1
|
Yoon Y, Seo YS, Cho M. Assessment of elimination efficacy on foodborne pathogenic microbes and foulant precipitates using phytic acid and sulfamic acid. CHEMOSPHERE 2024; 362:142706. [PMID: 38936490 DOI: 10.1016/j.chemosphere.2024.142706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
This research investigated the comparative efficacy of sulfamic acid (SA) and phytic acid (PA), both individually and in combination, for treating potential foodborne pathogens and pre-formed foulants. Pathogens studied included Listeria monocytogenes, E. coli DH5α, Salmonella typhimurium, Staphylococcus aureus, and vegetative Bacillus cereus, in suspended aqueous solutions, as well as Pseudomonas aeruginosa biofilm on quartz glass surfaces. Inactivation kinetics for Listeria monocytogenes revealed concentration-dependent rate constants (k) of 6.6(±0.2) × 10-6 M and 2.8(±0.1) × 10-8 M for single treatments of SA and PA, respectively, and ranged from 6.9(±0.3) to 50.7(±2.3) × 10-6 M for combined treatments with PA pre-treatment concentrations of 75-758 μM. Observable cellular abnormalities in Listeria monocytogenes, such as membrane vesiculation, chelation, cellular disruption, biomolecule leakage, and lipid peroxidation, were identified after exposure to PA or SA, either individually or in combination. The optimized combined treatment of PA and SA achieved significant removal (i.e., >3-log; 99.9%) of potential foodborne pathogens under simulated food-washing process conditions. Additionally, over 90% descaling efficacy was observed for pre-formed foulants such as CaCO3 precipitates and Pseudomonas aeruginosa biofilm on quartz glass surfaces with the combined treatment. These findings provide novel insights into the versatile utility of PA and SA for optimizing combinational water disinfection systems and addressing (in)organic foulant scaling on surfaces in the food processing industry.
Collapse
Affiliation(s)
- Younggun Yoon
- GwangJu Institute, 55, Jingoksandanjungang-ro, Gwangsan-gu, Gwangju, 62465, Republic of Korea; Division of Biotechnology, SELS Center, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk, 54596, Republic of Korea.
| | - Young-Seok Seo
- R&D Center, Sanigen Co, Ltd., Iksan, 54576, Republic of Korea
| | - Min Cho
- Division of Biotechnology, SELS Center, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk, 54596, Republic of Korea.
| |
Collapse
|
2
|
Fan X, Gurtler JB, Mattheis JP. Possible sources of Listeria monocytogenes contamination of fresh-cut apples and antimicrobial interventions during antibrowning treatments: a review. J Food Prot 2023; 86:100100. [PMID: 37150354 DOI: 10.1016/j.jfp.2023.100100] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/12/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
Fresh-cut apples, being rich in antioxidants and other nutrients, have emerged as popular snacks in restaurants, at home and in school lunch programs, partially due to freshness, convenience, and portion size availability. Two major challenges in processing fresh-cut apples are browning of cut surfaces and contamination with human pathogens. Regarding human pathogens, contamination by Listeria monocytogenes is a major concern, as evidenced by two recent outbreaks of whole apples and numerous recalls of fresh-cut apples. Antibrowning agents currently used by the industry have little to no antimicrobial properties. The present review discusses possible origins of L. monocytogenes in fresh-cut apples, including contaminated whole apples, and contamination via the processing environment and the equipment in fresh-cut facilities. Treatment with antibrowning solutions could be an opportunity for Listeria contamination and represents the last chance to inactivate pathogens. The discussion is focused on the antibrowning treatments where formulations and coatings with antibrowning and antimicrobial properties have been developed and evaluated against Listeria and other microorganisms. In addition, several research needs and considerations are discussed to further reduce the chance of pathogen contamination on fresh-cut apples.
Collapse
Affiliation(s)
- Xuetong Fan
- U. S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 E. Mermaid Lane, Wyndmoor, PA 19038, USA.
| | - Joshua B Gurtler
- U. S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 E. Mermaid Lane, Wyndmoor, PA 19038, USA
| | - James P Mattheis
- U. S. Department of Agriculture, Agricultural Research Service, Tree Fruit Research Laboratory, 1104 N. Western Avenue, Wenatchee, WA 98801
| |
Collapse
|
3
|
Castellano P, Melian C, Burgos C, Vignolo G. Bioprotective cultures and bacteriocins as food preservatives. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023; 106:275-315. [PMID: 37722775 DOI: 10.1016/bs.afnr.2023.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Food preservation technologies face the challenge of extending product shelf life applying different factors to prevent the microbiological spoilage of food and inhibit/inactivate food borne pathogens maintaining or even enhancing its quality. One such preservation strategy is the application of bacteriocins or bacteriocin-producer cultures as a kind of food biopreservation. Bacteriocins are ribosomally synthesized small polypeptide molecules that exert antagonistic activity against closely related and unrelated bacteria without harming the producing strain by specific immunity proteins. This chapter aims to contribute to current knowledge about innovative natural preservative agents and their application in the food industry. Specifically, its purpose is to analyze the classification of bacteriocins from lactic acid bacteria (LAB), desirable characteristics of bacteriocins that position them in a privileged place in food biopreservation technology, their success story as well as the bacteriocinogenic LAB in various food systems. Finally, challenges and barrier strategies used to enhance the efficiency of the bacteriocins antimicrobial effect are presented in this chapter.
Collapse
Affiliation(s)
- Patricia Castellano
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Tucumán, Argentina.
| | - Constanza Melian
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Tucumán, Argentina
| | - Carla Burgos
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Tucumán, Argentina
| | - Graciela Vignolo
- Centro de Referencia para Lactobacilos (CERELA-CONICET), Tucumán, Argentina
| |
Collapse
|
4
|
Beneficial features of pediococcus: from starter cultures and inhibitory activities to probiotic benefits. World J Microbiol Biotechnol 2023; 39:4. [PMID: 36344843 PMCID: PMC9640849 DOI: 10.1007/s11274-022-03419-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Accepted: 09/18/2022] [Indexed: 11/09/2022]
Abstract
Pediococci are lactic acid bacteria (LAB) which have been used for centuries in the production of traditional fermented foods. There fermentative abilities were explored by the modern food processing industry in use of pediococci as starter cultures, enabling the production of fermented foods with distinct characteristics. Furthermore, some pediococci strains can produce bacteriocins and other antimicrobial metabolites (AMM), such as pediocins, which are increasingly being explored as bio-preservatives in various food matrices. Due to their versatility and inhibitory spectrum, pediococci bacteriocins and AMM are being extensively researched not only in the food industry, but also in veterinary and human medicine. Some of the pediococci were evaluated as potential probiotics with different beneficial areas of application associated with human and other animals' health. The main taxonomic characteristics of pediococci species are presented here, as well as and their potential roles and applications as starter cultures, as bio-preservatives and as probiotic candidates.
Collapse
|
5
|
Jayasekara LACB, Poonsawad A, Watchaputi K, Wattanachaisaereekul S, Soontorngun N. Media optimization of antimicrobial activity production and beta-glucan content of endophytic fungi Xylaria sp. BCC 1067. BIOTECHNOLOGY REPORTS 2022; 35:e00742. [PMID: 35677324 PMCID: PMC9168064 DOI: 10.1016/j.btre.2022.e00742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/14/2022] [Accepted: 05/26/2022] [Indexed: 11/28/2022]
Abstract
Xylaria is an untapped resource for natural product discovery. Xylaria mycelial extract contains antimicrobials and immunomodulator beta-glucan. Achieved high mycelial biomass and antifungal activity using media-type selection. Media replacement approach lowers cultivation time and enhances bioactivity. Additive effect of mycelial extract and salicylic or citric acid against P. acne.
Fungi is a notable asset for drug discovery and production of pharmaceuticals; however, slow growth and poor product yields have hindered industrial utilization. Here, the mycelial biomass of Xylaria sp. BCC 1067 was examined in parallel with the assessment of antimicrobial properties by using media-type selection. To enhance both mycelial content and antifungal activity, the media replacement approach was successfully applied to stimulate fungal growth and successively switched to poorer malt-peptone extract media for metabolite production. This simple optimization reduced fungal cultivation time by 7 days and yielded 4-fold increased mycelial mass (32.59 g/L), with approximately 3-fold increased antifungal activity against the model yeast Saccharomyces cerevisiae strain. A high level of β-glucan (115.84 mg/g of cell dry weight) and additive antibacterial effect against Propionibacterium acnes were also reported. This simple strategy of culture media optimization allows for investigation of novel and rich source of health-promoting substances for effective microbial utilization.
