1
|
Jones ADG. Microbial Risk Assessment. HUMAN AND ECOLOGICAL RISK ASSESSMENT 2024:779-832. [DOI: 10.1002/9781119742975.ch21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
2
|
Chiang J, Robertson J, McGoverin CM, Swift S, Vanholsbeeck F. Rapid detection of viable microbes with 5-cyano-2,3-di-(p-tolyl)tetrazolium chloride and 5(6)-carboxyfluorescein diacetate using a fibre fluorescence spectroscopy system. J Appl Microbiol 2024; 135:lxae047. [PMID: 38383865 DOI: 10.1093/jambio/lxae047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 02/03/2024] [Accepted: 02/20/2024] [Indexed: 02/23/2024]
Abstract
AIMS To assess the efficacy of two commercially available viability dyes, 5-cyano-2,3-di-(p-tolyl)tetrazolium chloride (CTC) and 5(6)-carboxyfluorescein diacetate (CFDA), in reporting on viable cell concentration and species using an all-fibre fluorometer. METHODS AND RESULTS Four bacterial species (two Gram-positive and two Gram-negative) commonly associated with food poisoning or food spoilage (Escherichia coli, Salmonella enterica, Staphylococcus aureus, and Bacillus cereus) were stained with CTC or CFDA and the fibre fluorometer was used to collect full fluorescence emission spectra. A good correlation between concentration and fluorescence intensity was found for Gram-negative bacteria between 107 and 108 colony-forming units (CFU) ml-1. There was no correlation with concentration for Gram-positive bacteria; however, the information in the CTC and CFDA spectra shows the potential to distinguish Gram-negative cells from Gram-positive cells, although it may simply reflect the overall bacterial metabolic activity under staining conditions from this study. CONCLUSIONS The limit of detection (LoD) is too high in the dip-probe approach for analysis; however, the development of an approach measuring the fluorescence of single cells may improve this limitation. The development of new bacteria-specific fluorogenic dyes may also address this limitation. The ability to differentiate bacteria using these dyes may add value to measurements made to enumerate bacteria using CTC and CFDA.
Collapse
Affiliation(s)
- Jessica Chiang
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland 1023, New Zealand
| | - Julia Robertson
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland 1023, New Zealand
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Auckland 1010, New Zealand
| | - Cushla M McGoverin
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Auckland 1010, New Zealand
- Department of Physics, The University of Auckland, Auckland 1010, New Zealand
| | - Simon Swift
- Department of Molecular Medicine and Pathology, The University of Auckland, Auckland 1023, New Zealand
| | - Frédérique Vanholsbeeck
- The Dodd-Walls Centre for Photonic and Quantum Technologies, Auckland 1010, New Zealand
- Department of Physics, The University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
3
|
Besser J, Singer R, Jervis RH, Boxrud D, Smith K, Daly ER. Laboratory Criteria for Exclusion and Readmission of Potentially Infectious Persons in Sensitive Settings in the Age of Culture-Independent Diagnostic Tests: Report of a Multidisciplinary Workgroup. J Food Prot 2023; 86:100173. [PMID: 37797737 DOI: 10.1016/j.jfp.2023.100173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/23/2023] [Accepted: 09/27/2023] [Indexed: 10/07/2023]
Abstract
Culture-independent diagnostic tests (CIDTs) are increasingly used for clinical diagnosis of gastrointestinal diseases such as salmonellosis, Shiga toxin-producing E. coli disease, and shigellosis because of their speed, convenience, and generally high-performance characteristics. These tests are also used to screen potentially infectious asymptomatic persons during outbreak investigations in sensitive settings such as childcare, food service, and healthcare. However, only limited performance data are available for CIDTs used on specimens from asymptomatic persons. The Association of Public Health Laboratories (APHL) and Council of State and Territorial Epidemiologists (CSTE) convened a workgroup to examine the available scientific data to inform interim decision-making related to exclusion and readmission criteria for potentially infectious persons in sensitive settings, the risks and benefits of different testing strategies, and to identify knowledge gaps for further research. This is the report on the Workgroup findings.
Collapse
Affiliation(s)
- John Besser
- Association of Public Health Laboratories, 284 Vickers DR NE, Atlanta, GA 30307, USA.
| | - Rachael Singer
- Council of State and Territorial Epidemiologists, 2635 Century Parkway NE, Suite 700, Atlanta, GA 30345, USA.
| | - Rachel H Jervis
- Colorado Department of Public Health and Environment, 4300 Cherry Creek Drive South, Denver, CO 80246, USA.
| | - David Boxrud
- Centers for Disease Control and Prevention, 1600 Clifton Road NE. Atlanta GA 30329, USA.
| | - Kirk Smith
- Minnesota Department of Health, 625 Robert St. N. P.O. Box 64975, St. Paul, MN 55164, USA.
| | - Elizabeth R Daly
- Council of State and Territorial Epidemiologists, 2635 Century Parkway NE, Suite 700, Atlanta, GA 30345, USA.
| |
Collapse
|
4
|
Chen J, Zhong J, Lei H, Ai Y. Label-free multidimensional bacterial characterization with an ultrawide detectable concentration range by microfluidic impedance cytometry. LAB ON A CHIP 2023; 23:5029-5038. [PMID: 37909182 DOI: 10.1039/d3lc00799e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Rapid and accurate identification of bacteria is of great importance to public health in various fields, including medical diagnostics, food safety, and environmental monitoring. However, most existing bacterial detection methods have very narrow detectable concentration ranges and limited detection information, which easily leads to wrong diagnosis and treatment. This work presents a novel high-throughput microfluidic electrical impedance-based multidimensional single-bacterium profiling system for ultrawide concentration range detection and accurate differentiation of viability and Gram types of bacteria. The electrical impedance-based microfluidic cytometry is capable of multi-frequency impedance quantification, which allows profiling of the bacteria size, concentration, and membrane impedance as an indicator of bacterial viability and Gram properties in a single flow-through interrogation. It has been demonstrated that this novel impedance cytometry has an ultrawide bacterial counting range (102-108 cells per mL), and exhibits a rapid and accurate discrimination of viability and Gram types of bacteria in a label-free manner. Escherichia coli (E. coli) has been used as an analog species for the accuracy assessment of the electrical impedance-based bacterial detection system in an authentic complex beverage matrix within 24 hours. The impedance-based quantifications of viable bacteria are consistent with those obtained by the classical bacterial colony counting method (R2 = 0.996). This work could pave the way for providing a novel microfluidic cytometry system for rapid and multidimensional bacterial detection in diverse areas.
Collapse
Affiliation(s)
- Jiahong Chen
- Guangdong Provincial Key Laboratory of Food Quality and Safety/National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Jianwei Zhong
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore.
| | - Hongtao Lei
- Guangdong Provincial Key Laboratory of Food Quality and Safety/National-Local Joint Engineering Research Center for Machining and Safety of Livestock and Poultry Products, College of Food Science, South China Agricultural University, Guangzhou 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Ye Ai
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372, Singapore.
| |
Collapse
|
5
|
Matuszewska M, Dabrowska A, Murray GGR, Kett SM, Vick AJA, Banister SC, Pantoja Munoz L, Cunningham P, Welch JJ, Holmes MA, Weinert LA. Absence of Staphylococcus aureus in Wild Populations of Fish Supports a Spillover Hypothesis. Microbiol Spectr 2023; 11:e0485822. [PMID: 37341608 PMCID: PMC10434045 DOI: 10.1128/spectrum.04858-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 05/23/2023] [Indexed: 06/22/2023] Open
Abstract
Staphylococcus aureus is a human commensal and opportunistic pathogen that also infects other animals. In humans and livestock, where S. aureus is most studied, strains are specialized for different host species. Recent studies have also found S. aureus in diverse wild animals. However, it remains unclear whether these isolates are also specialized for their hosts or whether their presence is due to repeated spillovers from source populations. This study focuses on S. aureus in fish, testing the spillover hypothesis in two ways. First, we examined 12 S. aureus isolates obtained from the internal and external organs of a farmed fish. While all isolates were from clonal complex 45, genomic diversity indicates repeated acquisition. The presence of a φSa3 prophage containing human immune evasion genes suggests that the source was originally human. Second, we tested for S. aureus in wild fish that were isolated from likely sources. In particular, we sampled 123 brown trout and their environment at 16 sites in the remote Scottish Highlands with variable levels of exposure to humans, birds, and livestock. This screen found no S. aureus infection in any of the wild populations or their environment. Together, these results support that the presence of S. aureus in fish and aquaculture is due to spillover from humans rather than specialization. Given the trends of increasing fish consumption, a better understanding of the dynamics of S. aureus spillover in aquaculture will mitigate future risks to fish and human health. IMPORTANCE Staphylococcus aureus is a human and livestock commensal but also an important pathogen responsible for high human mortality rates and economic losses in farming. Recent studies show that S. aureus is common in wild animals, including fish. However, we do not know whether these animals are part of the normal host range of S. aureus or whether infection is due to repeated spillover events from true S. aureus hosts. Answering this question has implications for public health and conservation. We find support for the spillover hypothesis by combining genome sequencing of S. aureus isolates from farmed fish and screens for S. aureus in isolated wild populations. The results imply that fish are unlikely to be a source of novel emergent S. aureus strains but highlight the prominence of the spillover of antibiotic-resistant bacteria from humans and livestock. This may affect both future fish disease potential and the risk of human food poisoning.
