1
|
Pearce R, Pirolo M, Goecke NB, Toppi V, Good L, Guitian J, Guardabassi L. Imported seafood is a reservoir of Enterobacteriaceae carrying CTX-M-encoding genes of high clinical relevance. Int J Food Microbiol 2025; 430:111063. [PMID: 39818165 DOI: 10.1016/j.ijfoodmicro.2025.111063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 01/07/2025] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
We determined the frequency, genotypes, phenotypes, and mobility of extended-spectrum β-lactamase (ESBL)-encoding genes in Enterobacteriaceae isolated from retail seafood products. Overall, 288 samples of fresh shrimps, catfish and seabass imported from Asia were collected from three supermarket chains in the UK (96 each). After enrichment in MacConkey broth supplemented with cefotaxime, total DNA was screened for the presence of CTX-M, SHV and TEM by real-time PCR. Positive samples were cultured on ESBL selective media and presumptive ESBL-producing isolates were confirmed by PCR and identified to the species level by MALDI-TOF-MS. CTX-M-positive isolates were further characterized by whole genome sequencing (WGS), antimicrobial susceptibility testing, and conjugation experiments. Approximately one in thirteen (7.6 %) seafood products were contaminated with ESBL-producing Enterobacteriaceae. WGS analysis revealed the presence of CTX-M-15 (n = 7), CTX-M-27 (n = 7), and CTX-M-55 (n = 7), CTX-M-14 (n = 4) among Enterobacteriaceae isolated from shrimp (n = 21) and catfish (n = 4), and FONA-6 in two Serratia fonticola isolates from seabass. The higher rate of contamination in shrimp could be due to post-harvest contamination due to human handling or washing practices during processing. Half (n = 13) of the CTX-M-producing isolates transferred blaCTX-M to laboratory E. coli via IncA/C (n = 6), IncX2 (n = 4), IncFIIK (n = 1) or non-typeable plasmids (n = 2). All plasmids contained additional resistance genes conferring resistance to antimicrobials used in aquaculture, indicating possible co-selection through the use these antimicrobials. The frequent occurrence of CTX-M-encoding genes of high clinical relevance in imported seafood, particularly shrimp, often on transferrable plasmids, underscores the need for ESBL surveillance on traded seafood, alongside quantitative risk assessment studies aimed at evaluating the potential health risks for consumers who are exposed to these bacteria via consumption of raw seafood.
Collapse
Affiliation(s)
- Ryan Pearce
- Department of Pathobiology and Population Sciences, Royal Veterinary College, NW1 0TU London, United Kingdom; Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | - Mattia Pirolo
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | - Nicole B Goecke
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | - Valeria Toppi
- Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark; Department of Veterinary Medicine, University of Perugia, 06126 Perugia, Italy
| | - Liam Good
- Department of Pathobiology and Population Sciences, Royal Veterinary College, NW1 0TU London, United Kingdom
| | - Javier Guitian
- Department of Pathobiology and Population Sciences, Royal Veterinary College, NW1 0TU London, United Kingdom
| | - Luca Guardabassi
- Department of Pathobiology and Population Sciences, Royal Veterinary College, NW1 0TU London, United Kingdom; Department of Veterinary and Animal Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark.
