1
|
Sun J, Zelaya F, Sendt KV, McQueen G, Gillespie AL, Lally J, Howes OD, Barker GJ, McGuire P, MacCabe JH, Egerton A. Response to clozapine in treatment resistant schizophrenia is related to alterations in regional cerebral blood flow. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:122. [PMID: 39715777 DOI: 10.1038/s41537-024-00544-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/26/2024] [Indexed: 12/25/2024]
Abstract
PET and SPECT studies in treatment-resistant schizophrenia (TRS) have revealed significant alterations in regional cerebral blood flow (CBF) during clozapine treatment, which may vary according to the clinical response. Here, we used the more recent MRI approach of arterial spin labelling (ASL) to evaluate regional CBF in participants with TRS (N = 36) before starting treatment with clozapine compared to in healthy volunteers (N = 16). We then compared CBF in the TRS group, before and after 12 weeks of treatment with clozapine (N = 24); and examined the relationship of those differences against changes in Positive and Negative Syndrome Scale for Schizophrenia (PANSS) scores over the treatment period. We observed widespread reductions in CBF in TRS compared to in healthy volunteers (p < 0.05). After covarying for global CBF and age, lower CBF in frontal and parietal regions was still evident (p < 0.05, FWE corrected). Clozapine treatment was associated with longitudinal decreases in CBF in the anterior cingulate cortex (ACC) (p < 0.05). Higher striatal CBF at baseline was associated with greater improvement in total and general symptoms following clozapine, and higher hippocampal CBF was associated with greater improvement in total and positive symptoms. Longitudinal reductions in CBF in the ACC and thalamus were associated with less improvement in negative (ACC), positive (thalamus), and total (thalamus) symptoms. These findings suggest that changes in CBF on clozapine administration in TRS may accompany symptomatic improvement, and that CBF prior to clozapine initiation may determine the degree of clinical response.
Collapse
Affiliation(s)
- Junyu Sun
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
| | - Fernando Zelaya
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Kyra-Verena Sendt
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Grant McQueen
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Amy L Gillespie
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK
| | - John Lally
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Psychiatry, University College Dublin, Dublin, Ireland
- Department of Psychiatry, St Vincent's Hospital Fairview, Dublin, Ireland
| | - Oliver D Howes
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Gareth J Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Philip McGuire
- Department of Psychiatry, Warneford Hospital, University of Oxford, Oxford, UK
| | - James H MacCabe
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- National Psychosis Unit, South London and Maudsley NHS Foundation Trust, London, UK
| | - Alice Egerton
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
2
|
Kuang Z, Baizabal-Carvallo JF, Alonso-Juarez M, Mofatteh M, Rissardo JP, Pan M, Ye J, Wang Z, Chen Y. The limbic and extra-limbic encephalitis associated with glutamic acid decarboxylase (GAD)-65 antibodies: an observational study. Neurol Sci 2024:10.1007/s10072-024-07933-7. [PMID: 39704979 DOI: 10.1007/s10072-024-07933-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 12/06/2024] [Indexed: 12/21/2024]
Abstract
We aimed to define the clinical features and outcomes of encephalitis associated with anti-GAD65 Abs. In addition, we reviewed cases published in the literature with GAD65 encephalitis. We retrospectively studied 482 consecutive patients attending a tertiary care center for evaluation of an autoimmune neurological disorder. Nineteen patients were enrolled (3.94% of the cohort). Twelve (63.16%) patients were females, and the mean age at onset of the cohort was 31.68 ± 13.88 years. The following clinical-neuroimaging syndromes were identified: limbic encephalitis (n = 10), limbic plus extra-limbic encephalitis (n = 6), meningoencephalitis (n = 1), extralimbic encephalitis (n = 1), and unclassified (n = 1). The mesial temporal lobes were the most frequently affected (n = 13, 68.42%) in the brain magnetic resonance imaging (MRI), followed by frontal lobes (21%), and insular lobes (21%). Epileptiform discharges (94.4%), mostly from temporal lobes, were the most common electroencephalogram (EEG) finding. Most patients received immunotherapy and were followed for a mean duration of 21 months. A total of 73 patients, including 54 from the literature and 19 presented from the current series, were analyzed. Limbic encephalitis was the predominant presentation, and most patients received immunotherapy. Outcomes varied considerably. Considering patients from the literature and this series (n = 70), mortality was 5.7%. Also, 82.8% of patients had persistent neurologic manifestations, including seizures and cognitive impairment following immunotherapy. Limbic encephalitis is the most common form of GAD65 encephalitis, while a smaller proportion of patients may have signs of extra-limbic involvement. Most patients have persistent manifestations following combined immunotherapy with a relatively low mortality rate.
Collapse
Affiliation(s)
- Zuying Kuang
- Department of Neurology, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - José Fidel Baizabal-Carvallo
- Parkinson's Disease Center and Movement Disorders Clinic, Department of Neurology, Baylor College of Medicine, Houston, TX, USA.
- Department of Sciences and Engineering, University of Guanajuato, León, 07738, Mexico.
| | | | - Mohammad Mofatteh
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | | | - Mengqiu Pan
- Department of Neurology, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Jinlong Ye
- Department of Neurology, Guangdong Sanjiu Brain Hospital, Guangzhou, China
| | - Zhanhang Wang
- Department of Neurology, Guangdong Sanjiu Brain Hospital, Guangzhou, China.
| | - Yimin Chen
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510000, China.