Collapse
Affiliation(s)
- Marta Matuszewska
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Alicja Dabrowska
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Physics, University of Cambridge, Cambridge, United Kingdom
| | - Gemma G. R. Murray
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
- Department of Genetics, Evolution and Environment, University College London, London
| | - Steve M. Kett
- Department of Natural Sciences, Middlesex University London, London, United Kingdom
| | - Andy J. A. Vick
- RAL Space (UKRI-STFC), Harwell Campus, Didcot, Oxfordshire, United Kingdom
| | - Sofie C. Banister
- School of History, Classics and Archaeology, University of Edinburgh, Edinburgh, United Kingdom
| | | | - Peter Cunningham
- Wester Ross Fisheries Trust, Harbour Centre, Gairloch, Wester Ross, United Kingdom
| | - John J. Welch
- Department of Genetics, University of Cambridge, Cambridge, United Kingdom
| | - Mark A. Holmes
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Lucy A. Weinert
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
6
|
Characterisation of new anti-O157 bacteriophages of bovine origin representing three genera. Arch Microbiol 2022; 204:231. [PMID: 35355138 PMCID: PMC8967787 DOI: 10.1007/s00203-022-02839-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 11/29/2022]
Abstract
Shiga-toxin-producing Escherichia coli (STEC) strains of the serogroup O157 are foodborne pathogens associated with severe clinical disease. As antibiotics are counter-indicated for treatment of these infections, they represent prime candidates for targeted application of bacteriophages to reduce infection burden. In this study, we characterised lytic bacteriophages representing three phage genera for activity against E. coli O157 strains. The phages vb_EcoM_bov9_1 (Tequatrovirus), vb_EcoM_bov11CS3 (Vequintavirus), and vb_EcoS_bov25_1D (Dhillonvirus) showed effective lysis of enterohaemorrhagic E. coli EHEC O157:H7 strains, while also exhibiting activity against other strains of the O157 serogroup, as well as of the ‘big six’ (STEC) serogroups, albeit with lower efficiency. They had a burst size of 293, 127 and 18 per cell and a latent period of 35, 5 and 30 min, respectively. In situ challenge experiments using the O157 Sakai strain on minced beef showed a reduction by 2–3-fold when treated with phages at a 0.1 MOI (multiplicity of infection), and approximately 1 log reduction when exposed to MOI values of 10 and 100. A cocktail of the phages, applied at 10 × and 100 × MOI showed 2 to 3 log reduction when samples were treated at room temperature, and all treatments at 37 °C with 100 × MOI resulted in a 5 to 6 log reduction in cell count. Our results indicate that the phages vb_EcoM_bov9_1 and vb_EcoM_bov11CS3, which have higher burst sizes, are promising candidates for biocontrol experiments aimed at the eradication of E. coli O157 strains in animals or foodstuff.
Collapse
|
7
|
Di Battista A. A quantitative microbial risk assessment for touchscreen user interfaces using an asymmetric transfer gradient transmission mode. PLoS One 2022; 17:e0265565. [PMID: 35333886 PMCID: PMC8956170 DOI: 10.1371/journal.pone.0265565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 03/03/2022] [Indexed: 11/19/2022] Open
Abstract
The ubiquitous use of public touchscreen user interfaces for commercial applications has created a credible risk for fomite-mediated disease transmission. This paper presents results from a stochastic simulation designed to assess this risk. The model incorporates a queueing network to simulate people flow and touchscreen interactions. It also describes an updated model for microbial transmission using an asymmetric gradient transfer assumption that incorporates literature reviewed empirical data concerning touch-transfer efficiency between fingers and surfaces. In addition to natural decay/die-off, pathogens are removed from the system by simulated cleaning / disinfection and personal-touching rates (e.g. face, dermal, hair and clothing). The dose response is implemented with an exponential moving average filter to model the temporal dynamics of exposure. Public touchscreens were shown to pose a considerable infection risk (∼3%) using plausible default simulation parameters. Sensitivity of key model parameters, including the rate of surface disinfection is examined and discussed. A distinctive and important advancement of this simulation was its ability to distinguish between infection risk from a primary contaminated source and that due to the re-deposition of pathogens onto secondary, initially uncontaminated touchscreens from sequential use. The simulator is easily configurable and readily adapted to more general fomite-mediated transmission modelling and may provide a valuable framework for future research.
Collapse
|
8
|
Di Battista A, Nicolaides C, Georgiou O. Modelling disease transmission from touchscreen user interfaces. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210625. [PMID: 34350020 PMCID: PMC8316822 DOI: 10.1098/rsos.210625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 07/10/2021] [Indexed: 06/13/2023]
Abstract
The extensive use of touchscreens for all manner of human-computer interactions has made them plausible instruments of touch-mediated disease transmission. To that end, we employ stochastic simulations to model human-fomite interaction with a distinct focus on touchscreen interfaces. The timings and frequency of interactions from within a closed population of infectious and susceptible individuals was modelled using a queuing network. A pseudo-reproductive number R was used to compare outcomes under various parameter conditions. We then apply the simulation to a specific real-world scenario; namely that of airport self-check-in and baggage drop. A counterintuitive result was that R decreased with increased touch rates required for touchscreen interaction. Additionally, as one of few parameters to be controlled, the rate of cleaning/disinfecting screens plays an essential role in mitigating R, though alternative technological strategies could prove more effective. The simulation model developed provides a foundation for future advances in more sophisticated fomite disease-transmission modelling.
Collapse
Affiliation(s)
| | - Christos Nicolaides
- School of Economics and Management, University of Cyprus, Nicosia, Cyprus
- Nireas Research Center, University of Cyprus, Nicosia, Cyprus
- Initiative on the Digital Economy, MIT Sloan School of Management, Cambridge MA, USA
| | - Orestis Georgiou
- Ultraleap Ltd, Bristol, UK
- Department of Electrical and Computer Engineering, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
9
|
Qu LL, Ying YL, Yu RJ, Long YT. In situ food-borne pathogen sensors in a nanoconfined space by surface enhanced Raman scattering. Mikrochim Acta 2021; 188:201. [PMID: 34041602 PMCID: PMC8154335 DOI: 10.1007/s00604-021-04864-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 05/13/2021] [Indexed: 01/04/2023]
Abstract
The incidence of disease arising from food-borne pathogens is increasing continuously and has become a global public health problem. Rapid and accurate identification of food-borne pathogens is essential for adopting disease intervention strategies and controlling the spread of epidemics. Surface-enhanced Raman spectroscopy (SERS) has attracted increasing interest due to the attractive features including simplicity, rapid measurement, and high sensitivity. It can be used for rapid in situ sensing of single and multicomponent samples within the nanostructure-based confined space by providing molecular fingerprint information and has been demonstrated to be an effective detection strategy for pathogens. This article aims to review the application of SERS to the rapid sensing of food-borne pathogens in food matrices. The mechanisms and advantages of SERS, and detection strategies are briefly discussed. The latest progress on the use of SERS for rapid detection of food-borne bacteria and viruses is considered, including both the labeled and label-free detection strategies. In closing, according to the current situation regarding detection of food-borne pathogens, the review highlights the challenges faced by SERS and the prospects for new applications in food safety. In this review, the advances on the SERS detection of pathogens over the past decades have been reviewed, focusing on the improvements in sensitivity, reproducibility, specificity, and the performance of the SERS-based assay in complex analytical scenarios. ![]()
Collapse
Affiliation(s)
- Lu-Lu Qu
- School of Chemistry and Materials Science, Jiangsu Normal University, 221116, Xuzhou, People's Republic of China.
| | - Yi-Lun Ying
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, People's Republic of China
| | - Ru-Jia Yu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, People's Republic of China.
| | - Yi-Tao Long
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, People's Republic of China
| |
Collapse
|
10
|
Boyce JM, Schaffner DW. Scientific Evidence Supports the Use of Alcohol-Based Hand Sanitizers as an Effective Alternative to Hand Washing in Retail Food and Food Service Settings When Heavy Soiling Is Not Present on Hands. J Food Prot 2021; 84:781-801. [PMID: 33290525 DOI: 10.4315/jfp-20-326] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 12/06/2020] [Indexed: 12/28/2022]
Abstract
ABSTRACT Suboptimal food worker health and hygiene has been a common contributing factor in foodborne disease outbreaks for many years. Despite clear U.S. Food and Drug Administration (FDA) Model Food Code recommendations for hand washing and glove use, food worker compliance with hand washing recommendations has remained poor for >20 years. Food workers' compliance with recommended hand washing guidelines is adversely impacted by a number of barriers, including complaints of time pressure, inadequate number and/or location of hand washing sinks and hand washing supplies, lack of food knowledge and training regarding hand washing, the belief that wearing gloves obviates the need for hand washing, insufficient management commitment, and adverse skin effects caused by frequent hand washing. Although many of the issues related to poor hand washing practices in food service facilities are the same as those in health care settings, a new approach to health care hand hygiene was deemed necessary >15 years ago due to persistently low compliance rates among health care personnel. Evidence-based hand hygiene guidelines for health care settings were published by both the Centers for Disease Control and Prevention in 2002 and by the World Health Organization in 2009. Despite similar low hand washing compliance rates among retail food establishment workers, no changes in the Food Code guidelines for hand washing have been made since 2001. In direct contrast to health care settings, where frequent use of alcohol-based hand sanitizers (ABHSs) in lieu of hand washing has improved hand hygiene compliance rates and reduced infections, the Food Code continues to permit the use of ABHSs only after hands have been washed with soap and water. This article provides clear evidence to support modifying the FDA Model Food Code to allow the use of ABHSs as an acceptable alternative to hand washing in situations where heavy soiling is not present. Emphasis on the importance of hand washing when hands are heavily soiled and appropriate use of gloves is still indicated. HIGHLIGHTS
Collapse
Affiliation(s)
- John M Boyce
- J. M. Boyce Consulting, 62 Sonoma Lane, Middletown, Connecticut 06457 (ORCID: https://orcid.org/0000-0002-4626-1471)
| | - Donald W Schaffner
- Department of Food Science, Rutgers University, 65 Dudley Road, New Brunswick, New Jersey 08901, USA (ORCID: https://orcid.org/0000-0001-9200-0400)
| |
Collapse
|
11
|
Ryu S, Shin M, Yun B, Lee W, Choi H, Kang M, Oh S, Kim Y. Bacterial Quality, Prevalence of Pathogens, and Molecular Characterization of Biofilm-Producing Staphylococcus aureus from Korean Dairy Farm Environments. Animals (Basel) 2021; 11:1306. [PMID: 33946614 PMCID: PMC8147196 DOI: 10.3390/ani11051306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/23/2021] [Accepted: 04/29/2021] [Indexed: 11/16/2022] Open
Abstract
Raw milk acts as a mediator of major foodborne pathogenic bacterial infections. However, the sources of pathogens that contaminate milk are often unclear. This study assessed the prevalence of sanitary quality-indicating bacteria (total aerobic bacteria, psychrotrophic bacteria, coliform, and yeast/molds), including seven foodborne pathogens, in a dairy farm environment and processing plant in Korea. The microbiological analysis showed that a few sites, such as vat bottoms, room floors, drain holes, and niches, showed high microbial loads in most dairy farms. Based on quantitative microbial tests, Bacillus cereus was detected in three farms and Staphylococcus aureus was detected in only one farm. Among them, S. aureus JDFM SA01 isolated from a milk filter showed strong biofilm formation and toxicity to the host Caenorhabditis elegans. Subsequently, RNA-seq was performed to characterize the biofilm formation ability of S. aureus JDFM SA01. In biofilms, the significant upregulation of genes encoding microbial surface components and recognizing adhesive matrix molecules promotes adhesion might explain the increased viability and biomass of biofilms. This study provided insight into the prevalence of pathogenic bacteria and microbial contamination levels across dairy farms.
