1
|
Jin Z, Peng S, Nie L. Active compounds: A new direction for rice value addition. Food Chem X 2023; 19:100781. [PMID: 37780340 PMCID: PMC10534106 DOI: 10.1016/j.fochx.2023.100781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/28/2023] [Accepted: 07/02/2023] [Indexed: 10/03/2023] Open
Abstract
The development of rice active compounds is conducive to improving the added value of rice. This paper focused on the types and effects of active compounds in rice. Furthermore, it summarized the effect of rice storage and processing technology on rice active compounds. We conclude the following: Rice contains a large number of active compounds that are beneficial to humans. At present, the research on the action mechanism of rice active compounds on the human body is not deep enough, and the ability to deeply process rice is insufficient, greatly limiting the development of the rice active compound industry. To maximize the added value of rice, it is necessary to establish a dedicated preservation and processing technology system based on the physicochemical properties of the required active compounds. Additionally, attention should be paid to the development and application of composite technologies during the development of the rice active compound industry.
Collapse
Affiliation(s)
- Zhaoqiang Jin
- Sanya Nanfan Research Institute of Hainan University, Hainan University, Sanya 572025, China
| | - Shaobing Peng
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Lixiao Nie
- Sanya Nanfan Research Institute of Hainan University, Hainan University, Sanya 572025, China
| |
Collapse
|
2
|
Liao YT, Zhang Y, Salvador A, Ho KJ, Cooley MB, Wu VCH. Characterization of polyvalent Escherichia phage Sa157lw for the biocontrol potential of Salmonella Typhimurium and Escherichia coli O157:H7 on contaminated mung bean seeds. Front Microbiol 2022; 13:1053583. [PMID: 36439834 PMCID: PMC9686305 DOI: 10.3389/fmicb.2022.1053583] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
Seeds are one of the primary sources of contamination with foodborne pathogens, such as pathogenic Escherichia coli, and various Salmonella serovars, for produce, particularly sprouts. Due to the susceptibility of sprout growth to chemical-based antimicrobials and the rising issue of antimicrobial resistance, developing innovative antimicrobial interventions is an urgent need. Therefore, the objective of this study was to characterize Escherichia phage Sa157lw (or Sa157lw) for the biocontrol potential of Salmonella Typhimurium and E. coli O157:H7 on contaminated mung bean seeds. Phage Sa157lw was subjected to whole-genome sequencing and biological characterization, including morphology, one-step growth curve, and stress stability tests. Later, antimicrobial activity was determined in vitro and upon application on the mung bean seeds artificially contaminated with E. coli O157:H7 or Salmonella Typhimurium. Sa157lw possessed a contractile tail and belonged to the Kuttervirus genus under the Ackermannviridae family, sharing a close evolutionary relationship with E. coli phage ECML-4 and Kuttervirus ViI; however, tail spike genes (ORF_102 and ORF_104) were the primary region of difference. Comparative genomics showed that Sa157lw encoded a cluster of tail spike genes—including ORF_101, ORF_102, and ORF_104—sharing high amino acid similarity with the counterfeits of various Salmonella phages. Additionally, Sa157lw harbored a unique tail fiber (ORF_103), possibly related to the receptors binding of O157 strains. The genomic evidence accounted for the polyvalent effects of Sa157lw against E. coli O157:H7 and various Salmonella serovars (Typhimurium, Enteritidis, Agona, Saintpaul, and Heidelberg). Furthermore, the phage did not contain any virulence, antibiotic-resistant, or lysogenic genes. Sa157lw had a 30-min latent period on both E. coli O157:H7 and Salmonella Typhimurium, with an estimated burst size of 130 and 220 PFU/CFU, respectively, and was stable at a wide range of temperatures (4–60°C) and pH (pH4 to pH10). The phage application demonstrated a strong anti-E. coli O157:H7 and anti-Salmonella Typhimurium effects in 1.1 and 1.8 log reduction on the contaminated mung bean seeds after overnight storage at 22°C. These findings provide valuable insights into the polyvalent Sa157lw as a potential biocontrol agent of Salmonella Typhimurium and E. coli O157:H7 on sprout seeds.
Collapse
|
3
|
Antimicrobial activities of a combination of chlorine dioxide gas and heat against Xanthomonas campestris and Salmonella enterica on cabbage, chili pepper, and radish seeds. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.108982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
4
|
Liao YT, Zhang Y, Salvador A, Harden LA, Wu VCH. Characterization of a T4-like Bacteriophage vB_EcoM-Sa45lw as a Potential Biocontrol Agent for Shiga Toxin-Producing Escherichia coli O45 Contaminated on Mung Bean Seeds. Microbiol Spectr 2022; 10:e0222021. [PMID: 35107386 PMCID: PMC8809338 DOI: 10.1128/spectrum.02220-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 12/29/2021] [Indexed: 01/21/2023] Open
Abstract
Application of lytic bacteriophages is a promising and alternative intervention technology to relieve antibiotic resistance pressure and control bacterial pathogens in the food industry. Despite the increase of produce-associated outbreaks caused by non-O157 Shiga toxin-producing E. coli (STEC) serogroups, the information of phage application on sprouts to mitigate these pathogens is lacking. Therefore, the objective of this study was to characterize a T4-like Escherichia phage vB_EcoM-Sa45lw (or Sa45lw) for the biocontrol potential of STEC O45 on mung bean seeds. Phage Sa45lw belongs to the Tequatrovirus genus under the Myoviridae family and displays a close evolutionary relationship with a STEC O157-infecting phage AR1. Sa45lw contains a long-tail fiber gene (gp37), sharing high genetic similarity with the counterpart of Escherichia phage KIT03, and a unique tail lysozyme (gp5) to distinguish its host range (STEC O157, O45, ATCC 13706, and Salmonella Montevideo and Thompson) from phage KIT03 (O157 and Salmonella enterica). No stx, antibiotic resistance, and lysogenic genes were found in the Sa45lw genome. The phage has a latent period of 27 min with an estimated burst size of 80 PFU/CFU and is stable at a wide range of pH (pH 3 to pH 10.5) and temperatures (-80°C to 50°C). Phage Sa45lw is particularly effective in reducing E. coli O45:H16 both in vitro (MOI = 10) by 5 log and upon application (MOI = 1,000) on the contaminated mung bean seeds for 15 min by 2 log at 25°C. These findings highlight the potential of phage application against non-O157 STEC on sprout seeds. IMPORTANCE Seeds contaminated with foodborne pathogens, such as Shiga toxin-producing E. coli, are the primary sources of contamination in produce and have contributed to numerous foodborne outbreaks. Antibiotic resistance has been a long-lasting issue that poses a threat to human health and the food industry. Therefore, developing novel antimicrobial interventions, such as bacteriophage application, is pivotal to combat these pathogens. This study characterized a lytic bacteriophage Sa45lw as an alternative antimicrobial agent to control pathogenic E. coli on the contaminated mung bean seeds. The phage exhibited antimicrobial effects against both pathogenic E. coli and Salmonella without containing virulent or lysogenic genes that could compromise the safety of phage application. In addition, after 15 min of phage treatment, Sa45lw mitigated E. coli O45:H16 on the contaminated mung bean seeds by a 2-log reduction at room temperature, demonstrating the biocontrol potential of non-O157 Shiga toxin-producing E. coli on sprout seeds.
