMID: 32162613 DOI: 10.3354/dao03454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
After the first outbreak of viral haemorrhagic septicaemia virus (VHSV) in Finnish brackish water rainbow trout Oncorhynchus mykiss farms, infection spread rapidly between the farms. The infrastructure of fish farming did not take into account spreading of infectious fish diseases. To show the presence of VHSV in the environment, we tested seawater, sediment and wild blue mussels Mytilus edulis from VHSV-infected fish farms, and liquid waste from a processing plant that handled infected rainbow trout. Additionally, blue mussels were bath-challenged with VHSV (exposed to cultivated virus or naturally infected rainbow trout). To detect VHSV, virus isolation in cell culture and real-time reverse transcriptase polymerase chain reaction (qRT-PCR) were used. The virus or viral RNA was detected in sea water and in liquid waste from processing plants during wintertime when water temperature is close to 0°C and sunlight is sparse. VHSV did not appear to replicate in blue mussels in our study. Therefore, blue mussels were not considered relevant carriers of VHSV. However, traces of viral RNA were detected up to 29 d post challenge in mussels. Contact with water from processing plants handling VHSV-infected fish populations increases the risk of the disease spreading to susceptible fish populations, especially during cold and dark times of the year.
Collapse
Affiliation(s)
- Pia Vennerström
- Veterinary Bacteriology and Pathology Research Unit, Finnish Food Authority, 00027 Finnish Food Authority, Finland
| | | | | | | |
Collapse
|
4
|
Pilotto MR, Souza DSM, Barardi CRM. Viral uptake and stability in Crassostrea gigas oysters during depuration, storage and steaming. MARINE POLLUTION BULLETIN 2019; 149:110524. [PMID: 31543476 DOI: 10.1016/j.marpolbul.2019.110524] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/14/2019] [Accepted: 08/15/2019] [Indexed: 06/10/2023]
Abstract
More stable than bacteria in environmental samples, enteric viruses are generally related to outbreaks of gastroenteritis caused by the consumption of contaminated oysters. This study evaluated: i) the dynamic processes of enteric viral models bioaccumulation by Crassostrea gigas oysters artificially contaminated; ii) the stability of these viruses in oysters in controlled temperature conditions and iii) the effect of UV light in inactivating these viruses in depurated oysters. Plaque assay (PA) was used to assess the infectivity of both viral models. Cell culture coupled with RT-qPCR (ICC-RT-qPCR) was used to measure infectious adenovirus type 2 (HAdV-2) genomes and qPCR to measure genome copies of murine norovirus (MNV-1). The virus uptake through bioaccumulation behave differently: HAdV-2 reached its peak of uptake faster than MNV-1. Both viruses showed high stability in oysters when maintained under 4 °C, but were completely inactivated in steamed oysters. The HAdV-2 was completely inactivated after 12 h of depuration with UV light and after 24 h without UV light. After 72 h of depuration, MNV-1 was still detected in both tanks, probably due to the stronger interaction of this virus with the oyster's tissues. This study demonstrated the importance of a secure depuration time in ensuring a clean and safe product, and that the steaming process is the safest way to prepare oysters for consumption.
Collapse
Affiliation(s)
- Mariana Rangel Pilotto
- Federal University of Santa Catarina, Centre of Biological Sciences, Department of Microbiology, Immunology and Parasitology, Laboratory of Applied Virology, Florianópolis, Santa Catarina CEP 88040-970, Brazil
| | - Doris Sobral Marques Souza
- Federal University of Santa Catarina, Centre of Biological Sciences, Department of Microbiology, Immunology and Parasitology, Laboratory of Applied Virology, Florianópolis, Santa Catarina CEP 88040-970, Brazil
| | - Célia Regina Monte Barardi
- Federal University of Santa Catarina, Centre of Biological Sciences, Department of Microbiology, Immunology and Parasitology, Laboratory of Applied Virology, Florianópolis, Santa Catarina CEP 88040-970, Brazil..
| |
Collapse
|
5
|
Kingsley DH, Chen H, Annous BA, Meade GK. Evaluation of a Male-Specific DNA Coliphage Persistence Within Eastern Oysters (Crassostrea virginica). FOOD AND ENVIRONMENTAL VIROLOGY 2019; 11:120-125. [PMID: 30919239 DOI: 10.1007/s12560-019-09376-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 03/07/2019] [Indexed: 06/09/2023]
Abstract
Male-specific coliphages (MSCs) are currently used to assess the virologic quality of shellfish-growing waters and to assess the impact of sewage release or adverse weather events on bivalve shellfish. Since MSC can have either DNA or RNA genomes, and most research has been performed exclusively on RNA MSCs, persistence of M13, a DNA MSC, was evaluated for its persistence as a function of time and temperature within Eastern oysters (Crassostrea virginica). Oysters were individually exposed to seawater containing a total of 1010 to 1012 pfu of M13 for 24 h at 15 °C followed by maintenance in tanks with as many as 21 oysters in continuously UV-sterilized water for up to 6 weeks at either 7, 15, or 22 °C. Two trials for each temperature were performed combining three shucked oysters per time point which were assayed by tenfold serial dilution in triplicate. Initial contamination levels averaged 106.9 and ranged from 106.0 to 107.0 of M13. For oysters held for 3 weeks, log10 reductions were 1.7, 3.8, and 4.2 log10 at 7, 15, and 22 °C, respectively. Oysters held at 7 and 15 °C for 6 weeks showed average reductions of 3.6 and 5.1 log10, respectively, but still retained infectious M13. In total, this work shows that DNA MSC may decline within shellfish in a manner analogous to RNA MSCs.
Collapse
Affiliation(s)
- David H Kingsley
- ARS, Food Safety & Intervention Technologies Research Unit, USDA, Delaware State University, Dover, DE, 19901, USA.
| | - Haiqiang Chen
- Department of Animal & Food Sciences, University of Delaware, Newark, DE, 19716-2150, USA
| | - Bassam A Annous
- ARS, ERRC, Food Safety & Intervention Technologies Research Unit, USDA, Wyndmoor, PA, 19038, USA
| | - Gloria K Meade
- ARS, Food Safety & Intervention Technologies Research Unit, USDA, Delaware State University, Dover, DE, 19901, USA
| |
Collapse
|
6
|
|
7
|
Park H, Jung S, Shin H, Ha SD, Park TJ, Park JP, Seo DJ, Choi C. Localization and persistence of hepatitis A virus in artificially contaminated oysters. Int J Food Microbiol 2019; 299:58-63. [PMID: 30954876 DOI: 10.1016/j.ijfoodmicro.2019.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 03/16/2019] [Accepted: 03/27/2019] [Indexed: 11/26/2022]
Abstract
Bivalve molluscan shellfish, such as oysters, clams, and cockles, are well-recognized as vectors that concentrate foodborne pathogens by filter feeding. The objective of this study was to investigate the distribution and persistence of hepatitis A virus (HAV) in experimentally contaminated oysters that were either fed or not fed with algae. Oysters were experimentally contaminated with HAV and maintained in depuration conditions. qRT-PCR, immunohistochemistry (IHC), and in situ hybridization (ISH) were performed on oyster samples collected at 0, 1, 3, 5, and 7 days post-inoculation. When HAV-contaminated oysters were depurated for 7 days, HAV was detected in 91.1-97.8% of the digestive glands and gills. While the high viral load in the digestive glands in oysters did not change significantly regardless of algae-feeding, the viral load of the gills gradually decreased in both groups during the depuration. HAV antigen and RNA were detected in the digestive diverticula and connective tissues by both IHC and ISH. HAV was detected in the stomach, intestine, and gills by only ISH. The distribution of HAV in various oyster tissues may explain the persistence of contamination in oysters during the depuration process.
