1
|
Fang T, Jiang YX, Chen L, Huang L, Tian XH, Zhou YD, Nagle DG, Zhang DD. Coix Seed Oil Exerts an Anti-Triple-Negative Breast Cancer Effect by Disrupting miR-205/S1PR1 Axis. Front Pharmacol 2020; 11:529962. [PMID: 33101013 PMCID: PMC7556270 DOI: 10.3389/fphar.2020.529962] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 09/04/2020] [Indexed: 12/13/2022] Open
Abstract
Coix Seed Oil (CSO) possesses a wide range of pharmacological activities. Kanglaite Injection, a commercial product of CSO, has been used clinically as an anticancer drug in China for decades. However, its molecular mechanisms on triple-negative breast cancer (TNBC) remains to be elucidated. In this study, the effect of CSO was evaluated on murine TNBC 4T1 cells and the orthotopic tumor-bearing mouse model and underlying mechanisms were explored. CSO suppressed cell proliferation, colony formation in vitro, and tumor growth in vivo. miR-205-5p was substantially altered in CSO treated tumor tissues compared to the control group by miRNA-sequencing analysis. Sphingomyelin metabolism (SM) decreased in serum in model group compared to the control group, while it increased by CSO administration by lipid metabolomics analysis. The expression of sphingosine 1 phosphate receptor 1 (S1PR1), the critical effector of SM, was downregulated upon CSO treatment. Mechanically, miRNA-205 directly targeted S1PR1 to regulate SM and cell proliferation. CSO reduced the expression of S1PR1, cyclinD1, and phosphorylation levels of STAT3, MAPK, and AKT while upregulated p27. These results revealed that CSO exerted an anti-TNBC effect via the miR-205/S1PR1 axis to regulate sphingomyelin metabolism, and the downstream STAT3/MAPK/AKT signal pathways were partly involved.
Collapse
Affiliation(s)
- Ting Fang
- Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,School of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yi-Xin Jiang
- Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Long Chen
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling Huang
- Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xin-Hui Tian
- Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu-Dong Zhou
- Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of Chemistry and Biochemistry, College of Liberal Arts, University of Mississippi, University, Misissippi, MS, United States
| | - Dale G Nagle
- Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Department of BioMolecular Sciences and Research Institute of Pharmaceutical Sciences (RIPS), School of Pharmacy, University of Mississippi, University, Mississippi, MS, United States
| | - Dan-Dan Zhang
- Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
2
|
Abstract
Sphingosine-1-phosphate (S1P) can regulate several physiological and pathological processes. S1P signaling via its cell surface receptor S1PR1 has been shown to enhance tumorigenesis and stimulate growth, expansion, angiogenesis, metastasis, and survival of cancer cells. S1PR1-mediated tumorigenesis is supported and amplified by activation of downstream effectors including STAT3, interleukin-6, and NF-κB networks. S1PR1 signaling can also trigger various other signaling pathways involved in carcinogenesis including activation of PI3K/AKT, MAPK/ERK1/2, Rac, and PKC/Ca, as well as suppression of cyclic adenosine monophosphate (cAMP). It also induces immunological tolerance in the tumor microenvironment, while the immunosuppressive function of S1PR1 can also lead to the generation of pre-metastatic niches. Some tumor cells upregulate S1PR1 signaling pathways, which leads to drug resistant cancer cells, mainly through activation of STAT3. This signaling pathway is also implicated in some inflammatory conditions leading to the instigation of inflammation-driven cancers. Furthermore, it can also increase survival via induction of anti-apoptotic pathways, for instance, in breast cancer cells. Therefore, S1PR1 and its signaling pathways can be considered as potential anti-tumor therapeutic targets, alone or in combination therapies. Given the oncogenic nature of S1PR1 and its distribution in a variety of cancer cell types along with its targeting advantages over other molecules of this family, S1PR1 should be considered a favorable target in therapeutic approaches to cancer. This review describes the role of S1PR1 in cancer development and progression, specifically addressing breast cancer, glioma, and hematopoietic malignancies. We also discuss the potential use of S1P signaling modulators as therapeutic targets in cancer therapy.
Collapse
|
3
|
Pedersen L, Panahandeh P, Siraji MI, Knappskog S, Lønning PE, Gordillo R, Scherer PE, Molven A, Teigen K, Halberg N. Golgi-Localized PAQR4 Mediates Antiapoptotic Ceramidase Activity in Breast Cancer. Cancer Res 2020; 80:2163-2174. [PMID: 32291319 DOI: 10.1158/0008-5472.can-19-3177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 03/02/2020] [Accepted: 04/09/2020] [Indexed: 11/16/2022]
Abstract
The metabolic network of sphingolipids plays important roles in cancer biology. Prominent sphingolipids include ceramides and sphingosine-1-phosphate that regulate multiple aspects of growth, apoptosis, and cellular signaling. Although a significant number of enzymatic regulators of the sphingolipid pathway have been described in detail, many remained poorly characterized. Here we applied a patient-derived systemic approach to identify and molecularly define progestin and adipoQ receptor family member IV (PAQR4) as a Golgi-localized ceramidase. PAQR4 was approximately 5-fold upregulated in breast cancer compared with matched control tissue and its overexpression correlated with disease-specific survival rates in breast cancer. Induction of PAQR4 in breast tumors was found to be subtype-independent and correlated with increased ceramidase activity. These findings establish PAQR4 as Golgi-localized ceramidase required for cellular growth in breast cancer. SIGNIFICANCE: Induction of and cellular dependency on de novo sphingolipid synthesis via PAQR4 highlights a central vulnerability in breast cancer that may serve as a viable therapeutic target.