Collapse
Affiliation(s)
- Sangdon Ryu
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea; (S.R.); (M.S.); (W.L.); (H.C.)
| | - Minhye Shin
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea; (S.R.); (M.S.); (W.L.); (H.C.)
| | - Bohyun Yun
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju 55069, Korea; (B.Y.); (M.K.)
| | - Woongji Lee
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea; (S.R.); (M.S.); (W.L.); (H.C.)
| | - Hyejin Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea; (S.R.); (M.S.); (W.L.); (H.C.)
| | - Minkyoung Kang
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju 55069, Korea; (B.Y.); (M.K.)
| | - Sangnam Oh
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju 55069, Korea; (B.Y.); (M.K.)
| | - Younghoon Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea; (S.R.); (M.S.); (W.L.); (H.C.)
| |
Collapse
|
12
|
Godoy MG, Kibenge MJT, Kibenge FSB. SARS-CoV-2 transmission via aquatic food animal species or their products: A review. AQUACULTURE (AMSTERDAM, NETHERLANDS) 2021; 536:736460. [PMID: 33564203 PMCID: PMC7860939 DOI: 10.1016/j.aquaculture.2021.736460] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 01/28/2021] [Accepted: 01/30/2021] [Indexed: 05/06/2023]
Abstract
Outbreaks of COVID-19 (coronavirus disease 2019) have been reported in workers in fish farms and fish processing plants arising from person-to-person transmission, raising concerns about aquatic animal food products' safety. A better understanding of such incidents is important for the aquaculture industry's sustainability, particularly with the global trade in fresh and frozen aquatic animal food products where contaminating virus could survive for some time. Despite a plethora of COVID-19-related scientific publications, there is a lack of reports on the risk of contact with aquatic food animal species or their products. This review aimed to examine the potential for Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) contamination and the potential transmission via aquatic food animals or their products and wastewater effluents. The extracellular viability of SARS-CoV-2 and how the virus is spread are reviewed, supporting the understanding that contaminated cold-chain food sources may introduce SAR-CoV-2 via food imports although the virus is unlikely to infect humans through consumption of aquatic food animals or their products or drinking water; i.e., SARS-CoV-2 is not a foodborne virus and should not be managed as such but instead through strong, multifaceted public health interventions including physical distancing, rapid contact tracing, and testing, enhanced hand and respiratory hygiene, frequent disinfection of high-touch surfaces, isolation of infected workers and their contacts, as well as enhanced screening protocols for international seafood trade.
Collapse
Affiliation(s)
- Marcos G Godoy
- Centro de Investigaciones Biológicas Aplicadas (CIBA), Lago Panguipulli 1390, Puerto Montt, Chile
- Laboratorio de Biotecnología Aplicada, Facultad de Medicina Veterinaria, Sede De La Patagonia, Lago Panguipulli 1390, Puerto Montt, 5480000, Chile
- Doctorado en Acuicultura. Programa Cooperativo Universidad de Chile, Universidad Católica del Norte, Pontificia Universidad Católica de Valparaíso, Chile
| | - Molly J T Kibenge
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave., Charlottetown, P.E.I., C1A 4P3, Canada
| | - Frederick S B Kibenge
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, 550 University Ave., Charlottetown, P.E.I., C1A 4P3, Canada
| |
Collapse
|
13
|
Modernization of Control of Pathogenic Micro-Organisms in the Food-Chain Requires a Durable Role for Immunoaffinity-Based Detection Methodology-A Review. Foods 2021; 10:foods10040832. [PMID: 33920486 PMCID: PMC8069916 DOI: 10.3390/foods10040832] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 01/03/2023] Open
Abstract
Food microbiology is deluged by a vastly growing plethora of analytical methods. This review endeavors to color the context into which methodology has to fit and underlines the importance of sampling and sample treatment. The context is that the highest risk of food contamination is through the animal and human fecal route with a majority of foodborne infections originating from sources in mass and domestic kitchens at the end of the food-chain. Containment requires easy-to-use, failsafe, single-use tests giving an overall risk score in situ. Conversely, progressive food-safety systems are relying increasingly on early assessment of batches and groups involving risk-based sampling, monitoring environment and herd/flock health status, and (historic) food-chain information. Accordingly, responsible field laboratories prefer specificity, multi-analyte, and high-throughput procedures. Under certain etiological and epidemiological circumstances, indirect antigen immunoaffinity assays outperform the diagnostic sensitivity and diagnostic specificity of e.g., nucleic acid sequence-based assays. The current bulk of testing involves therefore ante- and post-mortem probing of humoral response to several pathogens. In this review, the inclusion of immunoglobulins against additional invasive micro-organisms indicating the level of hygiene and ergo public health risks in tests is advocated. Immunomagnetic separation, immunochromatography, immunosensor, microsphere array, lab-on-a-chip/disc platforms increasingly in combination with nanotechnologies, are discussed. The heuristic development of portable and ambulant microfluidic devices is intriguing and promising. Tant pis, many new platforms seem unattainable as the industry standard. Comparability of results with those of reference methods hinders the implementation of new technologies. Whatever the scientific and technological excellence and incentives, the decision-maker determines this implementation after weighing mainly costs and business risks.
Collapse
|
14
|
Draft Genome Sequences of 62 Staphylococcus aureus Isolates Associated with Four Foodborne Outbreaks in the United States. Microbiol Resour Announc 2021; 10:10/10/e00118-21. [PMID: 33707328 PMCID: PMC7953291 DOI: 10.1128/mra.00118-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Staphylococcus aureus bacteria are ranked among the top five foodborne pathogens in the United States. Here, we report the draft genome sequences of 62 S. aureus isolates that originated from the manufacturing environment of an Illinois bakery and were associated with outbreaks between 2010 and 2011 in the United States. Staphylococcus aureus bacteria are ranked among the top five foodborne pathogens in the United States. Here, we report the draft genome sequences of 62 S. aureus isolates that originated from the manufacturing environment of an Illinois bakery and were associated with outbreaks between 2010 and 2011 in the United States.
Collapse
|
15
|
Flock G, Pacitto D, Cowell C, Marek P, Senecal A. Investigating the effects of environmental stresses on
Salmonella enterica
serovar Tennessee survival in a low moisture food model. J FOOD PROCESS PRES 2020. [DOI: 10.1111/jfpp.14906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Genevieve Flock
- Combat Capabilities Development Command Soldier Center (CCDC‐SC), Combat Feeding Directorate Natick MA USA
| | - Dominique Pacitto
- Combat Capabilities Development Command Soldier Center (CCDC‐SC), Combat Feeding Directorate Natick MA USA
| | - Courtney Cowell
- Uniformed Services University of the Health Sciences Bethesda MD USA
| | - Patrick Marek
- Combat Capabilities Development Command Soldier Center (CCDC‐SC), Combat Feeding Directorate Natick MA USA
| | - Andre Senecal
- Combat Capabilities Development Command Soldier Center (CCDC‐SC), Combat Feeding Directorate Natick MA USA
| |
Collapse
|
16
|
Cesewski E, Johnson BN. Electrochemical biosensors for pathogen detection. Biosens Bioelectron 2020; 159:112214. [PMID: 32364936 PMCID: PMC7152911 DOI: 10.1016/j.bios.2020.112214] [Citation(s) in RCA: 397] [Impact Index Per Article: 79.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/19/2022]
Abstract
Recent advances in electrochemical biosensors for pathogen detection are reviewed. Electrochemical biosensors for pathogen detection are broadly reviewed in terms of transduction elements, biorecognition elements, electrochemical techniques, and biosensor performance. Transduction elements are discussed in terms of electrode material and form factor. Biorecognition elements for pathogen detection, including antibodies, aptamers, and imprinted polymers, are discussed in terms of availability, production, and immobilization approach. Emerging areas of electrochemical biosensor design are reviewed, including electrode modification and transducer integration. Measurement formats for pathogen detection are classified in terms of sample preparation and secondary binding steps. Applications of electrochemical biosensors for the detection of pathogens in food and water safety, medical diagnostics, environmental monitoring, and bio-threat applications are highlighted. Future directions and challenges of electrochemical biosensors for pathogen detection are discussed, including wearable and conformal biosensors, detection of plant pathogens, multiplexed detection, reusable biosensors for process monitoring applications, and low-cost, disposable biosensors.
