1
|
Andino-Molina M, Dost I, Abdel-Glil M, Pletz MW, Neubauer H, Seyboldt C. Antimicrobial resistance of Clostridioides difficile in veterinary medicine around the world: A scoping review of minimum inhibitory concentrations. One Health 2024; 19:100860. [PMID: 39157654 PMCID: PMC11327573 DOI: 10.1016/j.onehlt.2024.100860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/16/2024] [Accepted: 07/16/2024] [Indexed: 08/20/2024] Open
Abstract
Objective To provide a comprehensive characterization of Clostridioides difficile antimicrobial resistance (AMR) data in veterinary medicine based on the minimum inhibitory concentrations (MICs) of all antimicrobial agents tested in relation to the techniques used. Methods A systematic scoping review was conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) extension for scoping reviews (PRISMA-ScR) and its associated checklist. The objective was to provide a synthesis of the evidence in a summarized and analyzed format.To this end, three scientific databases were consulted: Scopus, PubMed, and Web of Science, up until December 2021. Subsequently, all identified literature was subjected to screening and classification in accordance with the established study criteria, with the objective of subsequent evaluation. Study selection and data extraction A comprehensive analysis was conducted on studies regarding Clostridioides difficile antimicrobial resistance (AMR) in veterinary medicine across various animal species and related sources. The analysis included studies that presented data on antimicrobial susceptibility testing using the E-test, agar dilution, or broth microdilution techniques. The extracted data included minimum inhibitory concentration (MIC) values and a comprehensive characterization analysis. Results A total of 1582 studies were identified in scientific databases, of which only 80 were subjected to analysis. The research on Clostridioides difficile antimicrobial resistance (AMR) in veterinary medicine is most prolific in Europe and North America. The majority of isolates originate from production animals (55%) and pets (15%), with pigs, horses, and cattle being the most commonly studied species. The tested agents' minimum inhibitory concentrations (MICs) and resulting putative antimicrobial resistance profiles exhibited considerable diversity across animal species and sources of isolation. Additionally, AMR characterization has been conducted at the gene and genomic level in animal strains. The E-test was the most frequently utilized method for antimicrobial susceptibility testing (AST). Furthermore, the breakpoints for interpreting the MICs were found to be highly heterogeneous and frequently observed regardless of the geographical origin of the publication. Conclusions Antimicrobial susceptibility testing techniques and results were found to be diverse and heterogeneous. There is no evidence of an exclusive antimicrobial resistance pattern in any animal species. Despite the phenotypic and genomic data collected over the years, further interdisciplinary studies are necessary. Our findings underscore the necessity for international collaboration to establish uniform standards for C. difficile antimicrobial susceptibility testing (AST) methods and reporting. Such collaboration would facilitate a "One Health" approach to surveillance and control, which is of paramount importance.
Collapse
Affiliation(s)
- Mauricio Andino-Molina
- Grupo de Investigación en Enfermedades de Etiología Microbiana (GIEEM) & Observatorio Universitario de Genómica y Resistencia Antimicrobiana (OUGRAM), Instituto de Investigaciones en Microbiología (IIM), Escuela de Microbiología, Facultad de Ciencias, Universidad Nacional Autónoma de Honduras, Honduras
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
| | - Ines Dost
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
- Landesuntersuchungsamt Rheinland-Pfalz, Koblenz, Germany
| | - Mostafa Abdel-Glil
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Mathias W. Pletz
- Institute for Infectious Diseases and Infection Control, Jena University Hospital, Jena, Germany
| | - Heinrich Neubauer
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Christian Seyboldt
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| |
Collapse
|
2
|
Spigaglia P, Barbanti F, Faccini S, Vescovi M, Criscuolo EM, Ceruti R, Gaspano C, Rosignoli C. Clostridioides difficile in Pigs and Dairy Cattle in Northern Italy: Prevalence, Characterization and Comparison between Animal and Human Strains. Microorganisms 2023; 11:1738. [PMID: 37512910 PMCID: PMC10383565 DOI: 10.3390/microorganisms11071738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/21/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