Collapse
Affiliation(s)
- Hyunkyung Park
- Department of Food and Nutrition, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Soontag Jung
- Department of Food and Nutrition, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Hansaem Shin
- Department of Food and Nutrition, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Sang-Do Ha
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Tae Jung Park
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jong Pil Park
- Department of Pharmaceutical Engineering, Daegu Haany University, Gyeongsan 38610, Republic of Korea
| | - Dong Joo Seo
- Department of Food and Nutrition, Gwangju University, Gwangju 61743, Republic of Korea
| | - Changsun Choi
- Department of Food and Nutrition, Chung-Ang University, Anseong 17546, Republic of Korea.
| |
Collapse
|
8
|
Kingsley DH, Chen H, Meade GK. Persistence of MS-2 Bacteriophage Within Eastern Oysters. FOOD AND ENVIRONMENTAL VIROLOGY 2018; 10:83-88. [PMID: 28831665 DOI: 10.1007/s12560-017-9315-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 07/29/2017] [Indexed: 06/07/2023]
Abstract
Male-specific bacteriophages have been proposed as human enteric virus indicators for shellfish. In this study, Eastern oysters (Crassostrea virginica) were individually exposed to 5.6 × 1010 PFU of MS-2 for 48 h at 15 °C followed by collective maintenance in continuously UV-sterilized seawater for 0-6 weeks at either 7, 15, or 24 °C. Initial contamination levels of MS-2 were >6 log PFU. Assessment of weekly declines of viable MS-2 indicated that cooler temperatures dramatically enhanced the persistence of MS-2 within oyster tissues. At 3 weeks, the average log PFU reductions for MS-2 within oysters were 2.28, 2.90, and 4.57 for oysters held at 7, 15, and 24 °C, respectively. Fitting temporal survival data with linear and nonlinear Weibull models indicated that the Weibull model best fit the observed reductions. In total, these data can serve as a guideline for regulatory agencies regarding the influence of water temperature on indicator phage after episodic sewage exposure.
Collapse
Affiliation(s)
- David H Kingsley
- U.S. Department of Agriculture, Agricultural Research Service, Food Safety and Intervention Technologies Research Unit, James W. W. Baker Center, Delaware State University, Dover, DE, 19901, USA.
| | - Haiqiang Chen
- Department of Animal and Food Sciences, University of Delaware, Newark, DE, 19716-2150, USA
| | - Gloria K Meade
- U.S. Department of Agriculture, Agricultural Research Service, Food Safety and Intervention Technologies Research Unit, James W. W. Baker Center, Delaware State University, Dover, DE, 19901, USA
| |
Collapse
|
9
|
Brake F, Kiermeier A, Ross T, Holds G, Landinez L, McLeod C. Spatial and Temporal Distribution of Norovirus and E. coli in Sydney Rock Oysters Following a Sewage Overflow into an Estuary. FOOD AND ENVIRONMENTAL VIROLOGY 2018; 10:7-15. [PMID: 28685229 DOI: 10.1007/s12560-017-9313-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 06/30/2017] [Indexed: 06/07/2023]
Abstract
This paper reports a study of norovirus (NoV) GII distribution and persistence in Sydney rock oysters (SRO) (Saccostrea glomerata) located in an estuary after a pump station sewage overflow. SRO were strategically placed at six sites spanning the length of the estuary from the pump station to the sea. The spatial and temporal distribution of NoV, hepatitis A virus (HAV) and Escherichia coli (E. coli) in oysters was mapped after the contamination event. NoV GI and GII, HAV and E. coli were quantified for up to 48 days in oysters placed at six sites ranging from 0.05 to 8.20 km from the sewage overflow. NoV GII was detected up to 5.29 km downstream and persisted in oysters for 42 days at the site closest to the overflow. NoV GII concentrations decreased significantly over time; a reduction rate of 8.5% per day was observed in oysters (p < 0.001). NoV GII concentrations decreased significantly as a function of distance at a rate of 5.8% per km (p < 0.001) and the decline in E. coli concentration with distance was 20.1% per km (p < 0.001). HAV and NoV GI were not detected. A comparison of NoV GII reduction rates from oysters over time, as observed in this study and other published research, collectively suggest that GII reduction rates from oysters may be broadly similar, regardless of environmental conditions, oyster species and genotype.
Collapse
Affiliation(s)
- Felicity Brake
- Tasmanian Institute of Agriculture - School of Land and Food, University of Tasmania, Hobart, TAS, Australia
- South Australian Research and Development Institute, Adelaide, SA, Australia
| | - Andreas Kiermeier
- South Australian Research and Development Institute, Adelaide, SA, Australia
| | - Tom Ross
- Tasmanian Institute of Agriculture - School of Land and Food, University of Tasmania, Hobart, TAS, Australia
| | - Geoffrey Holds
- South Australian Research and Development Institute, Adelaide, SA, Australia
| | - Lina Landinez
- South Australian Research and Development Institute, Adelaide, SA, Australia
| | - Catherine McLeod
- South Australian Research and Development Institute, Adelaide, SA, Australia.
- Seafood Safety Assessment Ltd, Scotland, UK.
| |
Collapse
|
10
|
Suffredini E, Proroga YTR, Di Pasquale S, Di Maro O, Losardo M, Cozzi L, Capuano F, De Medici D. Occurrence and Trend of Hepatitis A Virus in Bivalve Molluscs Production Areas Following a Contamination Event. FOOD AND ENVIRONMENTAL VIROLOGY 2017; 9:423-433. [PMID: 28452010 DOI: 10.1007/s12560-017-9302-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 04/25/2017] [Indexed: 06/07/2023]
Abstract
The aim of this study was to assess the trend of hepatitis A virus (HAV) in a coastal zone impacted by a contamination event, providing data for the development of management strategies. A total of 352 samples, including four bivalve mollusc species (Mytilus galloprovincialis, Solen vagina, Venus gallina and Donax trunculus), were taken over a period of 6 months from 27 production areas of the coast and analysis were performed according to ISO/TS 15216-1:2013. HAV presence was detected in 77 samples from 11 production areas and all positive results were related to samples collected in the first 3 months of the surveillance, during which HAV prevalence was 39.9% and values as high as 5096 genome copies/g were detected. A progressive reduction of viral contamination was evident during the first trimester of the monitoring, with prevalence decreasing from 78.8% in the first month, to 37.8% in the second and 3.9% in the third and quantitative levels reduced from an average value of 672 genome copies/g to 255 genome copies/g over a period of 4 weeks (virus half-life: 21.5 days). A regression analysis showed that, during the decreasing phase of the contamination, the data fitted a reciprocal quadratic model (Ra2 = 0.921) and, based on the model, a residual presence of HAV could be estimated after negativization of the production areas. The statistical analysis of the results per shellfish species and per production area showed that there were limited differences in contamination prevalence and levels among diverse bivalve species, while a statistically significant difference was present in quantitative levels of one production area. These data could be useful for the development of both risk assessment models and code of practice for the management of viral contamination in primary production.