| |
Collapse
|
3
|
Bachtiar NA, Murtala B, Muis M, Ilyas MI, Abdul Hamid HB, As’ad S, Tammasse J, Wuysang AD, Soraya GV. Non-Contrast MRI Sequences for Ischemic Stroke: A Concise Overview for Clinical Radiologists. Vasc Health Risk Manag 2024; 20:521-531. [PMID: 39618686 PMCID: PMC11608002 DOI: 10.2147/vhrm.s474143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 11/08/2024] [Indexed: 12/13/2024] Open
Abstract
Ischemic stroke is the second leading cause of mortality and morbidity worldwide. Due to the urgency of implementing immediate therapy, acute stroke necessitates prompt diagnosis. The current gold standards for vascular imaging in stroke include computed tomography angiography (CTA), digital subtraction angiography (DSA) and magnetic resonance angiography (MRA). However, the contrast agents used in these methods can be costly and pose risks for patients with renal impairment or allergies. The aim of this paper is to provide a comprehensive overview of current MRI techniques and sequences for evaluating ischemic stroke, emphasizing the importance of non-contrast options and their clinical implications for radiologists in the diagnosis and management of ischemic stroke. Standard MRI sequences-such as T1-weighted imaging (T1WI), T2-weighted imaging (T2WI), fluid-attenuated inversion recovery (FLAIR), diffusion-weighted imaging (DWI), DWI-FLAIR mismatch, and apparent diffusion coefficient (ADC)-are essential for determining infarct location, volume, and age. Additionally, incorporating susceptibility-weighted imaging (SWI) sequence aids in identifying signs of hemorrhagic transformation within the infarcted region. Advanced techniques like arterial spin labeling (ASL) can serve as a non-contrast alternative for mapping cerebral blood flow (CBF) and allowing for comparison between infarcted and healthy brain areas. Adding ASL to the routine sequence allows ASL-DWI mismatch analysis that is useful for quantifying salvageable tissue volume and facilitate timely recanalization, while time-of-flight (TOF) MRA and magnetic resonance venography (MRV) help assess venous thrombosis, stenosis, or arterial occlusions. Finally, MR spectroscopy can provide insights into critical brain metabolites, including N-acetylaspartate (NAA), and lactate (Lac) to determine patient prognosis. Current MRI technology provides a myriad of sequence options for the comprehensive evaluation of ischemic stroke without the need for contrast material. A thorough understanding of the advantages and limitations of each sequence is crucial for its optimal implementation in diagnosis and treatment.
Collapse
Affiliation(s)
| | - Bachtiar Murtala
- Department of Radiology, Hasanuddin University, Makassar, Indonesia
| | - Mirna Muis
- Department of Radiology, Hasanuddin University, Makassar, Indonesia
| | - Muhammad I Ilyas
- Department of Radiology, Hasanuddin University, Makassar, Indonesia
| | | | - Suryani As’ad
- Faculty of Medicine, Muhammadiyah University, Makassar, Indonesia
| | | | | | - Gita Vita Soraya
- Department of Neurology, Hasanuddin University, Makassar, Indonesia
- Department of Biochemistry, Hasanuddin University, Makassar, Indonesia
- Department of Biomedicine, Graduate School Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
4
|
Śledzińska-Bebyn P, Furtak J, Bebyn M, Serafin Z. Beyond conventional imaging: Advancements in MRI for glioma malignancy prediction and molecular profiling. Magn Reson Imaging 2024; 112:63-81. [PMID: 38914147 DOI: 10.1016/j.mri.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 05/20/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
This review examines the advancements in magnetic resonance imaging (MRI) techniques and their pivotal role in diagnosing and managing gliomas, the most prevalent primary brain tumors. The paper underscores the importance of integrating modern MRI modalities, such as diffusion-weighted imaging and perfusion MRI, which are essential for assessing glioma malignancy and predicting tumor behavior. Special attention is given to the 2021 WHO Classification of Tumors of the Central Nervous System, emphasizing the integration of molecular diagnostics in glioma classification, significantly impacting treatment decisions. The review also explores radiogenomics, which correlates imaging features with molecular markers to tailor personalized treatment strategies. Despite technological progress, MRI protocol standardization and result interpretation challenges persist, affecting diagnostic consistency across different settings. Furthermore, the review addresses MRI's capacity to distinguish between tumor recurrence and pseudoprogression, which is vital for patient management. The necessity for greater standardization and collaborative research to harness MRI's full potential in glioma diagnosis and personalized therapy is highlighted, advocating for an enhanced understanding of glioma biology and more effective treatment approaches.
Collapse
Affiliation(s)
- Paulina Śledzińska-Bebyn
- Department of Radiology, 10th Military Research Hospital and Polyclinic, 85-681 Bydgoszcz, Poland.
| | - Jacek Furtak
- Department of Clinical Medicine, Faculty of Medicine, University of Science and Technology, Bydgoszcz, Poland; Department of Neurosurgery, 10th Military Research Hospital and Polyclinic, 85-681 Bydgoszcz, Poland
| | - Marek Bebyn
- Department of Internal Diseases, 10th Military Clinical Hospital and Polyclinic, 85-681 Bydgoszcz, Poland
| | - Zbigniew Serafin
- Department of Radiology and Diagnostic Imaging, Nicolaus Copernicus University, Collegium Medicum, Bydgoszcz, Poland
| |
Collapse
|
5
|
Yun JY, Kim YK. Neural correlates of treatment response to ketamine for treatment-resistant depression: A systematic review of MRI-based studies. Psychiatry Res 2024; 340:116092. [PMID: 39116687 DOI: 10.1016/j.psychres.2024.116092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/26/2024] [Accepted: 07/20/2024] [Indexed: 08/10/2024]
Abstract
Treatment-resistant depression (TRD) is defined as patients diagnosed with depression having a history of failure with different antidepressants with an adequate dosage and treatment duration. The NMDA receptor antagonist ketamine rapidly reduces depressive symptoms in TRD. We examined neural correlates of treatment response to ketamine in TRD through a systematic review of brain magnetic resonance imaging (MRI) studies. A comprehensive search in PubMed was performed using "ketamine AND depression AND magnetic resonance." The time span for the database queries was "Start date: 2018/01/01; End date: 2024/05/31." Total 41 original articles comprising 1,396 TRD and 587 healthy controls (HC) were included. Diagnosis of depression was made using the Structured Clinical Interview for DSM Disorders (SCID), the Mini-International Neuropsychiatric Interview (MINI), and/or the clinical assessment by psychiatrists. Patients with affective psychotic disorders were excluded. Most studies applied ketamine [0.5mg/kg racemic ketamine and/or 0.25mg/kg S-ketamine] diluted in 60cc of normal saline via intravenous infusion over 40 min one time, four times, or six times spaced 2-3 days apart over 2 weeks. Clinical outcome was defined as either remission, response, and/or percentage changes of depressive symptoms. Brain MRI of the T2*-weighted imaging (resting-state or task performance), arterial spin labeling, diffusion weighted imaging, and T1-weighted imaging were acquired at baseline and mainly 1-3days after the ketamine administration. Only the study results replicated by ≥ 2 studies and were included in the default-mode, salience, fronto-parietal, subcortical, and limbic networks were regarded as meaningful. Putative brain-based markers of treatment response to ketamine in TRD were found in the structural/functional features of limbic (subgenual ACC, hippocampus, cingulum bundle-hippocampal portion; anhedonia/suicidal ideation), salience (dorsal ACC, insula, cingulum bundle-cingulate gyrus portion; thought rumination/suicidal ideation), fronto-parietal (dorsolateral prefrontal cortex, superior longitudinal fasciculus; anhedonia/suicidal ideation), default-mode (posterior cingulate cortex; thought rumination), and subcortical (striatum; anhedonia/thought rumination) networks. Brain features of limbic, salience, and fronto-parietal networks could be useful in predicting the TRD with better response to ketamine in relief of anhedonia, thought rumination, and suicidal ideation.