Collapse
Affiliation(s)
- Ellen Cesewski
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA; Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Blake N Johnson
- Department of Industrial and Systems Engineering, Virginia Tech, Blacksburg, VA, 24061, USA; Department of Materials Science and Engineering, Virginia Tech, Blacksburg, VA, 24061, USA; Department of Chemical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
17
|
Transforming kinetic model into a stochastic inactivation model: Statistical evaluation of stochastic inactivation of individual cells in a bacterial population. Food Microbiol 2020; 91:103508. [PMID: 32539982 DOI: 10.1016/j.fm.2020.103508] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 11/22/2022]
Abstract
Kinetic models performing point estimation are effective in predicting the bacterial behavior. However, the large variation of bacterial behavior appearing in a small number of cells, i.e. equal or less than 102 cells, cannot be expressed by point estimation. We aimed to predict the variation of Escherichia coli O157:H7 behavior during inactivation in acidified tryptone soy broth (pH3.0) through Monte Carlo simulation and evaluated the accuracy of the developed model. Weibullian fitted parameters were estimated from the kinetic survival data of E. coli O157:H7 with an initial cell number of 105. A Monte Carlo simulation (100 replication) based on the obtained Weibullian parameters and the Poisson distribution of initial cell numbers successfully predicted the results of 50 replications of bacterial inactivation with initial cell numbers of 101, 102, and 103 cells. The accuracy of the simulation revealed that more than 83% of the observed survivors were within predicted range in all condition. 90% of the distribution in survivors with initial cells less than 100 is equivalent to a Poisson distribution. This calculation transforms the traditional microbial kinetic model into probabilistic model, which can handle bacteria number as discrete probability distribution. The probabilistic approach would utilize traditional kinetic model towards exposure assessment.
Collapse
|
18
|
Wang B, Liu S, Sui Z, Wang J, Wang Y, Gu S. Rapid Flow Cytometric Detection of Single Viable Salmonella Cells in Milk Powder. Foodborne Pathog Dis 2020; 17:447-458. [PMID: 32004087 DOI: 10.1089/fpd.2019.2748] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Salmonella, a highly virulent food-borne pathogen transmitted through food, can cause severe infectious diseases in a large number of people through a single outbreak, due to its low infective doses. In this study, a flow cytometry (FCM)-based method was developed for the rapid detection of single viable Salmonella cells with dual staining of fluorescein isothiocyanate (FITC)-labeled anti-Salmonella antibody and propidium iodide (PI) dyes. The FCM-based method includes 6 h of pre-enrichment, 40 min of target cell isolation, and 20 min of dual staining and FCM analysis. The developed method demonstrated high specificity for the detection of 23 Salmonella strains and 22 food-borne pathogenic non-Salmonella strains. Furthermore, the analyses of 30 samples of milk powder artificially contaminated with single Salmonella cells, 123 samples of retail milk powder, and 6 samples of Salmonella-positive milk powder were performed by the FCM-based as well as traditional plate-based methods for testing the efficiency of the methods. The two methods yielded similar results for the detection of pathogens in all milk powder samples. In conclusion, the developed FCM-based method was found to be efficient in detecting single viable Salmonella cells in milk powder within 7 h. The proposed dual-color FITC assay combined with pre-enrichment offers a great potential for the rapid and sensitive detection of other pathogens in dairy products.
Collapse
Affiliation(s)
- Bin Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China.,Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun, China
| | - Siyuan Liu
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Zhiwei Sui
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Jing Wang
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Yi Wang
- Research Center for Ginseng Genetic Resources Development and Utilization, Jilin Agricultural University, Changchun, China
| | - Shaopeng Gu
- Shanxi Key Laboratory of Environmental Veterinary Medicine, College of Animal Science and Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| |
Collapse
|
19
|
Velebit B, Djordjevic V, Milojevic L, Babic M, Grkovic N, Jankovic V, Yushina Y. The common foodborne viruses: A review. ACTA ACUST UNITED AC 2019. [DOI: 10.1088/1755-1315/333/1/012110] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Shanmugasundaram R, Mortada M, Cosby DE, Singh M, Applegate TJ, Syed B, Pender CM, Curry S, Murugesan GR, Selvaraj RK. Synbiotic supplementation to decrease Salmonella colonization in the intestine and carcass contamination in broiler birds. PLoS One 2019; 14:e0223577. [PMID: 31600299 PMCID: PMC6786831 DOI: 10.1371/journal.pone.0223577] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 09/23/2019] [Indexed: 12/27/2022] Open
Abstract
In vitro and in vivo experiments were conducted to study the effects of synbiotic supplementation on Salmonella enterica ser. Enteritidis (SE) proliferation, cecal content load, and broiler carcass contamination. Lactobacillus reuteri, Enterococcus faecium, Bifidobacterium animalis, and Pediococcus acidilactici culture supernatants decreased (P < 0.05) the in vitro proliferation of SE at 1:1 supernatant: pathogen dilution. A total of 240 Cobb-500 broiler chicks were randomly allotted to three treatment groups (8 replicates/group with 10 birds/replicate): control (basal diet), antibiotic (Virginiamycin at 20 mg/kg feed), synbiotic (PoultryStar® ME at 0.5 g/kg feed containing L. reuteri, E. faecium, B. animalis, P. acidilactici and a Fructooligosaccharide) from day of hatch. At 21 d of age, all birds in experimental groups were orally inoculated with 250 μl of 1 X 109 CFU SE. Antibiotic supplementation increased (P < 0.05) body weight and feed consumption, compared to the control group. Birds in the synbiotic supplementation had intermediate body weight and feed consumption that were not significantly different from both the control and antibiotic group at 42 d of age in SE infected birds. No significant effects were observed in feed efficiency at 42 d of age among the groups. Antibiotic and synbiotic supplementation decreased (P < 0.05) SE load in cecal contents by 0.90 and 0.85 log units/ g and carcass SE load by 1.4 and 1.5 log units/mL of rinsate compared to the control group at 42 d of age (21 dpi). The relative abundance of IL-10, IL-1, TLR-4, and IFNγ mRNA was decreased (P < 0.05) in the antibiotic and synbiotic supplementation groups compared to the control birds at 42 d of age (21 dpi). It can be concluded that synbiotic supplementation decreased SE proliferation in vitro and decreased SE load in the cecal contents and broiler carcass.
Collapse
Affiliation(s)
- R. Shanmugasundaram
- Department of Poultry Sciences, University of Georgia, Athens, GA, United States of America
| | - M. Mortada
- Department of Poultry Sciences, University of Georgia, Athens, GA, United States of America
| | - D. E. Cosby
- USDA-ARS, Athens, GA, United States of America
| | - M. Singh
- Department of Poultry Sciences, University of Georgia, Athens, GA, United States of America
| | - T. J. Applegate
- Department of Poultry Sciences, University of Georgia, Athens, GA, United States of America
| | - B. Syed
- BIOMIN Holding GmbH, Getzersdorf, Austria
| | - C. M. Pender
- BIOMIN America Inc., Overland Park, KS, United States of America
| | - S. Curry
- BIOMIN America Inc., Overland Park, KS, United States of America
| | - G. R. Murugesan
- BIOMIN America Inc., Overland Park, KS, United States of America
| | - R. K. Selvaraj
- Department of Poultry Sciences, University of Georgia, Athens, GA, United States of America
| |
Collapse
|
21
|
Miller S, Weiss AA, Heineman WR, Banerjee RK. Electroosmotic flow driven microfluidic device for bacteria isolation using magnetic microbeads. Sci Rep 2019; 9:14228. [PMID: 31578397 PMCID: PMC6775156 DOI: 10.1038/s41598-019-50713-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 07/31/2019] [Indexed: 12/13/2022] Open
Abstract
The presence of bacterial pathogens in water can lead to severe complications such as infection and food poisoning. This research proposes a point-of-care electroosmotic flow driven microfluidic device for rapid isolation and detection of E. coli in buffered solution (phosphate buffered saline solution). Fluorescent E. coli bound to magnetic microbeads were driven through the microfluidic device using both constant forward flow and periodic flow switching at concentrations ranging from 2 × 105 to 4 × 107 bacteria/mL. A calibration curve of fluorescent intensity as a function of bacteria concentration was created using both constant and switching flow, showing an increase in captured fluorescent pixel count as concentration increases. In addition, the use of the flow switching resulted in a significant increase in the capture efficiency of E. coli, with capture efficiencies up to 83% ± 8% as compared to the constant flow capture efficiencies (up to 39% ± 11%), with a sample size of 3 µL. These results demonstrate the improved performance associated with the use of the electroosmotic flow switching system in a point-of-care bacterial detection assay.
Collapse
Affiliation(s)
- Samuel Miller
- Department of Mechanical and Materials Engineering, University of Cincinnati, 598 Rhodes Hall, University of Cincinnati, Cincinnati, OH, 45221, USA
| | - Alison A Weiss
- Department of Molecular Genetics, Biochemistry & Microbiology, University of Cincinnati, 2254 Medical Sciences Building, 231 Albert Sabin Way, Cincinnati, OH, 45267, USA
| | - William R Heineman
- Department of Chemistry, University of Cincinnati, 120 Crosley Tower, PO Box 210172, Cincinnati, OH, 45221, USA
| | - Rupak K Banerjee
- Department of Mechanical and Materials Engineering, University of Cincinnati, 593 Rhodes Hall, ML 0072, University of Cincinnati, Cincinnati, OH, 45221, USA.
| |
Collapse
|
22
|
O'Sullivan L, Bolton D, McAuliffe O, Coffey A. The use of bacteriophages to control and detect pathogens in the dairy industry. INT J DAIRY TECHNOL 2019. [DOI: 10.1111/1471-0307.12641] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Lisa O'Sullivan
- Department of Biological Sciences Cork Institute of Technology Rossa Avenue Bishopstown Ireland
| | - Declan Bolton
- Food Research Centre Teagasc Ashtown, Dublin 15 Ireland
| | | | - Aidan Coffey
- Department of Biological Sciences Cork Institute of Technology Rossa Avenue Bishopstown Ireland
- APC Microbiome Institute, Biosciences Building University College Cork Cork Ireland
| |
Collapse
|
23
|
Bacteriological analysis of wheat flour associated with an outbreak of Shiga toxin-producing Escherichia coli O121. Food Microbiol 2019; 82:474-481. [DOI: 10.1016/j.fm.2019.03.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 02/19/2019] [Accepted: 03/19/2019] [Indexed: 01/18/2023]
|
24
|
Nilsson OR, Kari L, Steele-Mortimer O. Foodborne infection of mice with Salmonella Typhimurium. PLoS One 2019; 14:e0215190. [PMID: 31393874 PMCID: PMC6687127 DOI: 10.1371/journal.pone.0215190] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 07/28/2019] [Indexed: 01/08/2023] Open
Abstract
The bacterial pathogen Salmonella enterica serovar Typhimurium is one of the most common causes of foodborne disease in humans and is also an important model system for bacterial pathogenesis. Oral inoculation of C57Bl/6 mice, which are genetically susceptible to Salmonella, results in systemic infection but the murine intestine is not efficiently colonized unless the intestinal microbiota is disrupted. Pretreatment of C57Bl/6 mice with streptomycin, followed by oral inoculation with Salmonella Typhimurium results in colitis resembling human intestinal Salmonellosis. The predominant method of delivery of bacteria is oral gavage, during which organisms are deposited directly into the stomach via a feeding needle. Although convenient, this method can be stressful for mice, and may lead to unwanted tracheal or systemic introduction of bacteria. Here, we developed a method for oral infection of mice by voluntary consumption of regular mouse chow inoculated with bacteria. Mice readily ate chow fragments containing up to 108 CFU Salmonella, allowing for a wide range of infectious doses. In mice pretreated with streptomycin, infection with inoculated chow resulted in reproducible infections with doses as low as 103 CFU. Mice not treated with streptomycin, as well as resistant Nramp1 reconstituted C57Bl/6J mice, were also readily infected using this method. In summary, voluntary consumption of chow inoculated with Salmonella represents a natural route of infection for foodborne salmonellosis and a viable alternative to oral gavage.