| |
Collapse
|
2
|
Badinski T, Seiffert SN, Grässli F, Babouee Flury B, Besold U, Betschon E, Biggel M, Brucher A, Cusini A, Dörr T, Egli A, Goppel S, Güsewell S, Keller J, von Kietzell M, Möller JC, Nolte O, Ortner M, Roloff T, Ruetti M, Schlegel M, Seth-Smith HMB, Stephan R, Stocker R, Vuichard-Gysin D, Willi B, Kuster SP, Kahlert CR, Kohler P. Colonization with resistant bacteria in hospital employees: an epidemiological surveillance and typing study. Antimicrob Agents Chemother 2024; 68:e0098524. [PMID: 39324817 PMCID: PMC11539204 DOI: 10.1128/aac.00985-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 09/07/2024] [Indexed: 09/27/2024] Open
Abstract
The objective of this study was to determine the prevalence, molecular epidemiology, and risk factors for gut colonization with extended-spectrum β-lactamase-producing Enterobacterales (ESBL-E), carbapenemase-producing Enterobacterales (CPE), and vancomycin-resistant enterococci (VRE) in healthcare workers (HCWs). In September/October 2022, we performed a cross-sectional study among HCW from 14 institutions in Northeastern Switzerland. HCWs reported risk factors for antimicrobial resistance (covering the last 12-24 months) and provided rectal swabs. Swabs were screened for ESBL-E, CPE, and VRE; whole-genome sequencing (WGS) was performed to assess the genetic relatedness. Logistic regression was used to identify occupational and non-occupational risk factors. Among approximately 22,500 employees, 1,209 participated (median age 46 years, 82% female). Prevalences of ESBL-E (n = 65) and CPE (n = 1) were 5.4% [95% confidence interval (CI) 4.2-6.8] and 0.1% (95% CI 0.0-0.5), respectively; no VREs were detected. In the multivariable analysis, non-European ethnicity [adjusted odds ratio (aOR) 7.0, 95% CI 1.4-27.3], travel to high-risk countries (aOR 4.9, 95% CI 2.5-9.3), systemic antibiotics (aOR 2.1, 95% CI 1.1-3.7), antibiotic eye drops (aOR 4.7, 95% CI 1.7-11.9), and monthly sushi consumption (aOR 2.4, 95% CI 1.4-4.3) were positively associated with ESBL-E colonization, whereas alcohol consumption (aOR 0.5 per glass/week, 95% CI 0.3-0.9) was negatively associated with ESBL-E colonization. Occupational factors showed no association. Among ESBL-Escherichia coli, ST131 (15 of 61, 25%) and blaCTX-M-15 (37/61; 61%) were most common; one isolate co-harbored blaOXA-244. WGS data did not show relevant clustering. Occupational exposure is not associated with ESBL-E colonization in HCW. Given the potential public health and antibiotic stewardship implications, the role of sushi consumption and antibiotic eye drops as risk factors should be further elucidated.
Collapse
Affiliation(s)
- Tina Badinski
- Division of Infectious Diseases, Infection Prevention and Travel Medicine, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | | | - Fabian Grässli
- Division of Infectious Diseases, Infection Prevention and Travel Medicine, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Baharak Babouee Flury
- Division of Infectious Diseases, Infection Prevention and Travel Medicine, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Ulrike Besold
- Geriatric Clinic St. Gallen, St. Gallen, Switzerland
| | | | - Michael Biggel
- Vetsuisse Faculty, Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Angela Brucher
- Psychiatry Services of the Canton of St. Gallen, St. Gallen, Switzerland
| | - Alexia Cusini
- Cantonal Hospital of Grisons, Division of Infectious Diseases, Chur, Switzerland
| | - Tamara Dörr
- Division of Infectious Diseases, Infection Prevention and Travel Medicine, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Adrian Egli
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Stephan Goppel
- Vetsuisse Faculty, Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Sabine Güsewell
- Division of Infectious Diseases, Infection Prevention and Travel Medicine, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | | | | | | | - Oliver Nolte
- Centre for Laboratory Medicine St. Gallen, St. Gallen, Switzerland
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Manuela Ortner
- Rheintal Werdenberg Sarganserland Hospital Group, Grabs, Switzerland
| | - Tim Roloff
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Markus Ruetti
- Fuerstenland Toggenburg Hospital Group, Wil, Switzerland
| | - Matthias Schlegel
- Division of Infectious Diseases, Infection Prevention and Travel Medicine, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | | | - Roger Stephan
- Vetsuisse Faculty, Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | | | - Danielle Vuichard-Gysin
- Division of Infectious Diseases and Hospital Epidemiology, Thurgau Hospital Group, Muensterlingen, Switzerland
- Swiss National Centre for Infection Prevention (Swissnoso), Berne, Switzerland
| | - Barbara Willi
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Stefan P. Kuster
- Division of Infectious Diseases, Infection Prevention and Travel Medicine, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - Christian R. Kahlert