Collapse
Affiliation(s)
- Line Pedersen
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | | | | | - Stian Knappskog
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway.,Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Per Eystein Lønning
- Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway.,Department of Oncology, Haukeland University Hospital, Bergen, Norway
| | - Ruth Gordillo
- Touchstone Diabetes Center, Departments of Internal Medicine and Simmons Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Philipp E Scherer
- Touchstone Diabetes Center, Departments of Internal Medicine and Simmons Cancer Center, The University of Texas Southwestern Medical Center, Dallas, Texas
| | - Anders Molven
- Gade Laboratory for Pathology, Department of Clinical Medicine, University of Bergen, Bergen, Norway.,Department of Pathology, Haukeland University Hospital, Bergen, Norway
| | - Knut Teigen
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Nils Halberg
- Department of Biomedicine, University of Bergen, Bergen, Norway.
| |
Collapse
|
4
|
Riboni L, Abdel Hadi L, Navone SE, Guarnaccia L, Campanella R, Marfia G. Sphingosine-1-Phosphate in the Tumor Microenvironment: A Signaling Hub Regulating Cancer Hallmarks. Cells 2020; 9:E337. [PMID: 32024090 PMCID: PMC7072483 DOI: 10.3390/cells9020337] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 02/07/2023] Open
Abstract
As a key hub of malignant properties, the cancer microenvironment plays a crucial role intimately connected to tumor properties. Accumulating evidence supports that the lysophospholipid sphingosine-1-phosphate acts as a key signal in the cancer extracellular milieu. In this review, we have a particular focus on glioblastoma, representative of a highly aggressive and deleterious neoplasm in humans. First, we highlight recent advances and emerging concepts for how tumor cells and different recruited normal cells contribute to the sphingosine-1-phosphate enrichment in the cancer microenvironment. Then, we describe and discuss how sphingosine-1-phosphate signaling contributes to favor cancer hallmarks including enhancement of proliferation, stemness, invasion, death resistance, angiogenesis, immune evasion and, possibly, aberrant metabolism. We also discuss the potential of how sphingosine-1-phosphate control mechanisms are coordinated across distinct cancer microenvironments. Further progress in understanding the role of S1P signaling in cancer will depend crucially on increasing knowledge of its participation in the tumor microenvironment.
Collapse
Affiliation(s)
- Laura Riboni
- Department of Medical Biotechnology and Translational Medicine, LITA-Segrate, University of Milan, via Fratelli Cervi, 93, 20090 Segrate, Milan, Italy
| | - Loubna Abdel Hadi
- Department of Medical Biotechnology and Translational Medicine, LITA-Segrate, University of Milan, via Fratelli Cervi, 93, 20090 Segrate, Milan, Italy
| | - Stefania Elena Navone
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy (L.G.)
| | - Laura Guarnaccia
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy (L.G.)
- Department of Clinical Sciences and Community Health, University of Milan, 20100 Milan, Italy
| | - Rolando Campanella
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy (L.G.)
| | - Giovanni Marfia
- Laboratory of Experimental Neurosurgery and Cell Therapy, Neurosurgery Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, via Francesco Sforza 35, 20122 Milan, Italy (L.G.)
| |
Collapse
|
5
|
Niemelä E, Desai D, Niemi R, Doroszko M, Özliseli E, Kemppainen K, Rahman NA, Sahlgren C, Törnquist K, Eriksson JE, Rosenholm JM. Nanoparticles carrying fingolimod and methotrexate enables targeted induction of apoptosis and immobilization of invasive thyroid cancer. Eur J Pharm Biopharm 2020; 148:1-9. [PMID: 31917332 DOI: 10.1016/j.ejpb.2019.12.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 11/29/2019] [Accepted: 12/30/2019] [Indexed: 02/08/2023]
Abstract
Metastatic tumors are the main cause of cancer-related death, as the invading cancer cells disrupt normal functions of distant organs and are nearly impossible to eradicate by traditional cancer therapeutics. This is of special concern when the cancer has created multiple metastases and extensive surgery would be too dangerous to execute. Therefore, combination chemotherapy is often the selected treatment form. However, drug cocktails often have severe adverse effects on healthy cells, whereby the development of targeted drug delivery could minimize side-effects of drugs and increase the efficacy of the combination therapy. In this study, we utilized the folate antagonist methotrexate (MTX) as targeting ligand conjugated onto mesoporous silica nanoparticles (MSNs) for selective eradication of folate receptor-expressing invasive thyroid cancer cells. The MSNs was subsequently loaded with the drug fingolimod (FTY720), which has previously been shown to efficiently inhibit proliferation and invasion of aggressive thyroid cancer cells. To assess the efficiency of our carrier system, comprehensive in vitro methods were employed; including flow cytometry, confocal microscopy, viability assays, invasion assay, and label-free imaging techniques. The in vitro results show that MTX-conjugated and FTY720-loaded MSNs potently attenuated both the proliferation and invasion of the cancerous thyroid cells while keeping the off-target effects in normal thyroid cells reasonably low. For a more physiologically relevant in vivo approach we utilized the chick chorioallantoic membrane (CAM) assay, showing decreased invasive behavior of the thyroid derived xenografts and an increased necrotic phenotype compared to tumors that received the free drug cocktail. Thus, the developed multidrug-loaded MSNs effectively induced apoptosis and immobilization of invasive thyroid cancer cells, and could potentially be used as a carrier system for targeted drug delivery for the treatment of diverse forms of aggressive cancers that expresses folate receptors.