Collapse
Affiliation(s)
- Je-Yeon Yun
- Seoul National University Hospital, Seoul, Republic of Korea; Yeongeon Student Support Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yong-Ku Kim
- Department of Psychiatry, Korea University Ansan Hospital, College of Medicine, Republic of Korea.
| |
Collapse
|
6
|
Hallak H, Aljarayhi S, Abou-Al-Shaar H, Martini M, Michealcheck C, Elarjani T, Bin-Alamer O, Naik A, Aldahash H, Brinjikji W, Lawton M, Alotaibi N. Diagnostic accuracy of arterial spin labeling MR imaging in detecting cerebral arteriovenous malformations: a systematic review and meta-analysis. Neurosurg Rev 2024; 47:492. [PMID: 39190141 DOI: 10.1007/s10143-024-02659-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 07/28/2024] [Accepted: 08/05/2024] [Indexed: 08/28/2024]
Abstract
Diagnostic accuracy of arteriovenous malformations (AVMs) is imperative for delineating management. The current standard is digital subtraction angiography (DSA). Arterial spin labeling (ASL) is an understudied noninvasive, non-contrast technique that allows angioarchitecture visualization and additionally quantifies cortical and AVM cerebral blood flow and hemodynamics. This meta-analysis aims to compare ASL and DSA imaging in detecting and characterizing cerebral AVMs. EMBASE, Medline, Scopus, and Cochrane databases were queried from inception to July 2022 for reports of AVMs evaluated by DSA and ASL imaging. Fourteen studies with 278 patients evaluated using DSA and ASL imaging prior to intervention were included; pCASL in 11 studies (n = 239, 85.37%) and PASL in three studies (n = 41, 14.64%). The overall AVM detection rate on ASL was 99% (CI 97-100%); subgroup analysis revealed no difference between pCASL vs. PASL (99%; CI 96-100% vs. 100%; CI 95-100% respectively, p = 0.42). The correlation value comparing ASL and DSA nidus size was 0.99. DSA and ASL intermodality agreement Cohen's k factor for Spetzler Martin Grading (SMG) was reported at a median of 0.98 (IQR 0.73-0.1), with a 1.0 agreement on SMG classification. A median of 25 arteries were detected by DSA (IQR 14.5-27), vs. 25 by ASL (IQR 14.5-27.5) at a median 0.92 k factor. ASL provides angioarchitectural visualization noninferior to DSA and additionally quantifies CBF. Our study suggests that ASL should be considered in the detection of AVMs, especially in patients with contrast contraindications or apprehension towards an invasive assessment.
Collapse
Affiliation(s)
- Hana Hallak
- Department of Neurological Surgery, King Faisal Specialist Hospital, Riyadh, Saudi Arabia.
| | - Salwa Aljarayhi
- Department of Neurological Surgery, King Faisal Specialist Hospital, Riyadh, Saudi Arabia
| | - Hussam Abou-Al-Shaar
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Michael Martini
- Department of Neurological Surgery, Mayo Clinic, Rochester, MN, USA
| | | | - Turki Elarjani
- Department of Neurological Surgery, University of Miami, Miami, FL, USA
| | - Othman Bin-Alamer
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Anant Naik
- Department of Neurological Surgery, Barrow Neurologic Institute, Phoenix, AZ, USA
| | - Homoud Aldahash
- Department of Neurological Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Waleed Brinjikji
- Department of Neurological Surgery, King Faisal Specialist Hospital, Riyadh, Saudi Arabia
| | - Michael Lawton
- Department of Neurological Surgery, Barrow Neurologic Institute, Phoenix, AZ, USA
| | - Naif Alotaibi
- Department of Neurologic Surgery, King Fahad Medical City, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Oliveira ÍAF, Schnabel R, van Osch MJP, van der Zwaag W, Hirschler L. Advancing 7T perfusion imaging by pulsed arterial spin labeling: Using a parallel transmit coil for enhanced labeling robustness and temporal SNR. PLoS One 2024; 19:e0309204. [PMID: 39186519 PMCID: PMC11346640 DOI: 10.1371/journal.pone.0309204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 08/08/2024] [Indexed: 08/28/2024] Open
Abstract
Non-invasive perfusion imaging by Arterial spin labeling (ASL) can be advantageous at Ultra-high field (UHF) MRI, since the image SNR and the T1 relaxation time both increase with the static field. However, ASL implementation, especially at 7T, is not trivial. Especially for ASL, UHF MRI comes with many challenges, mainly due to B1+ inhomogeneities. This study aimed to investigate the effects of different transmit coil configurations on perfusion-weighted imaging at 7T using a flow-sensitive alternating inversion recovery (FAIR) technique with time-resolved frequency offset corrected inversion (TR-FOCI) pulses for labeling and background suppression. We conducted a performance comparison between a parallel transmit (pTx) system equipped with 32 receive (Rx) and 8 transmit (Tx) channels and a standard setup with 32Rx and 2Tx channels. Our findings demonstrate that the pTx system, characterized by a more homogeneous B1 transmit field, resulted in a significantly higher contrast-to-noise ratio, temporal signal-to-noise ratio, and lower coefficient of variance (CoV) than the standard 2Tx setup. Additionally, both setups demonstrated comparable capabilities for functional mapping of the hand region in the motor cortex, achieving reliable results within a short acquisition time of approximately 5 minutes.