- Division of Infectious Diseases, Infection Prevention and Travel Medicine, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, Children’s Hospital of Eastern Switzerland, St. Gallen, Switzerland
| | - Philipp Kohler
- Division of Infectious Diseases, Infection Prevention and Travel Medicine, Kantonsspital St. Gallen, St. Gallen, Switzerland
| | - on behalf of the SURPRISE Study Group
- Division of Infectious Diseases, Infection Prevention and Travel Medicine, Kantonsspital St. Gallen, St. Gallen, Switzerland
- Centre for Laboratory Medicine St. Gallen, St. Gallen, Switzerland
- Geriatric Clinic St. Gallen, St. Gallen, Switzerland
- Clienia Littenheid, Littenheid, Switzerland
- Vetsuisse Faculty, Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
- Psychiatry Services of the Canton of St. Gallen, St. Gallen, Switzerland
- Cantonal Hospital of Grisons, Division of Infectious Diseases, Chur, Switzerland
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
- Hirslanden Clinic, Zurich, Switzerland
- Clinic Hirslanden Stephanshorn, St. Gallen, Switzerland
- Center for Neurological Rehabilitation, Zihlschlacht, Switzerland
- Rheintal Werdenberg Sarganserland Hospital Group, Grabs, Switzerland
- Fuerstenland Toggenburg Hospital Group, Wil, Switzerland
- Division of Infectious Diseases and Hospital Epidemiology, Thurgau Hospital Group, Muensterlingen, Switzerland
- Swiss National Centre for Infection Prevention (Swissnoso), Berne, Switzerland
- Clinic for Small Animal Internal Medicine, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Department of Infectious Diseases and Hospital Epidemiology, Children’s Hospital of Eastern Switzerland, St. Gallen, Switzerland
| |
Collapse
|
3
|
Aerts M, Baron S, Bortolaia V, Hendriksen R, Guerra B, Stoicescu A, Beloeil P. Technical specifications for a EU-wide baseline survey of antimicrobial resistance in bacteria from aquaculture animals. EFSA J 2024; 22:e8928. [PMID: 39086460 PMCID: PMC11289621 DOI: 10.2903/j.efsa.2024.8928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024] Open
Abstract
The European Commission requested scientific and technical assistance in the preparation of a EU-wide baseline survey of antimicrobial resistance (AMR) in bacteria from aquaculture animals. It is recommended that the survey would aim at estimating the occurrence of AMR in Aeromonas spp. isolated from Atlantic Salmon (Salmo salar), European seabass (Dicentrarchus labrax) and trout (Salmo trutta, Salvelinus fontinalis, Oncorhynchus mykiss) intended to consumption, at harvesting (at farm/slaughter), at the EU level and in addition, at estimating the occurrence and diversity of AMR of Escherichia coli, Enterococcus faecium, Enterococcus faecalis, Vibrio parahaemolyticus and Vibrio alginolyticus in blue mussel (Mytilus edulis) and Mediterranean mussel (Mytilus galloprovincialis) from production areas and at dispatch centres at the EU level. These technical specifications define the target populations, the sample size for the survey, sample collection requirements, the analytical methods (for isolation, identification, phenotypic susceptibility testing and further genotypic analysis of some of the bacteria targeted) and the data reporting requirements. The data to be reported by the EU Member States to support this baseline survey are presented in three data models. The results of the survey should be reported using the EFSA reporting system.
Collapse
|
4
|
Ribeiro LF, Nespolo NM, Rossi GAM, Fairbrother JM. Exploring Extended-Spectrum Beta-Lactamase (ESBL)-Producing Escherichia coli in Food-Producing Animals and Animal-Derived Foods. Pathogens 2024; 13:346. [PMID: 38668301 PMCID: PMC11054374 DOI: 10.3390/pathogens13040346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 04/16/2024] [Accepted: 04/19/2024] [Indexed: 04/29/2024] Open
Abstract
Antimicrobials serve as crucial treatments in both veterinary and human medicine, aiding in the control and prevention of infectious diseases. However, their misuse or overuse has led to the emergence of antimicrobial resistance, posing a significant threat to public health. This review focuses on extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli in animals and their associated food products, which contribute to the proliferation of antimicrobial-resistant strains. Recent research has highlighted the presence of ESBL-producing E. coli in animals and animal-derived foods, with some studies indicating genetic similarities between these isolates and those found in human infections. This underscores the urgent need to address antimicrobial resistance as a pressing public health issue. More comprehensive studies are required to understand the evolving landscape of ESBLs and to develop strategic public health policies grounded in the One Health approach, aiming to control and mitigate their prevalence effectively.