Collapse
Affiliation(s)
- Elisabetta Suffredini
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| | - Yolande Thérèse Rose Proroga
- Department of Food Inspection, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, Portici, 80055, Naples, Italy
| | - Simona Di Pasquale
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Orlandina Di Maro
- Department of Food Inspection, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, Portici, 80055, Naples, Italy
| | - Maria Losardo
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Loredana Cozzi
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - Federico Capuano
- Department of Food Inspection, Istituto Zooprofilattico Sperimentale del Mezzogiorno, Via Salute 2, Portici, 80055, Naples, Italy
| | - Dario De Medici
- Department of Food Safety, Nutrition and Veterinary Public Health, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| |
Collapse
|
11
|
Souza DSM, Dominot AFÁ, Moresco V, Barardi CRM. Presence of enteric viruses, bioaccumulation and stability in Anomalocardia brasiliana clams (Gmelin, 1791). Int J Food Microbiol 2017; 266:363-371. [PMID: 29074195 DOI: 10.1016/j.ijfoodmicro.2017.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 07/16/2017] [Accepted: 08/10/2017] [Indexed: 10/19/2022]
Abstract
Bivalve mollusks are filter feeders and may accumulate human pathogens in their tissues. Many studies demonstrated human diseases associated with bivalve consumption, especially oysters. Anomalocardia brasiliana clams are distributed along the Brazilian coastal area and are an exotic ingredient for some typical dishes in Brazil. Even though there are several reports describing the contamination of oysters and mussels with human pathogens, there is a lack of studies reporting contamination of A. brasiliana with human pathogens. An evaluation of natural microbiological contamination in A. brasiliana samples over a period of 18months (November 2014 to April 2016) showed that the bacteria indices were in accordance with Brazilian regulations (E. coli<230MPN and Salmonella sp. absent in 25g of meat). However, the enteric viruses evaluated were detected throughout the analysis period, with the highest result for the hepatitis A virus (HAV); followed by Rotavirus-A (RVA); Human Adenovirus (HAdV) and Norovirus GI (NoV GI). The bioaccumulation of enteric viruses by A. brasiliana during a period of 24h was performed using NoV GI and GII, HAV, RVA and HAdV as models. Interestingly the mollusk demonstrated different uptake behaviors in relation to these viruses throughout the time period. NoV GI was the most adsorbed virus after 24h. HAV concentration was <1% at 3h, but it increased to <10% at 8h, remaining unchanged until 12h, and decreasing to <3% at 24h; HAdV reached its highest concentration at 12h, being released by the animals and lowering to <3% at 24h. RVA bioaccumulation was unstable over time, reaching its highest values after 24h (<5%); NoV GII bioaccumulation remained <1%. Thermal inactivation of HAdV-2 in A. brasiliana was also evaluated. After the usual gentle cooking procedure using different times (0, 1, 1.5, 3 and 5mins), viral infectivity was evaluated using ICC-et-RT-qPCR. The temperature inside the DT remained <80°C over time and after 5min of cooking the HAdV reached a decay of 90% (1 log10). The results showed a real warn to the consumers that can be exposed to infectious human viruses if they eat these clams improperly cooked. HAV was the most detected virus in these animals, which may lead to outbreaks. A. brasiliana exhibited distinct behavior in NoV GI bioaccumulation and persistence, pointing to the need for further studies about the cellular ligands used by these viruses to become attached to these clams.
Collapse
Affiliation(s)
- Doris Sobral Marques Souza
- Universidade Federal de Santa Catarina, Centro de Ciências Biológicas, Departamento de Microbiologia, Imunologia e Parasitologia, Laboratório de Virologia Aplicada, Florianópolis, Santa Catarina CEP: 88040-970, Brazil
| | - Ana Ferreira Ávila Dominot
- Universidade Federal de Santa Catarina, Centro de Ciências Biológicas, Departamento de Microbiologia, Imunologia e Parasitologia, Laboratório de Virologia Aplicada, Florianópolis, Santa Catarina CEP: 88040-970, Brazil
| | - Vanessa Moresco
- Universidade Federal de Santa Catarina, Centro de Ciências Biológicas, Departamento de Microbiologia, Imunologia e Parasitologia, Laboratório de Virologia Aplicada, Florianópolis, Santa Catarina CEP: 88040-970, Brazil
| | - Célia Regina Monte Barardi
- Universidade Federal de Santa Catarina, Centro de Ciências Biológicas, Departamento de Microbiologia, Imunologia e Parasitologia, Laboratório de Virologia Aplicada, Florianópolis, Santa Catarina CEP: 88040-970, Brazil.
| |
Collapse
|
12
|
McLeod C, Polo D, Le Saux JC, Le Guyader FS. Depuration and Relaying: A Review on Potential Removal of Norovirus from Oysters. Compr Rev Food Sci Food Saf 2017; 16:692-706. [DOI: 10.1111/1541-4337.12271] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/26/2017] [Accepted: 04/27/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Catherine McLeod
- Seafood Safety Assessment Ltd.; Hillcrest Isle of Skye IV44 8RG Scotland
| | - David Polo
- Ifremer, Laboratoire de Microbiologie; LSEM/SG2M; 44300 Nantes France
| | | | | |
Collapse
|
13
|
Shellfish-Associated Enteric Virus Illness: Virus Localization, Disease Outbreaks and Prevention. VIRUSES IN FOODS 2016. [PMCID: PMC7122155 DOI: 10.1007/978-3-319-30723-7_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Numerous outbreaks of shellfish-borne enteric virus illness have been reported worldwide. Most notable among the outbreaks are those caused by NoV and HAV. Lessons learned from outbreak investigations indicate that most outbreaks are preventable. Anthropogenic sources of contamination will continue to invade shellfish growing waters. Shellfish, by their very nature, will continue to bioconcentrate these contaminants, including enteric viruses. There is no quick fix for enteric virus contamination of shellfish; however, vigilance on behalf of the industry, regulatory agencies, and the consumer could substantially reduce the incidence of illness. Enhanced monitoring in all areas of shellfish production, harvesting, distribution, and processing would help to reduce viral illnesses. Pollution abatement and improved hygienic practices on behalf of the industry and consumers are needed. Improved analytical techniques for the detection of enteric viruses in shellfish will lead to enhanced shellfish safety and better protection for the consumer and the industry. Better reporting and epidemiological follow-up of outbreaks are keys to reducing the transmission of foodborne viral infections. It is anticipated that recent advances in analytical techniques, particularly for NoV, will lead to better monitoring capabilities for food and water and a reduction in the incidence of enteric virus illness among shellfish consumers.