Collapse
Affiliation(s)
- Ícaro Agenor Ferreira Oliveira
- Spinoza Centre for Neuroimaging, Netherlands Academy for Arts and Sciences, Amsterdam, Netherlands
- Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
- Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| | - Robin Schnabel
- Spinoza Centre for Neuroimaging, Netherlands Academy for Arts and Sciences, Amsterdam, Netherlands
| | - Matthias J. P. van Osch
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Wietske van der Zwaag
- Spinoza Centre for Neuroimaging, Netherlands Academy for Arts and Sciences, Amsterdam, Netherlands
- Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Amsterdam, Netherlands
| | - Lydiane Hirschler
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
8
|
Wang Y, Yang Z, Zheng X, Liang X, Wu L, Wu C, Dai J, Cao Y, Li M, Zhou F. Cerebral blood flow alterations and host genetic association in individuals with long COVID: A transcriptomic-neuroimaging study. J Cereb Blood Flow Metab 2024:271678X241277621. [PMID: 39177056 PMCID: PMC11572096 DOI: 10.1177/0271678x241277621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/03/2024] [Accepted: 08/03/2024] [Indexed: 08/24/2024]
Abstract
Neuroimaging studies have indicated that altered cerebral blood flow (CBF) was associated with the long-term symptoms of postacute sequelae of SARS-CoV-2 infection (PASC), also known as "long COVID". COVID-19 and long COVID were found to be strongly associated with host gene expression. Nevertheless, the relationships between altered CBF, clinical symptoms, and gene expression in the central nervous system (CNS) remain unclear in individuals with long COVID. This study aimed to explore the genetic mechanisms of CBF abnormalities in individuals with long COVID by transcriptomic-neuroimaging spatial association. Lower CBF in the left frontal-temporal gyrus was associated with higher fatigue and worse cognition in individuals with long COVID. This CBF pattern was spatially associated with the expression of 2,178 genes, which were enriched in the molecular functions and biological pathways of COVID-19. Our study suggested that lower CBF is associated with persistent clinical symptoms in long COVID individuals, possibly as a consequence of the complex interactions among multiple COVID-19-related genes, which contributes to our understanding of the impact of adverse CNS outcomes and the trajectory of development to long COVID.
Collapse
Affiliation(s)
- Yao Wang
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Clinical Research Center for Medical Imaging in Jiangxi Province, Nanchang, China
| | - Ziwei Yang
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Clinical Research Center for Medical Imaging in Jiangxi Province, Nanchang, China
| | - Xiumei Zheng
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Clinical Research Center for Medical Imaging in Jiangxi Province, Nanchang, China
| | - Xiao Liang
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Clinical Research Center for Medical Imaging in Jiangxi Province, Nanchang, China
| | - Lin Wu
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Clinical Research Center for Medical Imaging in Jiangxi Province, Nanchang, China
| | - Chengsi Wu
- Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | | | - Yuan Cao
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Halle-Jena-Magdeburg, Germany
- Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany
| | - Meng Li
- Department of Psychiatry and Psychotherapy, Jena University Hospital, Jena, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Halle-Jena-Magdeburg, Germany
- Clinical Affective Neuroimaging Laboratory (CANLAB), Magdeburg, Germany
| | - Fuqing Zhou
- Department of Radiology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
- Clinical Research Center for Medical Imaging in Jiangxi Province, Nanchang, China
| |
Collapse
|
9
|
Mihailescu S, Hlava Q, Cook PA, Mandelli ML, Lee SE, Boeve BF, Dickerson BC, Gorno-Tempini ML, Rogalski E, Grossman M, Gee J, McMillan CT, Olm CA. Boundary-based registration improves sensitivity for detecting hypoperfusion in sporadic frontotemporal lobar degeneration. Front Neurol 2024; 15:1452944. [PMID: 39233675 PMCID: PMC11371585 DOI: 10.3389/fneur.2024.1452944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 08/07/2024] [Indexed: 09/06/2024] Open
Abstract
Introduction Frontotemporal lobar degeneration (FTLD) is associated with FTLD due to tau (FTLD-tau) or TDP (FTLD-TDP) inclusions found at autopsy. Arterial Spin Labeling (ASL) MRI is often acquired in the same session as a structural T1-weighted image (T1w), enabling detection of regional changes in cerebral blood flow (CBF). We hypothesize that ASL-T1w registration with more degrees of freedom using boundary-based registration (BBR) will better align ASL and T1w images and show increased sensitivity to regional hypoperfusion differences compared to manual registration in patient participants. We hypothesize that hypoperfusion will be associated with a clinical measure of disease severity, the FTLD-modified clinical dementia rating scale sum-of-boxes (FTLD-CDR). Materials and methods Patients with sporadic likely FTLD-tau (sFTLD-tau; N = 21), with sporadic likely FTLD-TDP (sFTLD-TDP; N = 14), and controls (N = 50) were recruited from the Connectomic Imaging in Familial and Sporadic Frontotemporal Degeneration project (FTDHCP). Pearson's Correlation Coefficients (CC) were calculated on cortical vertex-wise CBF between each participant for each of 3 registration methods: (1) manual registration, (2) BBR initialized with manual registration (manual+BBR), (3) and BBR initialized using FLIRT (FLIRT+BBR). Mean CBF was calculated in the same regions of interest (ROIs) for each registration method after image alignment. Paired t-tests of CC values for each registration method were performed to compare alignment. Mean CBF in each ROI was compared between groups using t-tests. Differences were considered significant at p < 0.05 (Bonferroni-corrected). We performed linear regression to relate FTLD-CDR to mean CBF in patients with sFTLD-tau and sFTLD-TDP, separately (p < 0.05, uncorrected). Results All registration methods demonstrated significant hypoperfusion in frontal and temporal regions in each patient group relative to controls. All registration methods detected hypoperfusion in the left insular cortex, middle temporal gyrus, and temporal pole in sFTLD-TDP relative to sFTLD-tau. FTLD-CDR had an inverse association with CBF in right temporal and orbitofrontal ROIs in sFTLD-TDP. Manual+BBR performed similarly to FLIRT+BBR. Discussion ASL is sensitive to distinct regions of hypoperfusion in patient participants relative to controls, and in patients with sFTLD-TDP relative to sFTLD-tau, and decreasing perfusion is associated with increasing disease severity, at least in sFTLD-TDP. BBR can register ASL-T1w images adequately for controls and patients.
