1
|
Manzoor A, Khan S, Dar AH, Pandey VK, Shams R, Ahmad S, Jeevarathinam G, Kumar M, Singh P, Pandiselvam R. Recent insights into green antimicrobial packaging towards food safety reinforcement: A review. J Food Saf 2023. [DOI: 10.1111/jfs.13046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Affiliation(s)
- Arshied Manzoor
- Department of Post‐Harvest Engineering and Technology Faculty of Agricultural Sciences Aligarh India
| | - Sadeeya Khan
- Department of Food Science, Faculty of Food Science and Technology University Putra Malaysia Serdang Malaysia
| | - Aamir Hussain Dar
- Department of Food Technology Islamic University of Science and Technology Awantipora Kashmir India
| | - Vinay Kumar Pandey
- Department of Biotechnology Axis Institute of Higher Education Kanpur Uttar Pradesh India
- Department of Bioengineering Integral University Lucknow Uttar Pradesh India
| | - Rafeeya Shams
- Department of Food Technology and Nutrition Lovely Professional University Phagwara Punjab India
| | - Saghir Ahmad
- Department of Post‐Harvest Engineering and Technology Faculty of Agricultural Sciences Aligarh India
| | - G. Jeevarathinam
- Department of Food Technology Hindusthan College of Engineering and Technology Coimbatore India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division ICAR ‐ Central Institute for Research on Cotton Technology Mumbai India
| | - Punit Singh
- Institute of Engineering and Technology, Department of Mechanical Engineering GLA University Mathura Mathura India
| | - R. Pandiselvam
- Physiology, Biochemistry and Post‐Harvest Technology Division ICAR –Central Plantation Crops Research Institute Kasaragod Kerala India
| |
Collapse
|
2
|
Wu M, Dong Q, Song X, Xu L, Xia X, Aslam MZ, Ma Y, Qin X, Wang X, Liu Y, Xu B, Liu H, Cai H, Hirata T, Li Z. Effective combination of nisin and sesamol against Listeria monocytogenes. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
3
|
Non-Thermal Technologies Combined with Antimicrobial Peptides as Methods for Microbial Inactivation: A Review. Processes (Basel) 2022. [DOI: 10.3390/pr10050995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Non-thermal technologies allow for the nutritional and sensory properties of foods to be preserved, something that consumers demand. Combining their use with antimicrobial peptides (AMPs) provides potential methods for food preservation that could have advantages over the use of chemical preservatives and thermal technologies. The aim of this review was to discuss the advances in the application of non-thermal technologies in combination with AMPs as a method for microbial inactivation. Published papers reporting studies on the combined use of power ultrasound (US), pulsed electrical fields (PEF), and high hydrostatic pressure (HHP) with AMPs were reviewed. All three technologies show a possibility of being combined with AMPs, generally demonstrating higher efficiency than the application of US, PEF, HHP, and AMPs separately. The most studied AMP used in combination with the three technologies was nisin, probably due to the fact that it is already officially regulated. However, the combination of these non-thermal technologies with other AMPs also shows promising results for microbial inactivation, as does the combination of AMPs with other novel non-thermal technologies. The effectiveness of the combined treatment depends on several factors; in particular, the characteristics of the food matrix, the conditions of the non-thermal treatment, and the conditions of AMP application.
Collapse
|
4
|
Role of Pascalization in Milk Processing and Preservation: A Potential Alternative towards Sustainable Food Processing. PHOTONICS 2021. [DOI: 10.3390/photonics8110498] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Renewed technology has created a demand for foods which are natural in taste, minimally processed, and safe for consumption. Although thermal processing, such as pasteurization and sterilization, effectively limits pathogenic bacteria, it alters the aroma, flavor, and structural properties of milk and milk products. Nonthermal technologies have been used as an alternative to traditional thermal processing technology and have the ability to provide safe and healthy dairy products without affecting their nutritional composition and organoleptic properties. Other than nonthermal technologies, infrared spectroscopy is a nondestructive technique and may also be used for predicting the shelf life and microbial loads in milk. This review explains the role of pascalization or nonthermal techniques such as high-pressure processing (HPP), pulsed electric field (PEF), ultrasound (US), ultraviolet (UV), cold plasma treatment, membrane filtration, micro fluidization, and infrared spectroscopy in milk processing and preservation.
Collapse
|
5
|
SHABBIR MA, AHMED H, MAAN AA, REHMAN A, AFRAZ MT, IQBAL MW, KHAN IM, AMIR RM, ASHRAF W, KHAN MR, AADIL RM. Effect of non-thermal processing techniques on pathogenic and spoilage microorganisms of milk and milk products. FOOD SCIENCE AND TECHNOLOGY 2021. [DOI: 10.1590/fst.05820] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | | | - Abid Aslam MAAN
- University of Agriculture, Pakistan; University of Agriculture, Pakistan
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
George J, Aras S, Kabir MN, Wadood S, Chowdhury S, Fouladkhah AC. Sensitivity of Planktonic Cells of Staphylococcus aureus to Elevated Hydrostatic Pressure as Affected by Mild Heat, Carvacrol, Nisin, and Caprylic Acid. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17197033. [PMID: 32993008 PMCID: PMC7579652 DOI: 10.3390/ijerph17197033] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/15/2020] [Accepted: 09/23/2020] [Indexed: 11/30/2022]
Abstract
Current study investigated effects of elevated hydrostatic pressure exposure in the presence of mild heat and natural antimicrobials against Staphylococcus aureus. Hydrostatic pressure of 350 to 550 MPa with nisin (5000 IU/mL), carvacrol, or caprylic acid (0.5% v/v) were applied for the reduction in four-strain mixture of S. aureus in HEPES buffer at 4 and 40 °C for up to 7 min. Results were statistically analyzed by ANOVA and D-values were additionally calculated using best-fitted linear model. Prior to exposure to treatments at 4 °C, counts of the pathogen were 7.95 ± 0.4 log CFU/mL and were reduced (p < 0.05) to 6.44 ± 0.3 log CFU/mL after 7 min of treatment at 450 MPa. D-value associated with this treatment was 5.34 min (R2 = 0.72). At 40 °C, counts were 8.21 ± 0.7 and 5.77 ± 0.3 log CFU/mL before and after the 7-min treatments, respectively. D-value associated with 40 °C treatment was 3.30 min (R2 = 0.62). Application of the antimicrobials provided additional pathogen reduction augmentation for treatments < 5 min. The results of the current study could be incorporated for meeting regulatory requirements such as Food Code, HACCP, and Preventive Control for Human Food of Food Safety Modernization Act for assuring microbiological safety of products against this prevalent pathogen of public health concern.