Collapse
Affiliation(s)
- Yen-Te Liao
- Produce Safety and Microbiology Research Unit, Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, United States
| | - Yujie Zhang
- Produce Safety and Microbiology Research Unit, Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, United States
| | - Alexandra Salvador
- Produce Safety and Microbiology Research Unit, Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, United States
| | - Leslie A. Harden
- Produce Safety and Microbiology Research Unit, Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, United States
| | - Vivian C. H. Wu
- Produce Safety and Microbiology Research Unit, Department of Agriculture, Agricultural Research Service, Western Regional Research Center, Albany, California, United States
| |
Collapse
|
5
|
Fouzia S, Hussain PR, Abeeda M, Faheema M, Monica R. Potential of low dose irradiation to maintain storage quality and ensure safety of garlic sprouts. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2021.109725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
6
|
Mahanta N, Saxena V, Pandey LM, Batra P, Dixit US. Performance study of a sterilization box using a combination of heat and ultraviolet light irradiation for the prevention of COVID-19. ENVIRONMENTAL RESEARCH 2021; 198:111309. [PMID: 33984307 PMCID: PMC8107062 DOI: 10.1016/j.envres.2021.111309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/06/2021] [Accepted: 05/06/2021] [Indexed: 05/03/2023]
Abstract
SARS-CoV-2 virus and other pathogenic microbes are transmitted to the environment through contacting surfaces, which need to be sterilized for the prevention of COVID-19 and related diseases. In this study, a prototype of a cost-effective sterilization box is developed to disinfect small items. The box utilizes ultra violet (UV) radiation with heat. For performance assessment, two studies were performed. First, IgG (glycoprotein, a model protein similar to that of spike glycoprotein of SARS-COV-2) was incubated under UV and heat sterilization. An incubation with UV at 70 °C for 15 min was found to be effective in unfolding and aggregation of the protein. At optimized condition, the hydrodynamic size of the protein increased to ~171 nm from ~5 nm of the native protein. Similarly, the OD280 values also increased from 0.17 to 0.78 indicating the exposure of more aromatic moieties and unfolding of the protein. The unfolding and aggregation of the protein were further confirmed by the intrinsic fluorescence measurement and FTIR studies, showing a 70% increase in the β-sheets and a 22% decrease in the α-helixes of the protein. The designed box was effective in damaging the protein's native structure indicating the effective inactivation of the SARS-COV-2. Furthermore, the incubation at 70 °C for 15 min inside the chamber resulted in 100% antibacterial efficacy for the clinically relevant E.coli bacteria as well as for bacteria collected from daily use items. It is the first detailed performance study on the efficacy of using UV irradiation and heat together for disinfection from virus and bacteria.
Collapse
Affiliation(s)
- Nilkamal Mahanta
- Department of Mechanical Engineering, Indian Institute of Technology Guwahati, India
| | - Varun Saxena
- Bio-Interface and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, India
| | - Lalit M Pandey
- Bio-Interface and Environmental Engineering Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, India
| | - Priyanka Batra
- North East Center for Biological Sciences and Health Care Engineering (NECBH), Indian Institute of Technology Guwahati, India
| | - U S Dixit
- Department of Mechanical Engineering, Indian Institute of Technology Guwahati, India.
| |
Collapse
|
7
|
Miyahira RF, Antunes AEC. Bacteriological safety of sprouts: A brief review. Int J Food Microbiol 2021; 352:109266. [PMID: 34111728 DOI: 10.1016/j.ijfoodmicro.2021.109266] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/06/2021] [Accepted: 05/23/2021] [Indexed: 12/01/2022]
Abstract
The germination process causes changes in the chemical composition of seeds that improves the nutritional value of sprouts, while decreasing their microbiological safety, since the germination conditions are ideal for bacterial growth as well. This review explores the bacteriological safety of sprouts and their involvement in foodborne illness outbreaks, worldwide. Additionally, approaches to improve the shelf-life and microbiological safety of sprouts are discussed. According to the literature, sprout consumption is associated with more than 60 outbreaks of foodborne illness worldwide, since 1988. Alfalfa sprouts were most commonly involved in outbreaks and the most commonly implicated pathogens were Salmonella and pathogenic Escherichia coli (especially, Shiga toxin producing E. coli). In the pre-harvest stage, the implementation of good agricultural practices is an important tool for producing high-quality seeds. In the post-harvest stage, several methods of seed decontamination are used commercially, or have been investigated by researchers. After germination, seedlings should be kept under refrigeration and, if possible, cooked before consumption. Finally, microbiological analyses should be performed at all stages to monitor the hygiene of the sprout production process.
Collapse
Affiliation(s)
- Roberta Fontanive Miyahira
- Department of Basic and Experimental Nutrition, Institute of Nutrition, State University of Rio de Janeiro (UERJ), Rio de Janeiro, RJ, Brazil; School of Applied Sciences, State University of Campinas (FCA/UNICAMP), Limeira, SP, Brazil.