Collapse
Affiliation(s)
- E Niemelä
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - D Desai
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - R Niemi
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - M Doroszko
- Institute of Biomedicine, University of Turku, Finland; Department of Immunology, Genetics and Pathology, Section for Neuro-oncology, Uppsala University, Sweden
| | - E Özliseli
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - K Kemppainen
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland
| | - N A Rahman
- Institute of Biomedicine, University of Turku, Finland; Department of Reproduction and Gynecological Endocrinology, Medical University of Bialystok, Poland
| | - C Sahlgren
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland; Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, the Netherlands
| | - K Törnquist
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland; Minerva Foundation Institute for Medical Research, Biomedicum, Helsinki, Finland
| | - J E Eriksson
- Cell Biology, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland; Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
| | - J M Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.
| |
Collapse
|
6
|
Sphingosine 1-Phosphate (S1P)/ S1P Receptor Signaling and Mechanotransduction: Implications for Intrinsic Tissue Repair/Regeneration. Int J Mol Sci 2019; 20:ijms20225545. [PMID: 31703256 PMCID: PMC6888058 DOI: 10.3390/ijms20225545] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 10/31/2019] [Accepted: 11/05/2019] [Indexed: 12/16/2022] Open
Abstract
Tissue damage, irrespective from the underlying etiology, destroys tissue structure and, eventually, function. In attempt to achieve a morpho-functional recover of the damaged tissue, reparative/regenerative processes start in those tissues endowed with regenerative potential, mainly mediated by activated resident stem cells. These cells reside in a specialized niche that includes different components, cells and surrounding extracellular matrix (ECM), which, reciprocally interacting with stem cells, direct their cell behavior. Evidence suggests that ECM stiffness represents an instructive signal for the activation of stem cells sensing it by various mechanosensors, able to transduce mechanical cues into gene/protein expression responses. The actin cytoskeleton network dynamic acts as key mechanotransducer of ECM signal. The identification of signaling pathways influencing stem cell mechanobiology may offer therapeutic perspectives in the regenerative medicine field. Sphingosine 1-phosphate (S1P)/S1P receptor (S1PR) signaling, acting as modulator of ECM, ECM-cytoskeleton linking proteins and cytoskeleton dynamics appears a promising candidate. This review focuses on the current knowledge on the contribution of S1P/S1PR signaling in the control of mechanotransduction in stem/progenitor cells. The potential contribution of S1P/S1PR signaling in the mechanobiology of skeletal muscle stem cells will be argued based on the intriguing findings on S1P/S1PR action in this mechanically dynamic tissue.
Collapse
|
7
|
Shin KO, Choe SJ, Uchida Y, Kim I, Jeong Y, Park K. Ginsenoside Rb1 Enhances Keratinocyte Migration by a Sphingosine-1-Phosphate-Dependent Mechanism. J Med Food 2018; 21:1129-1136. [PMID: 30148701 DOI: 10.1089/jmf.2018.4246] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The cutaneous wound healing process is tightly regulated by a range of cellular responses, including migration. Sphingosine-1-phosphate (S1P) is a signaling lipid produced in keratinocytes (KC) and it is known to stimulate skin wound repair through increased KC migration. Of the multifunctional triterpene ginsenosides, Rb1 enhances cutaneous wound healing process by increasing KC migration, but cellular mechanisms responsible for the Rb1-mediated increase in KC migration are largely unknown. Therefore, we hypothesized that, and assessed whether, Rb1 could stimulate KC migration through S1P-dependent mechanisms. Rb1 significantly increases S1P production by regulating the activity of metabolic conversion enzymes associated with S1P generation and degradation, sphingosine kinase 1 (SPHK1) and S1P lyase, respectively, in parallel with enhanced KC migration. However, blockade of ceramide to S1P metabolic conversion using a specific inhibitor of SPHK1 attenuated the expected Rb1-mediated increase in KC migration. Furthermore, a pan-S1P receptor inhibitor pertussis toxin significantly attenuated Rb1-induced stimulation of KC migration. Moreover, the Rb1-induced increases in KC migration required S1P receptor(s)-mediated activation of ERK1/2 and NF-κB, leading to production of key cutaneous migrating proteins, matrix metalloproteinase (MMP)-2 and MMP-9. Taken together, the results show that Rb1 stimulates KC migration through an S1P→S1P receptor(s)→ERK1/2→NF-κB→MMP-2/-9 pathway. This research revealed a previously unidentified cellular mechanism for Rb1 in enhancing KC migration and pointing to a new therapeutic approach to stimulate the cutaneous wound healing process.