Collapse
Affiliation(s)
- Jyothi George
- Public Health Microbiology Laboratory, Tennessee State University, Nashville, TN 37209, USA; (J.G.); (S.A.); (M.N.K.); (S.W.); (S.C.)
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA
| | - Sadiye Aras
- Public Health Microbiology Laboratory, Tennessee State University, Nashville, TN 37209, USA; (J.G.); (S.A.); (M.N.K.); (S.W.); (S.C.)
- Department of Biological Sciences, Tennessee State University, Nashville, TN 37209, USA
| | - Md Niamul Kabir
- Public Health Microbiology Laboratory, Tennessee State University, Nashville, TN 37209, USA; (J.G.); (S.A.); (M.N.K.); (S.W.); (S.C.)
| | - Sabrina Wadood
- Public Health Microbiology Laboratory, Tennessee State University, Nashville, TN 37209, USA; (J.G.); (S.A.); (M.N.K.); (S.W.); (S.C.)
| | - Shahid Chowdhury
- Public Health Microbiology Laboratory, Tennessee State University, Nashville, TN 37209, USA; (J.G.); (S.A.); (M.N.K.); (S.W.); (S.C.)
| | - Aliyar Cyrus Fouladkhah
- Public Health Microbiology Laboratory, Tennessee State University, Nashville, TN 37209, USA; (J.G.); (S.A.); (M.N.K.); (S.W.); (S.C.)
- Cooperative Extension Program, Tennessee State University, Nashville, TN 37209, USA
- Correspondence: ; Tel.: +1-970-690-7392
| |
Collapse
|
7
|
Patwardhan M, Morgan MT, Dia V, D'Souza DH. Heat sensitization of hepatitis A virus and Tulane virus using grape seed extract, gingerol and curcumin. Food Microbiol 2020; 90:103461. [PMID: 32336357 DOI: 10.1016/j.fm.2020.103461] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 09/23/2019] [Accepted: 02/10/2020] [Indexed: 11/30/2022]
Abstract
Human noroviruses (HNoV) and hepatitis A virus (HAV) are predominantly linked to foodborne outbreaks worldwide. As cell-culture systems to propagate HNoV in laboratories are not easily available, Tulane virus (TV) is used as a cultivable HNoV surrogate to determine inactivation. Heat-sensitization of HAV and TV by "generally recognized as safe'' (GRAS) substances can potentially reduce their time-temperature inactivation parameters during processing to ensure food safety. Curcumin, gingerol (from ginger), and grape seed extract (GSE) reportedly have anti-inflammatory, immune-modulating and antiviral properties. The objective of this study was to determine and compare the D-values and z-values of HAV and TV at 52-68 °C with or without curcumin (0.015 mg/ml), gingerol (0.1 mg/ml), or GSE (1 mg/ml) in 2-ml glass vials. HAV at ~7 log PFU/ml and TV at ~6 log PFU/ml were diluted in phosphate buffered saline (PBS) and added to two sets of six 2-mL sterile glass vials. One set served as the control and the second set had the three extracts individually added for thermal treatments in a circulating water bath for 0-10 min. The D-values for TV in PBS ranged from 4.55 ± 0.28 to 1.08 ± 0.16 min, and for HAV in PBS ranged from to 9.21 ± 0.24 to 0.67 ± 0.19 min at 52-68 °C. Decreased D-values (52-58 °C) for TV with curcumin ranging from 4.32 ± 0.25 to 0.62 ± 0.17 min, gingerol from 4.09 ± 0.18 to 0.72 ± 0.09 min and GSE from 3.82 ± 0.18 to 0.80 ± 0.07 min, with similar trends for HAV were observed. The linear model showed significant differences (p < 0.05) between the D-values of HAV and TV with and without plant extracts for most tested temperatures. This suggests that GRAS substances can potentially lower temperature and time regimens needed to inactivate HAV and TV.