It has been observed that novel strains of Clostridioides difficile can rapidly emerge and move between animal and human hosts. The aim of this study was to investigate the prevalence of C. difficile in pigs and dairy cattle in northern Italy and to characterize and compare C. difficile animal strains with those from patients from the same geographical area. The C. difficile strains were isolated from animals from farms and slaughterhouses (cross-sectional studies) and from neonatal animals with enteric disorders in routine diagnostic investigations (passive surveillance). Samples positive for C. difficile were found in 87% of the pig farms and in 40% of the cattle farms involved in the cross-sectional studies, with a 20% prevalence among suckling piglets and 6.7% prevalence in neonatal calves, with no significant difference between animals with and without diarrheal symptoms. The prevalence of C. difficile in older animal categories was significantly lower. This result suggests that young age is an important risk factor for C. difficile colonization. In cross-sectional studies at slaughterhouses, in both the heavy pigs and dairy cows examined, only 2% of the intestinal content samples were positive for C. difficile and no contamination was found on the surface of the carcasses. Considering passive surveillance, the prevalence rates of positive samples were 29% in piglets and 1.4% in calves. Overall, 267 strains of animal origin and 97 from humans were collected. In total, 39 ribotypes (RTs) were identified, with RT 078 and RT 018 being predominant among animals and humans, respectively. Several RTs overlapped between animals and patients. In particular, RT 569 was identified as an emergent type in our country. Resistance to erythromycin and moxifloxacin was widely diffused among C. difficile strains, regardless of origin. This study supports C. difficile as a pathogen of one-health importance and highlights the need for a collaborative approach between physicians and veterinarians to control and prevent infections that are able to cross species and geographical barriers.
Collapse
Affiliation(s)
- Patrizia Spigaglia
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, 00161 Roma, Italy
| | - Fabrizio Barbanti
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, 00161 Roma, Italy
| | - Silvia Faccini
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna "B. Ubertini", Sede Territoriale di Mantova, 46100 Mantova, Italy
| | - Mariella Vescovi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna "B. Ubertini", Sede Territoriale di Mantova, 46100 Mantova, Italy
| | | | - Rossella Ceruti
- Servizio di Medicina di Laboratorio, ASST Ospedale "Carlo Poma", 46100 Mantova, Italy
| | - Clara Gaspano
- Servizio di Medicina di Laboratorio, ASST Ospedale "Carlo Poma", 46100 Mantova, Italy
| | - Carlo Rosignoli
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna "B. Ubertini", Sede Territoriale di Mantova, 46100 Mantova, Italy
| |
Collapse
|
3
|
Marcos P, Doyle A, Whyte P, Rogers TR, McElroy M, Fanning S, Frias J, Bolton D. Characterization of Food Chain Clostridioides difficile Isolates in Terms of Ribotype and Antimicrobial Resistance. Microorganisms 2023; 11:1296. [PMID: 37317270 DOI: 10.3390/microorganisms11051296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/12/2023] [Accepted: 05/12/2023] [Indexed: 06/16/2023] Open
Abstract
The aim of this study was to characterize C. difficile isolates from the farm, abattoir, and retail outlets in Ireland in terms of ribotype and antibiotic resistance (vancomycin, erythromycin, metronidazole, moxifloxacin, clindamycin, and rifampicin) using PCR and E-test methods, respectively. The most common ribotype in all stages of the food chain (including retail foods) was 078 and a variant (RT078/4). Less commonly reported (014/0, 002/1, 049, and 205) and novel (RT530, 547, and 683) ribotypes were also detected, but at lower frequencies. Approximately 72% (26/36 tested) of the isolates tested were resistant to at least one antibiotic, with the majority of these (65%; 17/26) displaying a multi-drug (three to five antibiotics) resistant phenotype. It was concluded that ribotype 078, a hypervirulent strain commonly associated with C. difficile infection (CDI) in Ireland, was the most frequent ribotype along the food chain, resistance to clinically important antibiotics was common in C. difficile food chain isolates, and there was no relationship between ribotype and antibiotic resistance profile.