Collapse
|
14
|
Thermal Inactivation of Enteric Viruses and Bioaccumulation of Enteric Foodborne Viruses in Live Oysters (Crassostrea virginica). Appl Environ Microbiol 2016; 82:2086-99. [PMID: 26826225 DOI: 10.1128/aem.03573-15] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 01/18/2016] [Indexed: 12/30/2022] Open
Abstract
Human enteric viruses are among the main causative agents of shellfish-associated outbreaks. In this study, the kinetics of viral bioaccumulation in live oysters and the heat stabilities of the predominant enteric viruses were determined both in tissue culture and in oyster tissues. A human norovirus (HuNoV) GII.4 strain, HuNoV surrogates (murine norovirus [MNV-1], Tulane virus [TV]), hepatitis A virus (HAV), and human rotavirus (RV) bioaccumulated to high titers within oyster tissues, with different patterns of bioaccumulation for the different viruses. We tested the thermal stability of each virus at 62, 72, and 80°C in culture medium. The viruses can be ranked from the most heat resistant to the least stable as follows: HAV, RV, TV, MNV-1. In addition, we found that oyster tissues provided protection to the viruses during heat treatment. To decipher the mechanism underlying viral inactivation by heat, purified TV was treated at 80°C for increasing time intervals. It was found that the integrity of the viral capsid was disrupted, whereas viral genomic RNA remained intact. Interestingly, heat treatment leading to complete loss of TV infectivity was not sufficient to completely disrupt the receptor binding activity of TV, as determined by the porcine gastric mucin-magnetic bead binding assay. Similarly, HuNoV virus-like particles (VLPs) and a HuNoV GII.4 strain retained some receptor binding ability following heat treatment. Although foodborne viruses have variable heat stability, 80°C for >6 min was sufficient to completely inactivate enteric viruses in oysters, with the exception of HAV.
Collapse
|
15
|
Effect of temperature and relative humidity on the survival of foodborne viruses during food storage. Appl Environ Microbiol 2015; 81:2075-81. [PMID: 25576612 DOI: 10.1128/aem.04093-14] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Millions of people suffer from foodborne diseases throughout the world every year, and the importance of food safety has grown worldwide in recent years. The aim of this study was to investigate the survival of hepatitis A virus (HAV) and viral surrogates of human norovirus (HuNoV) (bacteriophage MS2 and murine norovirus [MNV]) in food over time. HAV, MNV, and MS2 were inoculated onto either the digestive gland of oysters or the surface of fresh peppers, and their survival on these food matrices was measured under various temperature (4°C, 15°C, 25°C, and 40°C) and relative humidity (RH) (50% and 70%) conditions. Inoculated viruses were recovered from food samples and quantified by a plaque assay at predetermined time points over 2 weeks (0, 1, 3, 7, 10, and 14 days). Virus survival was influenced primarily by temperature. On peppers at 40°C and at 50% RH, >4- and 6-log reductions of MNV and HAV, respectively, occurred within 1 day. All three viruses survived better on oysters. In addition, HAV survived better at 70% RH than at 50% RH. The survival data for HAV, MS2, and MNV were fit to three different mathematical models (linear, Weibull, and biphasic models). Among them, the biphasic model was optimum in terms of goodness of fit. The results of this study suggest that major foodborne viruses such as HAV and HuNoV can survive over prolonged periods of time with a limited reduction in numbers. Because a persistence of foodborne virus on contaminated foods was observed, precautionary preventive measures should be performed.
Collapse
|
16
|
Grodzki M, Schaeffer J, Piquet JC, Le Saux JC, Chevé J, Ollivier J, Le Pendu J, Le Guyader FS. Bioaccumulation efficiency, tissue distribution, and environmental occurrence of hepatitis E virus in bivalve shellfish from France. Appl Environ Microbiol 2014; 80:4269-76. [PMID: 24795382 PMCID: PMC4068666 DOI: 10.1128/aem.00978-14] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 04/29/2014] [Indexed: 01/16/2023] Open
Abstract
Hepatitis E virus (HEV), an enteric pathogen of both humans and animals, is excreted by infected individuals and is therefore present in wastewaters and coastal waters. As bivalve molluscan shellfish are known to concentrate viral particles during the process of filter feeding, they may accumulate this virus. The bioaccumulation efficiencies of oysters (Crassostrea gigas), flat oysters (Ostrea edulis), mussels (Mytilus edulis), and clams (Ruditapes philippinarum) were compared at different time points during the year. Tissue distribution analysis showed that most of the viruses were concentrated in the digestive tissues of the four species. Mussels and clams were found to be more sensitive to sporadic contamination events, as demonstrated by rapid bioaccumulation in less than 1 h compared to species of oysters. For oysters, concentrations increased during the 24-h bioaccumulation period. Additionally, to evaluate environmental occurrence of HEV in shellfish, an environmental investigation was undertaken at sites potentially impacted by pigs, wild boars, and human waste. Of the 286 samples collected, none were contaminated with hepatitis E virus, despite evidence that this virus is circulating in some French areas. It is possible that the number of hepatitis E viral particles discharged into the environment is too low to detect or that the virus may have a very short period of persistence in pig manure and human waste.
Collapse
Affiliation(s)
- Marco Grodzki
- Ifremer, Laboratoire de Microbiologie, LSEM-SG2M, Nantes, France
| | - Julien Schaeffer
- Ifremer, Laboratoire de Microbiologie, LSEM-SG2M, Nantes, France
| | | | | | | | - Joanna Ollivier
- Ifremer, Laboratoire de Microbiologie, LSEM-SG2M, Nantes, France
| | - Jacques Le Pendu
- Inserm, U892, CNRS, UMR6299, Université de Nantes, Nantes, France
| | | |
Collapse
|
17
|
Kingsley DH. High Pressure Processing of Bivalve Shellfish and HPP's Use as a Virus Intervention. Foods 2014; 3:336-350. [PMID: 28234323 PMCID: PMC5302369 DOI: 10.3390/foods3020336] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 04/30/2014] [Accepted: 05/20/2014] [Indexed: 01/01/2023] Open
Abstract
Bivalve shellfish readily bioconcentrate pathogenic microbes and substance, such as algal and dinoflagulate toxins, fecal viruses and bacteria, and naturally present vibrio bacteria. High pressure processing (HPP) is currently used as an intervention for Vibrio vulnificus bacteria within molluscan shellfish and its potential to inactivate food-borne viruses and bacteria are discussed. Mechanisms of action of high pressure against bacteria and viruses, as well as how time of pressure application, pressure levels, and pre-pressurization temperature influence inactivation are described. Matrix influences such as ionic strength are noted as important additional considerations. The potential of HPP to influence spoilage and enhance shelf-life of shucked shellfish is also discussed.