| | | |
Collapse
|
8
|
Jang MJ, Kim SY, Ricke SC, Rhee MS, Kim SA. Microbial ecology of alfalfa, radish, and rapeseed sprouts based on culture methods and 16S rRNA microbiome sequencing. Food Res Int 2021; 144:110316. [PMID: 34053521 DOI: 10.1016/j.foodres.2021.110316] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/11/2021] [Accepted: 03/11/2021] [Indexed: 11/25/2022]
Abstract
Sprouts harbor high populations of bacteria and cause numerous foodborne disease outbreaks, yet little is known about their microbial composition. The present study aimed to define the microbiological ecology of sprouts using 16S rRNA microbiome sequencing and culture-dependent methods. Different types (radish, alfalfa, and rapeseed), brands (A, B, and C), and distribution routes (online and offline) of sprouts (n = 70) were considered for microbiome analysis, as well as quantitative (aerobic plate count and coliforms) and qualitative analyses (Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella Typhimurium). The aerobic plate count ranged from 7 to 8 CFU/g, and the coliforms ranged from 6 to 7 log CFU/g. Microbiome analysis revealed that Proteobacteria was the dominant phylum, accounting for 79.0% in alfalfa sprouts, 68.5% in rapeseed sprouts, and 61.9% in radish sprouts. Enterobacteriaceae was the dominant family in alfalfa sprouts (33.9%) and rapeseed sprouts (14.6%), while Moraxellaceae (11.9%) were prevalent on radish sprouts. The majority of the dominant genera were common in the environment, such as soil or water. Alfalfa sprouts yielded the lowest aerobic plate count but the highest relative abundance of Enterobacteriaceae compared to the other sprouts. These results could explain why alfalfa sprouts are a leading cause of sprout-related foodborne disease outbreaks. Alpha-diversity results (Chao1 and Shannon indices) suggested that species richness was greater on radish sprouts than the other sprout types. Beta-diversity results showed samples were clustered by types, indicating dissimilarity in microbial communities. However, the distribution route had a limited influence on microbial composition. The present study provides a comparative examination of the microbial profiles of sprouts. Microbiome analyses contribute to an in-depth understanding of the microbial ecology of sprouts, leading to potential control measures for ensuring food safety.
Collapse
Affiliation(s)
- Min Ji Jang
- Department of Food Science and Engineering, Ewha Womans University, Seoul, South Korea
| | - Seo Young Kim
- Department of Food Science and Engineering, Ewha Womans University, Seoul, South Korea
| | - Steven C Ricke
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Science, University of Wisconsin, Madison, WI, USA
| | - Min Suk Rhee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea
| | - Sun Ae Kim
- Department of Food Science and Engineering, Ewha Womans University, Seoul, South Korea.
| |
Collapse
|
9
|
Mohammad Z, Kalbasi-Ashtari A, Riskowski G, Juneja V, Castillo A. Inactivation of Salmonella and Shiga toxin-producing Escherichia coli (STEC) from the surface of alfalfa seeds and sprouts by combined antimicrobial treatments using ozone and electrolyzed water. Food Res Int 2020; 136:109488. [PMID: 32846570 DOI: 10.1016/j.foodres.2020.109488] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 06/20/2020] [Accepted: 06/23/2020] [Indexed: 01/24/2023]
Abstract
Individual chemical and non-chemical treatments have failed to disinfect alfalfa seeds and sprouts from pathogens thoroughly. This study investigated the disinfection of alfalfa seeds and sprouts using a procedure combining ozone with acidic (pH 3.0) electrolyzed water (AEW). Inoculated alfalfa seeds with a cocktail of 3 strains Salmonella and 3 strains of STEC were treated sequentially with aqueous ozone followed by AEW. Treatment started by immersing the samples into ozonated water (5 mg/L ozone) for 15 or 20 min with persistent oxygen feeding pressurized with 10 psi. The samples then were immersed in 1 L of AEW for 15 min. Salmonella and STEC were significantly (P < 0.05) reduced by 3.6 and 2.9 log CFU/g on seeds respectively, and by 3.1 and 3.0 log CFU/g reduction on sprouts. Significant differences (P < 0.05) were found in the magnitude of the log reduction between Salmonella and STEC on seeds and between seeds and sprouts. Using combined treatments showed no significant changes in the quality, including shelf life, weight, and color in sprouts as compared to controls. The findings suggest that the combination of ozone and AEW is effective in inactivation of Salmonella and STEC on alfalfa seeds and sprouts with no adverse effects on sprouts quality.
Collapse
Affiliation(s)
- Zahra Mohammad
- Department of Nutrition and Food Science, Texas A&M University, 373 Olsen Blvd, College Station, TX 77843, United States
| | - Ahmed Kalbasi-Ashtari
- Department of Biological and Agricultural Engineering, Texas A&M University, 333 Spence St, College Station, TX 77843, United States
| | - Gerald Riskowski
- Department of Biological and Agricultural Engineering, Texas A&M University, 333 Spence St, College Station, TX 77843, United States
| | - Vijay Juneja
- U.S. Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, 600 East Mermaid Lane, Wyndmoor, PA 19038, United States
| | - Alejandro Castillo
- Department of Animal Sciences, Texas A&M University, 474 Olsen Blvd., College Station, TX 77845, United States.
| |
Collapse
|
10
|
The Effect of Sprouting in Lentil ( Lens culinaris) Nutritional and Microbiological Profile. Foods 2020; 9:foods9040400. [PMID: 32244579 PMCID: PMC7230579 DOI: 10.3390/foods9040400] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 03/18/2020] [Accepted: 03/20/2020] [Indexed: 11/29/2022] Open
Abstract
Biological and vegetarian raw food products, in particular based on legume sprouts, are an increasing food trend, due to their improved nutritional value when compared to seeds. Herein, protein and mineral profiles were studied in 12 lentil varieties, with varieties Du Puy, Kleine Schwarze, Rosana, Flora, Große Rote and Kleine Späths II demonstrating the highest protein percentages. After sprouting, protein percentages increased significantly in 10 of the 12 varieties, with the highest increases ranging between 20–23% in Dunkelgrün Marmorierte, Du Puy, Große Rote and Kleine Späths II varieties. While Fe concentration was significantly decreased in three varieties (Samos, Große Rote and Kleine Späths II), Zn and Mn were positively impacted by sprouting (p ≤ 0.05). Magnesium concentration was not affected by sprouting, while Ca and K had percentage increases between 41% and 58%, and 28% and 30%, respectively, in the best performing varieties (Kleine Schwarze, Dunkelgrün Marmorierte, Samos and Rosana). Regardless of the associated nutritional benefits, issues pertaining to sprouts microbiological safety must be ensured. The best results for the disinfection protocols were obtained when combining the seed treatment with SDS reagent followed by an Amukine application on the sprouts, which did not affect germination rates or sprout length. The increasing levels of sprout consumption throughout the world require efficient implementation of safety measures, as well as a knowledge-based selection for the nutritional quality of the seeds.