Collapse
Affiliation(s)
- Mayuri Patwardhan
- Department of Food Science, 2600 River Drive, University of Tennessee, Knoxville, TN, 37996, USA
| | - Mark T Morgan
- Department of Food Science, 2600 River Drive, University of Tennessee, Knoxville, TN, 37996, USA
| | - Vermont Dia
- Department of Food Science, 2600 River Drive, University of Tennessee, Knoxville, TN, 37996, USA
| | - Doris H D'Souza
- Department of Food Science, 2600 River Drive, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
8
|
Ali ZI, Saudi AM, Albrecht R, Talaat AM. The inhibitory effect of nisin on Mycobacterium avium ssp. paratuberculosis and its effect on mycobacterial cell wall. J Dairy Sci 2019; 102:4935-4944. [PMID: 30981481 DOI: 10.3168/jds.2018-16106] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/08/2019] [Indexed: 11/19/2022]
Abstract
Infection with Mycobacterium avium ssp. paratuberculosis (M. paratuberculosis) is a widespread problem in the United States and worldwide, and it constitutes a significant health problem for dairy animals with a potential effect on human health. Mycobacterium paratuberculosis is easily transmitted through consumption of contaminated milk; therefore, finding safe methods to reduce the mycobacterial load in milk and other dairy products is important to the dairy industry. The main objective of the current study was to investigate the effect of natural products, such as bacteriocins designated as "generally regarded as safe" (GRAS), on the survival of M. paratuberculosis in milk. Commercially synthesized bacteriocin (nisin) was used to examine its effect on the survival of laboratory and field isolates of M. paratuberculosis and in contaminated milk. Surprisingly, nisin had a higher minimum inhibitory concentration (MIC) against the laboratory strain (M. paratuberculosis K10), at 500 U/mL, than against field isolates (e.g., M. paratuberculosis 4B and JTC 1281), at 15 U/mL. In milk, growth of M. paratuberculosis was inhibited after treatment with levels of nisin that are permissible in human food at 4°C and 37°C. Using both fluorescent and scanning electron microscopy, we were able to identify defects in the bacterial cell walls of treated cultures. Our analysis indicated that nisin reduced membrane integrity by forming pores in the mycobacterial cell wall, thereby decreasing survival of M. paratuberculosis. Thus, nisin treatment of milk could be implemented as a control measure to reduce M. paratuberculosis secreted in milk from infected herds. Nisin could also be used to reduce M. paratuberculosis in colostrum given to calves from infected animals, improving biosecurity control in dairy herds affected by Johne's disease.
Collapse
Affiliation(s)
- Zeinab I Ali
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, Giza, 11221, Egypt
| | - Adel M Saudi
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Cairo University, Giza, 11221, Egypt
| | - Ralph Albrecht
- Department of Animal Science, University of Wisconsin, Madison 53706
| | - Adel M Talaat
- Department of Pathobiological Sciences, University of Wisconsin, Madison 53706.
| |
Collapse
|
9
|
Alegbeleye OO, Guimarães JT, Cruz AG, Sant’Ana AS. Hazards of a ‘healthy’ trend? An appraisal of the risks of raw milk consumption and the potential of novel treatment technologies to serve as alternatives to pasteurization. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.10.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
10
|
Duraisamy S, Balakrishnan S, Jayachandran J, Husain F, Kumarasamy A. Effect of Bacillus cereus peptide conjugated with nanoporous silica on inactivation of Listeria monocytogenes in apple juice, as an ecofriendly preservative. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:29345-29355. [PMID: 30121768 DOI: 10.1007/s11356-018-2882-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 07/31/2018] [Indexed: 06/08/2023]
Abstract
Bacteriocins are ribosomally synthesized antimicrobial proteins/peptides. They are of great interest in the food processing industries as potential natural preservative agent to control food-borne pathogens. Bacillus spp. are one among the potential probiotics receiving more attention since they produce a broad spectrum of antimicrobial bioactive peptides. In this study, a small-scale medium composition and bioprocessing parameters were statistically optimized to increase the yield of bacteriocin namely cerein from Bacillus cereus NS02 showing antagonism against a wide range of food-borne pathogens. The cerein was partially purified, characterized, and evaluated for their optimal reaction condition. It was subjected to surface adsorption onto food-grade silica to evaluate its maximal adsorption, reached at 4 h, 40 °C, pH 6-7, and at the initial concentration of 200 AU mL-1. The effectiveness of silica-adsorbed and silica-free cerein was checked in Listeria monocytogenes inoculated fresh apple juice and demonstrated biopreservative activity. In juice treated with silica-cerein, the colony forming unit (CFU) was found to be less in count on the 15th day of storage at 4 °C whereas, free-cerein was found to contain 3.8 log CFU mL-1. While, on the same day of storage, the control juice contained the strength of 14.6 log CFU mL-1. Based on the above, this study concludes that the identified heat stable low molecular weight peptide cerein from B. cereus NS02 could serve as a potential biopreservative with effective antilisterial activity in the food system. However, a more detailed study is required to determine if their quality change especially the effect of cerein in organoleptic and nutritional properties of food beyond their addition is necessary, before it is to be exploited as an ecofriendly biopreservative.
Collapse
Affiliation(s)
- Senbagam Duraisamy
- Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Senthilkumar Balakrishnan
- Department of Medical Microbiology, College of Health and Medical Sciences, Haramaya University, P.O. Box 235, Harar, Ethiopia
| | - Jayasudha Jayachandran
- Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Fazal Husain
- Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India
| | - Anbarasu Kumarasamy
- Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620 024, India.
| |
Collapse
|
11
|
Benbettaïeb N, Debeaufort F, Karbowiak T. Bioactive edible films for food applications: mechanisms of antimicrobial and antioxidant activity. Crit Rev Food Sci Nutr 2018; 59:3431-3455. [DOI: 10.1080/10408398.2018.1494132] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Nasreddine Benbettaïeb
- University of Bourgogne Franche-Comté, Agrosup Dijon, Dijon, France
- Department of Bioengineering, IUT-Dijon-Auxerre, Dijon Cedex, France
| | - Frédéric Debeaufort
- University of Bourgogne Franche-Comté, Agrosup Dijon, Dijon, France
- Department of Bioengineering, IUT-Dijon-Auxerre, Dijon Cedex, France
| | - Thomas Karbowiak
- University of Bourgogne Franche-Comté, Agrosup Dijon, Dijon, France
| |
Collapse
|
12
|
Lynch SA, Mullen AM, O'Neill E, Drummond L, Álvarez C. Opportunities and perspectives for utilisation of co-products in the meat industry. Meat Sci 2018; 144:62-73. [PMID: 29945746 DOI: 10.1016/j.meatsci.2018.06.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 06/01/2018] [Accepted: 06/18/2018] [Indexed: 12/22/2022]
Abstract
Meat co-products are the non-meat components arising from meat processing/fabrication and are generated in large quantities on a daily basis. Co-products are considered as low added-value products, and in general it is difficult for industries to divert efforts into increasing their value. While many of these products can be edible those not used for human consumption or pet food is usually processed to be used as animal feed, fertilizer or fuel. However, to a large extent meat co-products are an excellent source of high nutritive value protein, minerals and vitamins and hence may be better diverted to contribute to alleviate the increasing global demand for protein. In this review the current uses, legislation and potential techniques for meat co-products processing are reviewed with the aim of showing a route to improve meat industry sustainability, profitability and better usage of available resources.