Collapse
Affiliation(s)
- Kyong-Oh Shin
- 1 Department of Food Science and Nutrition, and Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University , Chuncheon, Korea
| | - Sung Jay Choe
- 2 Department of Dermatology, Yonsei University Wonju College of Medicine , Wonju, Korea
| | - Yoshikazu Uchida
- 3 Department of Dermatology, School of Medicine, University of California , San Francisco, San Francisco, California, USA
- 4 Northern California Institute for Research and Education , Veterans Affairs Medical Center, San Francisco, California, USA
| | - Inyong Kim
- 5 Research Center for Industrialization of Natural Nutraceuticals, Dankook University , Cheonan, Korea
| | - Yoonhwa Jeong
- 5 Research Center for Industrialization of Natural Nutraceuticals, Dankook University , Cheonan, Korea
- 6 Department of Food Science and Nutrition, Dankook University , Cheonan, Korea
| | - Kyungho Park
- 1 Department of Food Science and Nutrition, and Convergence Program of Material Science for Medicine and Pharmaceutics, Hallym University , Chuncheon, Korea
| |
Collapse
|
8
|
Wang H, Huang H, Ding SF. Sphingosine-1-phosphate promotes the proliferation and attenuates apoptosis of Endothelial progenitor cells via S1PR1/S1PR3/PI3K/Akt pathway. Cell Biol Int 2018; 42:1492-1502. [PMID: 29790626 DOI: 10.1002/cbin.10991] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/20/2018] [Indexed: 12/31/2022]
Affiliation(s)
- Hang Wang
- Department of Cardiology; Wuhan General Hospital of PLA; Wuhan 430070 China
- Clinic Center; China Life Health Industry Group; Shenzhen 515000 China
| | - Hao Huang
- Medical Project Department; Livzon Pharmaceutical Group Inc.; Zhuhai 519045 China
| | - Shi-Fang Ding
- Department of Cardiology; Wuhan General Hospital of PLA; Wuhan 430070 China
| |
Collapse
|
9
|
Unravelling the interplay of sphingolipids and TGF-β signaling in the human corneal stroma. PLoS One 2017; 12:e0182390. [PMID: 28806736 PMCID: PMC5555661 DOI: 10.1371/journal.pone.0182390] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 07/17/2017] [Indexed: 11/19/2022] Open
Abstract
Purpose To delineate the role of Sphingolipids (SPLs) in the human cornea and their cross-talks with transforming growth factor beta (TGF-β) in order to develop novel, non-invasive therapies. Methods Human corneal fibroblasts (HCFs) were harvested from healthy donors, stimulated with Vitamin C to promote extracellular matrix assembly, treated with exogenous sphingosine-1-phosphate (S1P) or sphingosine kinase inhibitor 2 (SPHK I2) and isolated after 4 weeks for further analysis. Results Data showed that S1P led to a significant decrease in cellular migration where SPHK I2 just delayed it for 24h. Significant modulation of the sphingolipid pathway was also noted. Sphingosine kinase-1 (SphK1) was significantly downregulated upon exogenous stimulation with S1P at a concentration of 5μM and Sphingosine kinase-2 (SphK2) was also significantly downregulated at concentrations of 0.01μM, 0.1μM, and 5μM; whereas no effects were observed upon stimulation with SPHK I2. S1PR3 was significantly downregulated by 0.1μM and 5μM S1P and upregulated by 5μM and 10μM SPHK I2. Furthermore, both S1P and SPHK I2 regulated corneal fibrosis markers such as alpha-smooth muscle actin, collagen I, III, and V. We also investigated the interplay between two TGF-β isoforms and S1P/SPHK I2 treatments and found that TGF-β1 and TGF-β3 were both significantly upregulated with the 0.1μM S1P but were significantly downregulated with the 5μM S1P concentration. When TGF-β1 was compared directly to TGF-β3 expression, we observed that TGF-β3 was significantly downregulated compared to TGF-β1 in the 5μM concentration of S1P. No changes were observed upon SPHK I2 treatment. Conclusion Our study delineates the role of sphingolipids in the human cornea and highlights their different activities based on the cell/tissue type.
Collapse
|
10
|
Filipenko I, Schwalm S, Reali L, Pfeilschifter J, Fabbro D, Huwiler A, Zangemeister-Wittke U. Upregulation of the S1P 3 receptor in metastatic breast cancer cells increases migration and invasion by induction of PGE 2 and EP 2/EP 4 activation. Biochim Biophys Acta Mol Cell Biol Lipids 2016; 1861:1840-1851. [PMID: 27616330 DOI: 10.1016/j.bbalip.2016.09.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 09/02/2016] [Accepted: 09/07/2016] [Indexed: 12/20/2022]
Abstract
Breast cancer is one of the most common and devastating malignancies among women worldwide. Recent evidence suggests that malignant progression is also driven by processes involving the sphingolipid molecule sphingosine 1-phosphate (S1P) and its binding to cognate receptor subtypes on the cell surface. To investigate the effect of this interaction on the metastatic phenotype, we used the breast cancer cell line MDA-MB-231 and the sublines 4175 and 1833 derived from lung and bone metastases in nude mice, respectively. In both metastatic cell lines expression of the S1P3 receptor was strongly upregulated compared to the parental cells and correlated with higher S1P-induced intracellular calcium ([Ca2+]i), higher cyclooxygenase (COX)-2 and microsomal prostaglandin (PG) E2 synthase expression, and consequently with increased PGE2 synthesis. PGE2 synthesis was decreased by antagonists and siRNA against S1P3 and S1P2. Moreover, in parental MDA-MB-231 cells overexpression of S1P3 by cDNA transfection also increased PGE2 synthesis, but only after treatment with the DNA methyltransferase inhibitor 5-aza-2-deoxycytidine, indicating reversible silencing of the COX-2 promoter. Functionally, the metastatic sublines showed enhanced migration and Matrigel invasion in adapted Boyden chamber assays, which further increased by S1P stimulation. This response was abrogated by either S1P3 antagonism, COX-2 inhibition or PGE2 receptor 2 (EP2) and 4 (EP4) antagonism, but not by S1P2 antagonism. Our data demonstrate that in breast cancer cells overexpression of S1P3 and its activation by S1P has pro-inflammatory and pro-metastatic potential by inducing COX-2 expression and PGE2 signaling via EP2 and EP4.