Collapse
Affiliation(s)
- Laryssa Freitas Ribeiro
- Mário Palmério University Center (UniFucamp), Av. Brasil Oeste, s/n, Jardim Zenith, Monte Carmelo 38500-000, Minas Gerais State, Brazil;
| | - Natália Maramarque Nespolo
- Federal University of São Carlos (UFSCar), Rod. Washington Luís, s/n—Monjolinho, São Carlos 13565-905, São Paulo State, Brazil;
| | - Gabriel Augusto Marques Rossi
- Department of Veterinary Medicine, University of Vila Velha (UVV), Vila Velha 29102-920, Espírito Santo State, Brazil;
| | - John Morris Fairbrother
- Département de Pathologie et Microbiologie, Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, QC J2S 2M2, Canada
| |
Collapse
|
5
|
Krahulcová M, Cverenkárová K, Koreneková J, Oravcová A, Koščová J, Bírošová L. Occurrence of Antibiotic-Resistant Bacteria in Fish and Seafood from Slovak Market. Foods 2023; 12:3912. [PMID: 37959031 PMCID: PMC10647796 DOI: 10.3390/foods12213912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
The consumption of sushi or poke has grown globally. However, this type of dish often contains raw fish or seafood; therefore, it can pose a microbial risk for consumers. This study deals with the occurrence of total and antibiotic-resistant coliform bacteria and enterococci in fish and seafood as well as sushi and poke bought from Slovak retail (restaurants and fast food). Total coliforms have ranged in sushi, poke samples and samples of fish and seafood from cooling counters from 0.6 to 5.1 log CFU/g. Ampicillin resistance has been predominantly observed in all types of samples. Tetracycline resistance was detected in 16% of all tested samples and gentamicin resistance in 13%. Total enterococci has been detected in 74% of sushi samples, 100% of poke samples and 62% of samples obtained from supermarkets. The majority of enterococci were resistant to ampicillin. Vancomycin resistance was observed in five samples. Forty-eight resistant coliforms were identified mainly as Enterobacter spp. and Klebsiella spp. Antibiotic-resistant isolates were predominantly resistant to gentamicin, chloramphenicol and tetracycline. In 13% of resistant isolates was detected efflux pumps overproduction, and in four isolates was detected the tetA resistance gene. Our results point to poor hygiene in some establishments. The prevention of the antibiotic-resistant bacteria spread would be in better stewardship and improved monitoring of sanitation.
Collapse
Affiliation(s)
- Monika Krahulcová
- Faculty of Chemical and Food Technology, Department of Nutrition and Food Quality Assessment, Slovak University of Technology, Radlinského 9, 81237 Bratislava, Slovakia; (K.C.); (J.K.); (A.O.); (L.B.)
| | - Klára Cverenkárová
- Faculty of Chemical and Food Technology, Department of Nutrition and Food Quality Assessment, Slovak University of Technology, Radlinského 9, 81237 Bratislava, Slovakia; (K.C.); (J.K.); (A.O.); (L.B.)
| | - Júlia Koreneková
- Faculty of Chemical and Food Technology, Department of Nutrition and Food Quality Assessment, Slovak University of Technology, Radlinského 9, 81237 Bratislava, Slovakia; (K.C.); (J.K.); (A.O.); (L.B.)
| | - Andrea Oravcová
- Faculty of Chemical and Food Technology, Department of Nutrition and Food Quality Assessment, Slovak University of Technology, Radlinského 9, 81237 Bratislava, Slovakia; (K.C.); (J.K.); (A.O.); (L.B.)
| | - Jana Koščová
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Košice, Komenského 73, 04181 Košice, Slovakia;
| | - Lucia Bírošová
- Faculty of Chemical and Food Technology, Department of Nutrition and Food Quality Assessment, Slovak University of Technology, Radlinského 9, 81237 Bratislava, Slovakia; (K.C.); (J.K.); (A.O.); (L.B.)