Collapse
Affiliation(s)
- Sarah A Lynch
- Department of Food Quality and Sensory Science, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland; Department of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Anne Maria Mullen
- Department of Food Quality and Sensory Science, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| | - Eileen O'Neill
- Department of Food and Nutritional Sciences, University College Cork, Cork, Ireland
| | - Liana Drummond
- Department of Food Quality and Sensory Science, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland
| | - Carlos Álvarez
- Department of Food Quality and Sensory Science, Teagasc Food Research Centre, Ashtown, Dublin 15, Ireland.
| |
Collapse
|
13
|
Lyu Y, Xiang N, Mondal J, Zhu X, Narsimhan G. Characterization of Interactions between Curcumin and Different Types of Lipid Bilayers by Molecular Dynamics Simulation. J Phys Chem B 2018; 122:2341-2354. [PMID: 29394060 DOI: 10.1021/acs.jpcb.7b10566] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Yuan Lyu
- Department of Agricultural
and Biological Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ning Xiang
- Department of Agricultural
and Biological Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jagannath Mondal
- Centre for Interdisciplinary Sciences, Tata Institute of Fundamental Research, 36/P, Gopanapally Village, Serilingampally Mandal, Ranga Reddy District, Hyderabad 500107, India
| | - Xiao Zhu
- Research
Computing, Rosen Center for Advanced Computing, Purdue University, West Lafayette, Indiana 47907, United States
| | - Ganesan Narsimhan
- Department of Agricultural
and Biological Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
14
|
Feichtmayer J, Deng L, Griebler C. Antagonistic Microbial Interactions: Contributions and Potential Applications for Controlling Pathogens in the Aquatic Systems. Front Microbiol 2017; 8:2192. [PMID: 29184541 PMCID: PMC5694486 DOI: 10.3389/fmicb.2017.02192] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/25/2017] [Indexed: 12/21/2022] Open
Abstract
Despite the active and intense treatment of wastewater, pathogenic microorganisms and viruses are frequently introduced into the aquatic environment. For most human pathogens, however, this is a rather hostile place, where starvation, continuous inactivation, and decay generally occur, rather than successful reproduction. Nevertheless, a great diversity of the pathogenic microorganisms can be detected, in particular, in the surface waters receiving wastewater. Pathogen survival depends majorly on abiotic factors such as irradiation, changes in water ionic strength, temperature, and redox state. In addition, inactivation is enhanced by the biotic interactions in the environment. Although knowledge of the antagonistic biotic interactions has been available since a long time, certain underlying processes and mechanisms still remain unclear. Others are well-appreciated and increasingly are applied to the present research. Our review compiles and discusses the presently known biotic interactions between autochthonous microbes and pathogens introduced into the aquatic environment, including protozoan grazing, virus-induced bacterial cell lysis, antimicrobial substances, and predatory bacteria. An overview is provided on the present knowledge, as well as on the obvious research gaps. Individual processes that appear promising for future applications in the aquatic environment are presented and discussed.
Collapse
Affiliation(s)
- Judith Feichtmayer
- Institute of Groundwater Ecology, Helmholtz Zentrum München GmbH, Neuherberg, Germany
| | - Li Deng
- Institute of Groundwater Ecology, Helmholtz Zentrum München GmbH, Neuherberg, Germany
- Institute of Virology, Helmholtz Zentrum München GmbH, Neuherberg, Germany
| | - Christian Griebler
- Institute of Groundwater Ecology, Helmholtz Zentrum München GmbH, Neuherberg, Germany
| |
Collapse
|
15
|
|
16
|
Li H, Xu Z, Zhao F, Wang Y, Liao X. Synergetic effects of high-pressure carbon dioxide and nisin on the inactivation of Escherichia coli and Staphylococcus aureus. INNOV FOOD SCI EMERG 2016. [DOI: 10.1016/j.ifset.2015.11.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Barba FJ, Parniakov O, Pereira SA, Wiktor A, Grimi N, Boussetta N, Saraiva JA, Raso J, Martin-Belloso O, Witrowa-Rajchert D, Lebovka N, Vorobiev E. Current applications and new opportunities for the use of pulsed electric fields in food science and industry. Food Res Int 2015. [DOI: 10.1016/j.foodres.2015.09.015] [Citation(s) in RCA: 432] [Impact Index Per Article: 43.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
18
|
Aadil RM, Zeng XA, Ali A, Zeng F, Farooq MA, Han Z, Khalid S, Jabbar S. Influence of different pulsed electric field strengths on the quality of the grapefruit juice. Int J Food Sci Technol 2015. [DOI: 10.1111/ijfs.12891] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Rana Muhammad Aadil
- College of Light Industry and Food Sciences; South China University of Technology; Guangzhou 510641 China
- Department of Agriculture Extension and Communication; Pir Mehr Ali Shah Arid Agriculture University; Rawalpindi Pakistan
| | - Xin-An Zeng
- College of Light Industry and Food Sciences; South China University of Technology; Guangzhou 510641 China
| | - Amjad Ali
- College of Light Industry and Food Sciences; South China University of Technology; Guangzhou 510641 China
| | - Feng Zeng
- College of Light Industry and Food Sciences; South China University of Technology; Guangzhou 510641 China
| | - Muhammad Adil Farooq
- College of Light Industry and Food Sciences; South China University of Technology; Guangzhou 510641 China
| | - Zhong Han
- College of Light Industry and Food Sciences; South China University of Technology; Guangzhou 510641 China
| | - Saud Khalid
- College of Light Industry and Food Sciences; South China University of Technology; Guangzhou 510641 China
| | - Saqib Jabbar
- Institute of Food Science and Nutrition; University of Sargodha; Sargodha 40100 Pakistan
| |
Collapse
|
19
|