Collapse
Affiliation(s)
- David H Kingsley
- Food Safety and Intervention Technologies Research Unit, Agricultural Research Service, U.S. Department of Agriculture, James W.W. Baker Center, Delaware State University, Dover, DE 19901, USA.
| |
Collapse
|
18
|
|
19
|
Asymptomatic Carriers and Captive Audiences. Food Saf (Tokyo) 2014. [DOI: 10.1128/9781555816186.ch12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
20
|
A Microbial Who's Who. Food Saf (Tokyo) 2014. [DOI: 10.1128/9781555816186.app1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
21
|
Manso CF, Romalde JL. Detection and characterization of hepatitis A virus and norovirus in mussels from Galicia (NW Spain). FOOD AND ENVIRONMENTAL VIROLOGY 2013; 5:110-118. [PMID: 23471578 DOI: 10.1007/s12560-013-9108-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 02/26/2013] [Indexed: 06/01/2023]
Abstract
Shellfish are recognized as a potential vehicle of viral disease and despite the control measures for shellfish safety there is periodic emergence of viral outbreaks associated with shellfish consumption. In this study a total of 81 mussel samples from Ría do Burgo, A Coruña (NW Spain) were analysed. Samples were collected in seven different harvesting areas with the aim to establish a correlation between the prevalence of norovirus (NoV) and hepatitis A virus (HAV) in mussel samples and the water quality. In addition, the genogroup of the detected HAV and NoV strains was also determined. The HAV presence was detected in 18.5 % of the samples. Contamination levels for this virus ranged from 1.1 × 10² to 4.1 × 10⁶ RNA copies/g digestive tissue. NoV were detected in 49.4 % of the cases reaching contamination levels from 5.9 × 10³ to 1.6 × 10⁹ RNA copies/g digestive tissue for NoV GI and from 6.1 × 10³ to 5.4 × 10⁶ RNA copies/g digestive tissue for NoV GII. The χ²-test showed no statistical correlation between the number of positive samples and the classification of molluscan harvesting area based on the E. coli number. All the detected HAV strains belong to genogroup IB. NoV strains were assigned to genotype I.4, II.4 and II.6.
Collapse
Affiliation(s)
- Carmen F Manso
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | | |
Collapse
|
22
|
Kingsley DH. High pressure processing and its application to the challenge of virus-contaminated foods. FOOD AND ENVIRONMENTAL VIROLOGY 2013; 5:1-12. [PMID: 23412716 PMCID: PMC3590410 DOI: 10.1007/s12560-012-9094-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 10/24/2012] [Indexed: 05/22/2023]
Abstract
High pressure processing (HPP) is an increasingly popular non-thermal food processing technology. Study of HPP's potential to inactivate foodborne viruses has defined general pressure levels required to inactivate hepatitis A virus, norovirus surrogates, and human norovirus itself within foods such as shellfish and produce. The sensitivity of a number of different picornaviruses to HPP is variable. Experiments suggest that HPP inactivates viruses via denaturation of capsid proteins which render the virus incapable of binding to its receptor on the surface of its host cell. Beyond the primary consideration of treatment pressure level, the effects of extending treatment times, temperature of initial pressure application, and matrix composition have been identified as critical parameters for designing HPP inactivation strategies. Research described here can serve as a preliminary guide to whether a current commercial process could be effective against HuNoV or HAV.
Collapse
Affiliation(s)
- David H Kingsley
- USDA Agricultural Research Service, Delaware State University, Dover, DE 19901, USA.
| |
Collapse
|
23
|
Corrêa ADA, Rigotto C, Moresco V, Kleemann CR, Teixeira AL, Poli CR, Simões CMO, Barardi CRM. The depuration dynamics of oysters (Crassostrea gigas) artificially contaminated with hepatitis A virus and human adenovirus. Mem Inst Oswaldo Cruz 2012; 107:11-7. [PMID: 22310530 DOI: 10.1590/s0074-02762012000100002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Accepted: 07/14/2011] [Indexed: 11/21/2022] Open
Abstract
Within the country of Brazil, Santa Catarina is a major shellfish producer. Detection of viral contamination is an important step to ensure production quality and consumer safety during this process. In this study, we used a depuration system and ultraviolet (UV) disinfection to eliminate viral pathogens from artificially infected oysters and analysed the results. Specifically, the oysters were contaminated with hepatitis A virus (HAV) or human adenovirus type 5 (HAdV5). After viral infection, the oysters were placed into a depuration tank and harvested after 48, 72 and 96 h. After sampling, various oyster tissues were dissected and homogenised and the viruses were eluted with alkaline conditions and precipitated with polyethylene glycol. The oyster samples were evaluated by cell culture methods, as well as polymerase chain reaction (PCR) and quantitative-PCR. Moreover, at the end of the depuration period, the disinfected seawater was collected and analysed by PCR. The molecular assays showed that the HAdV5 genome was present in all of the depuration time samples, while the HAV genome was undetectable after 72 h of depuration. However, viral viability tests (integrated cell culture-PCR and immunofluorescence assay) indicated that both viruses were inactivated with 96 h of seawater recirculation. In conclusion, after 96 h of UV treatment, the depuration system studied in this work purified oysters that were artificially contaminated with HAdV5 and HAV.
Collapse
Affiliation(s)
- Adriana de Abreu Corrêa
- Laboratório de Virologia Aplicada, Universidade Federal de Santa Catarina, Florianópolis, SC, Brasil
| | | | | | | | | | | | | | | |
Collapse
|
24
|
|
25
|
Grigorakis K, Rigos G. Aquaculture effects on environmental and public welfare - the case of Mediterranean mariculture. CHEMOSPHERE 2011; 85:899-919. [PMID: 21821276 DOI: 10.1016/j.chemosphere.2011.07.015] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 07/07/2011] [Accepted: 07/10/2011] [Indexed: 05/08/2023]
Abstract
Aquatic farming has been considered, during the last decades, as the fastest growing food production industry powered by governmental and technological impulsion. Compensation for fisheries decline, creation of new jobs and source of financial windfall are the most important benefits. However, similar to most of the human food-production activities, aquaculture raised several issues related to the environmental welfare and consumer safety. An effort to record the aquaculture-environment and -human safety interactions with regard to the Mediterranean mariculture, is attempted herein. We focused on this geographical area due to its individualities in both the hydrological and physicochemical characteristics and the forms of aquaculture activities. The cage farming of euryhaline marine fish species and more recently of bluefin tuna and mollusk farming are the dominating aquaculture activities. The impacts of these activities to the environment, through wastes offloads, introduction of alien species, genetic interactions, disease transfer, release of chemicals, use of wild recourses, alterations of coastal habitats and disturbance of wildlife, are analytically considered. Also the consumer safety issues related to the farming are assessed, including generation of antibiotic-resistant microorganisms, contaminants transferred to humans though food chain and other hazards from consumption of aquacultured items. Within these, the major literature findings are critically examined and suggestions for scientific areas that need further development are made. The major tasks for future aquaculture development in this region are: (i) to ensure sustainability and (ii) to balance the risks to public or environmental health with the substantial economical benefits. In regard with monitoring, tools must be created or adapted to predict the environmental costs and estimate consumer impact. At a canonistic and legal basis, the establishment of appropriate legal guidelines and common policies from all countries involved should be mandatory.