| |
Collapse
|
6
|
Uhland FC, Li XZ, Mulvey MR, Reid-Smith R, Sherk LM, Ziraldo H, Jin G, Young KM, Reist M, Carson CA. Extended Spectrum β-Lactamase-Producing Enterobacterales of Shrimp and Salmon Available for Purchase by Consumers in Canada-A Risk Profile Using the Codex Framework. Antibiotics (Basel) 2023; 12:1412. [PMID: 37760708 PMCID: PMC10525137 DOI: 10.3390/antibiotics12091412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
The extended-spectrum β-lactamase (ESBL)-producing Enterobacterales (ESBL-EB) encompass several important human pathogens and are found on the World Health Organization (WHO) priority pathogens list of antibiotic-resistant bacteria. They are a group of organisms which demonstrate resistance to third-generation cephalosporins (3GC) and their presence has been documented worldwide, including in aquaculture and the aquatic environment. This risk profile was developed following the Codex Guidelines for Risk Analysis of Foodborne Antimicrobial Resistance with the objectives of describing the current state of knowledge of ESBL-EB in relation to retail shrimp and salmon available to consumers in Canada, the primary aquacultured species consumed in Canada. The risk profile found that Enterobacterales and ESBL-EB have been found in multiple aquatic environments, as well as multiple host species and production levels. Although the information available did not permit the conclusion as to whether there is a human health risk related to ESBLs in Enterobacterales in salmon and shrimp available for consumption by Canadians, ESBL-EB in imported seafood available at the retail level in Canada have been found. Surveillance activities to detect ESBL-EB in seafood are needed; salmon and shrimp could be used in initial surveillance activities, representing domestic and imported products.
Collapse
Affiliation(s)
- F. Carl Uhland
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON N1H 7M7, Canada
| | - Xian-Zhi Li
- Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Michael R. Mulvey
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Richard Reid-Smith
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON N1H 7M7, Canada
| | - Lauren M. Sherk
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON N1H 7M7, Canada
| | - Hilary Ziraldo
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON N1H 7M7, Canada
| | - Grace Jin
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON N1H 7M7, Canada
| | - Kaitlin M. Young
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB R3E 3R2, Canada
| | - Mark Reist
- Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON K1A 0K9, Canada
| | - Carolee A. Carson
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON N1H 7M7, Canada
| |
Collapse
|
7
|
Pearce R, Conrady B, Guardabassi L. Prevalence and Types of Extended-Spectrum β-Lactamase-Producing Bacteria in Retail Seafood. Foods 2023; 12:3033. [PMID: 37628032 PMCID: PMC10453871 DOI: 10.3390/foods12163033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 07/28/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Objectives: To assess prevalence and types of extended-spectrum β-lactamase (ESBL)-producing bacteria in retail seafood. Methods: A literature review was completed according to international guidelines for systematic reviews, except for being performed by a single reviewer. Kruskal-Wallis and Dunn tests were used to determine statistical differences between continents or seafood types. Results: Among 12,277 hits, 42 publications from 2011 to 2023 were deemed relevant to the review's objectives. The median prevalence of ESBL-contaminated products was 19.4%. A significantly lower prevalence was observed in Europe (p = 0.006) and Africa (p = 0.004) compared to Asia. Amongst the 2053 isolates analyzed in the selected studies, 44.8% were ESBL-positive. The predominant type was CTX-M (93.6%), followed by TEM (6.7%) and SHV (5.0%). Only 32.6% and 18.5% of the CTX-M-positive isolates were typed to group and gene level, respectively. While group 1 (60.2%) was prevalent over group 9 (39.8%) among Enterobacterales, the opposite trend was observed in Vibrio spp. (60.0% vs. 40.0%). Information at gene level was limited to Enterobacterales, where CTX-M-15 was the most prevalent (79.2%). Conclusions: On average, one in five seafood products sold at retail globally is contaminated with ESBL-producing Enterobacterales of clinical relevance. Our findings highlight a potential risk for consumers of raw seafood, especially in Asia.