Collapse
Affiliation(s)
- L. A. Channa Bhathiya Jayasekara
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, 10150, Thailand
| | - Attaporn Poonsawad
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, 10150, Thailand
| | - Kwanrutai Watchaputi
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, 10150, Thailand
| | | | - Nitnipa Soontorngun
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi (KMUTT), Bangkok, 10150, Thailand
- Corresponding author.
| |
Collapse
|
6
|
Non-Thermal Technologies Combined with Antimicrobial Peptides as Methods for Microbial Inactivation: A Review. Processes (Basel) 2022. [DOI: 10.3390/pr10050995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Non-thermal technologies allow for the nutritional and sensory properties of foods to be preserved, something that consumers demand. Combining their use with antimicrobial peptides (AMPs) provides potential methods for food preservation that could have advantages over the use of chemical preservatives and thermal technologies. The aim of this review was to discuss the advances in the application of non-thermal technologies in combination with AMPs as a method for microbial inactivation. Published papers reporting studies on the combined use of power ultrasound (US), pulsed electrical fields (PEF), and high hydrostatic pressure (HHP) with AMPs were reviewed. All three technologies show a possibility of being combined with AMPs, generally demonstrating higher efficiency than the application of US, PEF, HHP, and AMPs separately. The most studied AMP used in combination with the three technologies was nisin, probably due to the fact that it is already officially regulated. However, the combination of these non-thermal technologies with other AMPs also shows promising results for microbial inactivation, as does the combination of AMPs with other novel non-thermal technologies. The effectiveness of the combined treatment depends on several factors; in particular, the characteristics of the food matrix, the conditions of the non-thermal treatment, and the conditions of AMP application.
Collapse
|
7
|
Yap PG, Lai ZW, Tan JS. Bacteriocins from lactic acid bacteria: purification strategies and applications in food and medical industries: a review. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2022. [DOI: 10.1186/s43088-022-00227-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Abstract
Background
Bacteriocins are generally defined as ribosomally synthesized peptides, which are produced by lactic acid bacteria (LAB) that affect the growth of related or unrelated microorganisms. Conventionally, the extracted bacteriocins are purified by precipitation, where ammonium sulphate is added to precipitate out the protein from the solution.
Main text
To achieve the high purity of bacteriocins, a combination with chromatography is used where the hydrophobicity and cationic properties of bacteriocins are employed. The complexity column inside the chromatography can afford to resolve the loss of bacteriocins during the ammonium sulphate precipitation. Recently, an aqueous two-phase system (ATPS) has been widely used in bacteriocins purification due to the several advantages of its operational simplicity, mild process conditions and versatility. It reduces the operation steps and processing time yet provides high recovery products which provide alternative ways to conventional methods in downstream processing. Bacteriocins are widely approached in the food and medical industry. In food application, nisin, which is produced by Lactococcus lactis subsp. has been introduced as food preservative due to its natural, toxicology safe and effective against the gram-positive bacteria. Besides, bacteriocins provide a board range in medical industries where they are used as antibiotics and probiotics.
Short conclusion
In summary, this review focuses on the downstream separation of bacteriocins from various sources using both conventional and recent ATPS techniques. Finally, recommendations for future interesting areas of research that need to be pursued are highlighted.
Collapse
|
8
|
Applications of Essential Oils as Antibacterial Agents in Minimally Processed Fruits and Vegetables—A Review. Microorganisms 2022; 10:microorganisms10040760. [PMID: 35456810 PMCID: PMC9032070 DOI: 10.3390/microorganisms10040760] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Microbial foodborne diseases are a major health concern. In this regard, one of the major risk factors is related to consumer preferences for “ready-to-eat” or minimally processed (MP) fruits and vegetables. Essential oil (EO) is a viable alternative used to reduce pathogenic bacteria and increase the shelf-life of MP foods, due to the health risks associated with food chlorine. Indeed, there has been increased interest in using EO in fresh produce. However, more information about EO applications in MP foods is necessary. For instance, although in vitro tests have defined EO as a valuable antimicrobial agent, its practical use in MP foods can be hampered by unrealistic concentrations, as most studies focus on growth reductions instead of bactericidal activity, which, in the case of MP foods, is of utmost importance. The present review focuses on the effects of EO in MP food pathogens, including the more realistic applications. Overall, due to this type of information, EO could be better regarded as an “added value” to the food industry.
Collapse
|
9
|
To HTA, Chhetri V, Settachaimongkon S, Prakitchaiwattana C. Stress tolerance-Bacillus with a wide spectrum bacteriocin as an alternative approach for food bio-protective culture production. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108598] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
10
|
Garcia A, Bonilla F, Villasmil E, Reyes V, Sathivel S. Antilisterial activity of freeze-dried bacteriocin-containing powders produced by lactic acid bacteria against Listeria innocua NRRL B-33016 on cantaloupe (Cucumis melo) surface. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
11
|
Darbandi A, Asadi A, Mahdizade Ari M, Ohadi E, Talebi M, Halaj Zadeh M, Darb Emamie A, Ghanavati R, Kakanj M. Bacteriocins: Properties and potential use as antimicrobials. J Clin Lab Anal 2021; 36:e24093. [PMID: 34851542 PMCID: PMC8761470 DOI: 10.1002/jcla.24093] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/03/2021] [Accepted: 10/24/2021] [Indexed: 12/12/2022] Open
Abstract
A variety of bacteriocins originate from lactic acid bacteria, which have recently been modified by scientists. Many strains of lactic acid bacteria related to food groups could produce bacteriocins or antibacterial proteins highly effective against foodborne pathogens such as Staphylococcus aureus, Pseudomonas fluorescens, P. aeruginosa, Salmonella typhi, Shigella flexneri, Listeria monocytogenes, Escherichia coli O157:H7, and Clostridium botulinum. A wide range of bacteria belonging primarily to the genera Bifidobacterium and Lactobacillus have been characterized with different health‐promoting attributes. Extensive studies and in‐depth understanding of these antimicrobials mechanisms of action could enable scientists to determine their production in specific probiotic lactic acid bacteria, as they are potentially crucial for the final preservation of functional foods or for medicinal applications. In this review study, the structure, classification, mode of operation, safety, and antibacterial properties of bacteriocins as well as their effect on foodborne pathogens and antibiotic‐resistant bacteria were extensively studied.
Collapse
Affiliation(s)
- Atieh Darbandi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Arezoo Asadi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Marzieh Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Elnaz Ohadi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Malihe Talebi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Masoume Halaj Zadeh
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.,Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Darb Emamie
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Maryam Kakanj
- Food and Drug Laboratory Research Center, Food and Drug Administration, MOH&ME, Tehran, Iran
| |
Collapse
|
12
|
Yi L, Zeng P, Wong KY, Chan KF, Chen S. Controlling Listeria monocytogenes in ready-to-eat leafy greens by amphipathic α-helix peptide zp80 and its antimicrobial mechanisms. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
13
|
Khorshidian N, Khanniri E, Mohammadi M, Mortazavian AM, Yousefi M. Antibacterial Activity of Pediocin and Pediocin-Producing Bacteria Against Listeria monocytogenes in Meat Products. Front Microbiol 2021; 12:709959. [PMID: 34603234 PMCID: PMC8486284 DOI: 10.3389/fmicb.2021.709959] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/23/2021] [Indexed: 02/05/2023] Open
Abstract
One of the most important challenges in the food industry is to produce healthy and safe food products, and this could be achieved through various processes as well as the use of different additives, especially chemical preservatives. However, consumer awareness and concern about chemical preservatives have led researchers to focus on the use of natural antimicrobial compounds such as bacteriocins. Pediocins, which belong to subclass IIa of bacteriocin characterized as small unmodified peptides with a low molecular weight (2.7-17 kDa), are produced by some of the Pediococcus bacteria. Pediocin and pediocin-like bacteriocins exert a broad spectrum of antimicrobial activity against Gram-positive bacteria, especially against pathogenic bacteria, such as Listeria monocytogenes through formation of pores in the cytoplasmic membrane and cell membrane dysfunction. Pediocins are sensitive to most protease enzymes such as papain, pepsin, and trypsin; however, they keep their antimicrobial activity during heat treatment, at low temperatures even at -80°C, and after treatment with lipase, lysozyme, phospholipase C, DNase, or RNase. Due to the anti-listeria activity of pediocin on the one hand and the potential health hazards associated with consumption of meat products on the other hand, this review aimed to investigate the possible application of pediocin in preservation of meat and meat products against L. monocytogenes.