Study of the suitability of the central composite design to predict the inactivation kinetics by pulsed electric fields (PEF) in Escherichia coli, Staphylococcus aureus and Pseudomonas fluorescens in milk. FOOD AND BIOPRODUCTS PROCESSING 2015. [DOI: 10.1016/j.fbp.2014.10.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
20
|
Baah-Dwomoh A, Rolong A, Gatenholm P, Davalos RV. The feasibility of using irreversible electroporation to introduce pores in bacterial cellulose scaffolds for tissue engineering. Appl Microbiol Biotechnol 2015; 99:4785-94. [PMID: 25690311 PMCID: PMC4437824 DOI: 10.1007/s00253-015-6445-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Revised: 01/27/2015] [Accepted: 01/28/2015] [Indexed: 10/24/2022]
Abstract
This work investigates the feasibility of the use of irreversible electroporation (IRE) in the biofabrication of 3D cellulose nanofibril networks via the bacterial strain Gluconacetobacter xylinus. IRE uses electrical pulses to increase membrane permeability by altering the transmembrane potential; past a threshold, damage to the cell becomes too great and leads to cell death. We hypothesized that using IRE to kill the bacteria at specific locations and particular times, we could introduce conduits in the overall scaffold by preventing cellulose biosynthesis locally. Through mathematical modeling and experimental techniques, electrical effects were investigated and the parameters for IRE of G. xylinus were determined. We found that for a specific set of parameters, an applied electric field of 8 to 12.5 kV/cm, producing a local field of 3 kV/cm, was sufficient to kill most of the bacteria and create a localized pore. However, an applied electric field of 17.5 kV/cm was required to kill all. Results suggest that IRE may be an effective tool to create scaffolds with appropriate porosity for orthopedic applications. Ideally, these engineered scaffolds could be used to successfully treat osteochondral defects.
Collapse
Affiliation(s)
- Adwoa Baah-Dwomoh
- Materials Science and Engineering, Virginia Tech, Blacksburg, VA, USA,
| | | | | | | |
Collapse
|
21
|
Changing Old Habits. Food Saf (Tokyo) 2014. [DOI: 10.1128/9781555816186.ch17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
22
|
Gálvez A, López RL, Pulido RP, Burgos MJG. Application of Lactic Acid Bacteria and Their Bacteriocins for Food Biopreservation. FOOD BIOPRESERVATION 2014. [DOI: 10.1007/978-1-4939-2029-7_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
23
|
Kanmani P, Satish Kumar R, Yuvaraj N, Paari KA, Pattukumar V, Arul V. Probiotics and its functionally valuable products-a review. Crit Rev Food Sci Nutr 2013; 53:641-58. [PMID: 23627505 DOI: 10.1080/10408398.2011.553752] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
During the past two decades probiotic bacteria have been increasingly proposed as health promoting bacteria in variety of food system, because of its safety, functional, and technological characteristics. Commonly, Lactobacillus spp., Bifidobacterium spp., Saccharomyces boulardii, and some other microorganisms have been considered as probiotic strains. Possibly these bacterial strains exerted several beneficial effects into gastrointestinal tract of host while administered with variety of food system. Lactic acid bacteria (LAB) usually produce antimicrobial substances like bacteriocin which have broad spectrum of antagonist effect against closely related Gram positive and Gram negative pathogens. LAB strains often produce polymeric substances such as exopolysaccharides (EPS) which increase the colonization of probiotic bacteria by cell-cell interactions in gastrointestinal tract. LAB also produces biosurfactant which showed that the wide range of antimicrobial activity against bacterial pathogen as well as its antiadhesive properties reduces the adhesion of pathogens into gastric wall membrane. Furthermore, LAB strains have also been reported for production of antioxidants which are ability to scavenge the free radicals such as superoxide anions and hydroxyl radicals. For this sense, this review article is mainly focused on the ecology, biosynthesis, genetics, target sites, and applications of bacteriocins and EPS from LAB strains. Moreover, this review discusses about the production and functions of nutritive essential element folate and iron chelating agent such as siderophores from LAB.
Collapse
Affiliation(s)
- Paulraj Kanmani
- Department of Biotechnology, School of Life Sciences, Pondicherry University, Pondicherry, 605014, India
| | | | | | | | | | | |
Collapse
|
24
|
Gao Y, Li D, Liu X. Evaluation of the factors affecting the activity of sakacin C2 against E. coli in milk. Food Control 2013. [DOI: 10.1016/j.foodcont.2012.07.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
25
|
Murillo-Martínez MM, Tello-Solís SR, García-Sánchez MA, Ponce-Alquicira E. Antimicrobial activity and hydrophobicity of edible whey protein isolate films formulated with nisin and/or glucose oxidase. J Food Sci 2013; 78:M560-6. [PMID: 23488765 DOI: 10.1111/1750-3841.12078] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 01/14/2013] [Indexed: 11/29/2022]
Abstract
The use of edible antimicrobial films has been reported as a means to improve food shelf life through gradual releasing of antimicrobial compounds on the food surface. This work reports the study on the incorporation of 2 antimicrobial agents, nisin (N), and/or glucose oxidase (GO), into the matrix of Whey protein isolate (WPI) films at pH 5.5 and 8.5. The antimicrobial activity of the edible films was evaluated against Listeria innocua (ATCC 33090), Brochothrix thermosphacta (NCIB10018), Escherichia coli (JMP101), and Enterococcus faecalis (MXVK22). In addition, the antimicrobial activity was related to the hydrophobicity and water solubility of the WPI films. The greatest antibacterial activity was observed in WPI films containing only GO. The combined addition of N and GO resulted in films with lower antimicrobial activity than films with N or GO alone. In most cases, a pH effect was observed as greater antimicrobial response at pH 5.5 as well as higher film matrix hydrophobicity. WPI films supplemented with GO can be used in coating systems suitable for food preservation.