Collapse
Affiliation(s)
- K Grigorakis
- Laboratory of Fish Nutrition and Pathology, Institute of Aquaculture, Hellenic Centre for Marine Research (HCMR), Aghios Kosmas 16777, Athens, Greece
| | | |
Collapse
|
26
|
Abstract
The goal of this study was to determine how enteric viruses persist within shellfish tissues. Several lines of novel evidence show that phagocytic blood cells (hemocytes) of Eastern oysters (Crassostrea virginica) play an important role in the retention of virus particles. Our results demonstrated an association of virus contamination with hemocytes but not with hemolymph. Live oysters contaminated overnight with hepatitis A virus (HAV) and murine norovirus (MNV) had 56% and 80% of extractable virus associated with hemocytes, respectively. Transfer of HAV-contaminated hemocytes to naïve (virus-free) oysters resulted in naïve oyster meat testing HAV positive for up to 3 weeks. Acid tolerance of HAV, MNV, poliovirus (PV), and feline calicivirus (FCV) correlated with the ability of each virus to persist within oysters. Using reverse transcription-PCR (RT-PCR) to evaluate persistence of these viruses in oysters, we showed that HAV persisted the longest (>21 days) and was most acid resistant, MNV and PV were less tolerant of acidic pH, persisting for up to 12 days and 1 day, respectively, and FCV did not persist (<1 day) within oysters and was not acid tolerant. This suggests that the ability of a virus to tolerate the acidic conditions typical of phagolysosomal vesicles within hemocytes plays a role in determining virus persistence in shellfish. Evaluating oyster and hemocyte homogenates and live contaminated oysters as a prelude to developing improved viral RNA extraction methods, we found that viruses were extracted more expediently from hemocytes than from whole shellfish tissues and gave similar RT-PCR detection sensitivities.
Collapse
|
27
|
Scientific Opinion on an update on the present knowledge on the occurrence and control of foodborne viruses. EFSA J 2011; 9:2190. [PMID: 32313582 PMCID: PMC7163696 DOI: 10.2903/j.efsa.2011.2190] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
A review of the biology, epidemiology, diagnosis and public health importance of foodborne viruses was performed. Data needs to support a risk assessment were also identified. In addition possible control options and their anticipated impact to prevent or reduce the number of foodborne viral human infections were identified, including the scientific reasons for and against the establishment of food safety criteria and process hygiene criteria for viruses for certain food categories. Food may be contaminated by virus during all stages of the food supply chain, and transmission can occur by consumption of food contaminated during the production process (primary production, or during further processing), or contaminated by infected food handlers. Transmission of zoonotic viruses (e.g. HEV) can also occur by consumption of products of animal origin. Viruses do not multiply in foods, but may persist for extended periods of time as infectious particles in the environment, or in foods. At the EU-level it is unknown how much viral disease can be attributed to foodborne spread. The relative contribution of different sources (shellfish, fresh produce, food handler including asymptomatic shedders, food handling environment) to foodborne illness has not been determined. The Panel recommends focusing controls on preventive measures to avoid viral contamination rather than trying to remove/inactivate these viruses from food. Also, it is recommended to introduce a microbiological criteria for viruses in bivalve molluscs, unless they are labelled "to be cooked before consumption". The criteria could be used by food business operators to validate their control options. Furthermore, it is recommended to refine the regulatory standards and monitoring approaches in order to improve public health protection. Introduction of virus microbiological criteria for classification of bivalve molluscs production areas should be considered. A virus monitoring programme for compliance with these criteria should be risk based according to the findings of a sanitary survey.
Collapse
|
28
|
Mesquita JR, Vaz L, Cerqueira S, Castilho F, Santos R, Monteiro S, Manso CF, Romalde JL, Nascimento MSJ. Norovirus, hepatitis A virus and enterovirus presence in shellfish from high quality harvesting areas in Portugal. Food Microbiol 2011; 28:936-41. [PMID: 21569936 DOI: 10.1016/j.fm.2011.01.005] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2010] [Revised: 01/12/2011] [Accepted: 01/17/2011] [Indexed: 11/24/2022]
Abstract
This is the first report on the screening of shellfish from Portugal for the presence of human enteropathogenic viruses. Approximately 2000 shellfish (Curbicula fluminea, Ruditapes decussatus, Tellina crassa, Spisula solida, Dosinia exoleta, Ensis spp., Mytilus spp., Ostrea edulis and Cerastoderma edule), organized in 49 batches, were collected between March 2008 and February 2009. They were tested for norovirus (NoV), hepatitis A virus (HAV) and enterovirus (EV) by RT-PCR followed by nucleotide sequencing. Bacterial contamination was also evaluated by Escherichia coli counts. Viral contamination was detected throughout the year in all shellfish species and in all collection areas, independently of their harvesting areas classification. Overall, 67% of all analyzed batches were contaminated by at least one of the studied viruses while the simultaneous presence of two and three viruses was detected in 22% and 6% batches, respectively. Of the three viruses, NoV was detected in 37% of the batches, followed by EV in 35%, and HAV in 33%. Nucleotide sequencing of the NoV and HAV RT-PCR products demonstrated that all strains belonged to NoV genotype GII.4 and HAV subgenotype 1B. The presence of NoV and HAV in shellfish from "A class" harvesting areas of Portugal can represent a potential health risk.
Collapse
Affiliation(s)
- João R Mesquita
- Laboratório de Microbiologia, Faculdade de Farmácia, Universidade do Porto, Rua Aníbal Cunha 164, 4050-047 Porto, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Serracca L, Verani M, Battistini R, Rossini I, Carducci A, Ercolini C. Evaluation of Adenovirus andE. colias indicators for human enteric viruses presence in mussels produced in La Spezia Gulf (Italy). Lett Appl Microbiol 2010; 50:462-7. [DOI: 10.1111/j.1472-765x.2010.02820.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
30
|
McLeod C, Hay B, Grant C, Greening G, Day D. Inactivation and elimination of human enteric viruses by Pacific oysters. J Appl Microbiol 2009; 107:1809-18. [PMID: 19674189 DOI: 10.1111/j.1365-2672.2009.04373.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS To investigate the comparative elimination of three different human enterically transmitted viruses [i.e. hepatitis A virus (HAV), norovirus (NoV) and poliovirus (PV)] and inactivation of HAV and PV by Pacific oysters. METHODS AND RESULTS New Zealand grown Pacific oysters (Crassostrea gigas) were allowed to bioaccumulate HAV, NoV and PV. Samples of oyster gut, faeces and pseudofaeces were then analysed by using real-time RT-PCR to determine the amount of viral RNA and cell culture methods to identify changes in the number of plaque forming units. The results suggest that the majority of the PV present in the oyster gut and oyster faeces is noninfectious, while in contrast, most of the HAV detected in the oyster gut are infectious. Depuration experiments identified a large drop in the count of PV in the gut over a 23-h cleansing period, whereas the levels of HAV and NoV did not significantly decrease. CONCLUSIONS Human enterically transmitted viruses are eliminated and inactivated at different rates by Pacific oysters. SIGNIFICANCE AND IMPACT OF STUDY The research presented in this article has implications for risk management techniques that are used to improve the removal of infectious human enteric viruses from bivalve molluscs.