Collapse
Affiliation(s)
- Nasim Khorshidian
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Khanniri
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehrdad Mohammadi
- Department of Food Technology Research, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amir M. Mortazavian
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojtaba Yousefi
- Food Safety Research Center (Salt), Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
14
|
Demir Özer E. The effects of propolis and nisin on
Listeria monocytogenes
in contaminated ice cream. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.14598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Ezgi Demir Özer
- Department of Gastronomy and Culinary Arts School of Applied Sciences Cappadocia University Uçhisar, Nevşehir Turkey
| |
Collapse
|
15
|
Bloot APM, Kalschne DL, Amaral JAS, Baraldi IJ, Canan C. A Review of Phytic Acid Sources, Obtention, and Applications. FOOD REVIEWS INTERNATIONAL 2021. [DOI: 10.1080/87559129.2021.1906697] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Ana Paula Marinho Bloot
- Departamento de Alimentos, Universidade Tecnológica Federal do Paraná, Medianeira, Paraná, Brazil
| | - Daneysa Lahis Kalschne
- Departamento de Alimentos, Universidade Tecnológica Federal do Paraná, Medianeira, Paraná, Brazil
| | - Joana Andrêa Soares Amaral
- Centro de Investigacão de Montanha, Instituto Politecnico de Bragança, Campus de Santa Apolonia, Bragança, Portugal
- REQUIMTE-LAQV, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| | - Ilton José Baraldi
- Departamento de Alimentos, Universidade Tecnológica Federal do Paraná, Medianeira, Paraná, Brazil
| | - Cristiane Canan
- Departamento de Alimentos, Universidade Tecnológica Federal do Paraná, Medianeira, Paraná, Brazil
| |
Collapse
|
16
|
Giannakourou MC, Tsironi TN. Application of Processing and Packaging Hurdles for Fresh-Cut Fruits and Vegetables Preservation. Foods 2021; 10:830. [PMID: 33920447 PMCID: PMC8068883 DOI: 10.3390/foods10040830] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 12/15/2022] Open
Abstract
Recently, consumers' demand for fresh, nutritious, and convenient food has shown a significant rise. This trend has forced increased sales of minimally processed and/or pre-packed fruit- and vegetable-based products. New product development and the diversification of plant-based foods have supported this growth. The food production sector should balance this requirement with the necessity to provide safe food with extended shelf life while meeting consumer demands for novel, nutritious, and affordable food products. The use of alternative "soft hurdles" may result in a decrease in the rate of food deterioration and spoilage attributed to microbial activity or other physiological/chemical degradation reactions. The objective of the article is to provide a systematic review of the preservative effect of the available hurdles implemented during processing and packaging of fresh-cut fruits and vegetables, focusing on recent applications aiming at improving product quality and prolonging their limited shelf life.
Collapse
Affiliation(s)
- Maria C. Giannakourou
- Laboratory of Chemistry, Analysis & Design of Food Processes, Department of Food Science and Technology, School of Food Sciences, University of West Attica, Agiou Spyridonos, 12243 Athens, Greece;
| | - Theofania N. Tsironi
- Laboratory of Food Process Engineering, Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| |
Collapse
|
17
|
Seo YS, Lee G, Song S, Kim K, Cho M. Combinatorial treatment using citric acid, malic acid, and phytic acid for synergistical inactivation of foodborne pathogenic bacteria. KOREAN J CHEM ENG 2021. [DOI: 10.1007/s11814-021-0751-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
18
|
Antimicrobial Cocktail Combining Specific Peptide Extracts from Native Probiotic Bacteria Hamper Adulteration of Ready-to-Eat Mango Wedges. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11052246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Consumption of ready-to-eat chopped fruits sold in the streets is a concern, as such activities are outside the regulation and protection in most developing countries. Ready-to-eat mangos are commonly sold as wedges in plastic cups at ambient temperature by mobile vendors in Ecuador, thus they are prone to contamination by bacteria, which poses a safety issue of concern. This work aimed to evaluate the effect of several antimicrobial cocktails consisting of previously designed specific peptide extract combinations from two probiotic bacteria Lactobacillus plantarum UTNCys5-4 and Lactococcus lactis subsp. lactis UTNGt28, along with nisin, a commercial food additive, on mango wedges artificially inoculated with a logarithmic phase culture of a five-strain bacterial mixture (FSBM). Preliminary bacteriological analysis of mango wedges purchased from mobile vendors showed the presence of multiple antibiotic-resistant isolates such E. coli spp., Enterobacter spp., Shigella spp., Salmonella spp., along with yeasts and molds, indicating non-compliance with the food safety standards. The results revealed that two antimicrobial cocktails, T2 and T5, containing cell-free supernatant based (CFS) and precipitated peptides (PP) based cocktails from UTNCys5-4 and UTNGt28 strains applied at dose 1:3 (v/v), were the most efficient combinations that inhibited the colonization of total bacterial counts with 56.03% and 55.61% in mango wedges stored with refrigeration. The reduction of total E. coli counts was 64.93%, while Salmonella and Shigella counts were reduced by 98.09% and 97.93%, respectively, when mango wedges were treated with T5-cocktail. The commercial nisin inhibited total Salmonella spp. counts by 40.13%, while E. coli spp. and Shigella spp. diminished by 28.20% and 37.22%, respectively. Moreover, we showed that T5 but not T7 (nisin) damaged the target cell integrity, thereby eventually inhibiting their growth and reproduction. The selected antimicrobial cocktails exerted a bacteriolytic effect by killing the FSBM simultaneously in a fruit matrix and preventing their accumulation in mango wedges. Furthermore, there is a possibility of using peptide combinatorial treatments to combat drug-resistant bacteria in ready-to-eat fruits.
Collapse
|
19
|
Bhullar MS, Monge-Brenes A, Perry B, Overdiep J, Nabwiire L, Shaw A. Determining the Potential Food Safety Risks Associated with Dropped Produce on Floor Surfaces in Grocery Stores. J Food Prot 2021; 84:315-320. [PMID: 33003201 DOI: 10.4315/jfp-20-136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 09/30/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT Grocery stores handle fresh produce in large quantities daily. According to the Food and Drug Administration Food Code, food is to be stored at least 15 cm above the floor, and all foods shall be protected from any source of contamination or otherwise discarded. It is reported in the literature that dropped produce could be a potential source of microbial contamination. Both consumers and employees often drop produce on the floor and then place it back into a display case or bin, which could potentially serve as a source of contamination. This study aims to determine the bacterial transfer rate on different produce types when dropped for various contact times onto floor surfaces contaminated with Listeria monocytogenes. Apples, peaches, and romaine lettuce were dropped separately onto carpet and tile surfaces from a distance of 1 m and held for 5 s, 1 min, 10 min, 1 h, and 4 h. Results showed that transfer from all produce types occurred from both the carpet (10.56%) and tile (3.65%) surfaces. Still, percent transfer was not statistically significant among different times used in this study (P > 0.05). Dropped romaine lettuce had the most transfer (28.97%) from both the surfaces combined, followed by apples (8.80%) and peaches (7.32%) with minimal transfer. Even with a low transfer level, grocery stores should include signage to alert consumers not to pick up dropped produce and should train their employees accordingly. HIGHLIGHTS
Collapse
Affiliation(s)
- Manreet Singh Bhullar
- Department of Horticulture and Natural Resources, Kansas State University, Olathe, Kansas 66061 (ORCID: https://orcid.org/0000-0001-8065-1783)
| | - Ana Monge-Brenes
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa 50011, USA
| | - Bridget Perry
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa 50011, USA
| | - Jacques Overdiep
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa 50011, USA
| | - Lillian Nabwiire
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa 50011, USA
| | - Angela Shaw
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
20
|
Amin MN, Gulandaz MA, Sabuz AA, Islam MN, Miaruddin M, Uddin MA, Mamun MAA, Bari ML. Use of non‐chlorine sanitizer and low‐cost packages enhancing microbial safety and quality of commercial cold‐stored carrots. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Md. Nurul Amin
- Farm Machinery and Postharvest Process Engineering Division Bangladesh Agricultural Research Institute Gazipur‐1701 Bangladesh
| | - Md. Ashrafuzzaman Gulandaz
- Farm Machinery and Postharvest Process Engineering Division Bangladesh Agricultural Research Institute Gazipur‐1701 Bangladesh
| | - Ashfak Ahmed Sabuz
- Postharvest Technology Division Bangladesh Agricultural Research Institute Gazipur‐1701 Bangladesh
| | - Md. Nazrul Islam
- Plant Physiology Division Bangladesh Agricultural Research Institute Gazipur‐1701 Bangladesh
| | - Md. Miaruddin
- Postharvest Technology Division Bangladesh Agricultural Research Institute Gazipur‐1701 Bangladesh
| | - Md. Alim Uddin
- Fruit Research Station Bangladesh Agricultural Research Institute (BARI) Rajshahi Bangladesh
| | - Md. Arafat Al Mamun
- Centre for Advanced Research in Sciences (CARS) University of Dhaka Dhaka Bangladesh
| | - Md. Latiful Bari
- Centre for Advanced Research in Sciences (CARS) University of Dhaka Dhaka Bangladesh
| |
Collapse
|
21
|
Settier-Ramírez L, López-Carballo G, Gavara R, Hernández-Muñoz P. Broadening the antimicrobial spectrum of nisin-producing Lactococcus lactis subsp. Lactis to Gram-negative bacteria by means of active packaging. Int J Food Microbiol 2020; 339:109007. [PMID: 33341684 DOI: 10.1016/j.ijfoodmicro.2020.109007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 10/27/2020] [Accepted: 11/25/2020] [Indexed: 01/10/2023]
Abstract
Cast films obtained from polyvinyl alcohol (PVOH) blended with casein hydrolysates (HCas) in a weight ratio of 1:1 were employed to carry nisin-producing L. lactis and phytic acid in order to broaden the antimicrobial spectrum of L. lactis to Gram-positive and Gram-negative spoilage and pathogen bacteria. For this purpose, the effect of the antimicrobial activity of various film formulations and combinations of films on the growth of E. coli at 37 °C for 24 h was studied. The film system that showed antimicrobial activity against Gram-negative bacteria consisted of phytic acid and L. lactis incorporated in separate films. When the active agents were in the same film the viability of L. lactis decreased considerably and it did not exert antimicrobial activity against the bacterium. Therefore, the combination of L. lactis and phytic acid in separate films was chosen as the reliable system, and the effect of its activity on the growth of Gram-negative bacteria (E. coli, Salmonella enterica, and Pseudomonas fluorescens) and Gram-positive bacteria (Listeria monocytogenes) in liquid culture medium was tested at refrigeration temperature (4 °C), and with simulated breaks in the cold chain (14 °C and 24 °C). The survival of L. lactis in coexistence with these bacteria was also studied. The film system exerted an antimicrobial effect against the Gram-negative bacteria tested, and the activity depended on the bacteria and the temperature assayed. With regard to the antimicrobial activity against L. monocytogenes, phytic acid improved the antimicrobial capacity of L.lactis. The survival of L. lactis was maintained at 7-8 log (CFU/mL) culture in liquid medium throughout the storage period. The films developed were intended to be used as coatings in the design of a double-sided active bag for a non-fermented dairy product. The bags were filled with homemade preservative-free pastry cream, and the microbiological shelf life and evolution of pH of the packaged ready-to-eat food stored at 4 °C was studied for 20 days. The results showed a reduction in the growth of spoilage bacteria and therefore an increase in the shelf life of the packaged product. The films developed could be applied in the design of packages for perishable dairy foods in order to increase their microbiological shelf life.