Collapse
Affiliation(s)
- Olof R. Nilsson
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Laszlo Kari
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Olivia Steele-Mortimer
- Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
- * E-mail:
| |
Collapse
|
25
|
|
26
|
Erickson MC, Liao JY, Webb CC, Habteselassie MY, Cannon JL. Inactivation of Escherichia coli O157:H7 and Salmonella deposited on gloves in a liquid state and subjected to drying conditions. Int J Food Microbiol 2018; 266:200-206. [PMID: 29232632 DOI: 10.1016/j.ijfoodmicro.2017.11.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/04/2017] [Accepted: 11/23/2017] [Indexed: 11/16/2022]
Abstract
Gloves are worn by workers harvesting ready-to-eat produce as a deterrent for contaminating the produce with enteric pathogens that may reside on their hands. As fields are not sterile environments, the probability for gloves to become contaminated still exists and therefore it is critical to understand the conditions that affect the survival of pathogens on gloves. Both Escherichia coli O157:H7 and Salmonella deposited on glove surfaces in a liquid state survived longer when the pathogen had been suspended in lettuce sap than when suspended in water. Despite this protection, pathogens deposited on clean single-use gloves were more likely to survive during drying than pathogens deposited on dirty gloves (a film of lettuce sap had been applied to the surface prior to pathogen application and soil had been ground into the gloves). Survival of both E. coli O157:H7 and Salmonella was biphasic with the greatest losses occurring during the first hour of drying followed by much slower losses in the ensuing hours. Pathogens grown in rich media (tryptic soy broth) versus minimal media (M9) as well as those cultured on solid agar versus liquid broth were also more likely to be resistant to desiccation when deposited onto gloves. Although survival of E. coli O157:H7 on nitrile gloves was in general greater than it was on latex gloves, the relative survival of Salmonella on the two glove types was inconsistent. Due to these inconsistencies, no one glove type is considered better than another in reducing the risk for contamination with enteric pathogens. In addition, the extended survival of what are generally referred to as stress-resistant pathogens suggests that gloves either be changed frequently during the day or washed in a disinfectant to reduce the risk of glove contamination that could otherwise contaminate product handled with the contaminated gloves.
Collapse
Affiliation(s)
- Marilyn C Erickson
- Center for Food Safety, Department of Food Science and Technology, University of Georgia, 1109 Experiment St., Griffin, GA 30223-1797, USA.
| | - Jye-Yin Liao
- Center for Food Safety, Department of Food Science and Technology, University of Georgia, 1109 Experiment St., Griffin, GA 30223-1797, USA
| | - Cathy C Webb
- Cape Securities, 1600 Pennsylvania Avenue, McDonough, GA 30253, USA
| | - Mussie Y Habteselassie
- Department of Crop and Soil Sciences, University of Georgia, 1109 Experiment St., Griffin, GA 30223-1797, USA
| | | |
Collapse
|
27
|
Strommenger B, Layer F, Werner G. Staphylococcus aureus and Methicillin-Resistant Staphylococcus aureus in Workers in the Food Industry. STAPHYLOCOCCUS AUREUS 2018. [PMCID: PMC7150186 DOI: 10.1016/b978-0-12-809671-0.00009-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Staphylococcus aureus is part of the common flora on the skin and mucous membranes of mammals and approximately 20–30% of humans are persistently colonized, mainly by mostly susceptible human-adapted isolates. In contrast, colonization with methicillin-resistant S. aureus is rare (approximately 1%), predominantly transient and associated with prior contact to the health care system. Additionally, in recent years livestock-associated S. aureus clones contributed to colonization in humans, especially in those working in close contact to farm animals. A considerable percentage of colonizing S. aureus isolates is equipped with enterotoxin genes. Humans carrying enterotoxigenic isolates represent a contamination source when handling food, thus generating a continuous risk of S. aureus food intoxication. Molecular characterization of isolates colonizing humans and obtained from food, respectively, enables the tracing of food-related outbreaks back to the source of food intoxication. We will summarize current knowledge about the S. aureus population colonizing humans, including those in close contact to animals and food, respectively. Additionally, we will review data on the molecular characterization of S. aureus isolates related to staphylococcal foodborne disease and the elucidation of staphylococcal foodborne outbreaks. Staphylococcal food poisoning is a common foodborne disease, mediated by the ingestion of enterotoxins produced by enterotoxigenic strains of S. aureus. For several outbreaks of foodborne S. aureus disease, colonized personnel could be identified as the source of food contamination. However, because of the widespread occurrence of enterotoxigenic strains as human colonizers and the often transient nature of colonization, the source of contamination cannot always be identified unambiguously. Therefore, compliance with hygiene measures is the most important requirement to prevent food contamination by both human colonization and environmental S. aureus reservoirs.
Collapse
|
28
|
Sithole Z, Juru T, Chonzi P, Bangure D, Shambira G, Gombe NT, Tshimanga M. Food borne illness amongst health care workers, at a Central Hospital, Harare, Zimbabwe, 2016: a retrospective cohort study. BMC Res Notes 2017; 10:715. [PMID: 29216913 PMCID: PMC5721609 DOI: 10.1186/s13104-017-3030-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/29/2017] [Indexed: 12/04/2022] Open
Abstract
Objectives Health care workers (HCW) at a Central Hospital, were served lunch at the hospital canteen on 12 December 2016. On 12 December 2016 at 1700 h, there was a sudden onset of symptoms suggestive of gastrointestinal illness among HCW. We conducted a retrospective cohort study to determine the cause and the factors associated with illness among the HCW at the hospital. Results We interviewed 96 respondents. The median incubation period was 6 h (Q1 = 4; Q3 = 12). Abdominal pain (97.5%) and watery diarrhoea (95%) were the most common symptoms. The majority (97.5%) took antibiotics before collection of stool specimen for analysis, with 24 (60%) of 40 HCW treating themselves. Eating chicken (RR = 44.2, CI 74.07; 95.34) during lunch was associated with the illness. Staphylococcus aureus and Escherichia coli were isolated from food handlers’ hands, kitchen utensils and work surfaces. Staphylococcus aureus was isolated from chicken. None of food handlers had valid medical certificates. One out of four food handlers was formally trained.
Collapse
Affiliation(s)
- Zvanaka Sithole
- Department of Community Medicine, Health Studies Office, University of Zimbabwe, Causeway Harare, P.O. Box CY 1122, Harare, Zimbabwe
| | - Tsitsi Juru
- Department of Community Medicine, Health Studies Office, University of Zimbabwe, Causeway Harare, P.O. Box CY 1122, Harare, Zimbabwe.
| | - Prosper Chonzi
- Harare City Health Department, Harare City Council, Harare, Zimbabwe
| | - Donewell Bangure
- Africa Centers for Disease Control and Prevention, Addis Ababa, Ethiopia
| | - Gerald Shambira
- Department of Community Medicine, Health Studies Office, University of Zimbabwe, Causeway Harare, P.O. Box CY 1122, Harare, Zimbabwe
| | - Notion Tafara Gombe
- Department of Community Medicine, Health Studies Office, University of Zimbabwe, Causeway Harare, P.O. Box CY 1122, Harare, Zimbabwe
| | - Mufuta Tshimanga
- Department of Community Medicine, Health Studies Office, University of Zimbabwe, Causeway Harare, P.O. Box CY 1122, Harare, Zimbabwe
| |
Collapse
|
29
|
Djekic I, Jankovic D, Rajkovic A. Analysis of foreign bodies present in European food using data from Rapid Alert System for Food and Feed (RASFF). Food Control 2017. [DOI: 10.1016/j.foodcont.2017.03.047] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
30
|
Abstract
Uropathogenic Escherichia coli (UPEC) are opportunistic human pathogens that primarily circulate as part of commensal intestinal microbiota. Though they have the ability to survive and proliferate in various urinary tract compartments, the urinary tract is a transient, occasional habitat for UPEC. Because of this, most of the UPEC traits have originally evolved to serve in intestinal colonization and transmission. Some of these bacterial traits serve as virulence factors - they are critical to or assist in survival of UPEC as pathogens, and the structure and/or function may be specialized for the infection. Other traits could serve as anti-virulence factors - they represent liability in the urinary tract and are under selection to be lost or inactivated during the infection. Inactivation, variation, or other changes of the bacterial genes that increase the pathogen's fitness during the infection are called pathoadaptive mutations. This chapter describes examples of pathoadaptive mutations in UPEC and provides rationale for their further in-depth study.