Collapse
|
11
|
Hinojosa-Dávalos J, Arias-Rios EV, Varela-Hernández JJ, Cardona-López MA, Orozco-Muñiz R, Cabrera-Diaz E. Thermal and Chemical Treatments To Reduce Salmonella on Alfalfa ( Medicago sativa) and Broccoli ( Brassica oleracea var. italica) Seeds before and during the Sprouting Process: A Hurdle Approach. J Food Prot 2020; 83:82-88. [PMID: 31851547 DOI: 10.4315/0362-028x.jfp-19-272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Sprouts are vehicles of foodborne diseases caused by pathogens such as Salmonella. The aim of this study was to evaluate thermal and chemical treatments applied as a hurdle approach to reduce Salmonella in alfalfa (Medicago sativa) and broccoli (Brassica oleracea var. italica) seeds before and during their germination. Seeds, inoculated and then dried at 55°C for 48 h, were subjected to a chemical treatment and a thermal shock with (i) 75 mM caprylic acid at 70°C for 5 s, (ii) 0.04% CaO at 70°C for 5 s, or (iii) 1% H2O2 at 70°C for 5 s. After each treatment, seeds were immersed in water at 3°C for 5 s. Next, the imbibition process was carried out with 0.016% H2O2 at pH 3.0. Finally, the seeds were transferred to a rotary drum-type germinator and were sprayed with the same chemical solution that was applied before the imbibition process, for 20 s at intervals of 5 min for 40 min at 3 rpm. All chemical treatments reduced Salmonella at least 5 log CFU/g on both seeds. Germination rates between 90 and 93% were obtained after application of thermal and chemical treatments. Salmonella was not detected after the imbibition stage when caprylic acid and H2O2 treatments were applied. However, during the germination process of both seeds, Salmonella counts of >6 log CFU/g were obtained despite all treatments being applied at different stages of the sprouting process. These results demonstrated that thermal and chemical treatments used as a hurdle approach to control Salmonella on alfalfa and broccoli seeds significantly reduced the pathogen concentration on seeds >5 log but were ineffective to eliminate Salmonella and to control its growth during the sprouting process. The production of safe sprouts continues to be a major challenge for industry.
Collapse
Affiliation(s)
- Joel Hinojosa-Dávalos
- Departamento de Ciencias Básicas, Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad No. 1115, Ocotlán, Jalisco, Mexico 47820 (ORCID: https://orcid.org/0000-0002-9967-2266 [J.H.-D.])
| | | | - Juan José Varela-Hernández
- Departamento de Ciencias Básicas, Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad No. 1115, Ocotlán, Jalisco, Mexico 47820 (ORCID: https://orcid.org/0000-0002-9967-2266 [J.H.-D.])
| | - Marco Antonio Cardona-López
- Departamento de Ciencias Básicas, Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad No. 1115, Ocotlán, Jalisco, Mexico 47820 (ORCID: https://orcid.org/0000-0002-9967-2266 [J.H.-D.])
| | - Ruben Orozco-Muñiz
- Departamento de Ciencias Básicas, Centro Universitario de la Ciénega, Universidad de Guadalajara, Av. Universidad No. 1115, Ocotlán, Jalisco, Mexico 47820 (ORCID: https://orcid.org/0000-0002-9967-2266 [J.H.-D.])
| | - Elisa Cabrera-Diaz
- Departamento de Salud Pública, Centro Universitario de Ciencias Biológicas y Agropecuarias, Universidad de Guadalajara, Camino Ramón Padilla Sánchez 2100, Zapopan, Jalisco, Mexico 45200 (ORCID: https://orcid.org/0000-0002-1970-2104 [E.C.-D.])
| |
Collapse
|
12
|
Escamilla D, Rosso ML, Zhang B. Identification of fungi associated with soybeans and effective seed disinfection treatments. Food Sci Nutr 2019; 7:3194-3205. [PMID: 31660133 PMCID: PMC6804755 DOI: 10.1002/fsn3.1166] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/26/2019] [Accepted: 07/01/2019] [Indexed: 12/01/2022] Open
Abstract
Sprouts can be a vehicle for the transmission of several pathogens capable of causing human illness, and the potential source of contamination is seed used for sprouting. The limited information about seed-borne pathogens as well as their incidence on soybean seeds for soybean sprout industry led the objectives of this study that were to identify seed-borne pathogens on commercial sprout soybean seeds and to evaluate different decontamination treatments on disinfection effectiveness and sprout quality. Seeds of "MFS-561," a sprout soybean cultivar, from three production regions were used in this study. The internal transcribed spacer (ITS1 and ITS2) DNA sequences of the isolated fungi from MFS-561 seeds were used for species identification. Seven disinfection treatments were evaluated on their effectiveness on reducing fungal incidence and impact on sprout characteristics. Out of 55 fungal isolates obtained from the soybean seeds, seven species and six genera were identified. The most frequent genera across regions were Alternaria, Diaphorte, and Fusarium. The treatment of soaking seeds in 2% calcium hypochlorite for 10 min and 5% acetic acid for 2 min before sprouting were promising seed disinfection treatments as they significantly reduced fungi incidence without any negative effects on sprout quality.
Collapse
Affiliation(s)
| | - Maria Luciana Rosso
- School of Plant and Environmental SciencesVirginia Polytechnic Institute and State UniversityBlacksburgVAUSA
| | - Bo Zhang
- School of Plant and Environmental SciencesVirginia Polytechnic Institute and State UniversityBlacksburgVAUSA
| |
Collapse
|
13
|
Hylton RK, Sanchez-Maldonado AF, Peyvandi P, Rahmany F, Dagher F, Leon-Velarde CG, Warriner K, Hamidi AM. Decontamination of Chia and Flax Seed Inoculated with Salmonella and Surrogate, Enterococcus faecium NRRL B-2354, Using a Peracetic Acid Sanitizing Solution: Antimicrobial Efficacy and Impact on Seed Functionality. J Food Prot 2019; 82:486-493. [PMID: 30806553 DOI: 10.4315/0362-028x.jfp-18-381] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Raw chia and flax seeds are increasingly associated with Salmonella contamination. However, intervention technologies for these seeds that maintain them in a raw state, without causing clumping because of mucilage production upon moisture exposure, are limited. In this study, a commercial ethanol and paracetic acid sanitizing solution meeting these criteria was evaluated for efficacy against Salmonella and Enterococcus faecium NRRL B-2354, a known Salmonella surrogate for thermal intervention technologies. Samples (100 g each) of chia and flax seeds ( n = 5) were inoculated with either a cocktail of Salmonella Newport, Senftenberg, Oranienburg, Saintpaul, Typhimurium DT104, and Cubana or E. faecium NRRL B-2354. After overnight acclimatization, samples were treated with 4 mL of sanitizing solution per sample and then held at ambient temperature (20 to 25°C) for 1 h before bacterial enumeration. Separate 1-kg-treated batches were evaluated for germination ability (4 replicates of 100-g samples), as well as nutrient content and rancidity ( n = 3), compared with untreated control. Following the posttreatment holding time, these batches were dried back to original moisture content at 70°C to evaporate residual sanitizing solution, thereby stopping treatment. The sanitizing solution was found to be an effective intervention method for chia and flax seeds, reducing Salmonella to below the level of detection by more than 4 and more than 5 average log CFU/g, respectively. Germination was not significantly affected ( P ≥ 0.05) for chia seed. For both seeds, nutrition and rancidity were not significantly affected ( P ≥ 0.05). Furthermore, E. faecium NRRL B-2354 was found to be an appropriate Salmonella surrogate for treatment of chia and flax seeds with this sanitizing solution, showing comparable but higher resistance to treatment with the sanitizing solution than the Salmonella cocktail.