Collapse
Affiliation(s)
- Laura Settier-Ramírez
- Packaging Lab, Instituto de Agroquímica y Tecnología de Alimentos, IATA-CSIC, Av. Agustín Escardino 7, 46980 Paterna, Spain
| | - Gracia López-Carballo
- Packaging Lab, Instituto de Agroquímica y Tecnología de Alimentos, IATA-CSIC, Av. Agustín Escardino 7, 46980 Paterna, Spain
| | - Rafael Gavara
- Packaging Lab, Instituto de Agroquímica y Tecnología de Alimentos, IATA-CSIC, Av. Agustín Escardino 7, 46980 Paterna, Spain
| | - Pilar Hernández-Muñoz
- Packaging Lab, Instituto de Agroquímica y Tecnología de Alimentos, IATA-CSIC, Av. Agustín Escardino 7, 46980 Paterna, Spain.
| |
Collapse
|
22
|
Sun X, Jin X, Fu N, Chen X. Effects of different pretreatment methods on the drying characteristics and quality of potatoes. Food Sci Nutr 2020; 8:5767-5775. [PMID: 33282229 PMCID: PMC7684612 DOI: 10.1002/fsn3.1579] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 03/12/2020] [Accepted: 03/27/2020] [Indexed: 11/06/2022] Open
Abstract
The effects of different pretreatments on the vitamin C content of peeled fresh potato, the drying characteristics, and several quality attributes of dehydrated potatoes were investigated. Citric acid pretreatment (0.1%-0.3%, 10-30 min), steam blanching (100ºC, 1-2 min), and water blanching (95°C, 1-2 min) were found to have no obvious effect on the drying rate of potatoes, whereas temperature was the main influencing factor. In terms of quality of dehydrated diced potato, 20 min of citric acid pretreatment resulted in the highest vitamin C retention and better color. Furthermore, dehydrated potato pretreated with citric acid all showed similar dynamic moisture adsorption curves, namely type II sorption isotherm. The moisture adsorption curves can be well fitted using the Guggenheim-Anderson-deBoer model with R 2 higher than .97.
Collapse
Affiliation(s)
- Xiangfeng Sun
- Suzhou Key Laboratory of Green Chemical EngineeringSchool of Chemical and Environment EngineeringCollege of Chemistry, Chemical Engineering and Materials ScienceSoochow universitySuzhouChina
| | - Xin Jin
- Suzhou Key Laboratory of Green Chemical EngineeringSchool of Chemical and Environment EngineeringCollege of Chemistry, Chemical Engineering and Materials ScienceSoochow universitySuzhouChina
| | - Nan Fu
- Suzhou Key Laboratory of Green Chemical EngineeringSchool of Chemical and Environment EngineeringCollege of Chemistry, Chemical Engineering and Materials ScienceSoochow universitySuzhouChina
| | - Xiaodong Chen
- Suzhou Key Laboratory of Green Chemical EngineeringSchool of Chemical and Environment EngineeringCollege of Chemistry, Chemical Engineering and Materials ScienceSoochow universitySuzhouChina
| |
Collapse
|
23
|
Wang Y, Wang J, Bai D, Wei Y, Sun J, Luo Y, Zhao J, Liu Y, Wang Q. Synergistic inhibition mechanism of pediocin PA-1 and L-lactic acid against Aeromonas hydrophila. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183346. [PMID: 32428447 DOI: 10.1016/j.bbamem.2020.183346] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/20/2020] [Accepted: 05/07/2020] [Indexed: 01/06/2023]
Abstract
Pediocin PA-1 (PA-1) is a membrane-targeting bacteriocin from lactic acid bacteria, which shows antimicrobial activity against a wide range of Gram-positive pathogens. However, the outer membrane of Gram-negative bacteria does not allow pediocin access to its target. In this work, the synergistic inhibitory mechanism of PA-1 with L-lactic acid against Gram-negative aquaculture and food pathogen Aeromonas hydrophila (A. hydrophila) was analyzed. The combined treatment of 3.5 mmol/L L-lactic acid and 50 μmol/L (or 30 μmol/L) PA-1 had strong bacteriostatic and bactericidal activity against A. hydrophila. Full wavelength scanning and ELISA assay revealed the release of lipopolysaccharide (LPS) from the outer membrane of A. hydrophila caused by L-lactic acid treatment. Laser confocal microscopic imaging of A. hydrophila with FITC-labeled pediocin PA-1 proved the accumulation of PA-1 on lactic acid-treated bacterial cells. PA-1 then caused a rapid dissipation of membrane potential (Δψ) and a proton gradient difference (ΔpH) in lactic acid-treated A. hydrophila. Pediocin PA-1 also caused an increase in the extracellular ATP level. Morphology revealed by SEM and TEM showed that combined treating with lactic acid and PA-1 induced vesicles on the cell surface, the outer and inner membrane disruption, and even cytoplasm leakage and cell lysis. The results proved a potential mechanism of the synergistic inhibition of lactic acid and PA-1 against A. hydrophila, by which L-lactic acid released the outer membrane LPS, making it possible for PA-1 to contact the plasma membrane of A. hydrophila, resulting in the dissipation of proton-motive force in the inner membrane and cell death.
Collapse
Affiliation(s)
- Yang Wang
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, 22 Jinjing Road, 300384 Tianjin, China.
| | - Jingru Wang
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, 22 Jinjing Road, 300384 Tianjin, China
| | - Dongqing Bai
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, 22 Jinjing Road, 300384 Tianjin, China.