Collapse
|
31
|
Forbes JD, Knox NC, Ronholm J, Pagotto F, Reimer A. Metagenomics: The Next Culture-Independent Game Changer. Front Microbiol 2017; 8:1069. [PMID: 28725217 PMCID: PMC5495826 DOI: 10.3389/fmicb.2017.01069] [Citation(s) in RCA: 199] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/29/2017] [Indexed: 02/01/2023] Open
Abstract
A trend towards the abandonment of obtaining pure culture isolates in frontline laboratories is at a crossroads with the ability of public health agencies to perform their basic mandate of foodborne disease surveillance and response. The implementation of culture-independent diagnostic tests (CIDTs) including nucleic acid and antigen-based assays for acute gastroenteritis is leaving public health agencies without laboratory evidence to link clinical cases to each other and to food or environmental substances. This limits the efficacy of public health epidemiology and surveillance as well as outbreak detection and investigation. Foodborne outbreaks have the potential to remain undetected or have insufficient evidence to support source attribution and may inadvertently increase the incidence of foodborne diseases. Next-generation sequencing of pure culture isolates in clinical microbiology laboratories has the potential to revolutionize the fields of food safety and public health. Metagenomics and other 'omics' disciplines could provide the solution to a cultureless future in clinical microbiology, food safety and public health. Data mining of information obtained from metagenomics assays can be particularly useful for the identification of clinical causative agents or foodborne contamination, detection of AMR and/or virulence factors, in addition to providing high-resolution subtyping data. Thus, metagenomics assays may provide a universal test for clinical diagnostics, foodborne pathogen detection, subtyping and investigation. This information has the potential to reform the field of enteric disease diagnostics and surveillance and also infectious diseases as a whole. The aim of this review will be to present the current state of CIDTs in diagnostic and public health laboratories as they relate to foodborne illness and food safety. Moreover, we will also discuss the diagnostic and subtyping utility and concomitant bias limitations of metagenomics and comparable detection techniques in clinical microbiology, food and public health laboratories. Early advances in the discipline of metagenomics, however, have indicated noteworthy challenges. Through forthcoming improvements in sequencing technology and analytical pipelines among others, we anticipate that within the next decade, detection and characterization of pathogens via metagenomics-based workflows will be implemented in routine usage in diagnostic and public health laboratories.
Collapse
Affiliation(s)
- Jessica D. Forbes
- National Microbiology Laboratory, Public Health Agency of Canada, WinnipegMB, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, WinnipegMB, Canada
| | - Natalie C. Knox
- National Microbiology Laboratory, Public Health Agency of Canada, WinnipegMB, Canada
| | - Jennifer Ronholm
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, McGill University, MontrealQC, Canada
- Department of Animal Science, Faculty of Agricultural and Environmental Sciences, McGill University, MontrealQC, Canada
| | - Franco Pagotto
- Bureau of Microbial Hazards, Food Directorate, Health Canada, OttawaON, Canada
- Listeriosis Reference Centre, Bureau of Microbial Hazards, Food Directorate, Health Canada, OttawaON, Canada
| | - Aleisha Reimer
- National Microbiology Laboratory, Public Health Agency of Canada, WinnipegMB, Canada
| |
Collapse
|
32
|
Van Damme I, De Zutter L, Jacxsens L, Nauta M. Control of human pathogenic Yersinia enterocolitica in minced meat: Comparative analysis of different interventions using a risk assessment approach. Food Microbiol 2017; 64:83-95. [DOI: 10.1016/j.fm.2016.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/08/2016] [Accepted: 12/12/2016] [Indexed: 10/20/2022]
|
33
|
Gill A. The Importance of Bacterial Culture to Food Microbiology in the Age of Genomics. Front Microbiol 2017; 8:777. [PMID: 28507541 PMCID: PMC5410609 DOI: 10.3389/fmicb.2017.00777] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 04/18/2017] [Indexed: 12/13/2022] Open
Abstract
Culture-based and genomics methods provide different insights into the nature and behavior of bacteria. Maximizing the usefulness of both approaches requires recognizing their limitations and employing them appropriately. Genomic analysis excels at identifying bacteria and establishing the relatedness of isolates. Culture-based methods remain necessary for detection and enumeration, to determine viability, and to validate phenotype predictions made on the bias of genomic analysis. The purpose of this short paper is to discuss the application of culture-based analysis and genomics to the questions food microbiologists routinely need to ask regarding bacteria to ensure the safety of food and its economic production and distribution. To address these issues appropriate tools are required for the detection and enumeration of specific bacterial populations and the characterization of isolates for, identification, phylogenetics, and phenotype prediction.
Collapse
Affiliation(s)
- Alexander Gill
- Health Canada, Bureau of Microbial Hazards, OttawaON, Canada
| |
Collapse
|
34
|
JESUS NLD, SERAFIM AL, MEDEIROS LB, PEIXOTO CDS, STANGARLIN-FIORI L. Intervention strategies for the reduction of microbiological contamination on the hands of food handlers. FOOD SCIENCE AND TECHNOLOGY 2016. [DOI: 10.1590/1678-457x.09116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
35
|
Abstract
The cause of Crohn’s disease (CD) has posed a conundrum for at least a century. A large body of work coupled with recent technological advances in genome research have at last started to provide some of the answers. Initially this review seeks to explain and to differentiate between bowel inflammation in the primary immunodeficiencies that generally lead to very early onset diffuse bowel inflammation in humans and in animal models, and the real syndrome of CD. In the latter, a trigger, almost certainly enteric infection by one of a multitude of organisms, allows the faeces access to the tissues, at which stage the response of individuals predisposed to CD is abnormal. Direct investigation of patients’ inflammatory response together with genome-wide association studies (GWAS) and DNA sequencing indicate that in CD the failure of acute inflammation and the clearance of bacteria from the tissues, and from within cells, is defective. The retained faecal products result in the characteristic chronic granulomatous inflammation and adaptive immune response. In this review I will examine the contemporary evidence that has led to this understanding, and look for explanations for the recent dramatic increase in the incidence of this disease.
Collapse
|
36
|
Abstract
The cause of Crohn's disease (CD) has posed a conundrum for at least a century. A large body of work coupled with recent technological advances in genome research have at last started to provide some of the answers. Initially this review seeks to explain and to differentiate between bowel inflammation in the primary immunodeficiencies that generally lead to very early onset diffuse bowel inflammation in humans and in animal models, and the real syndrome of CD. In the latter, a trigger, almost certainly enteric infection by one of a multitude of organisms, allows the faeces access to the tissues, at which stage the response of individuals predisposed to CD is abnormal. Direct investigation of patients' inflammatory response together with genome-wide association studies (GWAS) and DNA sequencing indicate that in CD the failure of acute inflammation and the clearance of bacteria from the tissues, and from within cells, is defective. The retained faecal products result in the characteristic chronic granulomatous inflammation and adaptive immune response. In this review I will examine the contemporary evidence that has led to this understanding, and look for explanations for the recent dramatic increase in the incidence of this disease.
Collapse
|
37
|
Leotta GA, Brusa V, Galli L, Adriani C, Linares L, Etcheverría A, Sanz M, Sucari A, Peral García P, Signorini M. Comprehensive Evaluation and Implementation of Improvement Actions in Butcher Shops. PLoS One 2016; 11:e0162635. [PMID: 27618439 PMCID: PMC5019392 DOI: 10.1371/journal.pone.0162635] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/25/2016] [Indexed: 12/24/2022] Open
Abstract
Foodborne pathogens can cause acute and chronic diseases and produce a wide range of symptoms. Since the consumption of ground beef is a risk factor for infections with some bacterial pathogens, we performed a comprehensive evaluation of butcher shops, implemented improvement actions for both butcher shops and consumers, and verified the impact of those actions implemented. A comprehensive evaluation was made and risk was quantified on a 1-100 scale as high-risk (1-40), moderate-risk (41-70) or low-risk (71-100). A total of 172 raw ground beef and 672 environmental samples were collected from 86 butcher shops during the evaluation (2010-2011) and verification (2013) stages of the study. Ground beef samples were analyzed for mesophilic aerobic organisms, Escherichia coli and coagulase-positive Staphylococcus aureus enumeration. Salmonella spp., E. coli O157:H7, non-O157 Shiga toxin-producing E. coli (STEC), and Listeria monocytogenes were detected and isolated from all samples. Risk quantification resulted in 43 (50.0%) high-risk, 34 (39.5%) moderate-risk, and nine (10.5%) low-risk butcher shops. Training sessions for 498 handlers and 4,506 consumers were held. Re-evaluation by risk quantification and microbiological analyses resulted in 19 (22.1%) high-risk, 42 (48.8%) moderate-risk and 25 (29.1%) low-risk butcher shops. The count of indicator microorganisms decreased with respect to the 2010-2011 period. After the implementation of improvement actions, the presence of L. monocytogenes, E. coli O157:H7 and stx genes in ground beef decreased. Salmonella spp. was isolated from 10 (11.6%) ground beef samples, without detecting statistically significant differences between both study periods (evaluation and verification). The percentage of pathogens in environmental samples was reduced in the verification period (Salmonella spp., 1.5%; L. monocytogenes, 10.7%; E. coli O157:H7, 0.6%; non-O157 STEC, 6.8%). Risk quantification was useful to identify those relevant facts in butcher shops. The reduction of contamination in ground beef and the environment was possible after training handlers based on the problems identified in their own butcher shops. Our results confirm the feasibility of implementing a comprehensive risk management program in butcher shops, and the importance of information campaigns targeting consumers. Further collaborative efforts would be necessary to improve foodstuffs safety at retail level and at home.