Collapse
Affiliation(s)
- Rebecca K Hylton
- 1 Agri-Neo Inc., 1-435 Horner Avenue, Toronto, Ontario, Canada M8V 4W3; Canada
| | | | - Pooneh Peyvandi
- 1 Agri-Neo Inc., 1-435 Horner Avenue, Toronto, Ontario, Canada M8V 4W3; Canada
| | - Fatemeh Rahmany
- 1 Agri-Neo Inc., 1-435 Horner Avenue, Toronto, Ontario, Canada M8V 4W3; Canada
| | - Fadi Dagher
- 1 Agri-Neo Inc., 1-435 Horner Avenue, Toronto, Ontario, Canada M8V 4W3; Canada
| | - Carlos G Leon-Velarde
- 2 Agriculture and Food Laboratory, Laboratory Services Division, University of Guelph, Guelph, Ontario, Canada NH1 8J7
| | - Keith Warriner
- 3 Department of Food Science, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | - Amir M Hamidi
- 1 Agri-Neo Inc., 1-435 Horner Avenue, Toronto, Ontario, Canada M8V 4W3; Canada
| |
Collapse
|
14
|
Mohammad Z, Kalbasi-Ashtari A, Riskowski G, Castillo A. Reduction of Salmonella and Shiga toxin-producing Escherichia coli on alfalfa seeds and sprouts using an ozone generating system. Int J Food Microbiol 2019; 289:57-63. [DOI: 10.1016/j.ijfoodmicro.2018.08.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 08/09/2018] [Accepted: 08/21/2018] [Indexed: 11/16/2022]
|
15
|
Xia Q, Green BD, Zhu Z, Li Y, Gharibzahedi SMT, Roohinejad S, Barba FJ. Innovative processing techniques for altering the physicochemical properties of wholegrain brown rice ( Oryza sativa L.) - opportunities for enhancing food quality and health attributes. Crit Rev Food Sci Nutr 2018; 59:3349-3370. [PMID: 29993273 DOI: 10.1080/10408398.2018.1491829] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Rice is a globally important staple consumed by billions of people, and recently there has been considerable interest in promoting the consumption of wholegrain brown rice (WBR) due to its obvious advantages over polished rice in metabolically protective activities. This work highlights the effects of innovative processing technologies on the quality and functional properties of WBR in comparison with traditional approaches; and it is aimed at establishing a quantitative and/or qualitative link between physicochemical changes and high-efficient processing methods. Compared with thermal treatments, applications of innovative nonthermal techniques, such as high hydrostatic pressure (HHP), pulsed electric fields (PEF), ultrasound and cold plasma, are not limited to modifying physicochemical properties of WBR grains, since improvements in nutritional and functional components as well as a reduction in anti-nutritional factors can also be achieved through inducing related biochemical transformation. Much information about processing methods and parameters which influence WBR quality changes has been obtained, but simultaneously achieving the product stabilization and functionality of processed WBR grains requires a comprehensive evaluation of all the quality changes induced by different processing procedures as well as quantitative insights into the relationship between the changes and processing variables.
Collapse
Affiliation(s)
- Qiang Xia
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Brian D Green
- Institute for Global Food Security, Queen's University Belfast, Belfast, Northern Ireland, UK
| | - Zhenzhou Zhu
- School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan, China
| | - Yunfei Li
- Department of Food Science and Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | | | - Shahin Roohinejad
- Department of Food Science and Nutrition, University of Minnesota, St. Paul, MN, USA.,Burn and Wound Healing Research Center, Division of Food and Nutrition, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Francisco J Barba
- Nutrition and Food Science Area, Preventive Medicine and Public Health, Food Sciences, Toxicology and Forensic Medicine Department, Faculty of Pharmacy, Universitat de València, Avda. Vicent Andrés Estellés, s/n, Burjassot, València, 46100, Spain
| |
Collapse
|
16
|
Park SH, Ahn JB, Kang DH. Inactivation of foodborne pathogens on alfalfa and radish seeds by sequential treatment with chlorine dioxide gas and dry heat. Food Control 2018. [DOI: 10.1016/j.foodcont.2017.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
17
|
Fong K, LaBossiere B, Switt AIM, Delaquis P, Goodridge L, Levesque RC, Danyluk MD, Wang S. Characterization of Four Novel Bacteriophages Isolated from British Columbia for Control of Non-typhoidal Salmonella in Vitro and on Sprouting Alfalfa Seeds. Front Microbiol 2017; 8:2193. [PMID: 29187834 PMCID: PMC5694753 DOI: 10.3389/fmicb.2017.02193] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/25/2017] [Indexed: 01/12/2023] Open
Abstract
Alfalfa sprouts have been linked to numerous North American outbreaks of Salmonella in recent years. Conventionally, treatments involving chlorine, heat, and irradiation are used for alfalfa seed sanitation. However, such treatments may be highly variable in their efficacy for pathogen control and/or detrimental to sprout quality, therefore negatively perceived by consumers advocating for natural alternatives. The usage of bacteriophages for pathogen control in sprouts has been previously explored, although with conflicting and inconsistent results. Lytic phages, viral predators of bacteria, represent an attractive approach as they provide several advantages compared to conventional treatments, such as their high specificity for bacterial targets and their ubiquity in nature. In this study, four Salmonella phages were isolated from British Columbia, Canada and characterized with respect to host range, burst size, latent period, and environmental stability to assess their potential to control Salmonella. Phage isolate SI1 showed the greatest host range, highest burst size and shortest latent period, greatest stability across all pH and temperatures and was the most effective in control of S. Enteritidis in vitro. Therefore, SI1 was chosen for treatment of sprouting alfalfa seeds artificially contaminated with S. Enteritidis with a multiplicity of infection (MOI) of ∼110 PFU/CFU. A significant (p < 0.05) reduction of 38.3 ± 3.0% of viable Salmonella cells was observed following two h of phage treatment. On days two to six of the sprouting process, reductions of Salmonella were also observed, but were not significant compared to the control (p > 0.05). It was further demonstrated that the sprout yield was not significantly (p > 0.05) affected by phage treatment. These results highlight the potential of phages recovered from the British Columbia environment for use as biocontrol agents against Salmonella, although differing efficacies in vitro was observed. Moreover, the effectiveness of SI1 to significantly (p < 0.05) control Salmonella on sprouting alfalfa seeds on day 1 of treatment was demonstrated. Although promising, future work should aim to optimize this treatment to achieve more effective, and longer lasting, biocontrol of Salmonella in sprouting alfalfa seeds.