| | - Yunlu Wei
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jingfeng Sun
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, 22 Jinjing Road, 300384 Tianjin, China
| | - Yunlong Luo
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, 22 Jinjing Road, 300384 Tianjin, China
| | - Jing Zhao
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, 22 Jinjing Road, 300384 Tianjin, China
| | - Ying Liu
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, 22 Jinjing Road, 300384 Tianjin, China
| | - Qingkui Wang
- Tianjin Key Laboratory of Aqua-ecology and Aquaculture, College of Fisheries, Tianjin Agricultural University, 22 Jinjing Road, 300384 Tianjin, China
| |
Collapse
|
24
|
Boukhris I, Smaoui S, Ennouri K, Morjene N, Farhat-Khemakhem A, Blibech M, Alghamdi OA, Chouayekh H. Towards understanding the antagonistic activity of phytic acid against common foodborne bacterial pathogens using a general linear model. PLoS One 2020; 15:e0231397. [PMID: 32302332 PMCID: PMC7164649 DOI: 10.1371/journal.pone.0231397] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 03/22/2020] [Indexed: 12/24/2022] Open
Abstract
The increasing challenge of antibiotic resistance requires not only the discovery of new antibiotics, but also the development of new alternative approaches. Therefore, in the present study, we investigated for the first time the antibacterial potential of phytic acid (myo-inositol hexakisphosphate, IP6), a natural molecule that is 'generally recognized as safe' (FDA classification), against the proliferation of common foodborne bacterial pathogens such as Listeria monocytogenes, Staphylococcus aureus and Salmonella Typhimurium. Interestingly, compared to citric acid, IP6 was found to exhibit significantly greater inhibitory activity (P<0.05) against these pathogenic bacteria. The minimum inhibitory concentration of IP6 varied from 0.488 to 0.97 mg/ml for the Gram-positive bacteria that were tested, and was 0.244 mg/ml for the Gram-negative bacteria. Linear and general models were used to further explore the antibacterial effects of IP6. The developed models were validated using experimental growth data for L. monocytogenes, S. aureus and S. Typhimurium. Overall, the models were able to accurately predict the growth of L. monocytogenes, S. aureus, and S. Typhimuriumin Polymyxin acriflavine lithium chloride ceftazidime aesculin mannitol (PALCAM), Chapman broth, and xylose lysine xeoxycholate (XLD) broth, respectively. Remarkably, the early logarithmic growth phase of S. Typhimurium showed a rapid and severe decrease in a period of less than one hour, illustrating the bactericidal effect of IP6. These results suggest that IP6 is an efficient antibacterial agent and can be used to control the proliferation of foodborne pathogens. It has promising potential for environmentally friendly applications in the food industry, such as for food preservation, food safety, and for prolonging shelf life.
Collapse
Affiliation(s)
- Ines Boukhris
- Laboratoire de Microorganismes et de Biomolécules, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisia
| | - Slim Smaoui
- Laboratoire de Microorganismes et de Biomolécules, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisia
| | - Karim Ennouri
- Laboratory of Amelioration and Protection of Olive Genetic Resources, Olive Tree Institute, University of Sfax, Sfax, Tunisia
| | - Nawres Morjene
- Laboratoire de Microorganismes et de Biomolécules, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisia
| | - Ameny Farhat-Khemakhem
- Laboratoire de Microorganismes et de Biomolécules, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisia
| | - Monia Blibech
- Laboratoire de Microorganismes et de Biomolécules, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisia
| | - Othman A. Alghamdi
- Department of Biological Sciences, Faculty of Sciences, University of Jeddah, Jeddah, Kingdom of Saudi Arabia
| | - Hichem Chouayekh
- Laboratoire de Microorganismes et de Biomolécules, Centre de Biotechnologie de Sfax, Université de Sfax, Sfax, Tunisia
- Department of Biological Sciences, Faculty of Sciences, University of Jeddah, Jeddah, Kingdom of Saudi Arabia
| |
Collapse
|
25
|
Sun X, Hong H, Jia S, Liu Y, Luo Y. Effects of phytic acid and lysozyme on microbial composition and quality of grass carp (Ctenopharyngodon idellus) fillets stored at 4 °C. Food Microbiol 2020; 86:103313. [DOI: 10.1016/j.fm.2019.103313] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 07/09/2019] [Accepted: 08/24/2019] [Indexed: 02/05/2023]
|
26
|
Ramos B, Brandão TRS, Teixeira P, Silva CLM. Biopreservation approaches to reduce Listeria monocytogenes in fresh vegetables. Food Microbiol 2020; 85:103282. [PMID: 31500713 DOI: 10.1016/j.fm.2019.103282] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 07/21/2019] [Accepted: 07/26/2019] [Indexed: 12/21/2022]
Abstract
Two biopreservation approaches for fresh lettuce, rocket salad, parsley and spinach were studied. The potential of Pediococcus pentosaceus DT016, as a protective culture, to suppress Listeria monocytogenes in vegetables during storage was evaluated. The pathogen numbers in the vegetables inoculated with P. pentosaceus DT016 were significantly (p < 0.01) lower throughout the storage period and, at the last storage day, a minimum difference of 1.4 log CFU/g was reported when compared with the vegetables without the protective culture. Moreover, by using two levels of L. monocytogenes (about 6 and 4 log CFU/g), it was observed that the antagonist effect of P. pentosaceus was higher for the lower pathogen numbers. The second approach evaluated a pediocin DT016 solution to inactivate and control L. monocytogenes proliferation. The pathogen load was studied after washing with: water, chlorine and the pediocin solution and along storage at 4 °C. Comparing the various washing solutions, the vegetables washed with pediocin presented significantly (p < 0.01) lower pathogen numbers throughout storage, by a minimum of 3.2 and 2.7 log CFU/g, than in vegetables washed with water and chlorine, respectively. The proposed methodologies are promising alternatives to maintain the safety of fresh vegetables during extended storage at refrigeration temperature.
Collapse
Affiliation(s)
- Bárbara Ramos
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Teresa R S Brandão
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Paula Teixeira
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal
| | - Cristina L M Silva
- Universidade Católica Portuguesa, CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Rua Diogo Botelho 1327, 4169-005 Porto, Portugal.
| |
Collapse
|
27
|
Choyam S, Srivastava AK, Shin JH, Kammara R. Ocins for Food Safety. Front Microbiol 2019; 10:1736. [PMID: 31428063 PMCID: PMC6687839 DOI: 10.3389/fmicb.2019.01736] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 07/15/2019] [Indexed: 02/06/2023] Open
Abstract
The food industry produces highly perishable products. Food spoilage represents a severe problem for food manufacturers. Therefore, it is important to identify effective preservation solutions to prevent food spoilage. Ocins (e.g., bacteriocins, lactocins, and enterocins) are antibacterial proteins synthesized by bacteria that destroy or suppress the growth of related or unrelated bacterial strains. Ocins represent a promising strategy for food preservation, because of their antagonist effects toward food spoilage microorganisms, high potency, and low toxicity. Additionally, they can be bioengineered. The most common and commercially available ocins are nisin, plantaracin, sakacin P, and pediocin. Several ocins have been characterized and studied biochemically and genetically; however, their structure-function relationship, biosynthesis, and mechanism of action are not understood. This narrative review focuses primarily on ocins and their relevance to the food industry to help prevent food spoilage. In particular, the applications and limitations of ocins in the food industry are highlighted.
Collapse
Affiliation(s)
- Shilja Choyam
- Affiliated to AcSIR for Ph.D. Thesis, CSIR-CFTRI, Mysuru, India
- Department of Protein Chemistry and Technology, CSIR-CFTRI, Mysuru, India
| | | | - Jae-Ho Shin
- School of Applied Biosciences, Kyungpook National University, Daegu, South Korea
| | - Rajagopal Kammara
- Affiliated to AcSIR for Ph.D. Thesis, CSIR-CFTRI, Mysuru, India
- Department of Protein Chemistry and Technology, CSIR-CFTRI, Mysuru, India
| |
Collapse
|
28
|
Baker KA, Beecher L, Northcutt JK. Effect of irrigation water source and post-harvest washing treatment on the microflora of alfalfa and mung bean sprouts. Food Control 2019. [DOI: 10.1016/j.foodcont.2019.01.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
29
|
De Corato U. Improving the shelf-life and quality of fresh and minimally-processed fruits and vegetables for a modern food industry: A comprehensive critical review from the traditional technologies into the most promising advancements. Crit Rev Food Sci Nutr 2019; 60:940-975. [DOI: 10.1080/10408398.2018.1553025] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Ugo De Corato
- ENEA – Italian National Agency for New Technologies, Energy and Sustainable Economic Development – Department of Biotechnology, Agroindustry and Health Protection, Trisaia Research Centre, Matera, Italy
| |
Collapse
|
30
|
Carstens CK, Salazar JK, Bathija VM, Narula SS, Wang P, Tortorello ML. Control of Listeria monocytogenes in Caramel Apples by Use of Sticks Pretreated with Potassium Sorbate. J Food Prot 2018; 81:1921-1928. [PMID: 30427727 DOI: 10.4315/0362-028x.jfp-18-175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A multistate listeriosis outbreak associated with caramel apples from 2014 to 2015 prompted research on the survival of Listeria monocytogenes in fresh apples and caramel apples. Research indicated that stem end-inoculated caramel apples with stick insertion allowed for the survival and growth of L. monocytogenes at both refrigeration and ambient temperatures. This study aimed to assess the effectiveness of chemical preservatives as pretreatments for the wooden stick component to reduce L. monocytogenes loads in stem end-inoculated caramel apples during storage. Wooden sticks were pretreated with 1, 3, or 5% ascorbic acid (vitamin C), Nisaplin (2.5% nisin), potassium sorbate, and sodium benzoate and then inoculated with L. monocytogenes at 7 log CFU per stick. After storage at 25°C, the pathogen was reduced most effectively by the ascorbic acid pretreatments. At all three ascorbic acid concentrations tested, L. monocytogenes levels were reduced below the level of enumeration (2.5 log CFU per apple) at 24 h and were no longer detectable by enrichment after 72 h. Ascorbic acid (5, 10, and 20%) and potassium sorbate (10, 20, 30, and 40%) were further tested as wooden stick pretreatments for pathogen reduction on stem end-inoculated caramel apples stored at 5 and 25°C. The 40% potassium sorbate solution at 25°C was the most effective pretreatment condition in caramel apples and demonstrated a 3.1-log CFU per apple overall decrease in L. monocytogenes population levels after 216 h. Pretreatment of the wooden stick component of a caramel apple with potassium sorbate may be a viable preventive measure to reduce postprocess L. monocytogenes population levels and hence reduce consumer risk associated with caramel apple consumption.