Collapse
Affiliation(s)
- Pilar Marcos
- Teagasc Food Research Centre, Ashtown, Dublin 15, D15 KN3K Dublin, Ireland
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, D04 V1W8 Dublin, Ireland
| | - Aoife Doyle
- Department of Clinical Microbiology, Trinity College Dublin, Central Pathology Laboratory, St James's Hospital, Dublin 8, D08 RX0X Dublin, Ireland
- Central Veterinary Research Laboratory, Department of Agriculture, Food and the Marine, Backweston, Celbridge, W23 X3PH Kildare, Ireland
| | - Paul Whyte
- School of Veterinary Medicine, University College Dublin, Belfield, Dublin 4, D04 V1W8 Dublin, Ireland
| | - Thomas R Rogers
- Department of Clinical Microbiology, Trinity College Dublin, Central Pathology Laboratory, St James's Hospital, Dublin 8, D08 RX0X Dublin, Ireland
| | - Máire McElroy
- Central Veterinary Research Laboratory, Department of Agriculture, Food and the Marine, Backweston, Celbridge, W23 X3PH Kildare, Ireland
| | - Seamus Fanning
- UCD-Centre for Food Safety, School of Public Health, Physiotherapy and Sports Science, University College Dublin, Belfield, Dublin 4, D04 V1W8 Dublin, Ireland
| | - Jesus Frias
- Environmental Sustainability and Health Institute, Technological University Dublin, Grangegorman, Dublin 7, D07 H6K8 Dublin, Ireland
| | - Declan Bolton
- Teagasc Food Research Centre, Ashtown, Dublin 15, D15 KN3K Dublin, Ireland
| |
Collapse
|
4
|
Clostridioides difficile in Foods with Animal Origins; Prevalence, Toxigenic Genes, Ribotyping Profile, and Antimicrobial Resistance. J FOOD QUALITY 2022. [DOI: 10.1155/2022/4868409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Clostridioides difficile is an important nosocomial pathogen and is considered as a reason of diarrhea and gastrointestinal infections. As a majority of community-originated C. difficile cases are not related to antibiotic prescription and hospitalization, the food portion as a vector of infection transmission has been raised. An existing survey was aimed evaluating the prevalence, antimicrobial resistance, profile of toxigenic genes, and ribotypes of C. difficile isolated from raw meat and carcass surface swab samples. In total, 485 raw meat and carcass surface swab samples were collected. C. difficile was isolated via culture and a diverse biochemical examination. The assessment of minimum inhibitory concentration (MIC) was addressed to evaluate the antibiotic resistance of isolates. Toxin genes detection and ribotyping were used for isolates characterization. The prevalence of C. difficile contamination in all examined samples was 3.71%. The bacterium was detected in 2.91% of raw meat and 4.48% of carcass surface swab samples. Raw sheep meat (5%) and sheep carcass swab (7.50%) samples harbored the highest C. difficile prevalence. The highest rate of antibiotic resistance was observed toward clindamycin (38.88%), ciprofloxacin (38.88%), metronidazole (44.44%), erythromycin (72.22%), and tetracycline (77.77%). C. difficile bacteria showed the minimum rate of resistance meropenem (16.66%) and chloramphenicol (16.66%). TcdA, tcdB, cdtA, and cdtB toxigenic genes were detected in 22.22%, 44.44%, and 16.66% of isolates, respectively. TcdB + tcdA (27.77%) were the most prevalent combined toxigenic gene profile. Both 027 and 078 ribotypes were identified in C. difficile isolates. The role of raw meat and carcass surface swab samples as toxigenic and antibiotic-resistant C. difficile strains vectors was signified. This study authorizes that food animals, particularly sheep and cattle, are C. difficile carriers at slaughter stages and ribotypes are equal in human cases. Subsequently, contamination of carcasses occurs inside the slaughterhouse.