Collapse
Affiliation(s)
- Ryan Pearce
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London NW1 0TU, UK;
- Department of Veterinary and Animal Sciences, University of Copenhagen, 2600 Copenhagen, Denmark;
| | - Beate Conrady
- Department of Veterinary and Animal Sciences, University of Copenhagen, 2600 Copenhagen, Denmark;
| | - Luca Guardabassi
- Department of Pathobiology and Population Sciences, Royal Veterinary College, London NW1 0TU, UK;
- Department of Veterinary and Animal Sciences, University of Copenhagen, 2600 Copenhagen, Denmark;
| |
Collapse
|
8
|
Young KM, Isada MJ, Reist M, Uhland FC, Sherk LM, Carson CA. A scoping review of the distribution and frequency of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae in shrimp and salmon. Epidemiol Infect 2022; 151:e1. [PMID: 36606359 PMCID: PMC9990388 DOI: 10.1017/s0950268822001819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 11/17/2022] [Accepted: 11/26/2022] [Indexed: 12/12/2022] Open
Abstract
Antimicrobial-resistant (AMR) bacteria are a threat to public health as they can resist treatment and pass along genetic material that allows other bacteria to become drug-resistant. To assess foodborne AMR risk, the Codex Guidelines for Risk Analysis of Foodborne AMR provide a framework for risk profiles and risk assessments. Several elements of a risk profile may benefit from a scoping review (ScR). To contribute to a larger risk profile structured according to the Codex Guidelines, our objective was to conduct a ScR of the current state of knowledge on the distribution, frequency and concentrations of extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae in salmon and shrimp. Articles were identified via a comprehensive search of five bibliographic databases. Two reviewers screened titles and abstracts for relevance and characterised full-text articles with screening forms developed a priori. Sixteen relevant studies were identified. This review found that there is a lack of Canadian data regarding ESBL-producing Enterobacteriaceae in salmon and shrimp. However, ESBL- producing Escherichia coli, Klebsiella pneumoniae and other Enterobacteriaceae have been isolated in multiple regions with a history of exporting seafood to Canada. The literature described herein will support future decision-making on this issue as research/surveillance and subsequent assessments are currently lacking.
Collapse
Affiliation(s)
- K. M. Young
- Public Health Risk Sciences Division, National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - M. J. Isada
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - M. Reist
- Veterinary Drugs Directorate, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - F. C. Uhland
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - L. M. Sherk
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - C. A. Carson
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, Ontario, Canada
| |
Collapse
|
9
|
Ema FA, Shanta RN, Rahman MZ, Islam MA, Khatun MM. Isolation, identification, and antibiogram studies of Escherichia coli from ready-to-eat foods in Mymensingh, Bangladesh. Vet World 2022; 15:1497-1505. [PMID: 35993068 PMCID: PMC9375222 DOI: 10.14202/vetworld.2022.1497-1505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 05/13/2022] [Indexed: 11/16/2022] Open
Abstract
Background and Aim Ready-to-eat (RTE) foods are widely used at home, restaurants, and during festivals in Bangladesh. So it is very important to investigate possible microbial contamination in RTE foods. Therefore, this study aimed to determine the total coliform count (TCC), isolate, identify, and characterize the Escherichia coli in RTE foods. The antimicrobial sensitivity of E. coli obtained from RTE foods was also performed using 12 commonly used antibiotics. Materials and Methods A total of 100 RTE food samples were collected aseptically and comprised of ten samples each: Burger, pizza, sandwich, chicken roll, chicken meat loaf, chicken fry, salad vegetable, ice-cream, yogurt, and milkshake sold in Mymensingh City. Samples were inoculated onto Eosin methylene blue agar and incubated at 37°C for 24 h. Isolation and identification of bacteria were performed based on cultural, staining, and biochemical properties, followed by a polymerase chain reaction. Results The TCC in Chicken meat loaf, burger, pizza, sandwich, salad vegetable ice-cream, and yogurt samples were 3.57 ± 0.96, 3.69 ± 0.08, 3.50 ± 0.60, 2.60 ± 0.20, 4.09 ± 0.29, 4.44 ± 0.25, and 3.14 ± 0.30 mean log colony-forming units ± standard deviation/mL, respectively. The study found a higher prevalence of E. coli in RTE salad vegetable products than in RTE meat and milk products. Forty percent of the mixed vegetable salad samples showed positive results for E. coli. Whereas E. coli prevalence in RTE meat and milk products was 20% and 16.7%, respectively. All the 21 isolates were subjected to antibiotic susceptibility test against 12 different antibiotics. It was observed that 46.1% were susceptible, 16.6% were intermediate, 46.1% were resistant, and 47.6% were multidrug-resistant (MDR) among seven different antibiotic classes. E. coli isolates were resistant to cephalexin, ceftazidime, oxytetracycline, and ampicillin and sensitive to gentamycin, followed by kanamycin, ceftriaxone, colistin, and enrofloxacin. Conclusion The study revealed that RTE foods are a serious issue from a public health point of view. To achieve a safer level of E. coli in RTE foods sold for human consumption, public food outlets must improve hygienic and good production procedures. Moreover, MDR E. coli in these foods pose serious public health threats.