Collapse
Affiliation(s)
- Christina K Carstens
- 1 Division of Food Processing Science and Technology, U.S. Food and Drug Administration, Bedford Park, Illinois 60501
| | - Joelle K Salazar
- 1 Division of Food Processing Science and Technology, U.S. Food and Drug Administration, Bedford Park, Illinois 60501
| | - Vriddi M Bathija
- 2 Institute for Food Safety and Health, Illinois Institute of Technology, Bedford Park, Illinois 60501, USA
| | - Sartaj S Narula
- 2 Institute for Food Safety and Health, Illinois Institute of Technology, Bedford Park, Illinois 60501, USA
| | - Peien Wang
- 2 Institute for Food Safety and Health, Illinois Institute of Technology, Bedford Park, Illinois 60501, USA
| | - Mary Lou Tortorello
- 1 Division of Food Processing Science and Technology, U.S. Food and Drug Administration, Bedford Park, Illinois 60501
| |
Collapse
|
31
|
Murinzi TW, Clement TA, Chitsa V, Mehlana G. Copper oxide nanoparticles encapsulated in HKUST-1 metal-organic framework for electrocatalytic oxidation of citric acid. J SOLID STATE CHEM 2018. [DOI: 10.1016/j.jssc.2018.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Cadieux B, Colavecchio A, Jeukens J, Freschi L, Emond-Rheault JG, Kukavica-Ibrulj I, Levesque RC, Bekal S, Chandler JC, Coleman SM, Bisha B, Goodridge LD. Prophage induction reduces Shiga toxin producing Escherichia coli (STEC) and Salmonella enterica on tomatoes and spinach: A model study. Food Control 2018. [DOI: 10.1016/j.foodcont.2018.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
33
|
Hyun JE, Yoon JH, Lee SY. Response surface modeling for the inactivation ofBacillus cereuson cooked spinach by natural antimicrobials at various temperatures. J Food Saf 2018. [DOI: 10.1111/jfs.12484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jeong-Eun Hyun
- Department of Food and Nutrition; Chung-Ang University; Anseong-si Gyeonggi-do Republic of Korea
| | - Jae-Hyun Yoon
- Department of Food and Nutrition; Chung-Ang University; Anseong-si Gyeonggi-do Republic of Korea
| | - Sun-Young Lee
- Department of Food and Nutrition; Chung-Ang University; Anseong-si Gyeonggi-do Republic of Korea
| |
Collapse
|
34
|
Mukhopadhyay S, Ukuku DO. The role of emerging technologies to ensure the microbial safety of fresh produce, milk and eggs. Curr Opin Food Sci 2018. [DOI: 10.1016/j.cofs.2018.01.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Yang E, Fan L, Yan J, Jiang Y, Doucette C, Fillmore S, Walker B. Influence of culture media, pH and temperature on growth and bacteriocin production of bacteriocinogenic lactic acid bacteria. AMB Express 2018; 8:10. [PMID: 29368243 PMCID: PMC5783981 DOI: 10.1186/s13568-018-0536-0] [Citation(s) in RCA: 102] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 01/15/2018] [Indexed: 11/18/2022] Open
Abstract
There has been continued interest in bacteriocins research from an applied perspective as bacteriocins have potential to be used as natural preservative. Four bacteriocinogenic lactic acid bacteria (LAB) strains of Lactobacillus curvatus (Arla-10), Enterococcus faecium (JFR-1), Lactobacillus paracasei subsp. paracasei (JFR-5) and Streptococcus thermophilus (TSB-8) were previously isolated and identified in our lab. The objective of this study was to determine the optimal growth conditions for both LAB growth and bacteriocins production. In this study, various growth conditions including culture media (MRS and BHI), initial pH of culture media (4.5, 5.5, 6.2, 7.4 and 8.5), and incubation temperatures (20, 37 and 44 °C) were investigated for LAB growth measured as optical density (OD), bacteriocin activity determined as arbitrary unit and viability of LAB expressed as log CFU ml-1. Growth curves of the bacteriocinogenic LAB were generated using a Bioscreen C. Our results indicated that Arla-10, JFR-1, and JFR-5 strains grew well on both MRS and BHI media at growth temperature tested whereas TSB-8 strain, unable to grow at 20 °C. LAB growth was significantly affected by the initial pH of culture media (p < 0.001) and the optimal pH was found ranging from 6.2 to 8.5. Bacteriocin activity was significantly different in MRS versus BHI (p < 0.001), and the optimal condition for LAB to produce bacteriocins was determined in MRS broth, pH 6.2 at 37 °C. This study provides useful information on potential application of bacteriocinogenic LAB in food fermentation processes.
Collapse
Affiliation(s)
- En Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, 32 Main Street, Kentville, NS B4N 1J5 Canada
| | - Lihua Fan
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, 32 Main Street, Kentville, NS B4N 1J5 Canada
| | - Jinping Yan
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Yueming Jiang
- South China Botanical Garden, Chinese Academy of Sciences, Guang Zhou, China
| | - Craig Doucette
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, 32 Main Street, Kentville, NS B4N 1J5 Canada
| | - Sherry Fillmore
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, 32 Main Street, Kentville, NS B4N 1J5 Canada
| | - Bradley Walker
- Agriculture and Agri-Food Canada, Kentville Research and Development Centre, 32 Main Street, Kentville, NS B4N 1J5 Canada
| |
Collapse
|
36
|
Inatsu Y, Weerakkody K, Bari ML, Hosotani Y, Nakamura N, Kawasaki S. The efficacy of combined (NaClO and organic acids) washing treatments in controlling Escherichia coli O157:H7, Listeria monocytogenes and spoilage bacteria on shredded cabbage and bean sprout. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2017.06.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
37
|
Johnson EM, Jung DYG, Jin DYY, Jayabalan DR, Yang DSH, Suh JW. Bacteriocins as food preservatives: Challenges and emerging horizons. Crit Rev Food Sci Nutr 2017; 58:2743-2767. [PMID: 28880573 DOI: 10.1080/10408398.2017.1340870] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The increasing demand for fresh-like food products and the potential health hazards of chemically preserved and processed food products have led to the advent of alternative technologies for the preservation and maintenance of the freshness of the food products. One such preservation strategy is the usage of bacteriocins or bacteriocins producing starter cultures for the preservation of the intended food matrixes. Bacteriocins are ribosomally synthesized smaller polypeptide molecules that exert antagonistic activity against closely related and unrelated group of bacteria. This review is aimed at bringing to lime light the various class of bacteriocins mainly from gram positive bacteria. The desirable characteristics of the bacteriocins which earn them a place in food preservation technology, the success story of the same in various food systems, the various challenges and the strategies employed to put them to work efficiently in various food systems has been discussed in this review. From the industrial point of view various aspects like the improvement of the producer strains, downstream processing and purification of the bacteriocins and recent trends in engineered bacteriocins has also been briefly discussed in this review.