Collapse
|
5
|
Brajerova M, Zikova J, Krutova M. Clostridioides difficile epidemiology in the Middle and the Far East. Anaerobe 2022; 74:102542. [PMID: 35240336 DOI: 10.1016/j.anaerobe.2022.102542] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/14/2022] [Accepted: 02/20/2022] [Indexed: 12/18/2022]
Abstract
OBJECTIVES Clostridioides difficile is an important pathogen of healthcare-associated gastrointestinal infections. Recently, an increased number of C. difficile infection (CDI) surveillance data has been reported from Asia. The aim of this review is to summarize the data on the prevalence, distribution and molecular epidemiology of CDI in the Middle and the Far East. METHODS Literature was drawn from a search of PubMed up to September 30, 2021. RESULTS The meta-analysis of data from 111 studies revealed the pooled CDI prevalence rate in the Middle and the Far East of 12.4% (95% CI 11.4-13.3); 48 studies used PCR for CDI laboratory diagnoses. The predominant types (RT)/sequence type (ST) differ between individual countries (24 studies, 14 countries). Frequently found RTs were 001, 002, 012, 017, 018 and 126; RT017 was predominant in the Far East. The epidemic RT027 was detected in 8 countries (22 studies), but its predominance was reported only in three studies (Israel and Iran). The contamination of vegetable and meat or meat products and/or intestinal carriage of C. difficile in food and companion animals have been reported; the C. difficile RTs/STs identified overlapped with those identified in humans. CONCLUSIONS A large number of studies on CDI prevalence in humans from the Middle and the Far East have been published; countries with no available data were identified. The number of studies on C. difficile from non-human sources is limited. Comparative genomic studies of isolates from different sources are needed.
Collapse
Affiliation(s)
- Marie Brajerova
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Czech Republic
| | - Jaroslava Zikova
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Czech Republic; Department of Genetics and Microbiology, Faculty of Science, Charles University, Czech Republic
| | - Marcela Krutova
- Department of Medical Microbiology, 2nd Faculty of Medicine, Charles University and Motol University Hospital, Czech Republic.
| |
Collapse
|
6
|
Tsai CS, Hung YP, Lee JC, Syue LS, Hsueh PR, Ko WC. Clostridioides difficile infection: an emerging zoonosis? Expert Rev Anti Infect Ther 2021; 19:1543-1552. [PMID: 34383624 DOI: 10.1080/14787210.2021.1967746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Clostridioides difficile (C. difficile) infection (CDI) is the most common cause of antibiotic-associated diarrhea and one of the common infections in healthcare facilities. In recent decades, there has been an emerging threat of community-acquired CDI (CA-CDI). Environmental transmission of C. difficile in the community setting has become a major concern, and animals are an important reservoir for C. difficile causing human diseases. AREAS COVERED In this article, the molecular epidemiology of C. difficile in animals and recent evidences of zoonotic transfer to humans are reviewed based on an electronic search in the databases of PubMed and Google Scholar. EXPERT OPINION C. difficile can be found in stool from diarrheal dogs and cats; therefore, household pets could be a potential source. C. difficile will threaten human health because hypervirulent C. difficile ribotype 078 strains have been found in retail chickens, pig farms, and slaughterhouses. Risk factors for fecal C. difficile carriage in animals include young age, dietary changes, and antibiotic abuse in domestic animals. With the advent of whole genome sequencing techniques, there will be more solid evidence indicating zoonotic transfer of C. difficile from animals to humans.