Collapse
Affiliation(s)
- Sylvia Mihailescu
- School of Engineering and Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States
| | - Quinn Hlava
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Philip A Cook
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Maria Luisa Mandelli
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
| | - Suzee E Lee
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
| | - Bradley F Boeve
- Department of Neurology, Mayo Clinic, Rochester, MN, United States
| | - Bradford C Dickerson
- Department of Neurology, Massachusetts General Hospital, Boston, MA, United States
| | - Maria Luisa Gorno-Tempini
- Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, United States
| | - Emily Rogalski
- Healthy Aging & Alzheimer's Care Center, University of Chicago, Chicago, IL, United States
- Department of Neurology, University of Chicago, Chicago, IL, United States
| | - Murray Grossman
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - James Gee
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Corey T McMillan
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| | - Christopher A Olm
- Department of Neurology, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
10
|
Alyafaie A, Han W, Li Y, Vydro SA, Vella M, Truong TL, Park L, Langston D, Kim H, Conrad MB, Hetts SW. Arterial Spin-Labeling MR Imaging in the Detection of Intracranial Arteriovenous Malformations in Patients with Hereditary Hemorrhagic Telangiectasia. AJNR Am J Neuroradiol 2024; 45:1019-1024. [PMID: 38991769 PMCID: PMC11383423 DOI: 10.3174/ajnr.a8281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/07/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND AND PURPOSE Hereditary hemorrhagic telangiectasia (HHT) is an autosomal dominant disease that causes vascular malformations in a variety of organs and tissues, including brain AVMs. Because brain AVMs have the potential to cause disabling or fatal intracranial hemorrhage, detection of these lesions before rupture is the goal of screening MR imaging/MRA examinations in patients with HHT. Prior studies have demonstrated superior sensitivity for HHT-related brain AVMs by using postcontrast MR imaging sequences as compared with MRA alone. We now present data regarding the incremental benefit of including arterial spin-labeling (ASL) perfusion sequences as part of MR imaging/MRA screening in patients with this condition. MATERIALS AND METHODS We retrospectively analyzed 831 patients at the UCSF Hereditary Hemorrhagic Telangiectasia Center of Excellence. Of these, 42 patients had complete MR imaging/MRA, ASL perfusion scans, and criterion-standard DSA data. Two neuroradiologists reviewed imaging studies and a third provided adjudication when needed. RESULTS Eight patients had no brain AVMs detected on DSA. The remaining 34 patients had 57 brain AVMs on DSA. Of the 57 identified AVMs, 51 (89.5%) were detected on ASL and 43 (75.4%) were detected on conventional MR imaging/MRA sequences (P = .049), with 8 lesions detected on ASL perfusion but not on conventional MR imaging. CONCLUSIONS ASL provides increased sensitivity for brain AVMs in patients with HHT. Inclusion of ASL should be considered as part of comprehensive MR imaging/MRA screening protocols for institutions taking care of patients with HHT.
Collapse
Affiliation(s)
- Adam Alyafaie
- From the School of Medicine (A.A., S.A.V.), University of California, San Francisco, San Francisco, California
| | - Woody Han
- Department of Radiology and Biomedical Imaging (W.H., Y.L., M.V.), University of California, San Francisco, San Francisco, California
| | - Yi Li
- Department of Radiology and Biomedical Imaging (W.H., Y.L., M.V.), University of California, San Francisco, San Francisco, California
| | - Samuel A Vydro
- From the School of Medicine (A.A., S.A.V.), University of California, San Francisco, San Francisco, California
| | - Maya Vella
- Department of Radiology and Biomedical Imaging (W.H., Y.L., M.V.), University of California, San Francisco, San Francisco, California
| | - Torianna L Truong
- HHT Center of Excellence, Department of Radiology and Biomedical Imaging (T.L.T., L.P., D.L., M.B.C.), University of California, San Francisco, San Francisco, California
| | - Lindsay Park
- HHT Center of Excellence, Department of Radiology and Biomedical Imaging (T.L.T., L.P., D.L., M.B.C.), University of California, San Francisco, San Francisco, California
| | - Daniel Langston
- HHT Center of Excellence, Department of Radiology and Biomedical Imaging (T.L.T., L.P., D.L., M.B.C.), University of California, San Francisco, San Francisco, California
| | - Helen Kim
- Department of Anesthesia, and Perioperative Care (H.K.), University of California, San Francisco, San Francisco, California
| | - Miles B Conrad
- HHT Center of Excellence, Department of Radiology and Biomedical Imaging (T.L.T., L.P., D.L., M.B.C.), University of California, San Francisco, San Francisco, California
| | - Steven W Hetts
- HHT Center of Excellence, Departments of Radiology, Biomedical Imaging, and Neurological Surgery (S.W.H.), University of California, San Francisco, San Francisco, California
| |
Collapse
|
11
|
Okazaki A, Yamasaki T, Kataoka E, Fujihiro M, Kurozumi K. Clinical Benefits of Arterial Spin-Labeling Magnetic Resonance Imaging for Primary Diffuse Large B-cell Lymphoma of the Central Nervous System Presenting With Lymphomatosis Cerebri: A Case Report. Cureus 2024; 16:e67577. [PMID: 39310434 PMCID: PMC11416737 DOI: 10.7759/cureus.67577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 09/25/2024] Open
Abstract
Of the primary central nervous system (CNS) lymphomas, diffuse large B-cell lymphoma of the CNS (CNS-DLBCL) is an aggressive extranodal lymphoma that originates in the CNS. Lymphomatosis cerebri (LC) is an exceptionally rare subtype, posing diagnostic challenges due to the absence of abnormal enhancement and making the identification of suitable biopsy sites difficult. Arterial spin-labeling magnetic resonance imaging (ASL-MRI) is a non-invasive MRI technique that quantifies tumor blood flow. This report presents a case of CNS-DLBCL with LC, which was evaluated and biopsied using ASL-MRI of the brain. Herein, we present a case of a 32-year-old female who presented with abnormal involuntary movements and cognitive impairments. She underwent an MRI which showed a diffuse and infiltrative lesion in the bilateral basal ganglia, showing a high signal intensity area on fluid-attenuated inversion recovery (FLAIR) images with no contrast enhancement. Computed Tomography scans and Gallium-67 scintigraphy showed no abnormal uptake throughout the whole body. Although she received corticosteroid treatments, subsequent MRI showed an enlarged lesion, and she underwent a brain biopsy. The biopsy site was determined based on high perfusion demonstrated by ASL-MRI and the histological findings positive for B-cell markers led to diagnoses of CNS-DLBCL, specifically LC. Her symptoms improved following high-dose methotrexate and whole-brain irradiation. Subsequent MRI scans showed a dramatic improvement, and the high perfusion observed in the ASL-MRI disappeared. This report has emphasized the critical role of histopathology in diagnosing CNS-DLBCL presenting with LC, a highly aggressive lymphoma requiring prompt treatment. In this case, high ASL-MRI signal intensity indicated an increased area of tumor cell density suitable for biopsy. This is the first report to establish a relationship between cell density and ASL-MRI signal intensity in LC. The challenge in locating the optimal biopsy site due to the lack of contrast enhancement and the difference in tumor cell densities within high signal intensity areas on FLAIR imaging is presented. ASL-MRI provides information on tumor blood flow (TBF), which may be associated with higher tumor cell density, making it a valuable tool for identifying suitable biopsy sites. Thus, ASL-MRI is clinically beneficial for the biopsy of LC cases that show high signal intensity on FLAIR images without contrast enhancement.