Collapse
Affiliation(s)
- Eldin Maliyakkal Johnson
- a Centre for Nutraceutical and Pharmaceutical Materials , College of Natural Science , Myongji University , Yongin , Korea.,b Food Microbiology and Bioprocess Laboratory , Department of Life Science, National Institute of Technology , Rourkela, Odisha , India
| | - Dr Yong-Gyun Jung
- c Interdisciplinary Program of Biomodulation , College of Natural Science , Myongji University , Yongin , Korea
| | - Dr Ying-Yu Jin
- d Myongji University Bioefficiency Research Centre , College of Natural Science , Myongji University , Yongin , Korea
| | - Dr Rasu Jayabalan
- b Food Microbiology and Bioprocess Laboratory , Department of Life Science, National Institute of Technology , Rourkela, Odisha , India
| | - Dr Seung Hwan Yang
- e Department of Biotechnology , Chonnam National University-Yeosu Campus , Yeosu , Korea
| | - Joo Won Suh
- a Centre for Nutraceutical and Pharmaceutical Materials , College of Natural Science , Myongji University , Yongin , Korea.,f Division of Bioscience and Bioinformatics , College of Natural Science, Myongji University , Yongin , Korea
| |
Collapse
|
38
|
Ahmed S, Zaman S, Ahmed R, Uddin MN, Acedo A, Bari ML. Effectiveness of non-chlorine sanitizers in improving the safety and quality of fresh betel leaf. Lebensm Wiss Technol 2017. [DOI: 10.1016/j.lwt.2016.12.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
|
40
|
Smith MK, Draper LA, Hazelhoff PJ, Cotter PD, Ross RP, Hill C. A Bioengineered Nisin Derivative, M21A, in Combination with Food Grade Additives Eradicates Biofilms of Listeria monocytogenes. Front Microbiol 2016; 7:1939. [PMID: 27965658 PMCID: PMC5127793 DOI: 10.3389/fmicb.2016.01939] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 11/18/2016] [Indexed: 12/22/2022] Open
Abstract
The burden of foodborne disease has large economic and social consequences worldwide. Despite strict regulations, a number of pathogens persist within the food environment, which is greatly contributed to by a build-up of resistance mechanisms and also through the formation of biofilms. Biofilms have been shown to be highly resistant to a number of antimicrobials and can be extremely difficult to remove once they are established. In parallel, the growing concern of consumers regarding the use of chemically derived antimicrobials within food has led to a drive toward more natural products. As a consequence, the use of naturally derived antimicrobials has become of particular interest. In this study we investigated the efficacy of nisin A and its bioengineered derivative M21A in combination with food grade additives to treat biofilms of a representative foodborne disease isolate of Listeria monocytogenes. Investigations revealed the enhanced antimicrobial effects, in liquid culture, of M21A in combination with citric acid or cinnamaldehyde over its wild type nisin A counterpart. Subsequently, an investigation was conducted into the effects of these combinations on an established biofilm of the same strain. Nisin M21A (0.1 μg/ml) alone or in combination with cinnamaldehyde (35 μg/ml) or citric acid (175 μg/ml) performed significantly better than combinations involving nisin A. All combinations of M21A with either citric acid or cinnamaldehyde eradicated the L. monocytogenes biofilm (in relation to a non-biofilm control). We conclude that M21A in combination with available food additives could further enhance the antimicrobial treatment of biofilms within the food industry, simply by substituting nisin A with M21A in current commercial products such as Nisaplin® (Danisco, DuPont).
Collapse
Affiliation(s)
- Muireann K Smith
- APC Microbiome Institute, School of Microbiology, University College Cork Cork, Ireland
| | - Lorraine A Draper
- APC Microbiome Institute, School of Microbiology, University College Cork Cork, Ireland
| | | | - Paul D Cotter
- APC Microbiome Institute, School of Microbiology, University College CorkCork, Ireland; Teagasc Food Research CentreCork, Ireland
| | - R P Ross
- APC Microbiome Institute, School of Microbiology, University College Cork Cork, Ireland
| | - Colin Hill
- APC Microbiome Institute, School of Microbiology, University College Cork Cork, Ireland
| |
Collapse
|
41
|
Liato V, Labrie S, Aïder M. Electro-activation of potassium acetate, potassium citrate and calcium lactate: impact on solution acidity, Redox potential, vibrational properties of Raman spectra and antibacterial activity on E. coli O157:H7 at ambient temperature. SPRINGERPLUS 2016; 5:1760. [PMID: 27833832 PMCID: PMC5081071 DOI: 10.1186/s40064-016-3453-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 09/29/2016] [Indexed: 11/10/2022]
Abstract
AIMS To study the electro-activation of potassium acetate, potassium citrate and calcium lactate aqueous solutions and to evaluate their antimicrobial effect against E. coli O157:H7 at ambient temperature. METHODS AND RESULTS Potassium acetate, potassium citrate and calcium lactate aqueous solutions were electrically excited in the anodic compartment of a four sectional electro-activation reactor. Different properties of the electro-activated solutions were measured such as: solutions acidity (pH and titratable), Redox potential and vibrational properties by Raman spectroscopy. Moreover, the antimicrobial activity of these solutions was evaluated against E. coli O157:H7. The results showed a pH decrease from 7.07 ± 0.08, 7.53 ± 0.12 and 6.18 ± 0.1 down to 2.82 ± 0.1, 2.13 ± 0.09 and 2.26 ± 0.15, after 180 min of electro-activation of potassium acetate, potassium citrate and calcium lactate solution, respectively. These solutions were characterized by high oxidative ORP of +1076 ± 12, +958 ± 11 and +820 ± 14 mV, respectively. Raman scattering analysis of anolytes showed stretching vibrations of the hydrogen bonds with the major changes within the region of 3410-3430 cm-1. These solutions were used against E. coli O157:H7 and the results from antimicrobial assays showed high antibacterial effect with a population reduction of ≥6 log CFU/ml within 5 min of treatment. CONCLUSIONS This study demonstrated the effectiveness of the electro-activation to confer to aqueous solutions of organic salts of highly reactive properties that differ them from their conjugated commercial acids. The electro-activated solutions demonstrated significant antimicrobial activity against E. coli O157:H7. SIGNIFICANCE AND IMPACT OF STUDY This study opens new possibilities to use electro-activated solutions of salts of weak organic acids as food preservatives to develop safe, nutritive and low heat processed foods.
Collapse
Affiliation(s)
- Viacheslav Liato
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC G1V 0A6 Canada ; Department of Soil Sciences and Agri-Food Engineering, Université Laval, Quebec, QC G1V 0A6 Canada
| | - Steve Labrie
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC G1V 0A6 Canada ; Department of Food Sciences, Université Laval, Quebec, QC G1V 0A6 Canada
| | - Mohammed Aïder
- Institute of Nutrition and Functional Foods (INAF), Université Laval, Quebec, QC G1V 0A6 Canada ; Department of Soil Sciences and Agri-Food Engineering, Université Laval, Quebec, QC G1V 0A6 Canada ; Laval University, 2425 Rue de l'Agriculture, Pavillon P. Comtois, Quebec, QC G1V 0A6 Canada
| |
Collapse
|
42
|
Oladunjoye AO, Singh S, Ijabadeniyi OA. Biocontrol of Listeria monocytogenes ATCC 7644 on fresh-cut tomato ( Lycopersicon esculentum) using nisin combined with organic acids. Food Sci Biotechnol 2016; 25:1491-1496. [PMID: 30263435 PMCID: PMC6049285 DOI: 10.1007/s10068-016-0231-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 06/13/2016] [Accepted: 06/14/2016] [Indexed: 10/20/2022] Open
Abstract
The biocontrol of Listeria monocytogenes on fresh-cut tomato using nisin and organic acids was investigated. Fresh-cut samples inoculated with 108 CFU/mL of L. monocytogenes, treated with nisin (5,000 IU/mL), a combination of nisin and organic acids (acetic and citric acids at 3 and 5% each), with chlorine at 200 ppm as a control, and stored for six days at 4, 10, and 25°C were used to evaluate certain physicochemical qualities (pH, titratable acidity, soluble solid content, vitamin C content, and color). Nisin treatment significantly (p<0.05) reduced bacterial population by 1.91-3.07 log CFU/mL. Nisin-citric acid combination provided 2.65-3.29 log CFU/mL reduction, while nisin-acetic acid combination provided 2.93-4.15 log CFU/mL reduction. The control treatment provided <1-2 fold log reductions. Slight variations in physicochemical properties of fresh-cut tomato were observed. Nisin and organic acids can be used to improve the microbial safety of fresh-cut tomato.
Collapse
Affiliation(s)
| | - Suren Singh
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban, 4001 South Africa
| | | |
Collapse
|
43
|
Santos MIS, Lima AI, Monteiro SAVS, Ferreira RMSB, Pedroso L, Sousa I, Ferreira MASS. Preliminary Study on the Effect of Fermented Cheese Whey on Listeria monocytogenes, Escherichia coli O157:H7, and Salmonella Goldcoast Populations Inoculated onto Fresh Organic Lettuce. Foodborne Pathog Dis 2016; 13:423-7. [PMID: 27149657 DOI: 10.1089/fpd.2015.2079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Cheese whey fermented by an industrial starter consortium of lactic acid bacteria was evaluated for its antibacterial capacity to control a selection of pathogenic bacteria. For their relevance on outbreak reports related to vegetable consumption, this selection included Listeria monocytogenes, serotype 4b, Escherichia coli O157:H7, and Salmonella Goldcoast. Organically grown lettuce was inoculated with an inoculum level of ∼10(7) colony-forming unit (CFU)/mL and was left for about 1 h in a safety cabinet before washing with a perceptual solution of 75:25 (v/v) fermented whey in water, for 1 and 10 min. Cells of pathogens recovered were then counted and their number compared with that obtained for a similar treatment, but using a chlorine solution at 110 ppm. Results show that both treatments, either with chlorine or fermented whey, were able to significantly reduce (p < 0.05) the number of bacteria, in a range of 1.15-2.00 and 1.59-2.34 CFU/g, respectively, regarding the bacteria tested. Results suggest that the use of fermented whey may be as effective as the solution of chlorine used in industrial processes in reducing the pathogens under study (best efficacy shown for Salmonella), with the advantage of avoiding health risks arising from the formation of carcinogenic toxic chlorine derivates.