Collapse
Affiliation(s)
- C McLeod
- School of Biological Sciences, Victoria University of Wellington, Wellington, New Zealand
| | | | | | | | | |
Collapse
|
31
|
Baert L, Debevere J, Uyttendaele M. The efficacy of preservation methods to inactivate foodborne viruses. Int J Food Microbiol 2009; 131:83-94. [DOI: 10.1016/j.ijfoodmicro.2009.03.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Revised: 01/26/2009] [Accepted: 03/13/2009] [Indexed: 10/21/2022]
|
32
|
Kingsley DH, Chen H. Influence of pH, salt, and temperature on pressure inactivation of hepatitis A virus. Int J Food Microbiol 2009; 130:61-4. [DOI: 10.1016/j.ijfoodmicro.2009.01.004] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 01/04/2009] [Accepted: 01/05/2009] [Indexed: 11/26/2022]
|
33
|
Hepatitis viruses and emerging viruses. FOODBORNE PATHOGENS 2009. [PMCID: PMC7152215 DOI: 10.1533/9781845696337.3.891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
34
|
Abstract
Environmental virology started with the detection of poliovirus in water. Since then other enteric viruses responsible for gastroenteritis and hepatitis have replaced enteroviruses as the main target for detection. Most shellfish-borne viral outbreaks are restricted to norovirus and hepatitis A virus, making them the main targets for bivalve virological analysis. The inclusion of virus analysis in regulatory standards for viruses in molluscan bivalve samples must overcome several shortcomings such as the technical difficulties and high costs of virus monitoring, the lack of harmonised and standardised assays and the challenge posed by the ever-changing nature of viruses. Nowadays methods are available to detect, quantify and characterise viral pathogens in molluscan shellfish to reduce the risks of shellfish-borne virus diseases.
Collapse
|
35
|
Wang D, Wu Q, Yao L, Wei M, Kou X, Zhang J. New target tissue for food-borne virus detection in oysters. Lett Appl Microbiol 2008; 47:405-9. [DOI: 10.1111/j.1472-765x.2008.02445.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
36
|
Ueki Y, Shoji M, Suto A, Tanabe T, Okimura Y, Kikuchi Y, Saito N, Sano D, Omura T. Persistence of caliciviruses in artificially contaminated oysters during depuration. Appl Environ Microbiol 2007; 73:5698-701. [PMID: 17630304 PMCID: PMC2042073 DOI: 10.1128/aem.00290-07] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The fate of calicivirus in oysters in a 10-day depuration was assessed. The norovirus gene was persistently detected from artificially contaminated oysters during the depuration, whereas feline calicivirus in oysters was promptly eliminated. The prolonged observation of norovirus in oysters implies the existence of a selective retention mechanism for norovirus within oysters.
Collapse
Affiliation(s)
- You Ueki
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-06, Sendai 980-8579, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Kingsley DH. An RNA extraction protocol for shellfish-borne viruses. J Virol Methods 2007; 141:58-62. [PMID: 17184849 DOI: 10.1016/j.jviromet.2006.11.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2006] [Revised: 11/16/2006] [Accepted: 11/23/2006] [Indexed: 11/25/2022]
Abstract
The GPTT virus RNA extraction method, originally developed for extraction of human norovirus and hepatitis A virus RNAs from contaminated shellfish, was evaluated for extraction of RNA from Aichi virus strain A846/88 (AiV), coxsackievirus strains A9 (CAV9) and B5 (CBV5), murine norovirus (strain MNV-1), and the norovirus surrogate, feline calicivirus (FCV) strain KCD, for the purpose of RT-PCR detection within seeded oyster (Crassostrea virginica) extracts. The RT-PCR equivalent sensitivities observed within seeded oysters as compared to virus stocks were 0.68, 6.8, 26, 5.6, and 14.5 RT-PCR(50) units when assaying 10% of total RNA extracted from seeded oyster extracts for CAV9, CBV5, AiV, FCV, and MNV-1, respectively. For oysters exposed to virus-contaminated seawater, the detection equivalent sensitivities observed were 680, 68, 2600, 560, and 14.5 RT-PCR(50) for CAV9, CBV5, AiV and FCV, and MNV-1, respectively. These results indicate that the GPTT method can be used as a general viral RNA extraction method for multiple picornaviruses and caliciviruses that could potentially contaminate shellfish.
Collapse
Affiliation(s)
- David H Kingsley
- U.S. Department of Agriculture, Agricultural Research Service, Microbial Food Safety Research Unit, James W.W. Baker Center, Delaware State University, Dover, DE 19901, USA.
| |
Collapse
|
38
|
|
39
|
Kingsley DH, Holliman DR, Calci KR, Chen H, Flick GJ. Inactivation of a norovirus by high-pressure processing. Appl Environ Microbiol 2006; 73:581-5. [PMID: 17142353 PMCID: PMC1796966 DOI: 10.1128/aem.02117-06] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Murine norovirus (strain MNV-1), a propagable norovirus, was evaluated for susceptibility to high-pressure processing. Experiments with virus stocks in Dulbecco's modified Eagle medium demonstrated that at room temperature (20 degrees C) the virus was inactivated over a pressure range of 350 to 450 MPa, with a 5-min, 450-MPa treatment being sufficient to inactivate 6.85 log(10) PFU of MNV-1. The inactivation of MNV-1 was enhanced when pressure was applied at an initial temperature of 5 degrees C; a 5-min pressure treatment of 350 MPa at 30 degrees C inactivated 1.15 log(10) PFU of virus, while the same treatment at 5 degrees C resulted in a reduction of 5.56 log(10) PFU. Evaluation of virus inactivation as a function of treatment times ranging from 0 to 150 s and 0 to 900 s at 5 degrees C and 20 degrees C, respectively, indicated that a decreasing rate of inactivation with time was consistent with Weibull or log-logistic inactivation kinetics. The inactivation of MNV-1 directly within oyster tissues was demonstrated; a 5-min, 400-MPa treatment at 5 degrees C was sufficient to inactivate 4.05 log(10) PFU. This work is the first demonstration that norovirus can be inactivated by high pressure and suggests good prospects for inactivation of nonpropagable human norovirus strains in foods.
Collapse
Affiliation(s)
- David H Kingsley
- US Department of Agriculture, Agricultural Research Service, Microbial Food Safety Research Unit, James W. W. Baker Center, Delaware State University, Dover, DE 19901. USA.
| | | | | | | | | |
Collapse
|
40
|
Kingsley DH, Guan D, Hoover DG, Chen H. Inactivation of hepatitis A virus by high-pressure processing: the role of temperature and pressure oscillation. J Food Prot 2006; 69:2454-9. [PMID: 17066927 DOI: 10.4315/0362-028x-69.10.2454] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Inactivation of hepatitis A virus (HAV) in Dulbecco's modified Eagle medium with 10% fetal bovine serum was studied at pressures of 300, 350, and 400 MPa and initial sample temperatures of -10, 0, 5, 10, 20, 30, 40, and 50 degrees C. Sample temperature during pressure application strongly influenced the efficiency of HAV inactivation. Elevated temperature (> 30 degrees C) enhanced pressure inactivation of HAV, while lower temperatures resulted in less inactivation. For example, 1-min treatments of 400 MPa at -10, 20, and 50 degrees C reduced titers of HAV by 1.0, 2.5, and 4.7 log PFU/ml, respectively. Pressure inactivation curves of HAV were obtained at 400 MPa and three temperatures (-10, 20, and 50 degrees C). With increasing treatment time, all three temperatures showed a rapid initial drop in virus titer with a diminishing inactivation rate (or tailing effect). Analysis of inactivation data indicated that the Weibull model more adequately fitted the inactivation curves than the linear model. Oscillatory high-pressure processing for 2, 4, 6, and 8 cycles at 400 MPa and temperatures of 20 and 50 degrees C did not considerably enhance pressure inactivation of HAV as compared with continuous high-pressure application. These results indicate that HAV exhibits, unlike other viruses examined to date, a reduced sensitivity to high pressure observed at cooler treatment temperatures. This work suggested that slightly elevated temperatures are advantageous for pressure inactivation of HAV within foods.