Collapse
Affiliation(s)
- Fateha Akther Ema
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Rifat Noor Shanta
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Zaminur Rahman
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Ariful Islam
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mst. Minara Khatun
- Department of Microbiology and Hygiene, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
10
|
Vercelli C, Gambino G, Amadori M, Re G. Implications of Veterinary Medicine in the comprehension and stewardship of antimicrobial resistance phenomenon. From the origin till nowadays. Vet Anim Sci 2022; 16:100249. [PMID: 35479515 PMCID: PMC9036142 DOI: 10.1016/j.vas.2022.100249] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Antibiotic resistance is a well-known phenomenon with several implications The contribution of Veterinary Medicine is underestimated. It was believed that only livestock was responsible for antibiotic resistance. Companion animals, wild animals and environment are more involved than estimated. Educational tools for public and more veterinary specialists are needed.
Antimicrobial resistance (AMR) is defined by the entire scientific community as the major threat for human health and it is responsible for an increase in morbidity and mortality rates. The reasons behind this phenomenon are complex and the solution is achievable only considering the One Health approach, that encompasses the integration and implementation of human health, veterinary medicine and environmental status. Authors aimed to write this review to summarize to readers the three milestones of One-Health, underlying the most important topics in which veterinary medicine is mostly involved. Therefore, a short introduction about the history of AMR in veterinary medicine is provided, then more detailed aspects about the impact of AMR related to pets, food producing animals, wild animals and environment are discussed. Finally, some critical aspects about current and future issues are considered.
Collapse
Affiliation(s)
- Cristina Vercelli
- Department of Veterinary Science, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco (Turin), Italy
- Corresponding author.
| | - Graziana Gambino
- Department of Veterinary Science, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco (Turin), Italy
| | | | - Giovanni Re
- Department of Veterinary Science, University of Turin, Largo Paolo Braccini 2, 10095, Grugliasco (Turin), Italy
| |
Collapse
|
11
|
Nogueira T, Botelho A. Metagenomics and Other Omics Approaches to Bacterial Communities and Antimicrobial Resistance Assessment in Aquacultures. Antibiotics (Basel) 2021; 10:787. [PMID: 34203511 PMCID: PMC8300701 DOI: 10.3390/antibiotics10070787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 12/21/2022] Open
Abstract
The shortage of wild fishery resources and the rising demand for human nutrition has driven a great expansion in aquaculture during the last decades in terms of production and economic value. As such, sustainable aquaculture production is one of the main priorities of the European Union's 2030 agenda. However, the intensification of seafood farming has resulted in higher risks of disease outbreaks and in the increased use of antimicrobials to control them. The selective pressure exerted by these drugs provides the ideal conditions for the emergence of antimicrobial resistance hotspots in aquaculture facilities. Omics technology is an umbrella term for modern technologies such as genomics, metagenomics, transcriptomics, proteomics, culturomics, and metabolomics. These techniques have received increasing recognition because of their potential to unravel novel mechanisms in biological science. Metagenomics allows the study of genomes in microbial communities contained within a certain environment. The potential uses of metagenomics in aquaculture environments include the study of microbial diversity, microbial functions, and antibiotic resistance genes. A snapshot of these high throughput technologies applied to microbial diversity and antimicrobial resistance studies in aquacultures will be presented in this review.