Collapse
Affiliation(s)
- Karen Fong
- Food, Nutrition, and Health, University of British Columbia, Vancouver, BC, Canada
| | - Brett LaBossiere
- Food, Nutrition, and Health, University of British Columbia, Vancouver, BC, Canada
| | - Andrea I. M. Switt
- Escuela de Medicina Veterinaria, Facultad de Ecología y Recursos Naturales, Universidad Andres Bello, Santiago, Chile
| | | | - Lawrence Goodridge
- Department of Food Science and Agricultural Chemistry, McGill University, Montreal, QC, Canada
| | - Roger C. Levesque
- Institute for Integrative and Systems Biology, Université Laval, Québec City, QC, Canada
| | - Michelle D. Danyluk
- Department of Food Science and Human Nutrition, Citrus Research and Education Center, University of Florida, Lake Alfred, FL, United States
| | - Siyun Wang
- Food, Nutrition, and Health, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
18
|
Shen Z, Mustapha A, Lin M, Zheng G. Biocontrol of the internalization of Salmonella enterica and Enterohaemorrhagic Escherichia coli in mung bean sprouts with an endophytic Bacillus subtilis. Int J Food Microbiol 2017; 250:37-44. [DOI: 10.1016/j.ijfoodmicro.2017.03.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 03/07/2017] [Accepted: 03/22/2017] [Indexed: 01/09/2023]
|
19
|
Kim NH, Cho TJ, Rhee MS. Current Interventions for Controlling Pathogenic Escherichia coli. ADVANCES IN APPLIED MICROBIOLOGY 2017; 100:1-47. [PMID: 28732552 DOI: 10.1016/bs.aambs.2017.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
This review examined scientific reports and articles published from 2007 to 2016 regarding the major environmental sources of pathogenic Escherichia coli and the routes by which they enter the human gastrointestinal tract. The literature describes novel techniques used to combat pathogenic E. coli transmitted to humans from livestock and agricultural products, food-contact surfaces in processing environments, and food products themselves. Although prevention before contamination is always the best "intervention," many studies aim to identify novel chemical, physical, and biological techniques that inactivate or eliminate pathogenic E. coli cells from breeding livestock, growing crops, and manufactured food products. Such intervention strategies target each stage of the food chain from the perspective of "Farm to Table food safety" and aim to manage major reservoirs of pathogenic E. coli throughout the entire process. Issues related to, and recent trends in, food production must address not only the safety of the food itself but also the safety of those who consume it. Thus, research aims to discover new "natural" antimicrobial agents and to develop "multiple hurdle technology" or other novel technologies that preserve food quality. In addition, this review examines the practical application of recent technologies from the perspective of product quality and safety. It provides comprehensive insight into intervention measures used to ensure food safety, specifically those aimed at pathogenic E. coli.
Collapse
Affiliation(s)
- Nam Hee Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Tae Jin Cho
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Min Suk Rhee
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| |
Collapse
|
20
|
Comparison of gamma and electron beam irradiation in reducing populations of E. coli artificially inoculated on mung bean, clover and fenugreek seeds, and affecting germination and growth of seeds. Radiat Phys Chem Oxf Engl 1993 2017. [DOI: 10.1016/j.radphyschem.2016.09.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Kim JW, Puligundla P, Mok C. Effect of corona discharge plasma jet on surface-borne microorganisms and sprouting of broccoli seeds. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:128-134. [PMID: 26940076 DOI: 10.1002/jsfa.7698] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 02/26/2016] [Accepted: 02/29/2016] [Indexed: 05/09/2023]
Abstract
BACKGROUND Different pathogenic microorganisms have been reported to cause sprouts-associated outbreaks. In order to sterilise and enhance the germination of seeds, non-thermal plasma has been increasingly investigated in the field of agricultural science as an alternative to the traditional pre-sowing seed treatments. This work aimed to evaluate the effect of corona discharge plasma jet (CDPJ) on disinfection of the natural bio-contaminants of broccoli seed and also studied the plasma effect on sprout seed germination rate and physico-chemical properties of sprouts. RESULTS Aerobic bacteria, moulds and yeasts, B. cereus, E. coli, Salmonella spp. were detected on the broccoli seed surface. After 0-3 min treatment using CDPJ, the detected microorganisms were reduced in the range of 1.2-2.3 log units. Inactivation patterns were better explained using pseudo-first-order kinetics. The plasma treatment of seeds up to 2 min exhibited a positive effect on germination rate, seedling growth. The physico-chemical and sensory characteristics of sprouts were unaffected due to the CDPJ treatment of their respective seeds. CONCLUSION Corona discharge plasma jet can potentially be used for microbial decontamination of broccoli seeds. In addition, the plasma treatment of broccoli sprout seeds has enabled a significant enhancement in their germination rate and seedling growth without compromising physico-chemical and sensory characteristics of their corresponding sprouts. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Je-Wook Kim
- Department of Food Science & Biotechnology, Gachon University, Seongnam-si, Gyeonggi-do, 461-701, Republic of Korea
| | - Pradeep Puligundla
- Department of Food Science & Biotechnology, Gachon University, Seongnam-si, Gyeonggi-do, 461-701, Republic of Korea
| | - Chulkyoon Mok
- Department of Food Science & Biotechnology, Gachon University, Seongnam-si, Gyeonggi-do, 461-701, Republic of Korea
| |
Collapse
|
22
|
Zhang C, Cao W, Hung YC, Li B. Application of electrolyzed oxidizing water in production of radish sprouts to reduce natural microbiota. Food Control 2016. [DOI: 10.1016/j.foodcont.2016.02.045] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
23
|
Hao J, Wu T, Li H, Wang W, Liu H. Dual effects of slightly acidic electrolyzed water (SAEW) treatment on the accumulation of γ-aminobutyric acid (GABA) and rutin in germinated buckwheat. Food Chem 2016; 201:87-93. [DOI: 10.1016/j.foodchem.2016.01.037] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 01/06/2016] [Accepted: 01/10/2016] [Indexed: 10/22/2022]
|
24
|
Hong EJ, Kang DH. Effect of sequential dry heat and hydrogen peroxide treatment on inactivation of Salmonella Typhimurium on alfalfa seeds and seeds germination. Food Microbiol 2015; 53:9-14. [PMID: 26678124 DOI: 10.1016/j.fm.2015.08.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 07/21/2015] [Accepted: 08/04/2015] [Indexed: 11/16/2022]
Abstract
The purpose of this study was to inactivate Salmonella Typhimurium on alfalfa seeds without having negative effect on seed germination. Inoculated alfalfa seeds were treated with dry heat at 60, 70 or 80 °C for 0, 12, 18 or 24 h followed by 2% hydrogen peroxide solution (10 min). Populations of Salmonella on alfalfa seeds treated with dry heat alone (60, 70 or 80 °C) for up to 24 h were reduced by 0.26-2.76 log CFU/g, and sequential treatment with dry heat and H2O2 reduced populations by 1.66-3.60 log CFU/g. The germination percentage of seeds subjected to sequential treatments was significantly enhanced to up to 97%, whereas that of untreated seeds was only 79.5%. This study suggests that sequential treatment with dry heat and hydrogen peroxide is applicable for reducing levels of Salmonella on seeds while simultaneously enhancing seeds germinability.