Collapse
Affiliation(s)
- Chin-Shiang Tsai
- Department of Internal Medicine, National Cheng Kung University Hospital, Dou-Liou Branch, College of Medicine, National Cheng Kung University, Yunlin, Taiwan.,Institute of Clinical Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yuan-Pin Hung
- Department of Internal Medicine, Tainan Hospital, Ministry of Health and Welfare, Tainan, Taiwan
| | - Jen-Chieh Lee
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ling-Shan Syue
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Ren Hsueh
- Departments of Laboratory Medicine and Internal Medicine, China Medical University Hospital, School of Medicine, China Medical University, Taichung, Taiwan
| | - Wen-Chien Ko
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.,Department of Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
7
|
Clostridioides difficile in Non-hospital Sources (Animals, Food, and Environment) in Asian Countries: A Literature Review. Jundishapur J Microbiol 2021. [DOI: 10.5812/jjm.115347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Context: Clostridioides difficile (C. difficile) is an agent responsible for severe infection with a high mortality rate in healthcare facilities. With the discovery of C. difficile in the community, it was assumed that this bacterium might be transmitted to humans through non-hospital sources. Evidence Acquisition: This study examined different aspects of the epidemiology of C. difficile in Asian countries with a review of the literature using search engines such as Web of Science, Scopus, and PubMed. Results: Based on the literature pertaining to Asia, the highest rate of C. difficile is found in samples collected from farm animals, red meat, and meat-based products. Two ribotypes 027 and 078, as hypervirulent factors, were found in different non-hospital sources. Resistance to the most frequently used antibiotics in healthcare setting was observed in C. difficile. Conclusions: Due to the heterogeneity of the examination of C. difficile, understanding the actual condition of C. difficile is difficult. However, the presence of two hypervirulent ribotypes of C. difficile in non-hospital sources is alarming. It seems that it is necessary to perform further studies on C. difficile in non-hospital sources. Defining a focal point for such research could be helpful to explore the situation of C. difficile in clinical settings and communities of Asian countries.
Collapse
|
8
|
Prevalence of Clostridium difficile contamination in Iranian foods and animals: A systematic review and meta-analysis. GENE REPORTS 2020. [DOI: 10.1016/j.genrep.2020.100898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Abstract
Clostridium (Clostridioides) difficile is a gram-positive, spore-forming bacterium that is an important cause of disease in people, a variably important cause of disease in some animal species, and an apparently harmless commensal in others. Regardless of whether it is a known pathogen in a particular species, it can also be found in healthy individuals, sometimes at high prevalences and typically with higher rates of carriage in young individuals. As it is investigated in more animal species, it is apparent that this bacterium is widely disseminated in a diverse range of domestic and wild animal species. Although it can be found in most species in which investigations have been performed, there are pronounced intra- and inter-species differences in prevalence and clinical relevance. A wide range of strains can be identified, some that appear to be animal associated and others that are found in humans and animals. A large percentage of strains that cause disease in people can at least sporadically be found in animals. It is a potentially important zoonotic pathogen, but there is limited direct evidence of animal-human transmission. Although C. difficile has been studied extensively over the past few decades, it remains an enigmatic organism in many ways.
Collapse
Affiliation(s)
- J Scott Weese
- Department of Pathobiology and Centre for Public Health and Zoonoses, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada (Weese)
| |
Collapse
|
10
|
Imwattana K, Knight DR, Kullin B, Collins DA, Putsathit P, Kiratisin P, Riley TV. Clostridium difficile ribotype 017 - characterization, evolution and epidemiology of the dominant strain in Asia. Emerg Microbes Infect 2019; 8:796-807. [PMID: 31138041 PMCID: PMC6542179 DOI: 10.1080/22221751.2019.1621670] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Clostridium difficile ribotype (RT) 017 is an important toxigenic C. difficile RT which, due to a deletion in the repetitive region of the tcdA gene, only produces functional toxin B. Strains belonging to this RT were initially dismissed as nonpathogenic and circulated largely undetected for almost two decades until they rose to prominence following a series of outbreaks in the early 2000s. Despite lacking a functional toxin A, C. difficile RT 017 strains have been shown subsequently to be capable of causing disease as severe as that caused by strains producing both toxins A and B. While C. difficile RT 017 strains can be found in almost every continent today, epidemiological studies suggest that the RT is endemic in Asia and that the global spread of this MLST clade 4 lineage member is a relatively recent event. C. difficile RT 017 transmission appears to be mostly from human to human with only a handful of reports of isolations from animals. An important feature of C. difficile RT 017 strains is their resistance to several antimicrobials and this has been documented as a possible factor driving multiple outbreaks in different parts of the world. This review summarizes what is currently known regarding the emergence and evolution of strains belonging to C. difficile RT 017 as well as features that have allowed it to become an RT of global importance.