Collapse
Affiliation(s)
- Akira Okazaki
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu, JPN
| | - Tomohiro Yamasaki
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu, JPN
| | - Eri Kataoka
- Department of Diagnostic Pathology, Hamamatsu University School of Medicine, Hamamatsu, JPN
| | - Mayu Fujihiro
- Department of Diagnostic Pathology, Hamamatsu University School of Medicine, Hamamatsu, JPN
| | - Kazuhiko Kurozumi
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu, JPN
| |
Collapse
|
12
|
Poulin JM, Bigford GE, Lanctôt KL, Giacobbe P, Schaffer A, Sinyor M, Rabin JS, Masellis M, Singnurkar A, Pople CB, Lipsman N, Husain MI, Rosenblat JD, Cao X, MacIntosh BJ, Nestor SM. Engaging Mood Brain Circuits with Psilocybin (EMBRACE): a study protocol for a randomized, placebo-controlled and delayed-start, neuroimaging trial in depression. Trials 2024; 25:441. [PMID: 38956594 PMCID: PMC11221029 DOI: 10.1186/s13063-024-08268-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 06/18/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is a leading cause of disability worldwide across domains of health and cognition, affecting overall quality of life. Approximately one third of individuals with depression do not fully respond to treatments (e.g., conventional antidepressants, psychotherapy) and alternative strategies are needed. Recent early phase trials suggest psilocybin may be a safe and efficacious intervention with rapid-acting antidepressant properties. Psilocybin is thought to exert therapeutic benefits by altering brain network connectivity and inducing neuroplastic changes that endure for weeks post-treatment. Although early clinical results are encouraging, psilocybin's acute neurobiological effects on neuroplasticity have not been fully investigated. We aim to examine for the first time how psilocybin acutely (intraday) and subacutely (weeks) alters functional brain networks implicated in depression. METHODS Fifty participants diagnosed with MDD or persistent depressive disorder (PDD) will be recruited from a tertiary mood disorders clinic and undergo 1:1 randomization into either an experimental or control arm. Participants will be given either 25 mg psilocybin or 25 mg microcrystalline cellulose (MCC) placebo for the first treatment. Three weeks later, those in the control arm will transition to receiving 25 mg psilocybin. We will investigate whether treatments are associated with changes in arterial spin labelling and blood oxygenation level-dependent contrast neuroimaging assessments at acute and subacute timepoints. Primary outcomes include testing whether psilocybin demonstrates acute changes in (1) cerebral blood flow and (2) functional brain activity in networks associated with mood regulation and depression when compared to placebo, along with changes in MADRS score over time compared to placebo. Secondary outcomes include changes across complementary clinical psychiatric, cognitive, and functional scales from baseline to final follow-up. Serum peripheral neurotrophic and inflammatory biomarkers will be collected at baseline and follow-up to examine relationships with clinical response, and neuroimaging measures. DISCUSSION This study will investigate the acute and additive subacute neuroplastic effects of psilocybin on brain networks affected by depression using advanced serial neuroimaging methods. Results will improve our understanding of psilocybin's antidepressant mechanisms versus placebo response and whether biological measures of brain function can provide early predictors of treatment response. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT06072898. Registered on 6 October 2023.
Collapse
Affiliation(s)
- Joshua M Poulin
- Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Gregory E Bigford
- Department of Neurological Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Krista L Lanctôt
- Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON, Canada
| | - Peter Giacobbe
- Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Ayal Schaffer
- Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Mark Sinyor
- Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Jennifer S Rabin
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
- Rehabilitation Sciences Institute, University of Toronto, Toronto, ON, Canada
| | - Mario Masellis
- Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Division of Neurology, Department of Medicine, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Amit Singnurkar
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Christopher B Pople
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
| | - Nir Lipsman
- Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, Sunnybrook Health Sciences Centre, University of Toronto, Toronto, ON, Canada
| | - Muhammad I Husain
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Joshua D Rosenblat
- Mood Disorders Psychopharmacology Unit, Poul Hansen Family Centre for Depression, Toronto Western Hospital, University Health Network, Toronto, ON, Canada
| | - Xingshan Cao
- Research Design and Biostatistics, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Bradley J MacIntosh
- Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada
- Dr. Sandra Black Centre for Brain Resilience and Recovery, Toronto, ON, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Sean M Nestor
- Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.