Collapse
Affiliation(s)
- David H Kingsley
- U.S. Department of Agriculture, Agricultural Research Service, Microbial Food Safety Research Unit, James W. W. Baker Center, Delaware State University, Dover, Delaware 19901, USA
| | | | | | | |
Collapse
|
41
|
Hewitt J, Greening GE. Effect of heat treatment on hepatitis A virus and norovirus in New Zealand greenshell mussels (Perna canaliculus) by quantitative real-time reverse transcription PCR and cell culture. J Food Prot 2006; 69:2217-23. [PMID: 16995527 DOI: 10.4315/0362-028x-69.9.2217] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Quantitative real-time reverse transcription PCR (qRT-PCR) and cell culture (50% tissue culture infectious dose [TCID50]) were used to determine the effect of heat treatments on norovirus and hepatitis A virus (HAV) in the New Zealand Greenshell mussel (Perna canaliculus). Since it is common practice to cook mussels until the shells open, internal temperatures and opening times of mussels on boiling and steaming were determined at regular time intervals. Fifty mussels in batches of six were exposed to boiling and steaming. A mean internal temperature of 90 degrees C (recommended for virus inactivation when maintained for 90 s) was reached after boiling for 170 s, with all 50 mussels open at 210 s. For steaming, the mean internal temperature achieved was only 83 degrees C after 300 s, and all 50 mussels were open. When mussels were steamed for 180 s (mean internal temperature of 63 degrees C), a significant 1.5-log decrease in the HAV titer (log TCID50) was observed. Following the immersion of mussels in boiling water for 180 s (mean internal temperature of 92 degrees C), no viable HAV was detected. For both boiling and steaming experiments, there was no significant change in the norovirus or HAV qRT-PCR titers compared with the controls. Our results show that when New Zealand Greenshell mussels open on heating, their internal temperature may not reach the parameters required for virus inactivation. Immersion for a minimum of 3 min in boiling water rather than steaming is recommended to reduce the risk of viral foodborne illness from contaminated shellfish.
Collapse
Affiliation(s)
- Joanne Hewitt
- Communicable Disease Group, Institute of Environmental Science and Research Ltd., P.O. Box 50-348, Porirua, New Zealand
| | | |
Collapse
|
42
|
Sincero TCM, Levin DB, Simões CMO, Barardi CRM. Detection of hepatitis A virus (HAV) in oysters (Crassostrea gigas). WATER RESEARCH 2006; 40:895-902. [PMID: 16457870 DOI: 10.1016/j.watres.2005.12.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Revised: 12/02/2005] [Accepted: 12/06/2005] [Indexed: 05/06/2023]
Abstract
Because shellfish (oysters, clams, and mussels) are filter-feeders, pathogens become concentrated within them, and human consumption of raw, or under-cooked shellfish can result in disease outbreaks. Identification of hepatitis A virus (HAV) in shellfish has been difficult for several reasons: the concentration of virions in shellfish tissues are very low, detection methods based on in vitro propagation are unreliable, recovery of virions from shellfish tissues is inefficient, and PCR inhibitors in shellfish tissues limit the success of RT-PCR. These facts underlie difficulties in determining cause and effect relationships between hepatitis A outbreaks and detection of HAV contamination in shellfish samples. We have developed a reliable and highly sensitive method for detection of HAV in oyster tissues at low levels (0.001 FFU/ml-fluorescent focus units per milliliter). Our method combines dissection of the gastrointestinal oyster tract, organic extraction before PEG precipitation, and RNA extraction with Trizol LS, followed by RT-PCR and hybridization using a digoxigenin-labeled HAV cDNA probe. Our results will benefit both public health officials concerned about hepatitis A infections caused by consumption of HAV-contaminated oysters and shellfish producers who require reliable methods for quality control of commercial oyster production.
Collapse
Affiliation(s)
- T C M Sincero
- Laboratório de Virologia Aplicada, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, CEP 88040-900, Florianópolis, Santa Catarina, Brazil
| | | | | | | |
Collapse
|
43
|
|
44
|
Loisy F, Atmar RL, Le Saux JC, Cohen J, Caprais MP, Pommepuy M, Le Guyader FS. Use of rotavirus virus-like particles as surrogates to evaluate virus persistence in shellfish. Appl Environ Microbiol 2005; 71:6049-53. [PMID: 16204520 PMCID: PMC1265969 DOI: 10.1128/aem.71.10.6049-6053.2005] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Accepted: 05/25/2005] [Indexed: 11/20/2022] Open
Abstract
Rotavirus virus-like particles (VLPs) and MS2 bacteriophages were bioaccumulated in bivalve mollusks to evaluate viral persistence in shellfish during depuration and relaying under natural conditions. Using this nonpathogenic surrogate virus, we were able to demonstrate that about 1 log10 of VLPs was depurated after 1 week in warm seawater (22 degrees C). Phage MS2 was depurated more rapidly (about 2 log10 in 1 week) than were VLPs, as determined using a single-compartment model and linear regression analysis. After being relayed in the estuary under the influence of the tides, VLPs were detected in oysters for up to 82 days following seeding with high levels of VLPs (concentration range between 10(10) and 10(9) particles per g of pancreatic tissue) and for 37 days for lower contamination levels (10(5) particles per g of pancreatic tissue). These data suggest that viral particles may persist in shellfish tissues for several weeks.
Collapse
Affiliation(s)
- Fabienne Loisy
- Laboratoire de Microbiologie, IFREMER, BP 21 105, 44 311 Nantes cedex 03, France
| | | | | | | | | | | | | |
Collapse
|
45
|
Calci KR, Meade GK, Tezloff RC, Kingsley DH. High-pressure inactivation of hepatitis A virus within oysters. Appl Environ Microbiol 2005; 71:339-43. [PMID: 15640207 PMCID: PMC544230 DOI: 10.1128/aem.71.1.339-343.2005] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2004] [Accepted: 08/23/2004] [Indexed: 11/20/2022] Open
Abstract
Previous results demonstrated that hepatitis A virus (HAV) could be inactivated by high hydrostatic pressure (HHP) (D. H. Kingsley, D. Hoover, E. Papafragkou, and G. P. Richards, J. Food Prot. 65:1605-1609, 2002); however, direct evaluation of HAV inactivation within contaminated oysters was not performed. In this study, we report confirmation that HAV within contaminated shellfish is inactivated by HHP. Shellfish were initially contaminated with HAV by using a flowthrough system. PFU reductions of >1, >2, and >3 log(10) were observed for 1-min treatments at 350, 375, and 400 megapascals, respectively, within a temperature range of 8.7 to 10.3 degrees C. Bioconcentration of nearly 6 log(10) PFU of HAV per oyster was achieved under simulated natural conditions. These results suggest that HHP treatment of raw shellfish will be a viable strategy for the reduction of infectious HAV.
Collapse
Affiliation(s)
- Kevin R Calci
- Gulf Coast Seafood Laboratory, U.S Food and Drug Administration, Dauphin Island, Alabama, USA
| | | | | | | |
Collapse
|