Collapse
Affiliation(s)
- María M Murillo-Martínez
- Departamento de Biotecnología and Química, Univ. Autónoma Metropolitana Unidad Iztapalapa, Av. San Rafael Atlixco nr 186, Col. Vicentina, Iztapalapa, 09340, México
| | | | | | | |
Collapse
|
26
|
Liu H, Sun L, Wang Y, Lei X, Xu D. Modeling antimicrobial activity of lipopeptides from Bacillus amyloliquefaciens ES-2 against Shewanella putrefaciens in shrimp meat using a response surface method. J Food Prot 2012; 75:1855-8. [PMID: 23043837 DOI: 10.4315/0362-028x.jfp-12-073] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Bacillus amyloliquefaciens ES-2 can produce antimicrobial lipopeptides, including surfactin and fengycin. In this study, the model of antimicrobial activity against Shewanella putrefaciens in shrimp meat by antimicrobial lipopeptides from B. amyloliquefaciens ES-2 was researched by response surface methodology. The results showed that S. putrefaciens had high sensitivity to antimicrobial lipopeptides, which had a MIC of 0.6 mg/ml. A quadratic mathematical model representative of the action of antimicrobial lipopeptides on S. putrefaciens in shrimp meat was developed as a function of concentration, time, and temperature. A reduction of S. putrefaciens cells of over 2 log cycles could be realized when the temperature was below 5.4°C, the time was over 6 h, and the concentration of the lipopeptides was over 0.3 mg/g.
Collapse
Affiliation(s)
- Huanming Liu
- School of Food Science and Technology, Guangdong Ocean University, Zhanjiang 524088, China
| | | | | | | | | |
Collapse
|
27
|
Lucera A, Costa C, Conte A, Del Nobile MA. Food applications of natural antimicrobial compounds. Front Microbiol 2012; 3:287. [PMID: 23060862 PMCID: PMC3441195 DOI: 10.3389/fmicb.2012.00287] [Citation(s) in RCA: 243] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 07/21/2012] [Indexed: 11/15/2022] Open
Abstract
In agreement with the current trend of giving value to natural and renewable resources, the use of natural antimicrobial compounds, particularly in food and biomedical applications, becomes very frequent. The direct addition of natural compounds to food is the most common method of application, even if numerous efforts have been made to find alternative solutions to the aim of avoiding undesirable inactivation. Dipping, spraying, and coating treatment of food with active solutions are currently applied to product prior to packaging as valid options. The aim of the current work is to give an overview on the use of natural compounds in food sector. In particular, the review will gather numerous case-studies of meat, fish, dairy products, minimally processed fruit and vegetables, and cereal-based products where these compounds found application.
Collapse
Affiliation(s)
| | | | | | - Matteo A. Del Nobile
- Lab of Food Processing and Packaging, Department of Food Science, Agricultural Faculty, University of FoggiaFoggia, Italy
| |
Collapse
|
28
|
Beshkova D, Frengova G. Bacteriocins from lactic acid bacteria: Microorganisms of potential biotechnological importance for the dairy industry. Eng Life Sci 2012. [DOI: 10.1002/elsc.201100127] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
29
|
Bermúdez-Aguirre D, Dunne CP, Barbosa-Cánovas GV. Effect of processing parameters on inactivation of Bacillus cereus spores in milk using pulsed electric fields. Int Dairy J 2012. [DOI: 10.1016/j.idairyj.2011.11.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
30
|
Saldaña G, Monfort S, Condón S, Raso J, Álvarez I. Effect of temperature, pH and presence of nisin on inactivation of Salmonella Typhimurium and Escherichia coli O157:H7 by pulsed electric fields. Food Res Int 2012. [DOI: 10.1016/j.foodres.2011.03.059] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
31
|
Bermúdez-Aguirre D, Fernández S, Esquivel H, Dunne PC, Barbosa-Cánovas GV. Milk Processed by Pulsed Electric Fields: Evaluation of Microbial Quality, Physicochemical Characteristics, and Selected Nutrients at Different Storage Conditions. J Food Sci 2011; 76:S289-99. [DOI: 10.1111/j.1750-3841.2011.02171.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
32
|
Martín-Belloso O, Sobrino-López A. Combination of Pulsed Electric Fields with Other Preservation Techniques. FOOD BIOPROCESS TECH 2011. [DOI: 10.1007/s11947-011-0512-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
33
|
|
34
|
Cao-Hoang L, Grégoire L, Chaine A, Waché Y. Importance and efficiency of in-depth antimicrobial activity for the control of listeria development with nisin-incorporated sodium caseinate films. Food Control 2010. [DOI: 10.1016/j.foodcont.2010.02.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
35
|
Fadda S, López C, Vignolo G. Role of lactic acid bacteria during meat conditioning and fermentation: Peptides generated as sensorial and hygienic biomarkers. Meat Sci 2010; 86:66-79. [DOI: 10.1016/j.meatsci.2010.04.023] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 03/31/2010] [Accepted: 04/06/2010] [Indexed: 01/07/2023]
|
36
|
Cao-Hoang L, Chaine A, Grégoire L, Waché Y. Potential of nisin-incorporated sodium caseinate films to control Listeria in artificially contaminated cheese. Food Microbiol 2010; 27:940-4. [PMID: 20688236 DOI: 10.1016/j.fm.2010.05.025] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 05/20/2010] [Accepted: 05/25/2010] [Indexed: 10/19/2022]
Abstract
A sodium caseinate film containing nisin (1000 IU/cm(2)) was produced and used to control Listeria innocua in an artificially contaminated cheese. Mini red Babybel cheese was chosen as a model semi-soft cheese. L. innocua was both surface- and in-depth inoculated to investigate the effectiveness of the antimicrobial film as a function of the distance from the surface in contact with the film. The presence of the active film resulted in a 1.1 log CFU/g reduction in L. innocua counts in surface-inoculated cheese samples after one week of storage at 4 degrees C as compared to control samples. With regard to in-depth inoculated cheese samples, antimicrobial efficiency was found to be dependent on the distance from the surface in contact with the active films to the cheese matrix. The inactivation rates obtained were 1.1, 0.9 and 0.25 log CFU/g for distances from the contact surface of 1 mm, 2 mm and 3 mm, respectively. Our study demonstrates the potential application of sodium caseinate films containing nisin as a promising method to overcome problems associated with post-process contamination, thereby extending the shelf life and possibly enhancing the microbial safety of cheeses.