Collapse
Affiliation(s)
- Iuliia Filipenko
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, CH-3011 Bern, Switzerland
| | - Stephanie Schwalm
- Pharmazentrum Frankfurt/ZAFES, Klinikum der Goethe Universität Frankfurt am Main, Theodor Stern Kai 7, D-60590 Frankfurt am Main, Germany
| | - Luca Reali
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, CH-3011 Bern, Switzerland
| | - Josef Pfeilschifter
- Pharmazentrum Frankfurt/ZAFES, Klinikum der Goethe Universität Frankfurt am Main, Theodor Stern Kai 7, D-60590 Frankfurt am Main, Germany
| | - Doriano Fabbro
- PIQUR Therapeutics AG, Hochbergstrasse 60C, CH-4057 Basel, Switzerland
| | - Andrea Huwiler
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, CH-3011 Bern, Switzerland.
| | - Uwe Zangemeister-Wittke
- Institute of Pharmacology, University of Bern, Inselspital, INO-F, CH-3011 Bern, Switzerland.
| |
Collapse
|
11
|
Nema R, Vishwakarma S, Agarwal R, Panday RK, Kumar A. Emerging role of sphingosine-1-phosphate signaling in head and neck squamous cell carcinoma. Onco Targets Ther 2016; 9:3269-80. [PMID: 27330306 PMCID: PMC4898435 DOI: 10.2147/ott.s99989] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most frequent cancer type, with an annual incidence of approximately half a million people worldwide. It has a high recurrence rate and an extremely low survival rate. This is due to limited availability of effective therapies to reduce the rate of recurrence, resulting in high morbidity and mortality of patients with advanced stages of the disease. HNSCC often develops resistance to chemotherapy and targeted drug therapy. Thus, to overcome the problem of drug resistance, there is a need to explore novel drug targets. Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid involved in inflammation, tumor progression, and angiogenesis. S1P is synthesized intracellularly by two sphingosine kinases (SphKs). It can be exported to the extracellular space, where it can activate a family of G-protein-coupled receptors. Alternatively, S1P can act as an intracellular second messenger. SphK1 regulates tumor progression, invasion, metastasis, and chemoresistance in HNSCC. SphK1 expression is highly elevated in advanced stage HNSCC tumors and correlates with poor survival. In this article, we review current knowledge regarding the role of S1P receptors and enzymes of S1P metabolism in HNSCC carcinogenesis. Furthermore, we summarize the current perspectives on therapeutic approaches for targeting S1P pathway for treating HNSCC.
Collapse
Affiliation(s)
- Rajeev Nema
- Department of Biochemistry, All India Institute of Medical Sciences Bhopal, Bhopal, India
| | - Supriya Vishwakarma
- Department of Biochemistry, All India Institute of Medical Sciences Bhopal, Bhopal, India
| | - Rahul Agarwal
- Jawaharlal Nehru Cancer Hospital & Research Centre, Indrapuri, Bhopal, India
| | | | - Ashok Kumar
- Department of Biochemistry, All India Institute of Medical Sciences Bhopal, Bhopal, India
| |
Collapse
|
12
|
Messias CV, Santana-Van-Vliet E, Lemos JP, Moreira OC, Cotta-de-Almeida V, Savino W, Mendes-da-Cruz DA. Sphingosine-1-Phosphate Induces Dose-Dependent Chemotaxis or Fugetaxis of T-ALL Blasts through S1P1 Activation. PLoS One 2016; 11:e0148137. [PMID: 26824863 PMCID: PMC4732661 DOI: 10.1371/journal.pone.0148137] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/13/2016] [Indexed: 01/08/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid involved in several physiological processes including cell migration and differentiation. S1P signaling is mediated through five G protein-coupled receptors (S1P1-S1P5). S1P1 is crucial to the exit of T-lymphocytes from the thymus and peripheral lymphoid organs through a gradient of S1P. We have previously observed that T-ALL and T-LBL blasts express S1P1. Herein we analyzed the role of S1P receptors in the migratory pattern of human T-cell neoplastic blasts. S1P-triggered cell migration was directly related to S1P1 expression. T-ALL blasts expressing low levels of S1P1 mRNA (HPB-ALL) did not migrate toward S1P, whereas those expressing higher levels of S1P1 (MOLT-4, JURKAT and CEM) did migrate. The S1P ligand induced T-ALL cells chemotaxis in concentrations up to 500 nM and induced fugetaxis in higher concentrations (1000-10000 nM) through interactions with S1P1. When S1P1 was specifically blocked by the W146 compound, S1P-induced migration at lower concentrations was reduced, whereas higher concentrations induced cell migration. Furthermore, we observed that S1P/S1P1 interactions induced ERK and AKT phosphorylation, and modulation of Rac1 activity. Responding T-ALL blasts also expressed S1P3 mRNA but blockage of this receptor did not modify migratory responses. Our results indicate that S1P is involved in the migration of T-ALL/LBL blasts, which is dependent on S1P1 expression. Moreover, S1P concentrations in the given microenvironment might induce dose-dependent chemotaxis or fugetaxis of T-ALL blasts.