- Harquail Centre for Neuromodulation, Hurvitz Brain Sciences Program, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
13
|
Lee H, Fu JF, Gaudet K, Bryant AG, Price JC, Bennett RE, Johnson KA, Hyman BT, Hedden T, Salat DH, Yen YF, Huang SY. Aberrant vascular architecture in the hippocampus correlates with tau burden in mild cognitive impairment and Alzheimer's disease. J Cereb Blood Flow Metab 2024; 44:787-800. [PMID: 38000018 PMCID: PMC11197134 DOI: 10.1177/0271678x231216144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 09/04/2023] [Accepted: 10/21/2023] [Indexed: 11/26/2023]
Abstract
Cerebrovascular dysfunction is a significant contributor to Alzheimer's disease (AD) progression. AD mouse models show altered capillary morphology, density, and diminished blood flow in areas of tau and beta-amyloid accumulation. The purpose of this study was to examine alterations in vascular structure and their contributions to perfusion deficits in the hippocampus in AD and mild cognitive impairment (MCI). Seven individuals with AD and MCI (1 AD/6 MCI), nine cognitively intact older healthy adults, and seven younger healthy adults underwent pseudo-continuous arterial spin labeling (PCASL) and gradient-echo/spin-echo (GESE) dynamic susceptibility contrast (DSC) MRI. Cerebral blood flow (CBF), cerebral blood volume, relative vessel size index (rVSI), and mean vessel density were calculated from model fitting. Lower CBF from PCASL and SE DSC MRI was observed in the hippocampus of AD/MCI group. rVSI in the hippocampus of the AD/MCI group was larger than that of the two healthy groups (FDR-P = 0.02). No difference in vessel density was detected between the groups. We also explored relationship of tau burden from 18F-flortaucipir positron emission tomography and vascular measures from MRI. Tau burden was associated with larger vessel size and lower CBF in the hippocampus. We postulate that larger vessel size may be associated with vascular alterations in AD/MCI.
Collapse
Affiliation(s)
- Hansol Lee
- Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan, South Korea
| | - Jessie Fanglu Fu
- Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Kyla Gaudet
- Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Annie G Bryant
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Julie C Price
- Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Rachel E Bennett
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Keith A Johnson
- Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
- Division of Nuclear Medicine and Molecular Imaging, Massachusetts General Hospital, Boston, MA, USA
- Center for Alzheimer Research and Treatment, Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Trey Hedden
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - David H Salat
- Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Yi-Fen Yen
- Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Susie Y Huang
- Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| |
Collapse
|
14
|
Zhou S, Gao X, Park G, Yang X, Qi B, Lin M, Huang H, Bian Y, Hu H, Chen X, Wu RS, Liu B, Yue W, Lu C, Wang R, Bheemreddy P, Qin S, Lam A, Wear KA, Andre M, Kistler EB, Newell DW, Xu S. Transcranial volumetric imaging using a conformal ultrasound patch. Nature 2024; 629:810-818. [PMID: 38778234 DOI: 10.1038/s41586-024-07381-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/02/2024] [Indexed: 05/25/2024]
Abstract
Accurate and continuous monitoring of cerebral blood flow is valuable for clinical neurocritical care and fundamental neurovascular research. Transcranial Doppler (TCD) ultrasonography is a widely used non-invasive method for evaluating cerebral blood flow1, but the conventional rigid design severely limits the measurement accuracy of the complex three-dimensional (3D) vascular networks and the practicality for prolonged recording2. Here we report a conformal ultrasound patch for hands-free volumetric imaging and continuous monitoring of cerebral blood flow. The 2 MHz ultrasound waves reduce the attenuation and phase aberration caused by the skull, and the copper mesh shielding layer provides conformal contact to the skin while improving the signal-to-noise ratio by 5 dB. Ultrafast ultrasound imaging based on diverging waves can accurately render the circle of Willis in 3D and minimize human errors during examinations. Focused ultrasound waves allow the recording of blood flow spectra at selected locations continuously. The high accuracy of the conformal ultrasound patch was confirmed in comparison with a conventional TCD probe on 36 participants, showing a mean difference and standard deviation of difference as -1.51 ± 4.34 cm s-1, -0.84 ± 3.06 cm s-1 and -0.50 ± 2.55 cm s-1 for peak systolic velocity, mean flow velocity, and end diastolic velocity, respectively. The measurement success rate was 70.6%, compared with 75.3% for a conventional TCD probe. Furthermore, we demonstrate continuous blood flow spectra during different interventions and identify cascades of intracranial B waves during drowsiness within 4 h of recording.
Collapse
Affiliation(s)
- Sai Zhou
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, USA
| | - Xiaoxiang Gao
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Geonho Park
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Xinyi Yang
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, USA
| | - Baiyan Qi
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, USA
| | - Muyang Lin
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Hao Huang
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Yizhou Bian
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Hongjie Hu
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Xiangjun Chen
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, USA
| | - Ray S Wu
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Boyu Liu
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Wentong Yue
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Chengchangfeng Lu
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Ruotao Wang
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA
| | - Pranavi Bheemreddy
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Siyu Qin
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA
| | - Arthur Lam
- Department of Anesthesiology and Critical Care, University of California San Diego, La Jolla, CA, USA
| | - Keith A Wear
- U.S. Food and Drug Administration, Silver Spring, MD, USA
| | - Michael Andre
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
| | - Erik B Kistler
- Department of Radiology, University of California San Diego, La Jolla, CA, USA
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA
| | - David W Newell
- Department of Neurosurgery, Seattle Neuroscience Institute, Seattle, WA, USA
| | - Sheng Xu
- Materials Science and Engineering Program, University of California San Diego, La Jolla, CA, USA.
- Department of Nanoengineering, University of California San Diego, La Jolla, CA, USA.
- Department of Electrical and Computer Engineering, University of California San Diego, La Jolla, CA, USA.
- Department of Radiology, University of California San Diego, La Jolla, CA, USA.
- Shu Chien-Gene Lay Department of Bioengineering, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
15
|
Barros CDS, Coutinho A, Tengan CH. Arginine Supplementation in MELAS Syndrome: What Do We Know about the Mechanisms? Int J Mol Sci 2024; 25:3629. [PMID: 38612442 PMCID: PMC11011289 DOI: 10.3390/ijms25073629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
MELAS syndrome, characterized by mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like episodes, represents a devastating mitochondrial disease, with the stroke-like episodes being its primary manifestation. Arginine supplementation has been used and recommended as a treatment for these acute attacks; however, insufficient evidence exists to support this treatment for MELAS. The mechanisms underlying the effect of arginine on MELAS pathophysiology remain unclear, although it is hypothesized that arginine could increase nitric oxide availability and, consequently, enhance blood supply to the brain. A more comprehensive understanding of these mechanisms is necessary to improve treatment strategies, such as dose and regimen adjustments; identify which patients could benefit the most; and establish potential markers for follow-up. This review aims to analyze the existing evidence concerning the mechanisms through which arginine supplementation impacts MELAS pathophysiology and provide the current scenario and perspectives for future investigations.