Collapse
Affiliation(s)
- Lan Cao-Hoang
- DSAN, UP Biotechnologie et Microbiologie Alimentaire, AgroSup Dijon, 1 Esplanade Erasme, F-21000 DIJON, France.
| | | | | | | |
Collapse
|
37
|
Inactivation kinetics of pulsed electric field-resistant strains of Listeria monocytogenes and Staphylococcus aureus in media of different pH. Food Microbiol 2010; 27:550-8. [DOI: 10.1016/j.fm.2010.01.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Revised: 01/14/2010] [Accepted: 01/17/2010] [Indexed: 11/18/2022]
|
38
|
Sobrino-López A, Martín-Belloso O. Review: Potential of High-Intensity Pulsed Electric Field Technology for Milk Processing. FOOD ENGINEERING REVIEWS 2009. [DOI: 10.1007/s12393-009-9011-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
39
|
Efficacy of a teat dip containing the bacteriocin lacticin 3147 to eliminate Gram-positive pathogens associated with bovine mastitis. J DAIRY RES 2009; 77:231-8. [PMID: 19785910 DOI: 10.1017/s0022029909990239] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
On most dairy farms teat dips are applied to the teats of cows either before or after milking in order to prevent pathogens from gaining access to the mammary gland via the teat canal. In the present experiments, a natural teat dip was developed using a fermentate containing the live bacterium Lactococcus lactis DPC 3251. This bacterium produces lacticin 3147, a two-component lantibiotic which was previously shown to effectively kill Gram-positive mastitis pathogens. Lacticin 3147 activity in the fermentate was retained at 53% of its original level following storage for 3 weeks at 4 degrees C. In the initial experiments in vitro, 105 colony-forming units/ml (cfu/ml) of either Staphylococcus aureus, Streptococcus dysgalactiae or Streptococcus uberis were introduced into the lacticin-containing fermentate. Neither Staph. aureus nor Str. dysgalactiae could be detected after 30 min or 15 min, respectively, while Str. uberis was reduced approximately 100-fold after 15 min. Following these trials, preliminary experiments were performed in vivo on teats of lactating dairy cows. In these experiments, teats were coated with each of the challenge organisms and then dipped with the lacticin-containing fermented teat dip. Following a dip contact time of 10 min, staphylococci were reduced by 80% when compared with the undipped control teat. Streptococcal challenges were reduced by 97% for Str. dysgalactiae and by 90% for Str. uberis. These trials showed that the teat dip is able to reduce mastitis pathogens on the teats of lactating cows.
Collapse
|
40
|
Sobrino-Lopez A, Viedma-Martínez P, Abriouel H, Valdivia E, Gálvez A, Martin-Belloso O. The effect of adding antimicrobial peptides to milk inoculated with Staphylococcus aureus and processed by high-intensity pulsed-electric field. J Dairy Sci 2009; 92:2514-23. [PMID: 19447982 DOI: 10.3168/jds.2008-1996] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The use of high-intensity pulsed-electric field (HIPEF) and antimicrobial substances of natural origin, such as enterocin AS-48 (AS-48), nisin, and lysozyme, are among the most important nonthermal preservation methods. Thus, the purpose of this study was to evaluate the combined effect on milk inoculated with Staphylococcus aureus of the addition of AS-48 with nisin or lysozyme, or both, together with the use of HIPEF. Synergy was observed in the reduction of Staph. aureus counts with the following combination methods: i) addition of AS-48 and nisin, ii) addition of AS-48 plus use of HIPEF, and iii) addition of AS-48 and nisin plus use of HIPEF. Specifically, when 28 arbitrary units/mL of AS-48 and 20 IU/mL of nisin were added to the milk, and it was treated with HIPEF for 800 mus, over 6 log reductions were observed in the microorganism. In general, Staph. aureus inactivation was dependent on HIPEF treatment time, antimicrobial doses, and medium pH. During storage of the treated milk, survivor population was related to peptide concentration and temperature. Final cell viability was influenced by the sequence in which the treatments were applied: the addition of AS-48 or AS-48 and nisin was more effective before than after HIPEF treatment. The results obtained indicate that the combination of HIPEF and antimicrobials could be of great interest to the dairy industry, although it is necessary to study further the way in which the combined treatments act.