Collapse
Affiliation(s)
- Maria I S Santos
- 1 Microbiology Laboratory, Department of Natural Resources, Environment and Territory, DRAT, LEAF, Instituto Superior de Agronomia, Universidade de Lisboa , Lisbon, Portugal
- 2 Eco-Processing of Food and Feed, CEE, LEAF, Instituto Superior de Agronomia, Universidade de Lisboa , Lisbon, Portugal
- 3 Faculty of Veterinary Medicine, Universidade Lusofona de Humanidades e Tecnologias , Lisbon, Portugal
- 4 Disease & Stress Biology, DRAT, LEAF, Instituto Superior de Agronomia, Universidade de Lisboa , Lisbon, Portugal
| | - Ana I Lima
- 4 Disease & Stress Biology, DRAT, LEAF, Instituto Superior de Agronomia, Universidade de Lisboa , Lisbon, Portugal
| | - Sara A V S Monteiro
- 4 Disease & Stress Biology, DRAT, LEAF, Instituto Superior de Agronomia, Universidade de Lisboa , Lisbon, Portugal
| | - Ricardo M S B Ferreira
- 4 Disease & Stress Biology, DRAT, LEAF, Instituto Superior de Agronomia, Universidade de Lisboa , Lisbon, Portugal
| | - Laurentina Pedroso
- 3 Faculty of Veterinary Medicine, Universidade Lusofona de Humanidades e Tecnologias , Lisbon, Portugal
| | - Isabel Sousa
- 2 Eco-Processing of Food and Feed, CEE, LEAF, Instituto Superior de Agronomia, Universidade de Lisboa , Lisbon, Portugal
| | - Maria A S S Ferreira
- 1 Microbiology Laboratory, Department of Natural Resources, Environment and Territory, DRAT, LEAF, Instituto Superior de Agronomia, Universidade de Lisboa , Lisbon, Portugal
| |
Collapse
|
44
|
Effect of different activated coatings containing enterocin AS-48 against Listeria monocytogenes on apple cubes. INNOV FOOD SCI EMERG 2016. [DOI: 10.1016/j.ifset.2016.05.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
45
|
Lakicevic B, Nastasijevic I. Listeria monocytogenesin retail establishments: Contamination routes and control strategies. FOOD REVIEWS INTERNATIONAL 2016. [DOI: 10.1080/87559129.2016.1175017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
46
|
|
47
|
Siroli L, Patrignani F, Serrazanetti DI, Vannini L, Salvetti E, Torriani S, Gardini F, Lanciotti R. Use of a nisin-producing Lactococcus lactis strain, combined with natural antimicrobials, to improve the safety and shelf-life of minimally processed sliced apples. Food Microbiol 2016. [DOI: 10.1016/j.fm.2015.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
48
|
Yang Y, Achaerandio I, Pujolà M. Classification of potato cultivars to establish their processing aptitude. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2016; 96:413-421. [PMID: 25615522 DOI: 10.1002/jsfa.7104] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 01/16/2015] [Accepted: 01/16/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND The commercial potato cultivars are diverse not only in their physical characteristics but also in their nutritional compositions and their content of functional compounds (resistant starch, total phenolic content and antioxidant activity), but there is little information about these differences. The aim of this study was to characterise the nutritional value (focusing on carbohydrates and functional compounds) and instrumental parameters of eight potato cultivars consumed in Spain and to determine whether these parameters are useful for classifying the cultivars. RESULTS Significant Pearson's correlations were found due to the common and complex interactions between the constituents of potatoes and their properties (P < 0.05). Principal component analysis revealed the correlations among the physicochemical properties, and the first two principal components explained 56.84% of the variance among the cultivars studied. CONCLUSION The eight cultivars could be classified into three groups: (1) Red Pontiac, Caesar, Kennebec, Agria and Cherie cultivars, (2) Agata and Monalisa cultivars and (3) Spirit cultivar. The results demonstrated that certain nutritional and functional parameters indicated the potential efficacy of different cultivars to satisfy the nutritional needs of consumers, improving the knowledge on the biochemical basis of potato processing to obtain higher-quality products.
Collapse
Affiliation(s)
- Yali Yang
- Department d'Enginyeria Agroalimentària i Biotecnologia, Escola Superior d'Agricultura de Barcelona, Universitat Politècnica de Catalunya Barcelona Tech, Barcelona, Spain
| | - Isabel Achaerandio
- Department d'Enginyeria Agroalimentària i Biotecnologia, Escola Superior d'Agricultura de Barcelona, Universitat Politècnica de Catalunya Barcelona Tech, Barcelona, Spain
| | - Montserrat Pujolà
- Department d'Enginyeria Agroalimentària i Biotecnologia, Escola Superior d'Agricultura de Barcelona, Universitat Politècnica de Catalunya Barcelona Tech, Barcelona, Spain
| |
Collapse
|
49
|
Potential Applications of the Cyclic Peptide Enterocin AS-48 in the Preservation of Vegetable Foods and Beverages. Probiotics Antimicrob Proteins 2016; 2:77-89. [PMID: 26781116 DOI: 10.1007/s12602-009-9030-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Bacteriocins are antimicrobial peptides produced by bacteria. Among them, the enterococcal bacteriocin (enterocin) AS-48 stands for its peculiar characteristics and broad-spectrum antimicrobial activity. AS-48 belongs to the class of circular bacteriocins and has been studied in depth in several aspects: peptide structure, genetic determinants, and mode of action. Recently, a wealth of knowledge has accumulated on the antibacterial activity of this bacteriocin against foodborne pathogenic and spoilage bacteria in food systems, especially in vegetable foods and drinks. This work provides a general overview on the results from tests carried out with AS-48 in different vegetable food categories (such as fruit juices, ciders, sport and energy drinks, fresh fruits and vegetables, pre-cooked ready to eat foods, canned vegetables, and bakery products). Depending on the food substrate, the bacteriocin has been tested alone or as part of hurdle technology, in combination with physico-chemical treatments (such as mild heat treatments or high-intensity pulsed electric fields) and other antimicrobial substances (such as essential oils, phenolic compounds, and chemical preservatives). Since the work carried out on bacteriocins in preservation of vegetable foods and drinks is much more limited compared to meat and dairy products, the results reported for AS-48 may open new possibilities in the field of bacteriocin applications.
Collapse
|
50
|
Meta-analysis of the effects of sanitizing treatments on Salmonella, Escherichia coli O157:H7, and Listeria monocytogenes inactivation in fresh produce. Appl Environ Microbiol 2015; 81:8008-21. [PMID: 26362982 DOI: 10.1128/aem.02216-15] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/03/2015] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to perform a meta-analysis of the effects of sanitizing treatments of fresh produce on Salmonella spp., Escherichia coli O157:H7, and Listeria monocytogenes. From 55 primary studies found to report on such effects, 40 were selected based on specific criteria, leading to more than 1,000 data on mean log reductions of these three bacterial pathogens impairing the safety of fresh produce. Data were partitioned to build three meta-analytical models that could allow the assessment of differences in mean log reductions among pathogens, fresh produce, and sanitizers. Moderating variables assessed in the meta-analytical models included type of fresh produce, type of sanitizer, concentration, and treatment time and temperature. Further, a proposal was done to classify the sanitizers according to bactericidal efficacy by means of a meta-analytical dendrogram. The results indicated that both time and temperature significantly affected the mean log reductions of the sanitizing treatment (P < 0.0001). In general, sanitizer treatments led to lower mean log reductions when applied to leafy greens (for example, 0.68 log reductions [0.00 to 1.37] achieved in lettuce) compared to other, nonleafy vegetables (for example, 3.04 mean log reductions [2.32 to 3.76] obtained for carrots). Among the pathogens, E. coli O157:H7 was more resistant to ozone (1.6 mean log reductions), while L. monocytogenes and Salmonella presented high resistance to organic acids, such as citric acid, acetic acid, and lactic acid (∼3.0 mean log reductions). With regard to the sanitizers, it has been found that slightly acidic electrolyzed water, acidified sodium chlorite, and the gaseous chlorine dioxide clustered together, indicating that they possessed the strongest bactericidal effect. The results reported seem to be an important achievement for advancing the global understanding of the effectiveness of sanitizers for microbial safety of fresh produce.
Collapse
|