Collapse
Affiliation(s)
- Carolina V. Messias
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eliane Santana-Van-Vliet
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Julia P. Lemos
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Otacilio C. Moreira
- Laboratory of Molecular Biology and Endemic Diseases, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vinicius Cotta-de-Almeida
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Wilson Savino
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Daniella Arêas Mendes-da-Cruz
- Laboratory on Thymus Research, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|
13
|
Tabasinezhad M, Ghaedi H, Qanbari P, Mohseni M, Sabzichi M, Samadi N. Sphingosine 1-phosphate interacts with Survivin pathway to enhance tumorigenesis in cancer cells. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2015; 18:813-21. [PMID: 26557971 PMCID: PMC4633465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVES Degradation of sphingosine 1-phosphate (S1P), as a bioactive lipid, or deregulation of its production involves in tumor progression, metastasis and chemoresistance. Since the tumor progression effects of S1P and its mechanism in chronic lymphoblastic leukemia and non-small cell lung cancer is not fully understood, we investigated the role and one of the mechanisms of S1P in tumor progression of SKW3 and H1299 cells. MATERIALS AND METHODS The effects of S1P on proliferation, invasion and migration was studied using MTT assay, soft-agar colony forming assay and trans-well migration assay, respectively. In order to find out the mechanisms of S1P action, the role of S1P on expression of Survivin gene was assessed by real-time RT-PCR. RESULTS Our results demonstrated that although invasion was shown only in H1299 cells, low concentration of S1P, especially at 1 μM, mediated proliferation and migration in both cell lines. In addition, these effects of S1P in tumor progression are S1P receptor-dependent, and Survivin plays a key role in S1P tumorigenesis. CONCLUSION Our results confirmed the involvement of S1P and its receptors in tumor progression of SKW3 and H1299. We also investigated another mechanism of S1P involved in cell survival, tumor progression, and Survivin signaling. In conclusion, data demonstrated the importance of this molecule as a target for designing new anticancer drugs such as anti-S1P monoclonal antibody for inhibiting major downstream signaling, which plays significant role in tumorigenesis.
Collapse
Affiliation(s)
- Maryam Tabasinezhad
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran,Student Research Center Committee, Tabriz university of Medical Sciences, Tabriz, Iran
| | - Hamid Ghaedi
- Medical Genetics Department, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Qanbari
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahsa Mohseni
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Sabzichi
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nasser Samadi
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran,Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran,Corresponding author: Nasser Samadi. Department of Medical Biotechnology, Faculty of Advanced Medical Sciences and Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran. Tel: +98-411-3355789; Fax: +98-411-3355789;
| |
Collapse
|
14
|
Xuan X, Li S, Lou X, Zheng X, Li Y, Wang F, Gao Y, Zhang H, He H, Zeng Q. Stat3 promotes invasion of esophageal squamous cell carcinoma through up-regulation of MMP2. Mol Biol Rep 2014; 42:907-15. [DOI: 10.1007/s11033-014-3828-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 11/10/2014] [Indexed: 01/06/2023]
|
15
|
Yang W, Li Q, Pan Z. Sphingosine-1-phosphate promotes extravillous trophoblast cell invasion by activating MEK/ERK/MMP-2 signaling pathways via S1P/S1PR1 axis activation. PLoS One 2014; 9:e106725. [PMID: 25188412 PMCID: PMC4154763 DOI: 10.1371/journal.pone.0106725] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 08/05/2014] [Indexed: 12/12/2022] Open
Abstract
Successful placentation depends on the proper invasion of extravillous trophoblast (EVT) cells into maternal tissues. Previous reports demonstrated that S1P receptors are expressed in the EVT cells and S1P could regulate migration and function of trophoblast cells via S1P receptors. However, little is known about roles of S1P in the invasion of EVT cells. Our study was performed to investigate S1P effect on the invasion of EVT cells. We used the extravillous trophoblast cell line HTR8/SVneo cells to evaluate the effect. In vitro invasion assay was employed to determine the invasion of HTR8/SVneo cells induced by S1P. MMP-2 enzyme activity and relative level in the supernatants of HTR8/SVneo was assessed by gelatin zymography and western blot. Based on the above, siRNA and specific inhibitors were used for the intervention and study of potential signal pathways, and Real-time qPCR and western blot were used to test the mRNA and protein level of potential signal targets. We found that S1P could promote HTR8/SVneo cell invasion and upregulates activity and level of MMP-2. The promotion requires activation of MEK-ERK and is dependent on the axis of S1P/S1PR1. Our investigation of S1P may provide new insights into the molecular mechanisms of EVT invasion.