Collapse
Affiliation(s)
- Eun-Jeong Hong
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea; Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 232-916, Republic of Korea
| | - Dong-Hyun Kang
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Center for Food and Bioconvergence, Research Institute for Agricultural and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea; Institutes of Green Bio Science & Technology, Seoul National University, Pyeongchang-gun, Gangwon-do 232-916, Republic of Korea.
| |
Collapse
|
25
|
Gurtler JB, Bailey RB, Jin TZ, Fan X. Reduction of an E. coli O157:H7 and Salmonella composite on fresh strawberries by varying antimicrobial washes and vacuum perfusion. Int J Food Microbiol 2014; 189:113-8. [DOI: 10.1016/j.ijfoodmicro.2014.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 07/18/2014] [Accepted: 08/02/2014] [Indexed: 10/24/2022]
|
26
|
Wang Q, Kniel KE. Effectiveness of Calcium Hypochlorite on Viral and Bacterial Contamination of Alfalfa Seeds. Foodborne Pathog Dis 2014; 11:759-68. [DOI: 10.1089/fpd.2014.1766] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Qing Wang
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware
| | - Kalmia E. Kniel
- Department of Animal and Food Sciences, University of Delaware, Newark, Delaware
| |
Collapse
|
27
|
Szabó S, Németh Z, Polyák É, Bátai I, Kerényi M, Figler M. Antibacterial effect of sprouts against human pathogens in vitro. ACTA ALIMENTARIA 2014. [DOI: 10.1556/aalim.43.2014.3.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
28
|
Chiu KY, Sung JM. Use of ultrasonication to enhance pea seed germination and microbial quality of pea sprouts. Int J Food Sci Technol 2013. [DOI: 10.1111/ijfs.12476] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Kai Ying Chiu
- Department of Post-Modern Agriculture; Mingdao University; Peetow Changhwa County 523 Taiwan
| | - Jih Min Sung
- Department of Food Science and Technology; Hung Kuang University; 34 Chung-Chie Rd Sha Lu Taichung City 433 Taiwan
| |
Collapse
|
29
|
Sikin AM, Zoellner C, Rizvi SSH. Current intervention strategies for the microbial safety of sprouts. J Food Prot 2013; 76:2099-123. [PMID: 24290689 DOI: 10.4315/0362-028x.jfp-12-437] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Sprouts have gained popularity worldwide due to their nutritional values and health benefits. The fact that their consumption has been associated with numerous outbreaks of foodborne illness threatens the $250 million market that this industry has established in the United States. Therefore, sprout manufacturers have utilized the U.S. Food and Drug Administration recommended application of 20,000 ppm of calcium hypochlorite solution to seeds before germination as a preventative method. Concentrations of up to 200 ppm of chlorine wash are also commonly used on sprouts. However, chlorine-based treatment achieves on average only 1- to 3-log reductions in bacteria and is associated with negative health and environmental issues. The search for alternative strategies has been widespread, involving chemical, biological, physical, and hurdle processes that can achieve up to 7-log reductions in bacteria in some cases. The compilation here of the current scientific data related to these techniques is used to compare their efficacy for ensuring the microbial safety of sprouts and their practicality for commercial producers. Of specific importance for alternative seed and sprout treatments is maintaining the industry-accepted germination rate of 95% and the sensorial attributes of the final product. This review provides an evaluation of suggested decontamination technologies for seeds and sprouts before, during, and after germination and concludes that thermal inactivation of seeds and irradiation of sprouts are the most practical stand-alone microbial safety interventions for sprout production.
Collapse
Affiliation(s)
- Adi Md Sikin
- Institute of Food Science, Cornell University, Stocking Hall, Ithaca, New York 14853-7201, USA; Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia.
| | | | | |
Collapse
|
30
|
Lee YD, Kim JY, Park JH. Characteristics of coliphage ECP4 and potential use as a sanitizing agent for biocontrol of Escherichia coli O157:H7. Food Control 2013. [DOI: 10.1016/j.foodcont.2013.04.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
31
|
Liu R, He X, Shi J, Nirasawa S, Tatsumi E, Li L, Liu H. The effect of electrolyzed water on decontamination, germination and γ-aminobutyric acid accumulation of brown rice. Food Control 2013. [DOI: 10.1016/j.foodcont.2013.02.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
32
|
Studer P, Heller WE, Hummerjohann J, Drissner D. Evaluation of aerated steam treatment of alfalfa and mung bean seeds to eliminate high levels of Escherichia coli O157:H7 and O178:H12, Salmonella enterica, and Listeria monocytogenes. Appl Environ Microbiol 2013; 79:4613-9. [PMID: 23709507 PMCID: PMC3719507 DOI: 10.1128/aem.00443-13] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Accepted: 05/19/2013] [Indexed: 11/20/2022] Open
Abstract
Sprouts contaminated with human pathogens are able to cause food-borne diseases due to the favorable growth conditions for bacteria during germination and because of minimal processing steps prior to consumption. We have investigated the potential of hot humid air, i.e., aerated steam, to treat alfalfa and mung bean seeds which have been artificially contaminated with Escherichia coli O157:H7, Salmonella enterica subsp. enterica serovar Weltevreden, and Listeria monocytogenes Scott A. In addition, a recently collected E. coli O178:H12 isolate, characterized by a reduced heat sensitivity, was exposed to the treatment described. Populations of E. coli O157:H7 and S. enterica on alfalfa and mung bean seeds could be completely eliminated by a 300-s treatment with steam at 70 ± 1°C as revealed by enrichment studies. L. monocytogenes and E. coli O178:H12 could not be completely eliminated from artificially inoculated seeds. However, bacterial populations were reduced by more than 5 log CFU/g on alfalfa and by more than 4 log CFU/g on mung bean seeds. The germination rate of mung beans was not affected by the 300-s treatment compared to the germination rate of untreated seeds whereas that of alfalfa seeds was significantly lower by 11.9%. This chemical-free method is an effective alternative to the 20,000-ppm hypochlorite treatment presently recommended by the U.S. Food and Drug Administration (FDA).