Collapse
Affiliation(s)
- Teresa Nogueira
- Laboratory of Bacteriology and Mycology, INIAV-National Institute for Agrarian and Veterinary Research, 2780-157 Oeiras, Portugal;
- cE3c-Centre for Ecology, Evolution and Environmental Changes, Evolutionary Ecology of Microorganisms Group, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Ana Botelho
- Laboratory of Bacteriology and Mycology, INIAV-National Institute for Agrarian and Veterinary Research, 2780-157 Oeiras, Portugal;
| |
Collapse
|
12
|
Lai H, Li G, Zhang Z. Advanced materials on sample preparation for safety analysis of aquatic products. J Sep Sci 2020; 44:1174-1194. [DOI: 10.1002/jssc.202000955] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/06/2020] [Accepted: 10/07/2020] [Indexed: 12/23/2022]
Affiliation(s)
- Huasheng Lai
- School of Chemistry Sun Yat‐sen University Guangzhou P. R. China
| | - Gongke Li
- School of Chemistry Sun Yat‐sen University Guangzhou P. R. China
| | - Zhuomin Zhang
- School of Chemistry Sun Yat‐sen University Guangzhou P. R. China
| |
Collapse
|
13
|
Country Income Is Only One of the Tiles: The Global Journey of Antimicrobial Resistance among Humans, Animals, and Environment. Antibiotics (Basel) 2020; 9:antibiotics9080473. [PMID: 32752276 PMCID: PMC7460298 DOI: 10.3390/antibiotics9080473] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 07/25/2020] [Accepted: 07/29/2020] [Indexed: 12/17/2022] Open
Abstract
Antimicrobial resistance (AMR) is one of the most complex global health challenges today: decades of overuse and misuse in human medicine, animal health, agriculture, and dispersion into the environment have produced the dire consequence of infections to become progressively untreatable. Infection control and prevention (IPC) procedures, the reduction of overuse, and the misuse of antimicrobials in human and veterinary medicine are the cornerstones required to prevent the spreading of resistant bacteria. Purified drinking water and strongly improved sanitation even in remote areas would prevent the pollution from inadequate treatment of industrial, residential, and farm waste, as all these situations are expanding the resistome in the environment. The One Health concept addresses the interconnected relationships between human, animal, and environmental health as a whole: several countries and international agencies have now included a One Health Approach within their action plans to address AMR. Improved antimicrobial usage, coupled with regulation and policy, as well as integrated surveillance, infection control and prevention, along with antimicrobial stewardship, sanitation, and animal husbandry should all be integrated parts of any new action plan targeted to tackle AMR on the Earth. Since AMR is found in bacteria from humans, animals, and in the environment, we briefly summarize herein the current concepts of One Health as a global challenge to enable the continued use of antibiotics.
Collapse
|
14
|
Extended-spectrum beta-lactamase (ESBL) producing and multidrug-resistant Escherichia coli in street foods: a public health concern. Journal of Food Science and Technology 2020; 58:1247-1261. [PMID: 33746253 DOI: 10.1007/s13197-020-04634-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 06/23/2020] [Accepted: 07/03/2020] [Indexed: 12/20/2022]
Abstract
Antimicrobial resistance (AMR) pattern and virulence genes of extended-spectrum beta-lactamase (ESBL) producing Escherichia coli from foods of animal origin were evaluated. Based on combination disc method and ESBL E test, 42 of the 213 E. coli isolates were confirmed as ESBL producers where a high presence was observed in raw foods (60.62%), environmental samples (46.73%) and ready to eat foods (42.99%) of which 31(26.49%), 3(6.97%) and 7(15.21%) samples harbored ESBL E. coli, respectively. Higher contamination rates were observed in samples collected from meat vendors (54.36%), milk vendors (48.88%) and egg vendors (45.20%) of which 16.1%, 11.11% and 2.05%, respectively were ESBL E. coli. Among the 42 ESBL isolates, 85.71% (36/42) were multidrug-resistant. On polymerase chain reaction (PCR) analysis, expression of beta-lactamase genes viz., blaCTXM was noted in 69.04% (29/42) ESBL isolates, blaTEM in 66.66% (28/42) and blaOXA-1 in 19.04% (8/42) isolates, while blaSHV was not detected in any of the isolates. Other AMR genes viz., blaAmpC, sul1, sul2, tet(A), tet(B), catI, dhfrI, aac(3)-IIa(aacC2), aph(3')-Ia(aphA1), qnrB, qnrS were detected by PCR in 39, 28, 29, 3, 9, 5, 17, 11, 6, 6 and 33 isolates, respectively. None of the isolates harbored chloramphenicol (floR) and plasmid-mediated quinolone resistance (PMQR) (qnrA) genes. However, 21 isolates were positive for class I integron (int1), 5 for EPEC (eae) and 9 for ETEC (lt) while none were carrying bfp or stII genes. All ESBL producing isolates formed a single group when subjected to enterobacterial repetitive intergenic consensus (ERIC PCR) genotyping. The presence of multidrug-resistant ESBL E. coli in street foods of animal origin raises the issues of food safety and public health.
Collapse
|