Collapse
Affiliation(s)
- Weiwei Yang
- Pharmacy and Biological Science School, Weifang Medical University, Weifang, China
| | - Qinghua Li
- School of Public Health, Weifang Medical University, Weifang, China
| | - Zhifang Pan
- Pharmacy and Biological Science School, Weifang Medical University, Weifang, China
| |
Collapse
|
16
|
The impact of sphingosine kinase-1 in head and neck cancer. Biomolecules 2013; 3:481-513. [PMID: 24970177 PMCID: PMC4030949 DOI: 10.3390/biom3030481] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/02/2013] [Accepted: 08/03/2013] [Indexed: 12/15/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) has a high reoccurrence rate and an extremely low survival rate. There is limited availability of effective therapies to reduce the rate of recurrence, resulting in high morbidity and mortality of advanced cases. Late presentation, delay in detection of lesions, and a high rate of metastasis make HNSCC a devastating disease. This review offers insight into the role of sphingosine kinase-1 (SphK1), a key enzyme in sphingolipid metabolism, in HNSCC. Sphingolipids not only play a structural role in cellular membranes, but also modulate cell signal transduction pathways to influence biological outcomes such as senescence, differentiation, apoptosis, migration, proliferation, and angiogenesis. SphK1 is a critical regulator of the delicate balance between proliferation and apoptosis. The highest expression of SphK1 is found in the advanced stage of disease, and there is a positive correlation between SphK1 expression and recurrent tumors. On the other hand, silencing SphK1 reduces HNSCC tumor growth and sensitizes tumors to radiation-induced death. Thus, SphK1 plays an important and influential role in determining HNSCC proliferation and metastasis. We discuss roles of SphK1 and other sphingolipids in HNSCC development and therapeutic strategies against HNSCC.
Collapse
|
17
|
Morad SAF, Levin JC, Tan SF, Fox TE, Feith DJ, Cabot MC. Novel off-target effect of tamoxifen--inhibition of acid ceramidase activity in cancer cells. Biochim Biophys Acta Mol Cell Biol Lipids 2013; 1831:1657-64. [PMID: 23939396 DOI: 10.1016/j.bbalip.2013.07.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 07/18/2013] [Accepted: 07/30/2013] [Indexed: 10/26/2022]
Abstract
Acid ceramidase (AC), EC 3.5.1.23, a lysosomal enzyme, catalyzes the hydrolysis of ceramide to constituent sphingoid base, sphingosine, and fatty acid. Because AC regulates the levels of pro-apoptotic ceramide and mitogenic sphingosine-1-phosphate, it is considered an apt target in cancer therapy. The present study reveals, for the first time, that the prominent antiestrogen, tamoxifen, is a pan-effective AC inhibitor in the low, single digit micromolar range, as demonstrated in a wide spectrum of cancer cell types, prostate, pancreatic, colorectal, and breast. Prostate cancer cells were chosen for the detailed investigations. Treatment of intact PC-3 cells with tamoxifen produced time- and dose-dependent inhibition of AC activity. Tamoxifen did not impact cell viability nor did it inhibit AC activity in cell-free assays. In pursuit of mechanism of action, we demonstrate that tamoxifen induced time-, as early as 5min, and dose-dependent, as low as 5μM, increases in lysosomal membrane permeability (LMP), and time- and dose-dependent downregulation of AC protein expression. Assessing various protease inhibitors revealed that a cathepsin B inhibitor blocked tamoxifen-elicited downregulation of AC protein; however, this action failed to restore AC activity unless assayed in a cell-free system at pH4.5. In addition, pretreatment with tamoxifen inhibited PC-3 cell migration. Toremifene, an antiestrogen structurally similar to tamoxifen, was also a potent inhibitor of AC activity. This study reveals a new, off-target action of tamoxifen that may be of benefit to enhance anticancer therapies that either incorporate ceramide or target ceramide metabolism.
Collapse
Affiliation(s)
- Samy A F Morad
- John Wayne Cancer Institute at Saint John's Health Center, Department of Experimental Therapeutics, Santa Monica, CA 90404, USA
| | | | | | | | | | | |
Collapse
|
18
|
Zhang C, He H, Zhang H, Yu D, Zhao W, Chen Y, Shao R. The blockage of Ras/ERK pathway augments the sensitivity of SphK1 inhibitor SKI II in human hepatoma HepG2 cells. Biochem Biophys Res Commun 2013; 434:35-41. [PMID: 23545258 DOI: 10.1016/j.bbrc.2013.03.070] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 03/17/2013] [Indexed: 02/06/2023]
Abstract
The treatment of hepatocellular carcinoma (HCC) remains a challenge and the future of cancer therapy will incorporate rational combinations directed to molecular targets that cooperate to drive critical pro-survival signaling. Sphingosine kinase 1 (SphK1) has been shown to regulate various processes important for cancer progression. Given the up-regulated expression of SphK1 in response to the silence of N-ras and other interactions between Ras/ERK and SphK1, it was speculated that combined inhibition of Ras/ERK and SphK1 would create enhanced antitumor effects. Experimental results showed that dual blockage of N-ras/ERK and SphK1 resulted in enhanced growth inhibitions in human hepatoma cells. Similarly, MEK1/2 Inhibitor U0126 potentiated SKI II-induced apoptosis in hepatoma HepG2 cells, consistently with the further attenuation of Akt/ERK/NF-κB signaling pathway. It was also shown that the combination of SKI II and U0126 further attenuated the migration of hepatoma HepG2 cells via FAK/MLC-2 signaling pathway. Taken together, the dual inhibition of SphK1 and Ras/ERK pathway resulted in enhanced effects, which might be an effective therapeutic approach for the treatment of HCC.