Collapse
Affiliation(s)
- Patrick Studer
- Research Station Agroscope Changins-Wädenswil (ACW), Wädenswil, Switzerland
| | - Werner E. Heller
- Research Station Agroscope Changins-Wädenswil (ACW), Wädenswil, Switzerland
| | - Jörg Hummerjohann
- Research Station Agroscope Liebefeld-Posieux (ALP), Bern, Switzerland
| | - David Drissner
- Research Station Agroscope Changins-Wädenswil (ACW), Wädenswil, Switzerland
| |
Collapse
|
33
|
Yang Y, Meier F, Ann Lo J, Yuan W, Lee Pei Sze V, Chung HJ, Yuk HG. Overview of Recent Events in the Microbiological Safety of Sprouts and New Intervention Technologies. Compr Rev Food Sci Food Saf 2013. [DOI: 10.1111/1541-4337.12010] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
| | - Fabienne Meier
- Food Science & Technology Programme; Dept. of Chemistry; National Univ. of Singapore; 3 Science Drive 3; Singapore; 117543
| | - Jerilyn Ann Lo
- Food Science & Technology Programme; Dept. of Chemistry; National Univ. of Singapore; 3 Science Drive 3; Singapore; 117543
| | - Wenqian Yuan
- Food Science & Technology Programme; Dept. of Chemistry; National Univ. of Singapore; 3 Science Drive 3; Singapore; 117543
| | - Valarie Lee Pei Sze
- Food Science & Technology Programme; Dept. of Chemistry; National Univ. of Singapore; 3 Science Drive 3; Singapore; 117543
| | - Hyun-Jung Chung
- Dept. of Food and Nutrition; Inha Univ.; Incheon 402-751; Korea
| | - Hyun-Gyun Yuk
- Food Science & Technology Programme; Dept. of Chemistry; National Univ. of Singapore; 3 Science Drive 3; Singapore; 117543
| |
Collapse
|
34
|
Ding H, Fu TJ, Smith MA. Microbial Contamination in Sprouts: How Effective Is Seed Disinfection Treatment? J Food Sci 2013; 78:R495-501. [DOI: 10.1111/1750-3841.12064] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 12/26/2012] [Indexed: 11/30/2022]
Affiliation(s)
| | - Tong-Jen Fu
- U.S. Food and Drug Administration, Div. of Food Processing Science & Technology; Bedford Park; IL; U.S.A
| | - Michelle A. Smith
- U.S. Food and Drug Administration, Center for Food Safety and Applied Nutrition; College Park; MD; U.S.A
| |
Collapse
|
35
|
Gurtler JB, Smelser AM, Niemira BA, Jin TZ, Yan X, Geveke DJ. Inactivation of Salmonella enterica on tomato stem scars by antimicrobial solutions and vacuum perfusion. Int J Food Microbiol 2012; 159:84-92. [DOI: 10.1016/j.ijfoodmicro.2012.08.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 08/16/2012] [Accepted: 08/17/2012] [Indexed: 12/29/2022]
|
36
|
Xie J, Sun XH, Pan YJ, Zhao Y. Physicochemical properties and bactericidal activities of acidic electrolyzed water used or stored at different temperatures on shrimp. Food Res Int 2012. [DOI: 10.1016/j.foodres.2011.07.041] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
37
|
Fransisca L, Park HK, Feng H. E. Coli O157:H7 Population Reduction from Alfalfa Seeds with Malic Acid and Thiamine Dilauryl Sulfate and Quality Evaluation of the Resulting Sprouts. J Food Sci 2012; 77:M121-6. [DOI: 10.1111/j.1750-3841.2011.02553.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
38
|
Nagar V, Hajare SN, Saroj SD, Bandekar JR. Radiation processing of minimally processed sprouts (dew gram and chick pea): effect on sensory, nutritional and microbiological quality. Int J Food Sci Technol 2011. [DOI: 10.1111/j.1365-2621.2011.02885.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
39
|
Scientific Opinion on the risk posed by Shiga toxin-producingEscherichia coli(STEC) and other pathogenic bacteria in seeds and sprouted seeds. EFSA J 2011. [DOI: 10.2903/j.efsa.2011.2424] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
40
|
Rui L, Jianxiong H, Haijie L, Lite L. Application of electrolyzed functional water on producing mung bean sprouts. Food Control 2011. [DOI: 10.1016/j.foodcont.2011.02.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Inactivation of Escherichia coli O157:H7 on radish seeds by sequential treatments with chlorine dioxide, drying, and dry heat without loss of seed viability. Appl Environ Microbiol 2011; 77:6680-6. [PMID: 21803896 DOI: 10.1128/aem.05715-11] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We developed and validated a treatment to inactivate Escherichia coli O157:H7 on radish seeds without decreasing seed viability. Treatments with aqueous ClO(2) followed by drying and dry-heat treatments were evaluated for efficacy to inactivate the pathogen. Conditions to dry radish seeds after treatment with water (control) or ClO(2) were established. When treated seeds with high water activity (a(w)) (>0.99) were stored at 45°C and 23% relative humidity (RH), the a(w) decreased to <0.30 within 24 h. Drying high-a(w) seeds before exposing them to dry-heat treatment (≥60°C) was essential to preserve seed viability. The germination rate of radish seeds which had been immersed in water for 5 min, dried at 45°C and 23% RH for 24 h, and heated at 70°C for 48 h or at 80°C for 24 h was not significantly decreased (P ≤ 0.05) compared to that of untreated radish seeds. Sequential treatments with ClO(2) (500 μg/ml, 5 min), drying (45°C, 23% RH, 24 h), and dry heating (70°C, 23% RH, 48 h) eliminated E. coli O157:H7 (5.9 log CFU/g) on radish seeds and, consequently, sprouts produced from them without decreasing the germination rate. These sequential treatments are recommended for application to radish seeds intended for sprout production.
Collapse
|
42
|
Bae YM, Hong YJ, Kang DH, Heu SG, Lee SY. Microbial and Pathogenic Contamination of Ready-to-eat Fresh Vegetables in Korea. ACTA ACUST UNITED AC 2011. [DOI: 10.9721/kjfst.2011.43.2.161] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
Combined Effect of Low-Dose Irradiation and Acidified Sodium Chlorite Washing onEscherichia coliO157:H7 Inoculated on Mung Bean Seeds. Foodborne Pathog Dis 2010; 7:1217-23. [DOI: 10.1089/fpd.2010.0565] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|