Collapse
Affiliation(s)
- Korakrit Imwattana
- a School of Biomedical Sciences , The University of Western Australia , Crawley, Australia.,b Department of Microbiology, Faculty of Medicine Siriraj Hospital , Mahidol University , Bangkok, Thailand
| | - Daniel R Knight
- c School of Veterinary and Life Sciences , Murdoch University , Murdoch, Australia
| | - Brian Kullin
- d Department of Molecular and Cell Biology , University of Cape Town , Cape Town , South Africa
| | - Deirdre A Collins
- e School of Medical and Health Sciences , Edith Cowan University , Joondalup, Australia
| | - Papanin Putsathit
- e School of Medical and Health Sciences , Edith Cowan University , Joondalup, Australia
| | - Pattarachai Kiratisin
- b Department of Microbiology, Faculty of Medicine Siriraj Hospital , Mahidol University , Bangkok, Thailand
| | - Thomas V Riley
- a School of Biomedical Sciences , The University of Western Australia , Crawley, Australia.,c School of Veterinary and Life Sciences , Murdoch University , Murdoch, Australia.,e School of Medical and Health Sciences , Edith Cowan University , Joondalup, Australia.,f PathWest Laboratory Medicine , Queen Elizabeth II Medical Centre , Nedlands , Australia
| |
Collapse
|
11
|
Rodriguez C, Bouchafa L, Soumillion K, Ngyuvula E, Taminiau B, Van Broeck J, Delmée M, Daube G. Seasonality of Clostridium difficile in the natural environment. Transbound Emerg Dis 2019; 66:2440-2449. [PMID: 31338965 DOI: 10.1111/tbed.13301] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 02/06/2023]
Abstract
Clostridium difficile is considered the leading cause of antibiotic-associated disease worldwide. In the past decade, a large number of studies have focused on identifying the main sources of contamination in order to elucidate the complete life cycle of the infection. Hospitals, animals and retail foods have been considered as potential vectors. However, the prevalence of C. difficile in these types of samples was found to be rather low, suggesting that other contamination routes must exist. This study explores the presence of C. difficile in the natural environment and the seasonal dynamics of the bacterium. C. difficile was isolated from a total of 45 samples out of 112 collected (40.2%) on 56 sampling points. A total of 17 points were positive only during the winter sampling (30.4%), 10 were positive only during the summer sampling (17.9%) and 9 sampling points (16.1%) were positive in both summer sampling and winter sampling. Spore counts in soil samples ranged between 50 and 250 cfu/g for 24.4% of the positive samples, with the highest concentrations detected in samples collected in the forest during winter campaign (200-250 cfu/g). A total of 17 different PCR ribotypes were identified, and 15 of them had the genes coding for toxins A and B. Most of those ribotypes had not previously been found or had been isolated only sporadically (<1% of samples) from hospitals in Belgium. Regarding antimicrobial susceptibility, most of the resistant strains were found during the summer campaign. These findings bear out that C. difficile is present in the natural environment, where the bacterium undergoes seasonal variations.
Collapse
Affiliation(s)
- Cristina Rodriguez
- Fundamental and Applied Research for Animals & Health (FARAH), Department of Food Microbiology, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Lamia Bouchafa
- Fundamental and Applied Research for Animals & Health (FARAH), Department of Food Microbiology, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Kate Soumillion
- National Reference Center Clostridium Difficile, Microbiology Unit, Catholic University of Louvain, Brussels, Belgium
| | - Eleonore Ngyuvula
- National Reference Center Clostridium Difficile, Microbiology Unit, Catholic University of Louvain, Brussels, Belgium
| | - Bernard Taminiau
- Fundamental and Applied Research for Animals & Health (FARAH), Department of Food Microbiology, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Johan Van Broeck
- National Reference Center Clostridium Difficile, Microbiology Unit, Catholic University of Louvain, Brussels, Belgium
| | - Michel Delmée
- National Reference Center Clostridium Difficile, Microbiology Unit, Catholic University of Louvain, Brussels, Belgium
| | - Georges Daube
- Fundamental and Applied Research for Animals & Health (FARAH), Department of Food Microbiology, Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| |
Collapse
|
12
|