Collapse
Affiliation(s)
- A Sobrino-Lopez
- Department of Food Technology, University of Lleida, Avda. Alcalde Rovira Roure 191, 25198 Lleida, Spain
| | | | | | | | | | | |
Collapse
|
41
|
Martínez Viedma P, Abriouel H, Sobrino López A, Ben Omar N, Lucas López R, Valdivia E, Martín Belloso O, Gálvez A. Effect of enterocin AS-48 in combination with high-intensity pulsed-electric field treatment against the spoilage bacterium Lactobacillus diolivorans in apple juice. Food Microbiol 2009; 26:491-6. [PMID: 19465245 DOI: 10.1016/j.fm.2009.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2009] [Revised: 03/03/2009] [Accepted: 03/10/2009] [Indexed: 11/28/2022]
Abstract
Enterocin AS-48 was tested in apple juice against the cider-spoilage, exopolysaccharide-producing strain Lactobacillus diolivorans 29 in combination with high-intensity pulsed-electric field (HIPEF) treatment (35 kV/cm, 150 Hz, 4 micros and bipolar mode). A response surface methodology was applied to study the bactericidal effects of the combined treatment, with AS-48 concentration and HIPEF treatment time as process variables. At subinhibitory bacteriocin concentrations, microbial inactivation by the combined treatment increased as the bacteriocin concentration and the HIPEF treatment time increased (from 0.5 to 2.0 microg/ml and from 100 to 1000 micros, respectively). Highest inactivation (4.87 logs) was achieved by 1000 micros HIPEF treatment in combination with 2.0 microg/ml AS-48. While application of treatments separately did not protect juice from survivors during storage, survivors to the combined treatment were inactivated within the following 24 h of storage, and the treated samples remained free from detectable lactobacilli for at least 15 days at temperatures of 4 degrees C as well as 22 degrees C. The combined treatment could be useful for inactivation of exopolysaccharide-producing L. diolivorans in apple juice.
Collapse
Affiliation(s)
- Pilar Martínez Viedma
- Area de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Edif. B3, Universidad de Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Gálvez A, López RL, Abriouel H, Valdivia E, Omar NB. Application of Bacteriocins in the Control of Foodborne Pathogenic and Spoilage Bacteria. Crit Rev Biotechnol 2008; 28:125-52. [DOI: 10.1080/07388550802107202] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
43
|
Martínez Viedma P, Sobrino López A, Ben Omar N, Abriouel H, Lucas López R, Valdivia E, Martín Belloso O, Gálvez A. Enhanced bactericidal effect of enterocin AS-48 in combination with high-intensity pulsed-electric field treatment against Salmonella enterica in apple juice. Int J Food Microbiol 2008; 128:244-9. [PMID: 18829125 DOI: 10.1016/j.ijfoodmicro.2008.08.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 07/22/2008] [Accepted: 08/24/2008] [Indexed: 10/21/2022]
Abstract
The effect of the broad spectrum cyclic antimicrobial peptide enterocin AS-48 combination with high-intensity pulsed-electric field (HIPEF) treatment (35 kV/cm, 150 Hz, 4 micros and bipolar mode) was tested on Salmonella enterica CECT 915 in apple juice. A response surface methodology was applied to study the bactericidal effects of the combined treatment. The process variables were AS-48 concentration, temperature, and HIPEF treatment time. While treatment with enterocin AS-48 alone up to 60 microg/ml had no effect on the viability of S. enterica in apple juice, an increased bactericidal activity was observed in combination with HIPEF treatments. Survival fraction was affected by treatment time, enterocin AS48 concentration and treatment temperature. The combination of 100 micros of HIPEF treatment, 30 microg/ml of AS-48, and temperature of 20 degrees C resulted in the lowest inactivation, with only a 1.2-log reduction. The maximum inactivation of 4.5-log cycles was achieved with HIPEF treatment for 1000 micros in combination with 60 microg/ml of AS-48 and a treatment temperature of 40 degrees C. Synergism between enterocin AS-48 and HIPEF treatment depended on the sequence order application, since it was observed only when HIPEF was applied in the presence of previously-added bacteriocin. The combined treatment could improve the safety of freshly-made apple juice against S. enterica transmission.
Collapse
Affiliation(s)
- Pilar Martínez Viedma
- Area de Microbiología, Departamento de Ciencias de la Salud, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071-Jaén, Spain
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Mosqueda-Melgar J, Elez-Martínez P, Raybaudi-Massilia RM, Martín-Belloso O. Effects of Pulsed Electric Fields on Pathogenic Microorganisms of Major Concern in Fluid Foods: A Review. Crit Rev Food Sci Nutr 2008; 48:747-59. [DOI: 10.1080/10408390701691000] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
45
|
Non-thermal pasteurization of fruit juices by combining high-intensity pulsed electric fields with natural antimicrobials. INNOV FOOD SCI EMERG 2008. [DOI: 10.1016/j.ifset.2007.09.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
46
|
Synergistic action of rapid chilling and nisin on the inactivation of Escherichia coli. Appl Microbiol Biotechnol 2008; 79:105-9. [DOI: 10.1007/s00253-008-1402-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 02/04/2008] [Accepted: 02/05/2008] [Indexed: 10/22/2022]
|
47
|
Sobrino-López A, Martín-Belloso O. Enhancing the Lethal Effect of High-Intensity Pulsed Electric Field in Milk by Antimicrobial Compounds as Combined Hurdles. J Dairy Sci 2008; 91:1759-68. [DOI: 10.3168/jds.2007-0979] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
48
|
Sobrino-López A, Martín-Belloso O. Use of nisin and other bacteriocins for preservation of dairy products. Int Dairy J 2008. [DOI: 10.1016/j.idairyj.2007.11.009] [Citation(s) in RCA: 110] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
49
|
Comparative study on color, viscosity and related enzymes of tomato juice treated by high-intensity pulsed electric fields or heat. Eur Food Res Technol 2007. [DOI: 10.1007/s00217-007-0761-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
50
|
Quitão-Teixeira LJ, Aguiló-Aguayo I, Ramos AM, Martín-Belloso O. Inactivation of Oxidative Enzymes by High-Intensity Pulsed Electric Field for Retention of Color in Carrot Juice. FOOD BIOPROCESS TECH 2007. [DOI: 10.1007/s11947-007-0018-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|