Collapse
Affiliation(s)
- Gerardo A. Leotta
- IGEVET - Instituto de Genética Veterinaria “Ing. Fernando N. Dulout” (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, La Plata, Argentina
- * E-mail:
| | - Victoria Brusa
- IGEVET - Instituto de Genética Veterinaria “Ing. Fernando N. Dulout” (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, La Plata, Argentina
- Laboratorio de Microbiología de Alimentos, Facultad de Ciencias Veterinarias UNLP, La Plata, Argentina
| | - Lucía Galli
- IGEVET - Instituto de Genética Veterinaria “Ing. Fernando N. Dulout” (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, La Plata, Argentina
| | | | - Luciano Linares
- Laboratorio de Microbiología de Alimentos, Facultad de Ciencias Veterinarias UNLP, La Plata, Argentina
| | - Analía Etcheverría
- Centro de Investigación Veterinaria Tandil (CIVETAN), CONICET, CICPBA, Facultad Ciencias Veterinarias, UNCPBA
| | - Marcelo Sanz
- Centro de Investigación Veterinaria Tandil (CIVETAN), CONICET, CICPBA, Facultad Ciencias Veterinarias, UNCPBA
| | - Adriana Sucari
- Centro Estudios Infectológicos “Dr. Daniel Stamboulian”, División Alimentos, Ciudad Autónoma de Buenos Aires, Argentina
| | - Pilar Peral García
- IGEVET - Instituto de Genética Veterinaria “Ing. Fernando N. Dulout” (UNLP-CONICET LA PLATA), Facultad de Ciencias Veterinarias UNLP, La Plata, Argentina
| | - Marcelo Signorini
- CONICET - EEA Rafaela, Instituto Nacional de Tecnología Agropecuaria (INTA), Santa Fe, Argentina
| |
Collapse
|
38
|
Farhana I, Hossain ZZ, Tulsiani SM, Jensen PKM, Begum A. Survival of Vibrio cholerae O1 on fomites. World J Microbiol Biotechnol 2016; 32:146. [DOI: 10.1007/s11274-016-2100-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 06/17/2016] [Indexed: 12/11/2022]
|
39
|
Gill A, Huszczynski G. Enumeration of Escherichia coli O157:H7 in Outbreak-Associated Beef Patties. J Food Prot 2016; 79:1266-8. [PMID: 27357049 DOI: 10.4315/0362-028x.jfp-15-521] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
An outbreak of five cases of Escherichia coli O157 infection that occurred in Canada in 2012 was linked to frozen beef patties seasoned with garlic and peppercorn. Unopened retail packs of beef patties from the implicated production lot were recovered and analyzed to enumerate E. coli O157, other E. coli strains, and total coliforms. E. coli O157 was not recovered by direct enumeration on selective agar media. E. coli O157 in the samples was estimated at 3.1 most probable number per 140 g of beef patty, other E. coli was 11 CFU/g, and coliforms were 120 CFU/g. These results indicate that the presence of E. coli O157 in ground beef at levels below 0.1 CFU/g may cause outbreaks. However, the roles of temperature abuse, undercooking, and crosscontamination in amplifying the risk are unknown.
Collapse
Affiliation(s)
- Alexander Gill
- Health Canada, Bureau of Microbial Hazards, 251 Sir Frederick Banting Driveway, P.L. 2204E, Ottawa, Ontario, Canada K1A 0K9.
| | - George Huszczynski
- Canadian Food Inspection Agency, 2301 Midland Avenue, Scarborough, Ontario, Canada M1P 4R7
| |
Collapse
|
40
|
Foddai ACG, Grant IR, Dean M. Efficacy of Instant Hand Sanitizers against Foodborne Pathogens Compared with Hand Washing with Soap and Water in Food Preparation Settings: A Systematic Review. J Food Prot 2016; 79:1040-54. [PMID: 27296611 DOI: 10.4315/0362-028x.jfp-15-492] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hands can be a vector for transmitting pathogenic microorganisms to foodstuffs and drinks, and to the mouths of susceptible hosts. Hand washing is the primary barrier to prevent transmission of enteric pathogens via cross-contamination from infected persons. Conventional hand washing involves the use of water, soap, and friction to remove dirt and microorganisms. The availability of hand sanitizing products for use when water and soap are unavailable has increased in recent years. The aim of this systematic review was to collate scientific information on the efficacy of hand sanitizers compared with washing hands with soap and water for the removal of foodborne pathogens from the hands of food handlers. An extensive literature search was carried out using three electronic databases: Web of Science, Scopus, and PubMed. Twenty-eight scientific publications were ultimately included in the review. Analysis of this literature revealed various limitations in the scientific information owing to the absence of a standardized protocol for evaluating the efficacy of hand products and variation in experimental conditions. However, despite conflicting results, scientific evidence seems to support the historical skepticism about the use of waterless hand sanitizers in food preparation settings. Water and soap appear to be more effective than waterless products for removal of soil and microorganisms from hands. Alcohol-based products achieve rapid and effective inactivation of various bacteria, but their efficacy is generally lower against nonenveloped viruses. The presence of food debris significantly affects the microbial inactivation rate of hand sanitizers.
Collapse
Affiliation(s)
- Antonio C G Foddai
- Department of Life Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Cowcaddens Road, Glasgow G4 0BA, Scotland, UK
| | - Irene R Grant
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5BN, Northern Ireland, UK
| | - Moira Dean
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast BT9 5BN, Northern Ireland, UK.
| |
Collapse
|
41
|
Smigic N, Djekic I, Martins ML, Rocha A, Sidiropoulou N, Kalogianni EP. The level of food safety knowledge in food establishments in three European countries. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.11.017] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Nastasijevic I, Tomasevic I, Smigic N, Milicevic D, Petrovic Z, Djekic I. Hygiene assessment of Serbian meat establishments using different scoring systems. Food Control 2016. [DOI: 10.1016/j.foodcont.2015.10.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
43
|
Gabida M, Gombe NT, Chemhuru M, Takundwa L, Bangure D, Tshimanga M. Foodborne illness among factory workers, Gweru, Zimbabwe, 2012: a retrospective cohort study. BMC Res Notes 2015; 8:493. [PMID: 26419653 PMCID: PMC4587778 DOI: 10.1186/s13104-015-1512-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 09/21/2015] [Indexed: 11/12/2022] Open
Abstract
Background On the 20th September 2012 the Gweru district medical officer (DMO) reported a sudden increase in the number of factory workers complaining of symptoms suggestive of gastrointestinal illness. We conducted a retrospective cohort study to determine factors associated with illness among factory workers. Methods A retrospective cohort study was conducted from September to October 2012 among 98 randomly selected factory workers. Interviewer administered questionnaires were used to evaluate possible risk factors from which food attack rates, relative risks (RR) and adjusted odds ratios (AOR) were calculated using Epi info version 3.5.1. Bacteriological examination of food samples was performed. In addition rectal swabs and specimens from food handlers and patients were collected for analysis. Results Of the 98 workers interviewed, 87/98 (89 %) were males. Consumption of beef stew (AOR = 9.28, 95 % CI 2.78–30.91) was independently associated with foodborne illness. Klebsiella spp. were isolated from beef stew and stool specimen of patients. Watery diarrhoea 51/98 (52 %), fatigue 48/98 (49 %) and abdominal cramps 41/98 (42 %) were the most presenting symptoms. Conclusions Klebsiella spp. was the aetiological agent for the food borne illness at the factory and this resulted from consumption of contaminated beef stew by the workers. As a result of this evidence, the implicated beef was withdrawn from the canteen and the menu cycle was revised to minimise exposure to the same food. Food handlers training in food safety and hygiene and regular canteen inspections for quality assurance were recommended and adopted. No further food borne illness has been reported from the factory.
Collapse
Affiliation(s)
- Meggie Gabida
- Department of Community Medicine, University of Zimbabwe, Harare, Zimbabwe.
| | - Notion T Gombe
- Department of Community Medicine, University of Zimbabwe, Harare, Zimbabwe.
| | - Milton Chemhuru
- Provincial Medical Directorate, Midlands Province, Ministry of Health and Child Care, Gweru, Zimbabwe.
| | - Lucia Takundwa
- Department of Community Medicine, University of Zimbabwe, Harare, Zimbabwe.
| | - Donewell Bangure
- Department of Community Medicine, University of Zimbabwe, Harare, Zimbabwe.
| | - Mufuta Tshimanga
- Department of Community Medicine, University of Zimbabwe, Harare, Zimbabwe.
| |
Collapse
|
44
|
Gill A, Oudit D. Enumeration of Escherichia coli O157 in Outbreak-Associated Gouda Cheese Made with Raw Milk. J Food Prot 2015; 78:1733-7. [PMID: 26319728 DOI: 10.4315/0362-028x.jfp-15-036] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In this article, we discuss the enumerative analysis for Escherichia coli O157 in two raw milk Gouda cheese products (A and B), implicated in an outbreak of 29 cases of E. coli O157:H7 illness that occurred across Canada in 2013. Samples were enumerated for E. coli O157 by most probable number (MPN) over a period of 30 to 60 days after the end of the outbreak. Samples (55.55 g) of product A (n = 14) were analyzed at 146 to 180 days postproduction. E. coli O157 was isolated from six samples at 19.9 to 44.6 MPN/kg. The E. coli O157 concentration of product A estimated from the results of all 14 samples was 9.5 MPN/kg. Samples (55.55 g) of product B (n = 20) were analyzed at 133 to 149 days postproduction. E. coli O157 was isolated from four samples at 19.9 MPN/kg. The E. coli O157 concentration of product B estimated from the results of all 20 samples was 3.7 MPN/kg. Analysis of a 305-g sample of product A (n = 1) stored at 4°C until 306 days postproduction revealed that the E. coli O157 concentration had declined to 3.6 MPN/kg. E. coli O157 could not be isolated from 555-g samples of product B (n = 5) after 280 days postproduction. The physicochemical parameters (pH, water activity, percent moisture, and percent salt) of both cheese products were found to be in the normal range for this type of product. The results of this study demonstrate that E. coli O157 could not replicate during storage at 4°C in the products tested but was capable of survival following aging and prolonged storage. This indicates that, if contaminated, the minimum 60-day aging period, which is required for raw milk Gouda cheeses, is not sufficient in all cases to ensure that the product does not contain viable cells of E. coli O157. The results also indicate that samples sizes greater than 100 g may be required to reliably detect E. coli O157 in cheese products associated with outbreaks.