Knight DR, Riley TV. Genomic Delineation of Zoonotic Origins of Clostridium difficile. Front Public Health 2019; 7:164. [PMID: 31281807 PMCID: PMC6595230 DOI: 10.3389/fpubh.2019.00164] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/03/2019] [Indexed: 01/27/2023] Open
Abstract
Clostridium difficile is toxin-producing antimicrobial resistant (AMR) enteropathogen historically associated with diarrhea and pseudomembranous colitis in hospitalized patients. In recent years, there have been dramatic increases in the incidence and severity of C. difficile infection (CDI), and associated morbidity and mortality, in both healthcare and community settings. C. difficile is an ancient and diverse species that displays a sympatric lifestyle, establishing itself in a range of ecological niches external to the healthcare system. These sources/reservoirs include food, water, soil, and over a dozen animal species, in particular, livestock such as pigs and cattle. In a manner analogous to human infection, excessive antimicrobial exposure, particularly to cephalosporins, is driving the expansion of C. difficile in livestock populations worldwide. Subsequent spore contamination of meat, vegetables grown in soil containing animal feces, agricultural by-products such as compost and manure, and the environment in general (households, lawns, and public spaces) is contributing to a persistent community source/reservoir of C. difficile and the insidious rise of CDI in the community. The whole-genome sequencing era continues to redefine our view of this complex pathogen. The application of high-resolution microbial genomics in a One Health framework (encompassing clinical, veterinary, and environment derived datasets) is the optimal paradigm for advancing our understanding of CDI in humans and animals. This approach has begun to yield critical insights into the genetic diversity, evolution, AMR, and zoonotic potential of C. difficile. In Europe, North America, and Australia, microevolutionary analysis of the C. difficile core genome shows strains common to humans and animals (livestock or companion animals) do not form distinct populations but share a recent evolutionary history. Moreover, for C. difficile sequence type 11 and PCR ribotypes 078 and 014, major lineages of One Health importance, this approach has substantiated inter-species clonal transmission between animals and humans. These findings indicate either a zoonosis or anthroponosis. Moreover, they challenge the existing paradigm and the long-held misconception that CDI is primarily a healthcare-associated infection. In this article, evolutionary, and zoonotic aspects of CDI are discussed, including the anthropomorphic factors that contribute to the spread of C. difficile from the farm to the community.
Collapse
Affiliation(s)
- Daniel R Knight
- Medical, Molecular, and Forensic Sciences, Murdoch University, Perth, WA, Australia
| | - Thomas V Riley
- Medical, Molecular, and Forensic Sciences, Murdoch University, Perth, WA, Australia.,School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia.,School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia.,PathWest Laboratory Medicine, Department of Microbiology, Nedlands, WA, Australia
| |
Collapse
|
13
|
High prevalence of Clostridium difficile PCR ribotype 078 in pigs in Korea. Anaerobe 2018; 51:42-46. [DOI: 10.1016/j.anaerobe.2018.03.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 02/09/2018] [Accepted: 03/27/2018] [Indexed: 11/17/2022]
|
14
|
Prevalence and molecular characterization of Clostridium difficile isolates from a pig slaughterhouse, pork, and humans in Taiwan. Int J Food Microbiol 2017; 242:37-44. [DOI: 10.1016/j.ijfoodmicro.2016.11.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Revised: 11/09/2016] [Accepted: 11/11/2016] [Indexed: 01/08/2023]
|
15
|
Warriner K, Xu C, Habash M, Sultan S, Weese S. Dissemination ofClostridium difficilein food and the environment: Significant sources ofC. difficilecommunity-acquired infection? J Appl Microbiol 2016; 122:542-553. [DOI: 10.1111/jam.13338] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/25/2016] [Accepted: 10/27/2016] [Indexed: 12/11/2022]
Affiliation(s)
- K. Warriner
- Department of Food Science; University of Guelph; Guelph ON Canada
| | - C. Xu
- Shanghai Ocean University; Shanghai China
| | - M. Habash
- School of Environmental Biology; University of Guelph; Guelph ON Canada
| | - S. Sultan
- School of Environmental Biology; University of Guelph; Guelph ON Canada
| | - S.J. Weese
- Pathobiology; University of Guelph; Guelph ON Canada
| |
Collapse
|