Collapse
Affiliation(s)
- Caixia Zhang
- Department of Oncology, Institute of Medicinal Biotechnology, Peking Union Medical College, Chinese Academy of Medical Sciences, 1# Tiantan Xili, Beijing 100050, China
| | | | | | | | | | | | | |
Collapse
|
19
|
Quint P, Ruan M, Pederson L, Kassem M, Westendorf JJ, Khosla S, Oursler MJ. Sphingosine 1-phosphate (S1P) receptors 1 and 2 coordinately induce mesenchymal cell migration through S1P activation of complementary kinase pathways. J Biol Chem 2013; 288:5398-406. [PMID: 23300082 DOI: 10.1074/jbc.m112.413583] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Normal bone turnover requires tight coupling of bone resorption and bone formation to preserve bone quantity and structure. With aging and during several pathological conditions, this coupling breaks down, leading to either net bone loss or excess bone formation. To preserve or restore normal bone metabolism, it is crucial to determine the mechanisms by which osteoclasts and osteoblast precursors interact and contribute to coupling. We showed that osteoclasts produce the chemokine sphingosine 1-phosphate (S1P), which stimulates osteoblast migration. Thus, osteoclast-derived S1P may recruit osteoblasts to sites of bone resorption as an initial step in replacing lost bone. In this study we investigated the mechanisms by which S1P stimulates mesenchymal (skeletal) cell chemotaxis. S1P treatment of mesenchymal (skeletal) cells activated RhoA GTPase, but this small G protein did not contribute to migration. Rather, two S1P receptors, S1PR1 and S1PR2, coordinately promoted migration through activation of the JAK/STAT3 and FAK/PI3K/AKT signaling pathways, respectively. These data demonstrate that the chemokine S1P couples bone formation to bone resorption through activation of kinase signaling pathways.
Collapse
Affiliation(s)
- Patrick Quint
- Endocrine Research Unit and Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, Minnesota 55905, USA.
| | | | | | | | | | | | | |
Collapse
|
20
|
Delgado A, Fabriàs G, Casas J, Abad JL. Natural products as platforms for the design of sphingolipid-related anticancer agents. Adv Cancer Res 2013; 117:237-81. [PMID: 23290782 DOI: 10.1016/b978-0-12-394274-6.00008-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Modulation of sphingolipid metabolism is a promising strategy for cancer therapy that has already opened innovative approaches for the development of pharmacological tools and rationally designed new drugs. On the other hand, natural products represent a classical and well-established source of chemical diversity that has guided medicinal chemists on the development of new chemical entities with potential therapeutic use. Based on these premises, the aim of this chapter is to provide the reader with a general overview of some of the most representative families of sphingolipid-related natural products that have been described in the recent literature as lead compounds for the design of new modulators of sphingolipid metabolism. Special emphasis is placed on the structural aspects of natural sphingoids and synthetic analogs that have found application as anticancer agents. In addition, their cellular targets and/or their mode of action are also considered.
Collapse
Affiliation(s)
- Antonio Delgado
- Spanish National Research Council, Consejo Superior de Investigaciones Científicas, Research Unit on Bioactive Molecules, Jordi Girona 18-26, Barcelona, Spain.
| | | | | | | |
Collapse
|
21
|
Abstract
Sphingosine-1-phosphate (S1P) was first described as a signaling molecule over 20 years ago. Since then, great strides have been made to reveal its vital roles in vastly different cellular and disease processes. Initially, S1P was considered nothing more than the terminal point of sphingolipid metabolism; however, over the past two decades, a large number of reports have helped unveil its full potential as an important regulatory, bioactive sphingolipid metabolite. S1P has a plethora of physiological functions, due in part to its many sites of actions and its different pools, which are both intra- and extracellular. S1P plays pivotal roles in many physiological processes, including the regulation of cell growth, migration, autophagy, angiogenesis, and survival, and thus, not surprisingly, S1P has been linked to cancer. In this review, we will summarize the vast body of knowledge, highlighting the connection between S1P and cancer. We will also suggest new avenues for future research.
Collapse
|
22
|
Liu J, Hsu A, Lee JF, Cramer DE, Lee MJ. To stay or to leave: Stem cells and progenitor cells navigating the S1P gradient. World J Biol Chem 2011; 2:1-13. [PMID: 21472036 PMCID: PMC3070303 DOI: 10.4331/wjbc.v2.i1.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2010] [Revised: 11/25/2010] [Accepted: 12/02/2010] [Indexed: 02/05/2023] Open
Abstract
Most hematopoietic stem progenitor cells (HSPCs) reside in bone marrow (BM), but a small amount of HSPCs have been found to circulate between BM and tissues through blood and lymph. Several lines of evidence suggest that sphingosine-1-phosphate (S1P) gradient triggers HSPC egression to blood circulation after mobilization from BM stem cell niches. Stem cells also visit certain tissues. After a temporary 36 h short stay in local tissues, HSPCs go to lymph in response to S1P gradient between lymph and tissue and eventually enter the blood circulation. S1P also has a role in the guidance of the primitive HSPCs homing to BM in vivo, as S1P analogue FTY720 treatment can improve HSPC BM homing and engraftment. In stress conditions, various stem cells or progenitor cells can be attracted to local injured tissues and participate in local tissue cell differentiation and tissue rebuilding through modulation the expression level of S1P1, S1P2 or S1P3 receptors. Hence, S1P is important for stem cells circulation in blood system to accomplish its role in body surveillance and injury recovery.
Collapse
Affiliation(s)
- Jingjing Liu
- Jingjing Liu, Andrew Hsu, Jen-Fu Lee, Menq-Jer Lee, Department of Pathology, Wayne State University School of Medicine, Detroit, MI 48202, United States
| | | | | | | | | |
Collapse
|