Collapse
Affiliation(s)
- Alexander Gill
- Health Canada, Bureau of Microbial Hazards, 251 Sir Frederick Banting Driveway, P.L. 2204E Ottawa, Ontario, Canada K1A 0K9.
| | - Denise Oudit
- Health Canada, Bureau of Microbial Hazards, 251 Sir Frederick Banting Driveway, P.L. 2204E Ottawa, Ontario, Canada K1A 0K9
| |
Collapse
|
45
|
Genomic Variability of Serial Human Isolates of Salmonella enterica Serovar Typhimurium Associated with Prolonged Carriage. J Clin Microbiol 2015; 53:3507-14. [PMID: 26311853 DOI: 10.1128/jcm.01733-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 08/18/2015] [Indexed: 12/22/2022] Open
Abstract
Salmonella enterica serovar Typhimurium is an important foodborne human pathogen that often causes self-limiting but severe gastroenteritis. Prolonged excretion of S. Typhimurium after the infection can lead to secondary transmissions. However, little is known about within-host genomic variation in bacteria associated with asymptomatic shedding. Genomes of 35 longitudinal isolates of S. Typhimurium recovered from 11 patients (children and adults) with culture-confirmed gastroenteritis were sequenced. There were three or four isolates obtained from each patient. Single nucleotide polymorphisms (SNPs) were analyzed in these isolates, which were recovered between 1 and 279 days after the initial diagnosis. Limited genomic variation (5 SNPs or fewer) was associated with short- and long-term carriage of S. Typhimurium. None of the isolates was shown to be due to reinfection. SNPs occurred randomly, and the majority of the SNPs were nonsynonymous. Two nonsense mutations were observed. A nonsense mutation in flhC rendered the isolate nonmotile, whereas the significance of a nonsense mutation in yihV is unknown. The estimated mutation rate is 1.49 × 10(-6) substitution per site per year. S. Typhimurium isolates excreted in stools following acute gastroenteritis in children and adults demonstrated limited genomic variability over time, regardless of the duration of carriage. These findings have important implications for the detection of possible transmission events suspected by public health genomic surveillance of S. Typhimurium infections.
Collapse
|
46
|
Tracking sources of Staphylococcus aureus hand contamination in food handlers by spa typing. Am J Infect Control 2015; 43:759-61. [PMID: 25997877 PMCID: PMC7115320 DOI: 10.1016/j.ajic.2015.03.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Revised: 03/23/2015] [Accepted: 03/23/2015] [Indexed: 11/29/2022]
Abstract
We aimed to identify the source of Staphylococcus aureus contaminating hands of food handlers. Nasal samples and direct fingertip imprints were collected on 2 occasions from food handlers and characterized to determine likely sources of hand contamination. Most hand contamination was attributable to nasal isolates of persistently colonized coworkers who had presumably contaminated the environment. Regular handwashing should be supplemented by effective environmental disinfection. We aimed to identify the source of S. aureus contaminating hands of food handlers. Persistently colonized co-workers indirectly contaminated hands of others. Regular handwashing should be supplemented by effective environmental disinfection.
Collapse
|
47
|
Liu Y, Gill A, McMullen L, Gänzle MG. Variation in heat and pressure resistance of verotoxigenic and nontoxigenic Escherichia coli. J Food Prot 2015; 78:111-20. [PMID: 25581185 DOI: 10.4315/0362-028x.jfp-14-267] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study evaluated the heat and pressure resistance of 112 strains of Escherichia coli, including 102 strains of verotoxigenic E. coli (VTEC) representing 23 serotypes and four phylogenetic groups. In an initial screening, the heat and pressure resistance of 100 strains, including 94 VTEC strains, were tested in phosphate-buffered saline (PBS). Treatment at 60°C for 5 min reduced cell counts by 2.0 to 5.5 log CFU/ml; treatment at 600 MPa for 3 min at 25°C reduced the cell counts by 1.1 to 5.5 log CFU/ml. Heat or pressure resistance did not correlate to the phylogenetic group or the serotype. A smaller group of E. coli strains was evaluated for heat and pressure resistance in Luria-Bertani (LB) broth. Generally, the levels of heat resistance of E. coli strains in LB and PBS were similar; however, the levels of pressure resistance observed for treatments in LB broth or PBS were variable. The cell counts of pressure-resistant strains of VTEC were reduced by less than 1.5 log CFU/ml after treatment at 600 MPa for 3 min. E. coli strains were also treated with 600 MPa for 3 min in ground beef or inoculated into beef patties and grilled to 63 or 71°C. The cell counts of the VTEC E. coli O26:H11 strain 05-6544 were reduced by 2 log CFU/g by pressure treatment in ground beef. The cell counts of the heat-resistant E. coli strain AW1.7 were reduced by 1.4 and 3.4 log CFU/g in beef patties grilled to internal temperatures of 63 and 71°C, respectively. The cell counts of E. coli 05-6544 were reduced by less than 3 and 6 log CFU/g in beef patties grilled to internal temperatures of 63 and 71°C, respectively. To study whether the composition of the beef patties influenced heat resistance, E. coli strains AW1.7, AW1.7 Δ pHR1, MG1655, and LMM1030 were mixed into beef patties containing 15 or 35% fat and 0 or 2% NaCl, and the patties were grilled to an internal temperature of 63°C. The highest heat resistance of E. coli was observed in patties containing 15% fat and 2% NaCl.
Collapse
Affiliation(s)
- Yang Liu
- University of Alberta, Department of Agricultural, Food and Nutritional Science, Edmonton, Canada
| | - Alex Gill
- Health Canada/Sante Canada, Microbiology Research Division, Bureau of Microbial Hazards, Ottawa, Canada
| | - Lynn McMullen
- University of Alberta, Department of Agricultural, Food and Nutritional Science, Edmonton, Canada
| | - Michael G Gänzle
- University of Alberta, Department of Agricultural, Food and Nutritional Science, Edmonton, Canada; School of Food and Pharmaceutical Engineering, Hubei University of Technology, Wuhan, People's Republic of China.
| |
Collapse
|
48
|
Angelakis E, Azhar EI, Bibi F, Yasir M, Al-Ghamdi AK, Ashshi AM, Elshemi AG, Raoult D. Paper money and coins as potential vectors of transmissible disease. Future Microbiol 2014; 9:249-61. [PMID: 24571076 DOI: 10.2217/fmb.13.161] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Paper currency and coins may be a public health risk when associated with the simultaneous handling of food and could lead to the spread of nosocomial infections. Banknotes recovered from hospitals may be highly contaminated by Staphylococcus aureus. Salmonella species, Escherichia coli and S. aureus are commonly isolated from banknotes from food outlets. Laboratory simulations revealed that methicillin-resistant S. aureus can easily survive on coins, whereas E. coli, Salmonella species and viruses, including human influenza virus, Norovirus, Rhinovirus, hepatitis A virus, and Rotavirus, can be transmitted through hand contact. Large-scale, 16S rRNA, metagenomic studies and culturomics have the capacity to dramatically expand the known diversity of bacteria and viruses on money and fomites. This review summarizes the latest research on the potential of paper currency and coins to serve as sources of pathogenic agents.
Collapse
Affiliation(s)
- Emmanouil Angelakis
- URMITE CNRS-IRD 198 UMR 6236, Université de la Méditerranée, Faculté de Médecine et de Pharmacie, 27 Boulevard Jean Moulin, 13385 Marseille, France
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Magaña S, Schlemmer SM, Davidson GR, Ryser ET, Lim DV. Laboratory and pilot-scale dead-end ultrafiltration concentration of sanitizer-free and chlorinated lettuce wash water for improved detection of Escherichia coli O157:H7. J Food Prot 2014; 77:1260-8. [PMID: 25198586 DOI: 10.4315/0362-028x.jfp-13-421] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
An automated dead-end (single pass, no recirculation) ultrafiltration device, the Portable Multi-use Automated Concentration System (PMACS), was evaluated as a means to concentrate Escherichia coli O157:H7 from 40 liters of simulated commercial lettuce wash water. The assessment included generating, sieving, and concentrating sanitizer-free lettuce wash water, either uninoculated or inoculated with green fluorescent protein-transformed E. coli O157:H7 at a high (1.00 log CFU/ml) or low (-1.00 log CFU/ml) concentration. Cells collected within the filters were recovered in approximately 400 ml of buffer to create lettuce wash retentates. The extent of concentration was determined by viable plate counts using a medium selective for the transformed E. coli O157:H7. The samples were qualitatively analyzed for E. coli O157:H7 according to the U. S. Food and Drug Administration Bacteriological Analytical Manual enrichment method and with an electrochemiluminescence immunoassay. This concentration method was then evaluated in a pilot-scale production line at Michigan State University using chlorinated (100, 30, and 10 ppm of available chlorine) lettuce wash water. The total PMACS processing times were 82 ± 6 and 65 ± 5 min for sanitizer-free and chlorinated washes, respectively. Overall, E. coli O157:H7 populations were approximately 2 log higher in retentates than in unconcentrated lettuce wash samples. The higher E. coli O157:H7 levels in the retentates enabled cultural and electrochemiluminescence immunoassay detection in some samples when the corresponding lettuce wash samples were negative. When combined with standard and rapid detection methods, the PMACS concentration method may provide a means to enhance pathogen monitoring of produce wash water.
Collapse
Affiliation(s)
- Sonia Magaña
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, ISA2015, Tampa, Florida 33620-7115, USA
| | - Sarah M Schlemmer
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, ISA2015, Tampa, Florida 33620-7115, USA
| | - Gordon R Davidson
- Department of Food Science and Human Nutrition, Michigan State University, 469 Wilson Road, East Lansing, Michigan 48824-1225, USA; Department of Food Science and Technology, University of California-Davis, Davis, CA 95616, USA
| | - Elliot T Ryser
- Department of Food Science and Human Nutrition, Michigan State University, 469 Wilson Road, East Lansing, Michigan 48824-1225, USA
| | - Daniel V Lim
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 East Fowler Avenue, ISA2015, Tampa, Florida 33620-7115, USA.
| |
Collapse
|
50
|
Toxin production and growth of pathogens subjected to temperature fluctuations simulating consumer handling of cold cuts. Int J Food Microbiol 2014; 185:82-92. [DOI: 10.1016/j.ijfoodmicro.2014.05.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 02/18/2014] [Accepted: 05/25/2014] [Indexed: 11/22/2022]
|