Collapse
Affiliation(s)
| | | | - Celia H. Tengan
- Division of Neurology, Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo 04039-032, Brazil; (C.D.S.B.); (A.C.)
| |
Collapse
|
16
|
Roeske MJ, McHugo M, Rogers B, Armstrong K, Avery S, Donahue M, Heckers S. Modulation of hippocampal activity in schizophrenia with levetiracetam: a randomized, double-blind, cross-over, placebo-controlled trial. Neuropsychopharmacology 2024; 49:681-689. [PMID: 37833590 PMCID: PMC10876634 DOI: 10.1038/s41386-023-01730-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 10/15/2023]
Abstract
Hippocampal hyperactivity is a novel pharmacological target in the treatment of schizophrenia. We hypothesized that levetiracetam (LEV), a drug binding to the synaptic vesicle glycoprotein 2 A, normalizes hippocampal activity in persons with schizophrenia and can be measured using neuroimaging methods. Thirty healthy control participants and 30 patients with schizophrenia (28 treated with antipsychotic drugs), were randomly assigned to a double-blind, cross-over trial to receive a single administration of 500 mg oral LEV or placebo during two study visits. At each visit, we assessed hippocampal function using resting state fractional amplitude of low frequency fluctuations (fALFF), cerebral blood flow (CBF) with arterial spin labeling, and hippocampal blood-oxygen-level-dependent (BOLD) signal during a scene processing task. After placebo treatment, we found significant elevations in hippocampal fALFF in patients with schizophrenia, consistent with hippocampal hyperactivity. Additionally, hippocampal fALFF in patients with schizophrenia after LEV treatment did not significantly differ from healthy control participants receiving placebo, suggesting that LEV may normalize hippocampal hyperactivity. In contrast to our fALFF findings, we did not detect significant group differences or an effect of LEV treatment on hippocampal CBF. In the context of no significant group difference in BOLD signal, we found that hippocampal recruitment during scene processing is enhanced by LEV more significantly in schizophrenia. We conclude that pharmacological modulation of hippocampal hyperactivity in schizophrenia can be studied with some neuroimaging methods, but not others. Additional studies in different cohorts, employing alternate neuroimaging methods and study designs, are needed to establish levetiracetam as a treatment for schizophrenia.
Collapse
Affiliation(s)
- Maxwell J Roeske
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Maureen McHugo
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Baxter Rogers
- Vanderbilt University Institute of Imaging Sciences, Nashville, TN, USA
| | - Kristan Armstrong
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Suzanne Avery
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Manus Donahue
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stephan Heckers
- Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
17
|
Liu Q, Zhang Y, Liu C, Chen Y, Zhang Y. Reduced cerebral blood flow and cognitive dysfunction following isolated cerebellar infarction: two case reports. J Int Med Res 2024; 52:3000605241235848. [PMID: 38513145 PMCID: PMC10958817 DOI: 10.1177/03000605241235848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 02/12/2024] [Indexed: 03/23/2024] Open
Abstract
Cognitive impairment in focal cerebellar disorders has been widely recognized and is described as cerebellar cognitive affective syndrome (CCAS). However, the relationship between CCAS and crossed cerebello-cerebral diaschisis (CCD) has rarely been discussed. The present report describes the uncommon phenomenon of CCD in two cases with isolated cerebellar infarction, and discuss its contribution to cognitive impairment. Cognitive performance was examined using the CCAS scale and a battery of neuropsychological assessments. Moreover, the relative distribution of cerebral and cerebellar blood flow was measured using three-dimensional arterial spin labeling imaging. Case 1 showed deficits in general cognition and had impaired language, episodic memory, and executive function. Case 2 showed deficits in general cognition at baseline, and cognitive deterioration of visuospatial abilities, language, episodic memory, and executive function was observed at the 3-month follow-up. Both cases met the diagnosis criteria of CCAS. Reduced cerebral blood flow was observed in the cerebral hemisphere contralateral to the cerebellar infarction at baseline in Case 1, and at the 3-month follow-up in Case 2. The present report describes cognitive decline after isolated cerebellar infarction in combination with contralateral cerebral hypoperfusion, as measured using quantitative arterial spin labeling. One possible mechanism involves the functional depression of cerebello-cerebral pathways.
Collapse
Affiliation(s)
- Qi Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yingkui Zhang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Chang Liu
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Yu Chen
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, USA
| | - Yumei Zhang
- Department of Rehabilitation, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
18
|
Shiozaki E, Morofuji Y, Izumo T, Matsuo T. Retrograde Flow Into the Internal Jugular Vein in a Hemodialysis Patient Mimicking Dural Arteriovenous Fistula: A Case Report. Cureus 2024; 16:e53092. [PMID: 38414703 PMCID: PMC10897943 DOI: 10.7759/cureus.53092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2024] [Indexed: 02/29/2024] Open
Abstract
Arterial spin labeling (ASL) and three-dimensional (3D) time-of-flight (TOF) magnetic resonance angiography (MRA) are sensitive tools to detect dural arteriovenous fistula (DAVF), but hyperintensity in these images is also caused by jugular venous reflux. We present a case of a patient with renal failure on hemodialysis with retrograde flow into the internal jugular vein (IJV) mimicking DAVF. A 74-year-old man with a radial arteriovenous fistula for hemodialysis experienced transient dizziness. The TOF MRA and ASL revealed high signal intensity, suggesting the presence of a DAVF in the left transverse and sigmoid sinuses and the IJV. Digital subtraction angiography (DSA) revealed no evidence of a DAVF but showed retrograde flow into the IJV via his radial shunt. In hemodialysis patients, a high-flow shunt can cause fast retrograde flow into the dural sinuses and might lead to intracranial hypertension. The ASL images are useful for early detection and careful observation.
Collapse
Affiliation(s)
- Eri Shiozaki
- Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, JPN
| | - Yoichi Morofuji
- Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, JPN
| | - Tsuyoshi Izumo
- Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, JPN
| | - Takayuki Matsuo
- Department of Neurosurgery, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, JPN
| |
Collapse
|
19
|
Kornemann N, Klimeš F, Kern AL, Behrendt L, Voskrebenzev A, Gutberlet M, Wattjes MP, Wacker F, Vogel-Claussen J, Glandorf J. Cerebral microcirculatory pulse wave propagation and pulse wave amplitude mapping in retrospectively gated MRI. Sci Rep 2023; 13:21374. [PMID: 38049511 PMCID: PMC10696084 DOI: 10.1038/s41598-023-48439-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 11/27/2023] |